JP4099432B2 - Catalyst component and catalyst for olefin polymerization - Google Patents

Catalyst component and catalyst for olefin polymerization Download PDF

Info

Publication number
JP4099432B2
JP4099432B2 JP2003176105A JP2003176105A JP4099432B2 JP 4099432 B2 JP4099432 B2 JP 4099432B2 JP 2003176105 A JP2003176105 A JP 2003176105A JP 2003176105 A JP2003176105 A JP 2003176105A JP 4099432 B2 JP4099432 B2 JP 4099432B2
Authority
JP
Japan
Prior art keywords
group
component
olefin polymerization
catalyst
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003176105A
Other languages
Japanese (ja)
Other versions
JP2005008798A (en
Inventor
博之 川口
司 松尾
秀典 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Original Assignee
Japan Polypropylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp filed Critical Japan Polypropylene Corp
Priority to JP2003176105A priority Critical patent/JP4099432B2/en
Publication of JP2005008798A publication Critical patent/JP2005008798A/en
Application granted granted Critical
Publication of JP4099432B2 publication Critical patent/JP4099432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規なオレフィン重合用触媒成分および触媒に関するものであり、さらにはこれらの触媒を用いたオレフィンの重合方法およびこの重合触媒成分に用いるカルベン錯体に関する。
【0002】
【従来の技術】
オレフィン重合用触媒としては、チーグラーナッタ触媒やメタロセン触媒がよく知られているが、これらとは全く異なる遷移金属化合物であって、遷移金属原子と第16族原子が直接結合した構造を有する遷移金属化合物触媒が開示されている(例えば、特許文献1〜2参照。)。しかし、カルベンを配位子として含有する錯体を触媒成分として用いた例はない。
また、これらの先行特許文献に開示された化合物の触媒は、重合活性が充分ではなく、実用化には至っていない。このような状況のもとオレフィン重合活性に優れ、しかも優れた性状を有するポリオレフィンを安価に製造しうるようなオレフィン重合用触媒およびオレフィンの重合方法の出現が望まれている。
【0003】
【特許文献1】
特開平8−92309号公報
【特許文献2】
特開平11−240910号公報
【0004】
【発明が解決使用とする課題】
本発明は、上記問題点に鑑み、優れたオレフィン重合活性を有する新規なオレフィン重合用触媒成分、オレフィン重合用触媒および該触媒を用いたオレフィンの重合方法を安価に提供することを目的としている。また重合反応をはじめとする炭素−炭素結合生成反応に使用できる第4族遷移金属カルベン錯体を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討した結果、遷移金属原子に第16族原子が2個結合し、かつカルベンとして配位している炭化水素残基をもつ新規な構造の第4族遷移金属カルベン錯体がオレフィン重合に活性を有することを見出し本発明を完成した。
【0006】
すなわち、本発明の第1の発明によれば、下記一般式(II)で表される配位子前駆体と、MX (Mは、周期表第4族から選ばれる遷移金属原子を示し、Xは、ハロゲン原子、炭化水素残基およびアミド残基からなる群から選ばれる残基である。)で表される遷移金属含有化合物とを反応させて得られるカルベン錯体からなるオレフィン重合用触媒成分が提供される。
【0007】
【化3】

Figure 0004099432
(式中、A、Aは第16族原子を示し、互いに同一でも異なっていてもよい。R、R互いに同一でも異なっていてもよく、置換基を有してもよい芳香族炭化水素残基である。R、置換基を有してもよいイミダゾール基である。 、Q は、互いに同一でも異なっていてもよい炭化水素架橋基である。Xはハロゲン原子、炭化水素残基およびアミド残基からなる群から選ばれる残基であ。)
【0009】
また、本発明の第の発明によれば、下記成分[A]と成分[B]からなることを特徴とするオレフィン重合用触媒が提供される。
[A]:第1の発明のオレフィン重合用触媒成分
[B]:下記(B−1)〜(B−4)からなる群から選ばれる助触媒
(B−1)アルミニウムオキシ化合物
(B−2)成分[A]と反応して成分[A]をカチオンに変換することが可能なイオン性化合物またはルイス酸
(B−3)固体酸
(B−4)イオン交換性層状珪酸塩
【0010】
また、本発明の第の発明によれば、第の発明のオレフィン重合用触媒の存在下にオレフィンを重合または共重合することを特徴とするオレフィンの重合方法が提供される。
【0011】
また、本発明の第の発明によれば、下記一般式(II)で表される配位子前駆体と、MX (Mは、周期表第4族から選ばれる遷移金属原子を示し、Xは、ハロゲン原子、炭化水素残基およびアミド残基からなる群から選ばれる残基である。)で表される遷移金属含有化合物とを反応させて得られるカルベン錯体が提供される。
【0012】
【化4】
Figure 0004099432
(式中、A、Aは第16族原子を示し、互いに同一でも異なっていてもよい。R、R互いに同一でも異なっていてもよく、置換基を有してもよい芳香族炭化水素残基である。R、置換基を有してもよいイミダゾール基である。 、Q は、互いに同一でも異なっていてもよい炭化水素架橋基である。Xはハロゲン原子、炭化水素残基およびアミド残基からなる群から選ばれる残基であ。)
【0013】
【発明の実施の形態】
以下、本発明におけるオレフィン重合用触媒成分、オレフィン重合用触媒、およびこの触媒を用いたオレフィンの重合方法について具体的に説明する。
なお、本明細書において「重合」という語は、単独重合だけでなく、共重合をも包含した意味で用いられることがあり、「重合体」という語は、単独重合体だけでなく、共重合体をも包含した意味で用いられることがある。
【0014】
1.重合用触媒
本発明に係るオレフィン重合用触媒は、下記一般式(I)で表されるカルベン錯体からなるオレフィン重合用触媒成分(成分[A])と、これらと反応してオレフィン重合能を発現させる助触媒成分(成分[B])とからなり、さらに、必要に応じて、有機アルミニウム化合物(成分[C])とを組み合わせることも可能である。以下にオレフィン重合用触媒を形成する各触媒成分について説明する。
【0015】
(1)カルベン錯体(成分[A])
本発明のオレフィン重合用触媒成分であるカルベン錯体は、下記一般式(I)で表される。
【0016】
【化5】
Figure 0004099432
(式中、A、Aは第16族原子を示し、互いに同一でも異なっていてもよい。R、Rは互いに同一でも異なっていてもよい炭化水素残基である。RはMにカルベンとして配位している炭化水素残基である。Mは周期表第4族から選ばれる遷移金属原子を示す。X、Xはハロゲン原子、炭化水素残基、アミド残基からなる群から選ばれる残基であり互いに同一でも異なっていてもよい。)
【0017】
一般式(I)において、Mは、周期表第4族から選ばれる遷移金属原子であり、好ましくはTi、Zr原子であり、より好ましくはTi原子である。
、Aは、第16族原子を示し、好ましくは酸素、硫黄原子であり、特に好ましくは酸素原子である。
、Rは、炭化水素残基であればその種類に制限はないが、好ましくは芳香族炭化水素基である。その具体例としてはフェニル、ナフチル、アントラセニル、ビフェニル、トリル、ベンジルが例示できる。好ましいのはフェニル基、ナフチル基、さらに好ましくはフェニル基である。R、Rは、芳香族炭化水素基である場合においても置換基を有していてもよく、その好ましい例としては、ハロゲン原子、脂肪族炭化水素基、脂環族炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基またはスズ含有基が結合していても良い。これらのうちの2個以上が互いに連結して環を形成していてもよい。R、Rが有している置換基には制限はないが、好ましい例としては、立体的に嵩高い置換基、具体的には炭素数2以上の炭化水素残基、特に好ましくは炭素数4以上の炭化水素残基が挙げられる。
【0018】
は、Mにカルベンとして配位しておりカルベン錯体を形成する。カルベン錯体には、山本明夫著「有機金属化学」裳華房(昭和61年)151ページに記載のようにFisher型カルベン錯体とSchrock型カルベン錯体が存在する。本発明においてはいずれのカルベン錯体も使用可能であるが、Fisher型カルベン錯体の方が好ましい。Fisher型カルベン錯体の特徴は、Rにヘテロ原子を含有していることである。ヘテロ原子の種類に制限は無いが、好ましいヘテロ原子としては、B、N、O、P、Sが挙げられ、より好ましいのはN、Pである。Rは、2個以上のヘテロ原子を含有していてもよい。また2種類以上のヘテロ原子を含有していても良い。好ましい具体例としては、イミダゾール基が挙げられ、これに置換基が結合していても良い。イミダゾール基に結合してもよい好ましい置換基としては、ハロゲン原子、脂肪族炭化水素基、脂環族炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基またはスズ含有基が挙げられる。
【0019】
、R、Rは、これらのうちの2個以上が架橋により連結していてもよく、好ましい態様として挙げられる。架橋基としては炭化水素架橋基が好ましく、具体的には、メチレン、エチレン、プロピレンなどの炭素原子数が1〜20、好ましくは1〜5の直鎖状または分岐状のアルキレンなどが挙げられる。特に好ましいのはメチレンである。また、上記炭化水素基は、他の置換基が結合していてもよい。
【0020】
、Xは、ハロゲン原子、炭化水素残基、アミド残基からなる群から選ばれる残基であり、互いに同一でも異なっていてもよい。ハロゲン原子の具体例としては塩素、臭素、フッ素、ヨウ素などが挙げられる。またアミド残基の例としてはジメチルアミド、ジエチルアミド、ジプロピルアミド、ジブチルアミド、ジフェニルアミド等が好ましく挙げられる。
これらのカルベン錯体には、中性配位子、例えばテトラヒドロフラン分子、アセトニロリル分子、エーテル分子などが配位していても良い。
【0021】
このようなカルベン錯体は、例えば、下記式(II)で表される配位子前駆体と、MX(ここで、M、Xは上記一般式(I)中のMおよびX、Xと同義である。)で表される化合物などの遷移金属含有化合物とを反応させることにより合成することができる。
【0022】
【化6】
Figure 0004099432
(式中、Q、Qは互いに同一でも異なっていてもよい炭化水素架橋基であり、R、R、Rと連結されている。Xは一般式(I)中のXと同義である。)
【0023】
上記一般式(II)で示される配位子前駆体は、公知であり、例えば、論文(B.K.M.Chan,N−.H.Chang and M.R.Grimmett,Aust.J.Chem.1997,30,2005)や本(M.R.Grimmett,Imidazole and Benzimidazole Synthesis,Academic Press,London 1997,p.201)に記載のとおり、塩基存在下でイミダゾールHRとハロゲン化アルキルHAXとHAXを順次反応させることにより合成することが出来る。
このようなカルベン錯体を使用することで重合反応をはじめとする炭素−炭素結合生成反応が可能となる。本発明のカルベン錯体の重合反応以外の炭素−炭素結合生成反応の例としては重合反応、Heck反応、ヒドロホルミル化反応、ヒドロアミノ化反応等が挙げられる
【0024】
(2)助触媒成分(成分[B])
本発明に係るオレフィン重合用触媒は、一般式(I)で表されるカルベン錯体のオレフィン重合触媒成分と、これらと反応してオレフィン重合能を発現させる助触媒成分とを組み合わせることで得られる。
本発明で使用できる助触媒成分としては、公知のものであれば特に制限無く使用することが可能である。具体的には、下記(B−1)〜(B−4)からなる群から選ばれる。
(B−1)アルミニウムオキシ化合物
(B−2)成分[A]と反応して成分[A]をカチオンに変換することが可能なイオン性化合物またはルイス酸
(B−3)固体酸
(B−4)イオン交換性層状珪酸塩
【0025】
(B−1)アルミニウムオキシ化合物
(B−1)アルミニウムオキシ化合物においては、アルミニウムオキシ化合物が錯体をカチオン化できることは周知であり、そのような化合物としては、具体的には次の各一般式で表される化合物が挙げられる。
【0026】
【化7】
Figure 0004099432
【0027】
上記各一般式中、Rは水素原子または炭化水素残基、好ましくは炭素数1〜10、特に好ましくは炭素数1〜6の炭化水素残基を示す。また、複数のRはそれぞれ同一でも異なっていてもよい。また、pは0〜40、好ましくは2〜30の整数を示す。
一般式のうち、一番目及び二番目の式で表される化合物は、アルミノキサンとも称される化合物であって、これらの中では、メチルアルミノキサン又はメチルイソブチルアルミノキサンが好ましい。上記のアルミノキサンは、各群内および各群間で複数種併用することも可能である。そして、上記のアルミノキサンは、公知の様々な条件下に調製することができる。
一般式の三番目で表される化合物は、一種類のトリアルキルアルミニウム又は二種類以上のトリアルキルアルミニウムと、一般式RB(OH)で表されるアルキルボロン酸との10:1〜1:1(モル比)の反応により得ることができる。一般式中、R及びRは、炭素数1〜10、好ましくは炭素数1〜6の炭化水素残基を示す。
【0028】
(B−2)成分[A]と反応して成分[A]をカチオンに変換することが可能なイオン性化合物またはルイス酸
イオン性化合物としては、カルボニウムカチオン、アンモニウムカチオンなどの陽イオンと、トリフェニルホウ素、トリス(3,5−ジフルオロフェニル)ホウ素、トリス(ペンタフルオロフェニル)ホウ素等の有機ホウ素化合物との錯化物等が挙げられる。
また、ルイス酸としては、種々の有機ホウ素化合物、例えばトリス(ペンタフルオロフェニル)ホウ素などが例示される。あるいは、塩化アルミニウム、塩化マグネシウム等の金属ハロゲン化合物などが例示される。なお、上記のルイス酸のある種のものは、成分[A]と反応して成分[A]をカチオンに変換することが可能なイオン性化合物として把握することもできる。上述した非配位性のホウ素化合物を用いたメタロセン触媒は、特開平3−234709号公報、特開平5−247128号公報等に例示されている。
【0029】
(B−3)固体酸
(B−3)の固体酸としては、アルミナ、シリカ−アルミナ、シリカ−マグネシア等が挙げられる。
【0030】
(B−4)イオン交換性層状化合物
(B−4)のイオン交換性層状化合物は、粘土鉱物の大部分を占めるものであり、好ましくはイオン交換性層状珪酸塩である。
イオン交換性層状珪酸塩(以下、単に「珪酸塩」と略記する場合がある。)は、イオン結合などによって構成される面が互いに結合力で平行に積み重なった結晶構造を有し、且つ、含有されるイオンが交換可能である珪酸塩化合物をいう。大部分の珪酸塩は、天然には主に粘土鉱物の主成分として産出されるため、イオン交換性層状珪酸塩以外の夾雑物(石英、クリストバライト等)が含まれることが多いが、それらを含んでいてもよい。珪酸塩は各種公知のものが使用できる。具体的には、白水春雄著「粘土鉱物学」朝倉書店(1995年)に記載されている次のような層状珪酸塩が挙げられる。
【0031】
(i)2:1型鉱物類
モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイト等のスメクタイト族;バーミキュライト等のバーミキュライト族;雲母、イライト、セリサイト、海緑石等の雲母族;パイロフィライト、タルク等のパイロフィライト−タルク族;Mg緑泥石等の緑泥石族等。
(ii)2:1リボン型鉱物類
セピオライト、パリゴルスカイト等。
【0032】
本発明で原料として使用する珪酸塩は、上記の混合層を形成した層状珪酸塩であってもよい。本発明においては、主成分の珪酸塩が2:1型構造を有する珪酸塩であることが好ましく、スメクタイト族であることが更に好ましく、モンモリロナイトが特に好ましい。本発明で使用する珪酸塩は、天然品または工業原料として入手したものは、特に処理を行うことなくそのまま用いることができるが、化学処理を施すことが好ましい。具体的には、酸処理、アルカリ処理、塩類処理、有機物処理等が挙げられる。これらの処理を互いに組み合わせて用いてもよい。本願発明において、これらの処理条件には特に制限はなく、公知の条件が使用できる。
また、これらイオン交換性層状珪酸塩には、通常吸着水および層間水が含まれるため、不活性ガス流通下で加熱脱水処理するなどして、水分を除去してから使用するのが好ましい。
【0033】
(3)有機アルミニウム化合物(成分[C])
本発明のオレフィン重合用触媒は、さらに、必要に応じて、有機アルミニウム化合物(成分[C])と組み合わせることも可能である。この成分は、従来公知のメタロセン触媒と同様、触媒合成工程における不純物から当該触媒を保護し、重合活性を向上させる役割を果たす。成分[C]の具体例としては、一般式
AlR3−i
(式中、Rは炭素数1〜20の炭化水素基、Xは水素、アルコキシ基、iは0<i≦3の数を示す。但し、Xが水素の場合は、iは0<i<3とする。)で示される化合物が使用される。
【0034】
具体的には、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウム、トリオクチルアルミニウム等のトリアルキルアルミニウムまたはジメチルアルミニウムメトキシド、ジエチルアルミニウムメトキシド、ジイソブチルアルミニウムメトキシド、ジイソブチルアルミニウムエトキシド等のアルコキシ含有アルキルアルミニウムまたはジエチルアルミニウムハライドなどのハライド含有アルキルアルミニウムである。
これらのうち、特にトリアルキルアルミニウムが好ましい。さらに好ましくは、トリイソブチルアルミニウム、トリオクチルアルミニウムである。
上記のような有機アルミニウム化合物は、1種単独でまたは2種以上組み合わせて用いられる。
【0035】
(4)担体
本発明ではオレフィン重合用触媒を担持するために公知の担体を用いても良い。担体は、無機または有機の化合物であって、顆粒状ないしは微粒子状の固体である。
【0036】
(5)予備重合
なお、上記重合用触媒成分のカルベン錯体と助触媒からなるポリオレフィン製造用触媒をオレフィン重合用(本重合)の触媒として使用する前に、必要に応じて、担体に担持させた後、エチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ブテン、ビニルシクロアルカン、スチレン等のオレフィンを予備的に少量重合する予備重合処理を施してもよい。予備重合方法は公知の方法が使用できる。
【0037】
2.オレフィンの重合方法
本発明のオレフィンの重合方法は、上記成分[A]と成分[B]、さらに必要に応じて、成分[C]を用いて行う。
上記成分[A]と成分[B]の使用量は、それぞれの組み合わせの中で最適な量比で用いられる。
成分[B]が、アルミニウムオキシ化合物の場合は、Al/遷移金属のモル比は、通常10以上100000以下、さらに100以上20000以下、特に100以上10000以下の範囲が適する。
一方、成分[B]としてイオン性化合物あるいはルイス酸を用いた場合は、対遷移金属のモル比は0.1〜1000、好ましくは0.5〜100、更に好ましくは1〜50の範囲である。
成分[B]として、固体酸あるいはイオン交換性層状珪酸塩を用いる場合は、成分[B]1gにつき、遷移金属錯体0.001〜10ミリモル、好ましくは0.001〜1ミリモルの範囲である。
これらの使用比率は、通常の割合例を示すものであって、触媒が合目的的なものとなっておれば、上に述べた使用比率の範囲によって、本発明が限定されることにはならないことは当然である。
【0038】
本発明のオレフィン重合用触媒により重合できるオレフィンとしては、エチレン、プロピレン、ブテン−1、3−メチルブテン−1、3−メチルペンテン−1、4−メチルペンテン−1、ビニルシクロアルカン、ブタジエン等の共役ジエン、1,5−ヘキサジエン等の非共役ジエン、スチレンあるいはこれらの誘導体等が挙げられる。特に、エチレンあるいはプロピレンが好適に使用される。特に好ましくはエチレンである。
また、重合は、単独重合の他にランダム共重合やブロック共重合にも好適に適用できる。共重合の際のコモノマーとしては、上記のオレフィンが例示できる。
【0039】
重合反応は、ブタン、ペンタン、ヘキサン、ヘプタン、トルエン、シクロヘキサン等の不活性炭化水素や液化α−オレフィン等の溶媒の存在下に、あるいは実質的に溶媒や単量体の液相が存在しない状態で気相重合により行うのが好ましい。気相重合は、例えば流動床、撹拌床、撹拌・混合機を備えた撹拌流動床等の反応装置を用いて行うことができる。重合温度、重合圧力等の条件は特に限定されないが、重合温度は、一般に−50〜350℃、好ましくは0〜300℃であり、また、重合圧力は通常、常圧〜約200MPa・G、好ましくは常圧〜150MPa・G、更に好ましくは常圧〜130MPa・Gの範囲である。また、重合系内に分子量調節剤として水素を存在させてもよい。
【0040】
【実施例】
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。また物性測定法は以下の通りである。
(1)DSC測定
JIS−K7121に準拠しておこなった。試料9mgを160℃で10分間融解後、10℃/分の速度で降温して結晶化曲線を測定し、ピークトップ温度(℃)を結晶化温度(Tc)とした。さらに20℃に降温度して1分間保持後、160℃まで10℃/分の昇温速度で融解曲線を測定し、ピークトップ温度(℃)を融点(Tm)とした。
(2)GPC測定
本発明において、重量平均分子量(Mw)および数平均分子量(Mn)は、ゲル・パーミエーションクロマトグラフィー(GPC)法で測定したものをいう。保持容量から分子量への換算は、予め作成しておいた標準ポリスチレンによる検量線を用いて行う。
使用する標準ポリスチレンは、何れも東ソー(株)製の以下の銘柄である。
F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000。
各々が0.5mg/mLとなるようにODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.2mL注入して較正曲線を作成する。
較正曲線は、最小二乗法で近似して得られる三次式を用いる。
分子量への換算に使用する粘度式[η]=K×Mαは、以下の数値を用いる。
PS:K=1.38×10−4、α=0.7
PE:K=3.917×10−4、α=0.733
なお、GPCの測定条件は、以下の通りである。
装置:Waters社製GPC(ALC/GPC 150C)検出器:FOXBORO社製MIRAN 1A IR検出器(測定波長:3.42μm)
カラム:昭和電工社製AD806M/S(3本)
移動相溶媒:オルトジクロロベンゼン(ODCB)
測定温度:140℃
流速:1.0ml/分
注入量:0.2ml
試料の調製:試料はODCB(0.5mg/mLのBHTを含む)を用いて1mg/mLの溶液を調製し、140℃で約1時間を要して溶解させる
【0041】
実施例1
(1)N−(3,5−ジ−tert−ブチル−2−ヒドロキシフェニルメチル)−イミダゾールの合成
イミダゾール(4.8g,70mmol)と無水炭酸水素ナトリウム(6.2g,74mmol)にTHF(50mL)を加え、加熱還流した。これに2−ブロモメチル−4,6−ジ−tert−ブチルフェノール(20g,67mmol)のTHF(100mL)溶液を滴下した。12時間撹拌した後、水を加え、エーテル抽出した。有機層を、N−(3,5−ジ−tert−ブチル−2−ヒドロキシフェニルメチル)−イミダゾールとして無色粉末で得た。収量は、18.3g(96%)であった。
【0042】
(2)配位子前駆体:[HL]Brの合成
N−(3,5−ジ−tert−ブチル−2−ヒドロキシフェニルメチル)−イミダゾール(10.0g,35mmol)のTHF(25mL)溶液を加熱還流した。これに、2−ブロモメチル−4,6−ジ−tert−ブチルフェノール(9g,30mmol)のTHF(50mL)溶液をゆっくりと滴下した。12時間撹拌した後、溶媒を減圧留去した。残渣をトルエン、ヘキサンで洗浄することにより、配位子前駆体を得た(下記反応式参照。)。収量は、11.0g(63%)であった。
【0043】
【化8】
Figure 0004099432
【0044】
(3)カルベンTiCl錯体:LTiCl(thf)の合成
配位子前駆体[HL]Br(3.0g,5.12mmol)のTHF(50mL)溶液にNaN(SiMe(1M THF溶液;15.4mL,15.4mmol)を−78℃で加えた。30分間低温で撹拌した後、TiCl(thf)(1.71g,5.12mmol)のTHF溶液(50mL)に−78℃で加えた。ゆっくりと室温まで昇温し、8時間撹拌した。不溶物を除いた後、溶媒を減圧留去した。残渣をTHF/ヘキサンで再結晶しLTiCl(thf)を赤色結晶として得た。収量は、3.41g(96%)であった。
【0045】
(4)エチレンの重合
充分に乾燥、窒素置換した3Lのステンレス製オートクレーブにトルエン1.0Lを入れ、誘導撹拌装置を用いて撹拌しつつ内部温度を30℃に調節した。これにアルミノキサン(東ソーファイケム社製MMAO、Al原子換算で8.5wt%のヘキサン溶液)を10.7mL加え、さらにカルベンTiCl錯体 LTiCl(thf)を20μmol(トルエン溶液20mLとして)を添加した。温度を30℃に保持したままエチレンを0.9MPa・Gを保つように加え撹拌しつつ30分重合した。その後エタノールを添加して重合を停止し、濾過、乾燥後ポリエチレン26.1gを得た。
得られたポリエチレンの物性を評価した。その結果を表1に重合反応条件と共に示す。
【0046】
実施例2
(1)カルベンTiベンジル錯体:LTi(CHPh)の合成
実施例1(3)で得られたLTiCl(thf)(694mg,1.0mmol)のトルエン溶液(40mL)にPhCHMgCl(1.53M エーテル溶液:1.31mL,2.0mmol)を−78℃で滴下した。ゆっくりと室温まで昇温し、8時間撹拌した。不溶物を除いた後、溶媒を減圧留去した。残渣をトルエン/ヘキサンで再結晶しLTi(CHPh)を黄色結晶として得た。収量は、220mg(30%)であった。
(2)エチレンの重合
(1)で得られたカルベンTiベンジル錯体 LTi(CHPh)を用い、実施例1(4)と同様にエチレン重合を行いポリエチレンを得た。その結果を表1に示す。
【0047】
実施例3
(1)カルベンZr錯体:LZr(NEt)(HNEt)の合成
実施例1(2)で得られた配位子前駆体[HL]Br(2.0g,3.14mmol)のトルエン(50mL)溶液にZr(NEt(3.14mmol)を−78℃で加えた。ゆっくりと室温まで昇温し、8時間撹拌した。さらに60℃に加温し、30分撹拌した。不溶物を除いた後、溶液を濃縮、冷却しカルベンZr錯体を無色結晶として得た。収量は、1.85g(57%)であった。
(2)エチレンの重合
(1)で得られたカルベンZr錯体 LZr(NEt)(HNEt)を用い、実施例1(4)と同様にエチレン重合を行いポリエチレンを得た。その結果を表1に示す。
【0048】
【表1】
Figure 0004099432
【0049】
【発明の効果】
本発明のカルベン錯体は、オレフィン重合活性が高く、工業的規模で安価にポリオレフィンを製造することが可能である。さらに配位子構造を最適化することで所望の分子構造を有するポリオレフィンの製造が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel catalyst component and catalyst for olefin polymerization, and further relates to a method for polymerizing olefins using these catalysts and a carbene complex used for this polymerization catalyst component.
[0002]
[Prior art]
As a catalyst for olefin polymerization, a Ziegler-Natta catalyst or a metallocene catalyst is well known, but it is a completely different transition metal compound and has a structure in which a transition metal atom and a group 16 atom are directly bonded. Compound catalysts are disclosed (for example, see Patent Documents 1 and 2). However, there is no example using a complex containing carbene as a ligand as a catalyst component.
Moreover, the catalyst of the compound disclosed by these prior patent documents is not sufficient in polymerization activity, and has not been put into practical use. Under such circumstances, the emergence of an olefin polymerization catalyst and an olefin polymerization method capable of producing a polyolefin having excellent olefin polymerization activity and excellent properties at low cost is desired.
[0003]
[Patent Document 1]
JP-A-8-92309 [Patent Document 2]
Japanese Patent Laid-Open No. 11-240910 [0004]
[Problems to be Solved by the Invention]
In view of the above problems, an object of the present invention is to provide a novel olefin polymerization catalyst component having excellent olefin polymerization activity, an olefin polymerization catalyst, and an olefin polymerization method using the catalyst at low cost. It is another object of the present invention to provide a Group 4 transition metal carbene complex that can be used in carbon-carbon bond generation reactions including polymerization reactions.
[0005]
[Means for Solving the Problems]
As a result of diligent studies to solve the above problems, the present inventors have found that a novel structure having a hydrocarbon residue in which two group 16 atoms are bonded to a transition metal atom and coordinated as a carbene. The present invention was completed by finding that a Group 4 transition metal carbene complex has activity in olefin polymerization.
[0006]
That is, according to the first invention of the present invention, a ligand precursor represented by the following general formula (II) and MX 4 (M represents a transition metal atom selected from Group 4 of the periodic table, X is a residue selected from the group consisting of a halogen atom, a hydrocarbon residue and an amide residue.) Catalyst component for olefin polymerization comprising a carbene complex obtained by reacting with a transition metal-containing compound represented by Is provided.
[0007]
[Chemical 3]
Figure 0004099432
(Wherein, A 1, A 2 represents a Group 16 atom, good .R 1, R 2 be the same as or different from each other, rather it may also be the same or different, may have a substituent is an aromatic hydrocarbon residue .R 3 is a substituent a good imidazole group. Q 1, Q 2 is a hydrocarbon bridging group which may be the same or different. X is a halogen atom, Ru residues der selected from the group consisting of hydrocarbon residues and amide residue.)
[0009]
According to a second aspect of the present invention, there is provided an olefin polymerization catalyst comprising the following component [A] and component [B].
[A]: Olefin polymerization catalyst component of the first invention [B]: Cocatalyst selected from the group consisting of the following (B-1) to (B-4) (B-1) Aluminum oxy compound (B-2) ) An ionic compound or Lewis acid capable of reacting with component [A] to convert component [A] into a cation. (B-3) Solid acid (B-4) Ion exchange layered silicate
According to a third aspect of the present invention, there is provided an olefin polymerization method characterized by polymerizing or copolymerizing an olefin in the presence of the olefin polymerization catalyst of the second aspect.
[0011]
Moreover, according to the fourth invention of the present invention, a ligand precursor represented by the following general formula (II) and MX 4 (M represents a transition metal atom selected from Group 4 of the periodic table, X is a residue selected from the group consisting of a halogen atom, a hydrocarbon residue and an amide residue.) A carbene complex obtained by reacting with a transition metal-containing compound represented by:
[0012]
[Formula 4]
Figure 0004099432
(Wherein, A 1, A 2 represents a Group 16 atom, good .R 1, R 2 be the same as or different from each other, rather it may also be the same or different, may have a substituent is an aromatic hydrocarbon residue .R 3 is a substituent a good imidazole group. Q 1, Q 2 is a hydrocarbon bridging group which may be the same or different. X is a halogen atom, Ru residues der selected from the group consisting of hydrocarbon residues and amide residue.)
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the olefin polymerization catalyst component, the olefin polymerization catalyst, and the olefin polymerization method using this catalyst in the present invention will be specifically described.
In the present specification, the term “polymerization” is sometimes used in the meaning including not only homopolymerization but also copolymerization, and the term “polymer” refers not only to homopolymer but also to copolymerization. It may be used in the meaning that also includes coalescence.
[0014]
1. Polymerization Catalyst The olefin polymerization catalyst according to the present invention expresses an olefin polymerization ability by reacting with an olefin polymerization catalyst component (component [A]) composed of a carbene complex represented by the following general formula (I). And a co-catalyst component (component [B]) to be further combined with an organoaluminum compound (component [C]) as necessary. Below, each catalyst component which forms the catalyst for olefin polymerization is demonstrated.
[0015]
(1) Carbene complex (component [A])
The carbene complex which is a catalyst component for olefin polymerization of the present invention is represented by the following general formula (I).
[0016]
[Chemical formula 5]
Figure 0004099432
(Wherein, A 1, A 2 represents a Group 16 atom, the .R 3 is a substituted hydrocarbon residue which may be different from each other the same good .R 1, R 2 be the same as or different from each other It is a hydrocarbon residue coordinated as a carbene to M. M represents a transition metal atom selected from Group 4 of the periodic table, and X 1 and X 2 are each a halogen atom, a hydrocarbon residue, or an amide residue. And the residues may be the same or different from each other.
[0017]
In general formula (I), M is a transition metal atom selected from Group 4 of the periodic table, preferably a Ti or Zr atom, and more preferably a Ti atom.
A 1 and A 2 represent a Group 16 atom, preferably an oxygen atom or a sulfur atom, and particularly preferably an oxygen atom.
R 1 and R 2 are not particularly limited as long as they are hydrocarbon residues, but are preferably aromatic hydrocarbon groups. Specific examples thereof include phenyl, naphthyl, anthracenyl, biphenyl, tolyl and benzyl. Preferred are a phenyl group and a naphthyl group, and more preferred is a phenyl group. R 1 and R 2 may have a substituent even in the case of an aromatic hydrocarbon group, and preferred examples thereof include a halogen atom, an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, a hetero group. A cyclic compound residue, oxygen-containing group, nitrogen-containing group, boron-containing group, sulfur-containing group, phosphorus-containing group, silicon-containing group, germanium-containing group or tin-containing group may be bonded. Two or more of these may be connected to each other to form a ring. Although R 1, the substituent R 2 has no limitations, as a preferred example, sterically bulky substituents, specifically hydrocarbon residue having 2 or more carbon atoms is particularly preferably carbon A hydrocarbon residue having a number of 4 or more is exemplified.
[0018]
R 3 is coordinated to M as a carbene and forms a carbene complex. As the carbene complex, there are a Fisher-type carbene complex and a Schrock-type carbene complex, as described in Akio Yamamoto, “Organic Metal Chemistry”, page 169 of Shokabo (Showa 61). Any carbene complex can be used in the present invention, but a Fisher-type carbene complex is preferred. The feature of the Fisher carbene complex is that R 3 contains a hetero atom. Although there is no restriction | limiting in the kind of hetero atom, As a preferable hetero atom, B, N, O, P, S is mentioned, More preferably, it is N and P. R 3 may contain 2 or more heteroatoms. Two or more kinds of heteroatoms may be contained. Preferable specific examples include an imidazole group, and a substituent may be bonded thereto. Preferred substituents that may be bonded to the imidazole group include halogen atoms, aliphatic hydrocarbon groups, alicyclic hydrocarbon groups, heterocyclic compound residues, oxygen-containing groups, nitrogen-containing groups, boron-containing groups, sulfur A containing group, a phosphorus-containing group, a silicon-containing group, a germanium-containing group, or a tin-containing group.
[0019]
Two or more of R 1 , R 2 and R 3 may be linked by crosslinking, and are exemplified as a preferred embodiment. The bridging group is preferably a hydrocarbon bridging group, and specific examples include linear or branched alkylene having 1 to 20, preferably 1 to 5, carbon atoms such as methylene, ethylene and propylene. Particularly preferred is methylene. In addition, other substituents may be bonded to the hydrocarbon group.
[0020]
X 1 and X 2 are residues selected from the group consisting of a halogen atom, a hydrocarbon residue, and an amide residue, and may be the same as or different from each other. Specific examples of the halogen atom include chlorine, bromine, fluorine, iodine and the like. Examples of amide residues are preferably dimethylamide, diethylamide, dipropylamide, dibutylamide, diphenylamide and the like.
These carbene complexes may be coordinated with a neutral ligand such as a tetrahydrofuran molecule, an acetonilolyl molecule, or an ether molecule.
[0021]
Such a carbene complex includes, for example, a ligand precursor represented by the following formula (II) and MX 4 (where M and X are M and X 1 , X 2 in the general formula (I)). It can be synthesized by reacting with a transition metal-containing compound such as a compound represented by
[0022]
[Chemical 6]
Figure 0004099432
(In the formula, Q 1 and Q 2 are hydrocarbon bridging groups which may be the same or different from each other, and are linked to R 1 , R 2 and R 3. X is the same as X in formula (I). Synonymous.)
[0023]
The ligand precursor represented by the above general formula (II) is known, for example, a paper (BK M. Chang, NH CH and MR Grimmett, Aust. J. Chem. 1997, 30, 2005) and this book (MR Grimmett, Imidazole and Benzimidazole Synthesis, Academic Press, London 1997, p. 201) in the presence of a base, imidazole HR 3 and halogenated alkyl HA 1 R It can be synthesized by sequentially reacting 1 X and HA 2 R 2 X.
By using such a carbene complex, a carbon-carbon bond generation reaction including a polymerization reaction can be performed. Examples of the carbon-carbon bond forming reaction other than the polymerization reaction of the carbene complex of the present invention include polymerization reaction, Heck reaction, hydroformylation reaction, hydroamination reaction and the like.
(2) Cocatalyst component (component [B])
The olefin polymerization catalyst according to the present invention can be obtained by combining an olefin polymerization catalyst component of a carbene complex represented by the general formula (I) and a co-catalyst component that reacts with these to develop olefin polymerization ability.
The promoter component that can be used in the present invention can be used without particular limitation as long as it is a known one. Specifically, it is selected from the group consisting of the following (B-1) to (B-4).
(B-1) Aluminum Oxy Compound (B-2) An ionic compound capable of reacting with Component [A] to convert Component [A] into a cation or Lewis acid (B-3) Solid acid (B- 4) Ion exchange layered silicate
(B-1) Aluminum Oxy Compound (B-1) In the aluminum oxy compound, it is well known that the aluminum oxy compound can cationize the complex. Specifically, such a compound is represented by the following general formulas. And the compounds represented.
[0026]
[Chemical 7]
Figure 0004099432
[0027]
In the above general formulas, R 4 represents a hydrogen atom or a hydrocarbon residue, preferably a hydrocarbon residue having 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms. The plurality of R 4 may be the same or different. P represents an integer of 0 to 40, preferably 2 to 30.
Among the general formulas, the compounds represented by the first and second formulas are compounds also referred to as aluminoxanes. Among these, methylaluminoxane or methylisobutylaluminoxane is preferable. The above aluminoxanes can be used in combination within a group and between groups. And said aluminoxane can be prepared on well-known various conditions.
The compound represented by the third general formula is 10: 1 to 1 type trialkylaluminum or two or more types of trialkylaluminum and an alkylboronic acid represented by the general formula R 5 B (OH) 2 . It can be obtained by a 1: 1 (molar ratio) reaction. In the general formula, R 4 and R 5 represent a hydrocarbon residue having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms.
[0028]
(B-2) As an ionic compound or Lewis acid ionic compound capable of reacting with component [A] to convert component [A] into a cation, a cation such as a carbonium cation or an ammonium cation, Examples thereof include complexes with organic boron compounds such as triphenylboron, tris (3,5-difluorophenyl) boron, and tris (pentafluorophenyl) boron.
Examples of the Lewis acid include various organic boron compounds such as tris (pentafluorophenyl) boron. Alternatively, metal halogen compounds such as aluminum chloride and magnesium chloride are exemplified. In addition, a certain thing of said Lewis acid can also be grasped | ascertained as an ionic compound which can react with component [A] and can convert component [A] into a cation. Examples of the metallocene catalyst using the non-coordinating boron compound described above are disclosed in JP-A-3-234709 and JP-A-5-247128.
[0029]
(B-3) Solid acid of the solid acid (B-3) includes alumina, silica-alumina, silica-magnesia and the like.
[0030]
(B-4) The ion-exchangeable layered compound of the ion-exchangeable layered compound (B-4) occupies most of the clay mineral, and is preferably an ion-exchangeable layered silicate.
An ion-exchange layered silicate (hereinafter sometimes simply referred to as “silicate”) has a crystal structure in which surfaces formed by ionic bonds and the like are stacked in parallel with each other and have a binding force. Refers to a silicate compound in which the ions to be exchanged are exchangeable. Most silicates are naturally produced mainly as a main component of clay minerals, and therefore often contain impurities (quartz, cristobalite, etc.) other than ion-exchangeable layered silicates. You may go out. Various known silicates can be used. Specific examples include the following layered silicates described in Haruo Shiramizu “Clay Mineralogy” Asakura Shoten (1995).
[0031]
(I) 2: 1 type minerals Smectite group such as montmorillonite, sauconite, beidellite, nontronite, saponite, hectorite, stevensite, etc .; vermiculite group such as vermiculite; mica such as mica, illite, sericite, sea chlorite Pylophilite-talc group such as pyrophyllite and talc; Chlorite group such as Mg chlorite.
(Ii) 2: 1 ribbon type minerals sepiolite, palygorskite and the like.
[0032]
The silicate used as a raw material in the present invention may be a layered silicate in which the above mixed layer is formed. In the present invention, the main component silicate is preferably a silicate having a 2: 1 type structure, more preferably a smectite group, and particularly preferably montmorillonite. As the silicate used in the present invention, those obtained as natural products or industrial raw materials can be used as they are without any particular treatment, but chemical treatment is preferred. Specifically, acid treatment, alkali treatment, salt treatment, organic matter treatment and the like can be mentioned. These processes may be used in combination with each other. In the present invention, these treatment conditions are not particularly limited, and known conditions can be used.
Moreover, since these ion-exchange layered silicates usually contain adsorbed water and interlayer water, it is preferable to use them after removing moisture by heat dehydration under an inert gas flow.
[0033]
(3) Organoaluminum compound (component [C])
The olefin polymerization catalyst of the present invention can be further combined with an organoaluminum compound (component [C]) as necessary. This component plays the role which protects the said catalyst from the impurity in a catalyst synthesis process, and improves a polymerization activity like a conventionally well-known metallocene catalyst. Specific examples of the component [C] include the general formula AlR 3-i X i
(In the formula, R is a hydrocarbon group having 1 to 20 carbon atoms, X is hydrogen or an alkoxy group, and i is a number of 0 <i ≦ 3. However, when X is hydrogen, i is 0 <i <. 3) is used.
[0034]
Specifically, trialkylaluminum such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, and trioctylaluminum, or alkoxy such as dimethylaluminum methoxide, diethylaluminum methoxide, diisobutylaluminum methoxide, and diisobutylaluminum ethoxide. A halide-containing alkylaluminum, such as a halogenated alkylaluminum or diethylaluminum halide.
Of these, trialkylaluminum is particularly preferable. More preferred are triisobutylaluminum and trioctylaluminum.
The organoaluminum compounds as described above are used singly or in combination of two or more.
[0035]
(4) Carrier In the present invention, a known carrier may be used for supporting the olefin polymerization catalyst. The carrier is an inorganic or organic compound and is a granular or particulate solid.
[0036]
(5) Prepolymerization In addition, before using as a catalyst for olefin polymerization (main polymerization), a polyolefin production catalyst composed of the above-mentioned polymerization catalyst component carbene complex and co-catalyst was supported on a carrier as required. Thereafter, a preliminarily polymerizing a small amount of an olefin such as ethylene, propylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene, 3-methyl-1-butene, vinylcycloalkane, styrene, etc. A polymerization treatment may be performed. A known method can be used as the prepolymerization method.
[0037]
2. Olefin Polymerization Method The olefin polymerization method of the present invention is carried out using the above-mentioned component [A] and component [B] and, if necessary, component [C].
The usage-amount of said component [A] and component [B] is used by the optimal quantity ratio in each combination.
When component [B] is an aluminum oxy compound, the molar ratio of Al / transition metal is usually from 10 to 100,000, more preferably from 100 to 20,000, particularly from 100 to 10,000.
On the other hand, when an ionic compound or Lewis acid is used as the component [B], the molar ratio of the transition metal to the transition metal is 0.1 to 1000, preferably 0.5 to 100, and more preferably 1 to 50. .
When a solid acid or an ion-exchange layered silicate is used as component [B], the transition metal complex is in the range of 0.001 to 10 mmol, preferably 0.001 to 1 mmol, per 1 g of component [B].
These use ratios are examples of normal ratios, and the present invention is not limited by the range of use ratios described above as long as the catalyst is purposeful. It is natural.
[0038]
Examples of the olefin that can be polymerized by the olefin polymerization catalyst of the present invention include conjugates such as ethylene, propylene, butene-1, 3-methylbutene-1, 3-methylpentene-1, 4-methylpentene-1, vinylcycloalkane, and butadiene. Examples thereof include non-conjugated dienes such as dienes and 1,5-hexadiene, styrene, and derivatives thereof. In particular, ethylene or propylene is preferably used. Particularly preferred is ethylene.
The polymerization can be suitably applied to random copolymerization and block copolymerization in addition to homopolymerization. Examples of the comonomer in the copolymerization include the olefins described above.
[0039]
The polymerization reaction is carried out in the presence of an inert hydrocarbon such as butane, pentane, hexane, heptane, toluene, cyclohexane, or a solvent such as a liquefied α-olefin, or substantially no liquid phase of the solvent or monomer. It is preferable to carry out by vapor phase polymerization. The gas phase polymerization can be performed using a reaction apparatus such as a fluidized bed, a stirred bed, and a stirred fluidized bed equipped with a stirrer / mixer. Conditions such as a polymerization temperature and a polymerization pressure are not particularly limited, but the polymerization temperature is generally −50 to 350 ° C., preferably 0 to 300 ° C., and the polymerization pressure is usually normal pressure to about 200 MPa · G, preferably Is in the range of normal pressure to 150 MPa · G, more preferably normal pressure to 130 MPa · G. Further, hydrogen may be present as a molecular weight regulator in the polymerization system.
[0040]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these. The physical properties are measured as follows.
(1) DSC measurement Measured according to JIS-K7121. 9 mg of a sample was melted at 160 ° C. for 10 minutes, and then cooled at a rate of 10 ° C./min to measure a crystallization curve. The peak top temperature (° C.) was defined as the crystallization temperature (Tc). Further, the temperature was lowered to 20 ° C. and held for 1 minute, and then a melting curve was measured at a temperature rising rate of 10 ° C./min up to 160 ° C., and the peak top temperature (° C.) was defined as the melting point (Tm).
(2) GPC Measurement In the present invention, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are those measured by gel permeation chromatography (GPC). Conversion from the retention volume to the molecular weight is performed using a calibration curve prepared in advance with standard polystyrene.
The standard polystyrenes used are all the following brands manufactured by Tosoh Corporation.
F380, F288, F128, F80, F40, F20, F10, F4, F1, A5000, A2500, A1000.
A calibration curve is created by injecting 0.2 mL of a solution dissolved in ODCB (containing 0.5 mg / mL BHT) so that each is 0.5 mg / mL.
The calibration curve uses a cubic equation obtained by approximation by the least square method.
The following numerical value is used for the viscosity formula [η] = K × M α used for conversion to molecular weight.
PS: K = 1.38 × 10 −4 , α = 0.7
PE: K = 3.917 × 10 −4 , α = 0.733
The measurement conditions for GPC are as follows.
Apparatus: Waters GPC (ALC / GPC 150C) Detector: FOXBORO MIRAN 1A IR detector (measurement wavelength: 3.42 μm)
Column: AD806M / S (3 pieces) manufactured by Showa Denko KK
Mobile phase solvent: orthodichlorobenzene (ODCB)
Measurement temperature: 140 ° C
Flow rate: 1.0 ml / min Injection volume: 0.2 ml
Sample preparation: Prepare a 1 mg / mL solution using ODCB (containing 0.5 mg / mL BHT) and dissolve it at 140 ° C. for about 1 hour.
Example 1
(1) Synthesis of N- (3,5-di-tert-butyl-2-hydroxyphenylmethyl) -imidazole Imidazole (4.8 g, 70 mmol) and anhydrous sodium hydrogen carbonate (6.2 g, 74 mmol) in THF (50 mL) ) Was added and heated to reflux. To this was added dropwise a solution of 2-bromomethyl-4,6-di-tert-butylphenol (20 g, 67 mmol) in THF (100 mL). After stirring for 12 hours, water was added and extracted with ether. The organic layer was obtained as a colorless powder as N- (3,5-di-tert-butyl-2-hydroxyphenylmethyl) -imidazole. Yield was 18.3 g (96%).
[0042]
(2) Ligand precursor: Synthesis of [H 3 L] Br N- (3,5-di-tert-butyl-2-hydroxyphenylmethyl) -imidazole (10.0 g, 35 mmol) in THF (25 mL) The solution was heated to reflux. To this was slowly added dropwise a solution of 2-bromomethyl-4,6-di-tert-butylphenol (9 g, 30 mmol) in THF (50 mL). After stirring for 12 hours, the solvent was distilled off under reduced pressure. The residue was washed with toluene and hexane to obtain a ligand precursor (see the following reaction formula). Yield was 11.0 g (63%).
[0043]
[Chemical 8]
Figure 0004099432
[0044]
(3) Carben TiCl 2 Complex: Synthesis of LTiCl 2 (thf) To a THF (50 mL) solution of a ligand precursor [H 3 L] Br (3.0 g, 5.12 mmol), NaN (SiMe 3 ) 2 (1M THF solution; 15.4 mL, 15.4 mmol) was added at -78 ° C. After stirring at low temperature for 30 minutes, TiCl 4 (thf) 2 (1.71 g, 5.12 mmol) was added to a THF solution (50 mL) at −78 ° C. The temperature was slowly raised to room temperature and stirred for 8 hours. After removing insolubles, the solvent was distilled off under reduced pressure. The residue was recrystallized from THF / hexane to obtain LTiCl 2 (thf) as red crystals. The yield was 3.41 g (96%).
[0045]
(4) Polymerization of ethylene 1.0 L of toluene was placed in a 3 L stainless steel autoclave sufficiently dried and purged with nitrogen, and the internal temperature was adjusted to 30 ° C. while stirring using an induction stirrer. To this was added 10.7 mL of aluminoxane (MMAO manufactured by Tosoh Faychem, 8.5 wt% hexane solution in terms of Al atom), and 20 μmol of carbene TiCl 2 complex LTiCl 2 (thf) was added (toluene solution 20 mL). . While maintaining the temperature at 30 ° C., ethylene was added so as to maintain 0.9 MPa · G, and polymerization was performed for 30 minutes while stirring. Thereafter, ethanol was added to stop the polymerization, and after filtration and drying, 26.1 g of polyethylene was obtained.
The physical properties of the obtained polyethylene were evaluated. The results are shown in Table 1 together with the polymerization reaction conditions.
[0046]
Example 2
(1) Synthesis of carbene Ti benzyl complex: LTi (CH 2 Ph) 2 To a toluene solution (40 mL) of LTiCl 2 (thf) (694 mg, 1.0 mmol) obtained in Example 1 (3), PhCH 2 MgCl ( 1.53M ether solution: 1.31 mL, 2.0 mmol) was added dropwise at −78 ° C. The temperature was slowly raised to room temperature and stirred for 8 hours. After removing insolubles, the solvent was distilled off under reduced pressure. The residue was recrystallized from toluene / hexane to obtain LTi (CH 2 Ph) 2 as yellow crystals. Yield was 220 mg (30%).
(2) Ethylene polymerization Ethylene polymerization was carried out in the same manner as in Example 1 (4) using carbene Ti benzyl complex LTi (CH 2 Ph) 2 obtained in (1) to obtain polyethylene. The results are shown in Table 1.
[0047]
Example 3
(1) Synthesis of carbene Zr complex: LZr (NEt 2 ) (HNEt 2 ) Toluene of the ligand precursor [H 3 L] Br (2.0 g, 3.14 mmol) obtained in Example 1 (2) To the (50 mL) solution was added Zr (NEt 2 ) 4 (3.14 mmol) at −78 ° C. The temperature was slowly raised to room temperature and stirred for 8 hours. Furthermore, it heated at 60 degreeC and stirred for 30 minutes. After removing insoluble matter, the solution was concentrated and cooled to obtain a carbene Zr complex as colorless crystals. Yield was 1.85 g (57%).
(2) Polymerization of ethylene Carbene Zr complex obtained in (1) Ethylene polymerization was carried out in the same manner as in Example 1 (4) using LZr (NEt 2 ) (HNEt 2 ) to obtain polyethylene. The results are shown in Table 1.
[0048]
[Table 1]
Figure 0004099432
[0049]
【The invention's effect】
The carbene complex of the present invention has high olefin polymerization activity, and can produce polyolefin at an industrial scale at low cost. Further, by optimizing the ligand structure, it becomes possible to produce a polyolefin having a desired molecular structure.

Claims (4)

下記一般式(II)で表される配位子前駆体と、MX (Mは、周期表第4族から選ばれる遷移金属原子を示し、Xは、ハロゲン原子、炭化水素残基およびアミド残基からなる群から選ばれる残基である。)で表される遷移金属含有化合物とを反応させて得られるカルベン錯体からなるオレフィン重合用触媒成分。
Figure 0004099432
(式中、A、Aは第16族原子を示し、互いに同一でも異なっていてもよい。R、R互いに同一でも異なっていてもよく、置換基を有してもよい芳香族炭化水素残基である。R、置換基を有してもよいイミダゾール基である。 、Q は、互いに同一でも異なっていてもよい炭化水素架橋基である。Xはハロゲン原子、炭化水素残基およびアミド残基からなる群から選ばれる残基であ。)
A ligand precursor represented by the following general formula (II) ; and MX 4 (M represents a transition metal atom selected from Group 4 of the periodic table, and X represents a halogen atom, a hydrocarbon residue, and an amide residue. A catalyst component for olefin polymerization comprising a carbene complex obtained by reacting with a transition metal-containing compound represented by the following formula:
Figure 0004099432
(Wherein, A 1, A 2 represents a Group 16 atom, good .R 1, R 2 be the same as or different from each other, rather it may also be the same or different, may have a substituent is an aromatic hydrocarbon residue .R 3 is a substituent a good imidazole group. Q 1, Q 2 is a hydrocarbon bridging group which may be the same or different. X is a halogen atom, Ru residues der selected from the group consisting of hydrocarbon residues and amide residue.)
下記成分[A]と成分[B]からなることを特徴とするオレフィン重合用触媒。
[A]:請求項1に記載のオレフィン重合用触媒成分
[B]:下記(B−1)〜(B−4)からなる群から選ばれる助触媒
(B−1)アルミニウムオキシ化合物
(B−2)成分[A]と反応して成分[A]をカチオンに変換することが可能なイオン性化合物またはルイス酸
(B−3)固体酸
(B−4)イオン交換性層状珪酸塩
An olefin polymerization catalyst comprising the following component [A] and component [B].
[A]: Catalyst component for olefin polymerization according to claim 1 [B]: Cocatalyst selected from the group consisting of the following (B-1) to (B-4) (B-1) Aluminumoxy compound (B- 2) Ionic compound or Lewis acid capable of reacting with component [A] to convert component [A] into a cation (B-3) Solid acid (B-4) Ion exchange layered silicate
請求項に記載のオレフィン重合用触媒の存在下にオレフィンを重合または共重合することを特徴とするオレフィンの重合方法。An olefin polymerization method comprising polymerizing or copolymerizing an olefin in the presence of the olefin polymerization catalyst according to claim 2 . 下記一般式(II)で表される配位子前駆体と、MX (Mは、周期表第4族から選ばれる遷移金属原子を示し、Xは、ハロゲン原子、炭化水素残基およびアミド残基からなる群から選ばれる残基である。)で表される遷移金属含有化合物とを反応させて得られるカルベン錯体。
Figure 0004099432
(式中、A、Aは第16族原子を示し、互いに同一でも異なっていてもよい。R、R互いに同一でも異なっていてもよく、置換基を有してもよい芳香族炭化水素残基である。R、置換基を有してもよいイミダゾール基である。 、Q は、互いに同一でも異なっていてもよい炭化水素架橋基である。Xはハロゲン原子、炭化水素残基およびアミド残基からなる群から選ばれる残基であ。)
A ligand precursor represented by the following general formula (II) ; and MX 4 (M represents a transition metal atom selected from Group 4 of the periodic table, and X represents a halogen atom, a hydrocarbon residue, and an amide residue. A carbene complex obtained by reacting with a transition metal-containing compound represented by the following formula:
Figure 0004099432
(Wherein, A 1, A 2 represents a Group 16 atom, good .R 1, R 2 be the same as or different from each other, rather it may also be the same or different, may have a substituent is an aromatic hydrocarbon residue .R 3 is a substituent a good imidazole group. Q 1, Q 2 is a hydrocarbon bridging group which may be the same or different. X is a halogen atom, Ru residues der selected from the group consisting of hydrocarbon residues and amide residue.)
JP2003176105A 2003-06-20 2003-06-20 Catalyst component and catalyst for olefin polymerization Expired - Fee Related JP4099432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003176105A JP4099432B2 (en) 2003-06-20 2003-06-20 Catalyst component and catalyst for olefin polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003176105A JP4099432B2 (en) 2003-06-20 2003-06-20 Catalyst component and catalyst for olefin polymerization

Publications (2)

Publication Number Publication Date
JP2005008798A JP2005008798A (en) 2005-01-13
JP4099432B2 true JP4099432B2 (en) 2008-06-11

Family

ID=34099077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176105A Expired - Fee Related JP4099432B2 (en) 2003-06-20 2003-06-20 Catalyst component and catalyst for olefin polymerization

Country Status (1)

Country Link
JP (1) JP4099432B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155170A2 (en) * 2008-06-20 2009-12-23 Bridgestone Corporation Catalysts for preparing cis 1,4-polydienes
JP2012511585A (en) * 2008-12-09 2012-05-24 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インコーポレイテッド Kinase inhibitor compounds
CN103380135B (en) * 2010-12-10 2016-08-31 科莱恩金融(Bvi)有限公司 Zirconium complex based on N-heterocycle carbine for lactone ring-opening polymerisation
US8957217B2 (en) * 2011-05-31 2015-02-17 The University Of Hong Kong Phosphorescent material, their preparations and applications
CN114920700B (en) * 2022-04-21 2023-07-11 苏州大学 Double-aryloxy functionalized imidazole salt rare earth metal complex and preparation method and application thereof
CN114751925B (en) * 2022-04-21 2023-06-27 苏州大学 Double-aryloxy functionalized imidazole salt rare earth metal complex, preparation method thereof and application thereof in carboxylation reaction

Also Published As

Publication number Publication date
JP2005008798A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
KR100568839B1 (en) Bridged metallocenes for olefin copolymerization
JP2994746B2 (en) Monocyclopentadienyl transition metal olefin polymerization catalyst
JP3491761B2 (en) Catalyst for olefin polymer production
US7199255B2 (en) Imino-amide catalysts for olefin polymerization
US6919413B2 (en) Imino-amide catalyst compositions for the polymerization of olefins
JP2002513443A (en) Catalyst for the production of olefin polymers
JPH08512063A (en) Process for producing amorphous poly-α-olefins by monocyclopentadienyl transition metal catalyst system
JP2004504420A (en) Catalyst systems and their use in polymerization processes
JP2004521165A (en) Catalyst systems and their use in polymerization processes
US6831187B2 (en) Multimetallic catalyst compositions for the polymerization of olefins
JP4099432B2 (en) Catalyst component and catalyst for olefin polymerization
JP3850048B2 (en) Organic transition metal compound and method for producing polyolefin using the same
KR101232264B1 (en) Transition metal compound, transition metal catalysts composition, and preparation method of poly-ethylene using the same
US6864205B2 (en) Heterocyclic-amide catalyst compositions for the polymerization of olefins
AU2001294965B2 (en) A method for preparing a catalyst composition and its use in a polymerization process
JP2004346268A (en) Catalyst for polymerization of olefin and method for polymerizing olefin using the same
ES2217104T3 (en) OLEFIN POLYMERIZATION CATALYSTS.
JP7151850B2 (en) Propylene homopolymer
JP7218768B2 (en) Method for producing propylene-based polymer containing terminal vinyl group
KR20180081448A (en) New indene-based transition metal complexes, catalysts composition containing the same, and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same
US7001863B2 (en) Monoamide based catalyst compositions for the polymerization of olefins
TW202330558A (en) Metal-ligand complex, catalyst composition for producing ethylene-based polymer containing the same, and method of producing ethylene-based polymer using the same
JP2010059375A (en) Olefin polymerization catalyst and method for preparing olefin polymer using the same
US20110251362A1 (en) Olefin polymerization catalysts
JPH10231315A (en) Heterogeneous catalyst component for polymerization of olefin, and production and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees