JP4099379B2 - Droplet weighing and collecting device - Google Patents

Droplet weighing and collecting device Download PDF

Info

Publication number
JP4099379B2
JP4099379B2 JP2002349742A JP2002349742A JP4099379B2 JP 4099379 B2 JP4099379 B2 JP 4099379B2 JP 2002349742 A JP2002349742 A JP 2002349742A JP 2002349742 A JP2002349742 A JP 2002349742A JP 4099379 B2 JP4099379 B2 JP 4099379B2
Authority
JP
Japan
Prior art keywords
droplet
liquid
droplets
drop
average value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002349742A
Other languages
Japanese (ja)
Other versions
JP2004184159A (en
Inventor
誠 斉藤
迅吉 宮井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2002349742A priority Critical patent/JP4099379B2/en
Publication of JP2004184159A publication Critical patent/JP2004184159A/en
Application granted granted Critical
Publication of JP4099379B2 publication Critical patent/JP4099379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、試料液を微少な液滴にしてノズルの先端から滴下させ、この液滴を採集する液滴計量採集装置に関する。本発明の液滴計量採集装置は、例えば、試料液の液滴を燃焼部内に落下させるとともに、この液滴を燃焼部内で落下燃焼させて得られるガス中の成分を測定する分析装置に使用される。
【0002】
【従来の技術】
従来、試料液を微少な液滴にして燃焼部内に落下させるとともに、この液滴を燃焼部内で落下中に燃焼させて得られるガス中の成分を測定する分析装置が知られている。このような分析装置としては、例えば燃焼式TOC計、燃焼式全窒素計等がある。
【0003】
この場合、試料液を液滴にして落下させるための液滴計量採集装置として、従来、図2に示すものがある(例えば、特許文献1参照)。図2の液滴計量採集装置において、12はシリンジポンプを示す。このシリンジポンプ12は、シリンジ14、ピストン16、温度調節機構(例えばヒータ等)18、およびピストン16を往復駆動するパルスモータ20を備えている。また、図中22はシリンジポンプ12に接続された液滴下ノズル、24は液滴下ノズル22の下方に配置された採集管、26は採集管24の上部開口部の開閉を行う採集シャッタ、28は採集シャッタ26を往復駆動するソレノイドを示す。
【0004】
さらに、図中30は試料液流通管、32は試料液流通管30に設けられたフィルタ、34は試料液流通管30のフィルタ32設置部分とシリンジポンプ12との間に設けられた配管、36は配管34に介装された電磁弁、38はシリンジポンプ12と液滴下ノズル22との間の配管、40は配管38に介装された電磁弁、42は洗浄液槽、44は洗浄液槽42とシリンジポンプ12との間に設けられた配管、46は配管44に介装された電磁弁、48は制御および演算ユニットを示す。制御および演算ユニット48は、前述した温度調節機構18、パルスモータ20、ソレノイド28、電磁弁36、40、46と電気的に接続されており、これらを制御するようになっている。
【0005】
図2の液滴計量採集装置は、下記のようにして試料液の液滴を採集する。
(1)電磁弁36を開、40、46を閉とした状態で、パルスモータ20の作動によりピストン16を後退させ、試料液流通管30を流れる試料液を配管34を通してシリンジ14内に導入する。
【0006】
(2)電磁弁40を開、36、46を閉とした状態で、パルスモータ20の作動によりピストン16を前進させ、シリンジ14内の試料液を配管38を通して液滴下ノズル22に送り、液滴下ノズル22の先端から試料液の液滴を滴下させる。
【0007】
(3)ソレノイド28の作動により採集シャッタ26を後退させて採集管24の上部開口部を開き、液滴下ノズル22の先端から滴下された液滴の内の必要な液滴50を採集管24内に落下させる。この液滴は、さらに分析装置の燃焼部内などに落下させる。また、不要な液滴525は、ソレノイド28の作動により採集シャッタ26を前進させて採集管24の上部開口部を閉じ、採集管24内に入らないようにする。
【0008】
(4)必要に応じ、電磁弁46を開、36、40を閉とした状態で、パルスモータ20の作動によりピストン16を後退させ、洗浄液槽42内の洗浄液を配管44を通してシリンジ14内に導入した後、電磁弁40を開、36、46を閉とした状態で、パルスモータ20の作動によりピストン16を前進させ、シリンジ14内の洗浄液を配管38を通して液滴下ノズル22に送り、液滴下ノズル22の先端から排出させることにより、流路を洗浄する。
【0009】
図2に示した従来の液滴計量採集装置において、液滴の液量(1滴当たりの試料液の液量)は、ピストン16の前進量によって決めている。具体的には、パルスモータ20の送りパルス数と、その送りパルス数で送られた試料液によって液滴下ノズル22先端から生成・滴下する液滴の液量との関係を予め調べておき、この関係にしたがって液滴の液量を決定している。
【0010】
【特許文献1】
特開平10−73467号公報
【0011】
【発明が解決しようとする課題】
図2に示した従来の液滴計量採集装置では、前述したように、シリンジポンプのピストンの前進量によって液滴の液量を決定している。したがって、液滴の液量を実際に計量しているわけではない。しかし、実際には、液滴下ノズルの先端部内への汚れの付着、試料液の汚れ具合、試料液の種類、温度変化、液滴下ノズルの材質などによって液滴の滴下条件は変動し、ピストンの前進量が同じであっても液滴の液量が変化することがある。
【0012】
それにもかかわらず、従来の液滴計量採集装置では、液滴の液量を実際に計量することなく、ピストンの前進量が同じであれば液滴の液量は同じであるとみなしているので、実際の液滴の液量と液滴計量採集装置が決定した液滴の液量とが異なることがあり、このような場合には試料液の正確な分析を行うことができないという問題があった。
【0013】
本発明は、液滴の液量を正確に決定することができるとともに、液量が安定した液滴のみを採集することができる液滴計量採集装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明は、前記目的を達成するため、試料液の定量送液ポンプと、該定量送液ポンプに接続され、定量送液ポンプから送液された試料液の液滴を滴下させる液滴下ノズルと、液滴下ノズルから滴下された液滴の内の所望の液滴を採集する液滴採集機構と、液滴下ノズルから滴下された液滴の数および滴下時間間隔を計測する液滴センサとを具備し、液滴下ノズルから滴下された液滴の内、滴下時間間隔が安定しているときの液滴を液滴採集機構で採集するとともに、所定時間内に定量送液ポンプから液滴下ノズルに送液された試料液の量と、前記所定時間内に液滴下ノズルから滴下した液滴の数とから液滴の液量の平均値を演算し、この液滴の液量の平均値を前記液滴採集機構で採集した液滴の液量とすることを特徴とする液滴計量採集装置を提供する。
【0015】
本発明の液滴計量採集装置は、液滴センサによって液滴の滴下時間間隔を計測し、滴下時間間隔が安定しているときの液滴を液滴採集機構で採集するので、液量が安定した液滴のみを採集することができる。また、所定時間内に定量送液ポンプから液滴下ノズルに送液された試料液の量と、液滴下ノズルから滴下した液滴の数とから液滴の液量の平均値を演算するので、実際の送液量に基づいて液滴の液量を算出することができ、そのため液滴の液量を正確に決定することができる。
【0016】
【発明の実施の形態】
次に、添付図面を参照して本発明の実施の形態を説明する。図1は本発明に係る液滴計量採集装置の一例を示す概略図である。本例の液滴計量採集装置は、図2に示した従来装置に液滴センサ60を付加したもので、その他の点は図2に示した装置と同じであるため、図1において図2と同一構成の部分には、同一参照符号を付してその説明を省略する。
【0017】
本例の装置の液滴センサ60は、液滴下ノズル22の下方に配置され、液滴下ノズル22から滴下された液滴の数および滴下時間間隔を計測するものである。具体的には、液滴センサ60は、発光部62および受光部64を備えた光センサであり、液滴下ノズル22から落下して発光部62と受光部64との間を通過する液滴の数および滴下時間間隔を計測する。この液滴センサ60は、制御および演算ユニット48と電気的に接続されている。
【0018】
本例の液滴計量採集装置は、下記のようにして試料液の液滴を採集する。
(1)電磁弁36を開、40、46を閉とした状態で、パルスモータ20の作動によりピストン16を後退させ、試料液流通管30を流れる試料液を配管34を通してシリンジ14内に導入する。
【0019】
(2)電磁弁40を開、36、46を閉とした状態で、パルスモータ20の作動によりピストン16を前進させ、シリンジ14内の試料液を配管38を通して液滴下ノズル22に送り、液滴下ノズル22の先端から試料液の液滴を滴下させる。
【0020】
(3)液滴センサ60によって液滴の滴下時間間隔を計測するとともに、ソレノイド28の作動により採集シャッタ26を後退させて採集管24の上部開口部を開き、液滴下ノズル22の先端から滴下された液滴の内、滴下時間間隔が安定しているときの液滴66を採集管24内に落下させる。この液滴は、さらに分析装置の燃焼部内などに落下させる。この場合、液滴センサ60によって液滴下ノズル22から滴下された液滴の数を計測するとともに、制御および演算ユニット48において、所定時間内にシリンジポンプ12から液滴下ノズル22に送液された試料液の量と、前記所定時間内に液滴下ノズル22から滴下した液滴の数とから液滴の液量の平均値を演算し、この液滴の液量の平均値を前記採集管24内に落下させた液滴の液量とする。また、不要な液滴68は、ソレノイド28の作動により採集シャッタ26を前進させて採集管24の上部開口部を閉じ、採集管24内に入らないようにする。
【0021】
(4)必要に応じ、電磁弁46を開、36、40を閉とした状態で、パルスモータ20の作動によりピストン16を後退させ、洗浄液槽42内の洗浄液を配管44を通してシリンジ14内に導入した後、電磁弁40を開、36、46を閉とした状態で、パルスモータ20の作動によりピストン16を前進させ、シリンジ14内の洗浄液を配管38を通して液滴下ノズル22に送り、液滴下ノズル22の先端から排出させることにより、流路を洗浄する。
【0022】
なお、本例で用いたシリンジポンプ12は定量送液ポンプの一例であり、定量送液ポンプとしては任意の構成のものを用いることができる。また、本例では採集管24、採集シャッタ26およびソレノイド28によって液滴採集機構を構成したが、液滴採集機構は任意の構成とすることができる。さらに、液滴下ノズルおよび液滴センサとして他の構造のものを用いてもよい。
【0023】
【実施例】
以下に実施例を示すが、この実施例は本発明の範囲を限定するものではない。図1の液滴計量採集装置を用いて液滴の生成・採集を行った。この場合、シリンジポンプ12から液滴下ノズル22への試料液の送液量は100μL/分とした。また、液滴下ノズル22としては、親水性素材(セルロース)からなるノズル、撥水性素材A(PEEK:ポリエーテルエーテルケトン)からなるノズル、撥水性素材B(PTFE:ポリテトラフルオロエチレン)からなるノズルの3種を用いた。試料液としては、親水性素材からなるノズルの場合は純水および不純物溶解液の2種を用い、撥水性素材A、Bからなるノズルの場合は純水のみを用いた。滴下番号NからN+10の液滴における滴下時間間隔(秒)を液滴センサ60で計測した結果、および液滴の液量の平均値(μL/分)の演算結果を表1に示す。ここで、液滴の液量の平均値は下記式により演算した。
液滴の液量の平均値=
(試料液の送液量×滴下時間間隔合計)/(液滴の数×60)
試料液の送液量:100μL/分
滴下時間間隔合計:表1のΣ(NT)
液滴の数:10個
【0024】
【表1】

Figure 0004099379
【0025】
表1より、本発明によれば、液滴の滴下条件によって変化する液滴の液量を、実際の送液量に基づいて正確に決定できることがわかる。この場合、滴下時間間隔が安定しているときの液滴とは、その液滴が滴下するまでの滴下時間間隔が滴下時間間隔の平均値に近い液滴をいう。
【0026】
また、特定の液滴の液量を演算により補正した例を次に示す。すなわち、表1において、その特定の液滴が滴下するまでの滴下時間間隔が長い場合は液滴の液量が大きく、その特定の液滴が滴下するまでの滴下時間間隔が短い場合は液滴の液量が小さいとみなし、時間配分による比例演算の考え方により、下記式を用いて滴下番号N+nの液滴の液量を演算補正した。
滴下番号N+nの液滴の液量=液滴の液量の平均値×
{(滴下番号N+nの液滴の滴下時間間隔)/滴下時間間隔の平均値)}
【0027】
例えば、撥水性素材Bからなるノズルを用いた場合における滴下番号N+7の液滴の液量の補正演算は、滴下番号N+6とN+7の間の滴下時間間隔が5.53秒であるから、下記のようになる。
滴下番号N+7の液滴の液量
=9.211μL×(5.53秒/5.527秒)=9.216μL
【0028】
【発明の効果】
以上のように、本発明の液滴計量採集装置によれば、液滴の滴下条件によって変化する液滴の液量を実際の送液量に基づいて正確に決定することができるとともに、液量が安定した液滴のみを採集することができる。
【図面の簡単な説明】
【図1】本発明に係る液滴計量採集装置の一例を示す概略図である。
【図2】従来の液滴計量採集装置の一例を示す概略図である。
【符号の説明】
12 シリンジポンプ
14 シリンジ
16 ピストン
20 パルスモータ
22 液滴下ノズル
24 採集管
26 採集シャッタ
28 ソレノイド
30 試料液流通管
48 制御および演算ユニット
60 液滴センサ
62 発光部
64 受光部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a droplet measuring and collecting apparatus that collects a droplet by making a sample liquid drop into a small droplet from the tip of a nozzle. The droplet measuring and collecting apparatus according to the present invention is used, for example, in an analyzer for measuring a component in a gas obtained by dropping a droplet of a sample liquid into a combustion section and dropping and burning the droplet in the combustion section. The
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is known an analyzer that measures a component in a gas obtained by making a sample liquid into a minute droplet and dropping it into a combustion part, and burning the droplet while dropping in the combustion part. Examples of such analyzers include a combustion TOC meter and a combustion total nitrogen meter.
[0003]
In this case, as a droplet measuring and collecting apparatus for dropping a sample liquid into droplets, there is a conventional one shown in FIG. 2 (see, for example, Patent Document 1). In the liquid drop collection device of FIG. 2, 12 indicates a syringe pump. The syringe pump 12 includes a syringe 14, a piston 16, a temperature adjustment mechanism (for example, a heater) 18, and a pulse motor 20 that drives the piston 16 to reciprocate. In the figure, reference numeral 22 denotes a lower droplet nozzle connected to the syringe pump 12, 24 denotes a collection tube disposed below the lower droplet nozzle 22, 26 denotes a collection shutter for opening and closing the upper opening of the collection tube 24, and 28 denotes The solenoid which reciprocates the collection shutter 26 is shown.
[0004]
Further, in the figure, 30 is a sample liquid flow pipe, 32 is a filter provided in the sample liquid flow pipe 30, 34 is a pipe provided between the filter 32 installation portion of the sample liquid flow pipe 30 and the syringe pump 12, 36 Is a solenoid valve interposed in the pipe 34, 38 is a pipe between the syringe pump 12 and the droplet lowering nozzle 22, 40 is a solenoid valve interposed in the pipe 38, 42 is a cleaning liquid tank, and 44 is a cleaning liquid tank 42. A pipe provided between the syringe pump 12, 46 is an electromagnetic valve interposed in the pipe 44, and 48 is a control and arithmetic unit. The control and arithmetic unit 48 is electrically connected to and controls the temperature adjusting mechanism 18, the pulse motor 20, the solenoid 28, and the electromagnetic valves 36, 40, and 46 described above.
[0005]
The droplet measuring and collecting apparatus in FIG. 2 collects sample liquid droplets as follows.
(1) With the electromagnetic valve 36 open and 40 and 46 closed, the piston 16 is retracted by the operation of the pulse motor 20, and the sample liquid flowing through the sample liquid flow pipe 30 is introduced into the syringe 14 through the pipe 34. .
[0006]
(2) With the electromagnetic valve 40 open and 36 and 46 closed, the piston 16 is advanced by the operation of the pulse motor 20, and the sample liquid in the syringe 14 is sent to the liquid drop nozzle 22 through the pipe 38. A sample liquid droplet is dropped from the tip of the nozzle 22.
[0007]
(3) The operation of the solenoid 28 retracts the collection shutter 26 to open the upper opening of the collection tube 24, and the necessary droplet 50 out of the droplets dripped from the tip of the lower droplet nozzle 22 is contained in the collection tube 24. Let fall. This droplet is further dropped into the combustion section of the analyzer. Further, unnecessary droplets 525 are prevented from entering the collection tube 24 by advancing the collection shutter 26 by the operation of the solenoid 28 to close the upper opening of the collection tube 24.
[0008]
(4) If necessary, with the solenoid valve 46 open and 36, 40 closed, the piston 16 is retracted by the operation of the pulse motor 20, and the cleaning liquid in the cleaning liquid tank 42 is introduced into the syringe 14 through the pipe 44. After that, with the solenoid valve 40 opened and 36 and 46 closed, the piston 16 is advanced by the operation of the pulse motor 20, and the cleaning liquid in the syringe 14 is sent to the sub-droplet nozzle 22 through the pipe 38. The flow path is washed by discharging from the tip of 22.
[0009]
In the conventional droplet measuring and collecting apparatus shown in FIG. 2, the amount of droplet liquid (the amount of sample liquid per droplet) is determined by the advance amount of the piston 16. Specifically, the relationship between the number of feed pulses of the pulse motor 20 and the amount of liquid droplets generated and dropped from the tip of the lower droplet nozzle 22 by the sample liquid sent at the number of feed pulses is examined in advance. The liquid volume of the droplet is determined according to the relationship.
[0010]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-73467
[Problems to be solved by the invention]
In the conventional droplet measuring and collecting apparatus shown in FIG. 2, as described above, the liquid amount of the droplet is determined by the advance amount of the piston of the syringe pump. Therefore, the amount of liquid droplets is not actually measured. However, in practice, the droplet dropping conditions vary depending on the adhesion of dirt in the tip of the nozzle below the droplet, the degree of contamination of the sample liquid, the type of sample liquid, temperature change, the material of the nozzle below the droplet, etc. Even if the advance amount is the same, the liquid amount of the droplet may change.
[0012]
Nonetheless, the conventional liquid drop collection device does not actually measure the liquid volume of the liquid droplets, and assumes that the liquid volume of the liquid droplets is the same if the advance amount of the piston is the same. However, the actual liquid volume of the liquid droplets may differ from the liquid volume of the liquid droplets determined by the liquid droplet collection and collection device. In such a case, there is a problem that the sample liquid cannot be accurately analyzed. It was.
[0013]
An object of the present invention is to provide a droplet measuring and collecting apparatus that can accurately determine the liquid amount of a droplet and collect only a droplet with a stable liquid amount.
[0014]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention provides a sample liquid metering pump, a droplet lower nozzle connected to the metering pump, and for dropping droplets of the sample solution fed from the metering pump; A droplet collecting mechanism for collecting a desired droplet out of the droplets dropped from the nozzle below the droplet, and a droplet sensor for measuring the number of droplets dropped from the nozzle below the droplet and a dropping time interval In addition, of the droplets dropped from the nozzle below the droplet, the droplet when the dropping time interval is stable is collected by the droplet collecting mechanism, and is sent from the quantitative liquid feeding pump to the nozzle below the droplet within a predetermined time. An average value of the liquid volume of the liquid droplet is calculated from the amount of the sample liquid that has been liquidated and the number of liquid droplets dropped from the nozzle below the liquid droplet within the predetermined time, and the average value of the liquid volume of the liquid droplet is calculated as the liquid volume. Droplet measuring and collecting device characterized by the amount of liquid collected by the drop collecting mechanism To provide.
[0015]
The droplet weighing and collecting apparatus of the present invention measures the droplet dropping time interval by the droplet sensor and collects the droplet when the dropping time interval is stable by the droplet collecting mechanism, so that the liquid amount is stable. Only collected droplets can be collected. In addition, because the average value of the liquid volume of the liquid droplet is calculated from the amount of the sample liquid fed from the constant volume liquid feed pump to the nozzle below the liquid droplet within a predetermined time and the number of liquid droplets dropped from the nozzle below the liquid droplet, The liquid volume of the droplet can be calculated based on the actual liquid feed volume, so that the liquid volume of the droplet can be accurately determined.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic view showing an example of a droplet measuring and collecting apparatus according to the present invention. The droplet measuring and collecting apparatus of this example is obtained by adding a droplet sensor 60 to the conventional apparatus shown in FIG. 2, and the other points are the same as the apparatus shown in FIG. Parts having the same configuration are denoted by the same reference numerals, and description thereof is omitted.
[0017]
The droplet sensor 60 of the apparatus of this example is disposed below the lower droplet nozzle 22 and measures the number of droplets dropped from the lower droplet nozzle 22 and the dropping time interval. Specifically, the droplet sensor 60 is an optical sensor including a light emitting unit 62 and a light receiving unit 64, and drops of liquid droplets that fall from the droplet lower nozzle 22 and pass between the light emitting unit 62 and the light receiving unit 64. Measure the number and drop time interval. The droplet sensor 60 is electrically connected to the control and arithmetic unit 48.
[0018]
The droplet measuring and collecting apparatus of this example collects a sample liquid droplet as follows.
(1) With the electromagnetic valve 36 open and 40 and 46 closed, the piston 16 is retracted by the operation of the pulse motor 20, and the sample liquid flowing through the sample liquid flow pipe 30 is introduced into the syringe 14 through the pipe 34. .
[0019]
(2) With the electromagnetic valve 40 open and 36 and 46 closed, the piston 16 is advanced by the operation of the pulse motor 20, and the sample liquid in the syringe 14 is sent to the liquid drop nozzle 22 through the pipe 38. A sample liquid droplet is dropped from the tip of the nozzle 22.
[0020]
(3) The droplet dropping time interval is measured by the droplet sensor 60, and the collection shutter 26 is moved backward by the operation of the solenoid 28 to open the upper opening of the collection tube 24, and the droplet is dropped from the tip of the nozzle 22 below the droplet. Among the droplets, the droplet 66 when the dropping time interval is stable is dropped into the collection tube 24. This droplet is further dropped into the combustion section of the analyzer. In this case, the number of droplets dropped from the lower droplet nozzle 22 by the droplet sensor 60 is measured, and in the control and calculation unit 48, the sample sent from the syringe pump 12 to the lower droplet nozzle 22 within a predetermined time. An average value of the liquid amount of the liquid droplet is calculated from the amount of the liquid and the number of liquid droplets dropped from the sub-droplet nozzle 22 within the predetermined time, and the average value of the liquid amount of the liquid droplet is calculated in the collecting tube 24. The amount of liquid droplets dropped on the liquid. Further, the unnecessary droplet 68 prevents the liquid droplet 68 from entering the collection tube 24 by moving the collection shutter 26 forward by the operation of the solenoid 28 and closing the upper opening of the collection tube 24.
[0021]
(4) If necessary, with the solenoid valve 46 open and 36, 40 closed, the piston 16 is retracted by the operation of the pulse motor 20, and the cleaning liquid in the cleaning liquid tank 42 is introduced into the syringe 14 through the pipe 44. After that, with the solenoid valve 40 opened and 36 and 46 closed, the piston 16 is advanced by the operation of the pulse motor 20, and the cleaning liquid in the syringe 14 is sent to the sub-droplet nozzle 22 through the pipe 38. The flow path is washed by discharging from the tip of 22.
[0022]
In addition, the syringe pump 12 used in this example is an example of a quantitative liquid feeding pump, and an arbitrary configuration can be used as the quantitative liquid feeding pump. Further, in this example, the droplet collection mechanism is configured by the collection tube 24, the collection shutter 26, and the solenoid 28. However, the droplet collection mechanism may be configured arbitrarily. Furthermore, other structures may be used as the liquid drop nozzle and the liquid drop sensor.
[0023]
【Example】
Examples are shown below, but these examples do not limit the scope of the present invention. Droplets were generated and collected using the droplet weighing and collecting apparatus shown in FIG. In this case, the amount of the sample liquid fed from the syringe pump 12 to the lower droplet nozzle 22 was 100 μL / min. Further, as the liquid drop nozzle 22, a nozzle made of a hydrophilic material (cellulose), a nozzle made of a water repellent material A (PEEK: polyetheretherketone), and a nozzle made of a water repellent material B (PTFE: polytetrafluoroethylene) Three kinds of were used. As the sample liquid, two kinds of pure water and an impurity solution were used in the case of a nozzle made of a hydrophilic material, and only pure water was used in the case of a nozzle made of a water repellent material A or B. Table 1 shows the results obtained by measuring the drop time interval (seconds) of the droplets having the droplet numbers N to N + 10 by the droplet sensor 60 and the calculation result of the average value (μL / min) of the liquid volume of the droplets. Here, the average value of the liquid volume of the droplets was calculated by the following formula.
Average value of liquid volume of droplets =
(Liquid feed amount of sample liquid × total dropping time interval) / (number of droplets × 60)
Sample liquid feed rate: 100 μL / min Drop time interval total: Σ (NT) in Table 1
Number of droplets: 10 [0024]
[Table 1]
Figure 0004099379
[0025]
From Table 1, it can be seen that according to the present invention, the amount of liquid droplets that varies depending on the droplet dropping conditions can be accurately determined based on the actual liquid supply amount. In this case, the droplet when the dropping time interval is stable refers to a droplet whose dropping time interval until the dropping of the droplet is close to the average value of the dropping time interval.
[0026]
An example in which the liquid amount of a specific droplet is corrected by calculation will be described below. That is, in Table 1, when the drop time interval until the specific droplet is dropped is long, the liquid volume of the droplet is large, and when the drop time interval until the specific droplet is dropped is short, the droplet is dropped. The liquid amount of the droplet of the droplet number N + n was calculated and corrected using the following formula based on the concept of proportional calculation based on time distribution.
Droplet number N + n droplet volume = average droplet volume ×
{(Drop time interval of the droplet of the drop number N + n) / Average value of the drop time interval)}
[0027]
For example, when the nozzle made of the water-repellent material B is used, the correction calculation of the liquid amount of the droplet with the droplet number N + 7 has a dropping time interval between the droplet numbers N + 6 and N + 7 of 5.53 seconds. It becomes like this.
Liquid volume of droplet No. N + 7 = 9.211 μL × (5.53 seconds / 5.527 seconds) = 9.216 μL
[0028]
【The invention's effect】
As described above, according to the droplet measuring and collecting apparatus of the present invention, it is possible to accurately determine the liquid amount of the droplet that changes depending on the droplet dropping condition based on the actual liquid feeding amount, However, only stable droplets can be collected.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a droplet measuring and collecting apparatus according to the present invention.
FIG. 2 is a schematic view showing an example of a conventional droplet measuring and collecting apparatus.
[Explanation of symbols]
12 Syringe pump 14 Syringe 16 Piston 20 Pulse motor 22 Droplet lower nozzle 24 Collection tube 26 Collection shutter 28 Solenoid 30 Sample solution flow tube 48 Control and arithmetic unit 60 Droplet sensor 62 Light emitting unit 64 Light receiving unit

Claims (4)

試料液の定量送液ポンプと、該定量送液ポンプに接続され、定量送液ポンプから送液された試料液の液滴を滴下させる液滴下ノズルと、液滴下ノズルから滴下された液滴の内の所望の液滴を採集する液滴採集機構と、液滴下ノズルから滴下された液滴の数および滴下時間間隔を計測する液滴センサとを具備し、液滴下ノズルから滴下された液滴の内、滴下時間間隔が安定しているときの液滴を液滴採集機構で採集するとともに、所定時間内に定量送液ポンプから液滴下ノズルに送液された試料液の量と、前記所定時間内に液滴下ノズルから滴下した液滴の数とから液滴の液量の平均値を演算し、この液滴の液量の平均値を前記液滴採集機構で採集した液滴の液量とすることを特徴とする液滴計量採集装置。A sample liquid feed pump, a liquid drop nozzle connected to the liquid feed pump for dropping liquid droplets of the sample liquid sent from the liquid feed pump, and a liquid drop dropped from the liquid drop nozzle A droplet collecting mechanism that collects a desired droplet in the inside, and a droplet sensor that measures the number of droplets dropped from the nozzle below the droplet and a dropping time interval, and the droplet dropped from the nozzle below the droplet In addition, the droplets when the dropping time interval is stable are collected by the droplet collecting mechanism, and the amount of the sample liquid fed from the quantitative liquid feeding pump to the nozzle below the droplets within the predetermined time, and the predetermined amount The average value of the liquid volume of the liquid droplet is calculated from the number of liquid droplets dropped from the nozzle below the liquid droplet within the time, and the liquid volume of the liquid droplet collected by the liquid droplet collecting mechanism is calculated from the average value of the liquid volume of the liquid droplet A droplet weighing and collecting apparatus characterized by comprising: 液滴の液量の平均値を下記式により演算することを特徴とする請求項1に記載の液滴計量採集装置。
液滴の液量の平均値(μL)=
(試料液の送液量(μL/分)×滴下時間間隔合計)/(液滴の数×60)
2. The droplet measuring and collecting apparatus according to claim 1, wherein an average value of the liquid amount of the droplets is calculated by the following formula.
Average value of liquid volume of droplet (μL) =
(Liquid feed rate of sample liquid (μL / min) × drop time total) / (number of droplets × 60)
液滴の液量の平均値と、滴下時間間隔の平均値と、特定の液滴が滴下するまでの滴下時間間隔とから、前記特定の液滴の液量を演算により補正することを特徴とする請求項1または2に記載の液滴計量採集装置。The liquid amount of the specific droplet is corrected by calculation from the average value of the liquid amount of the droplet, the average value of the dropping time interval, and the dropping time interval until the specific droplet is dropped. The liquid drop collection device according to claim 1 or 2. 前記特定の液滴の液量を下記式を用いた演算により補正することを特徴とする請求項3に記載の液滴計量採集装置。
特定の液滴の液量=液滴の液量の平均値×
{(特定の液滴が滴下するまでの滴下時間間隔/滴下時間間隔の平均値)}
4. The droplet measuring and collecting apparatus according to claim 3, wherein the liquid amount of the specific droplet is corrected by calculation using the following equation.
Liquid volume of a specific droplet = average value of liquid volume of droplets x
{(Drop time interval until specific drop is dropped / Average value of drop time interval)}
JP2002349742A 2002-12-02 2002-12-02 Droplet weighing and collecting device Expired - Fee Related JP4099379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002349742A JP4099379B2 (en) 2002-12-02 2002-12-02 Droplet weighing and collecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002349742A JP4099379B2 (en) 2002-12-02 2002-12-02 Droplet weighing and collecting device

Publications (2)

Publication Number Publication Date
JP2004184159A JP2004184159A (en) 2004-07-02
JP4099379B2 true JP4099379B2 (en) 2008-06-11

Family

ID=32752193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002349742A Expired - Fee Related JP4099379B2 (en) 2002-12-02 2002-12-02 Droplet weighing and collecting device

Country Status (1)

Country Link
JP (1) JP4099379B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011083355B4 (en) * 2011-09-23 2013-04-11 Aptar Radolfzell Gmbh dropper

Also Published As

Publication number Publication date
JP2004184159A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
KR101149624B1 (en) Condensation nucleus counter
US8477295B2 (en) Automated soil measurement device
JP6396292B2 (en) Intelligent bag filling for exhaust gas sampling system
JP5762273B2 (en) Mist-containing gas analyzer
EP2685230A1 (en) Gas analysis device
US7906073B2 (en) Analyzers and methods for analyzing analytes
DE3301971A1 (en) ELEMENTAL ANALYZER, ESPECIALLY FOR CARBON, HYDROGEN AND NITROGEN
KR101721607B1 (en) Apparatus for rotating-type analyzing particles in particulate matter and analyzing method using the same
EP0274385B1 (en) Detection device for gases with a diffusion measuring chamber which is sealable from the sample space during measurement
DE102008002916A1 (en) Calibration control by means of controlled humidification of a continuous emission monitoring system
WO1997007390A1 (en) A method and an apparatus for determining the number of particles or cells in a liquid sample
JP4099379B2 (en) Droplet weighing and collecting device
JPH0679143A (en) Method and device instrumented treatment of particle using filter
US7729517B2 (en) Method and apparatus for testing fibres
JPH09288053A (en) Particle analyzer
DE102009001861A1 (en) Method for operating an analysis device
DE19811177A1 (en) Mouthpiece temperature correction in breath sampling apparatus
KR101137585B1 (en) Atomizing apparatus and system for detecting particle in fluids using the same
NL8601170A (en) PROCESS FOR CONTINUALLY OBTAINING SAMPLES OF GAS DISSOLVED IN LIQUID FOR ANALYZING THESE GASES.
JP2010151499A (en) Mercury analyzer and method of analyzing mercury
KR20190056990A (en) Flow rate sensing apparatus of air sampling pump
EP0012945B1 (en) Process for measuring the emission of gaseous inorganic fluorinated or chlorinated compounds
JP3476891B2 (en) Sample adjustment device for powder colorimeter
KR101547167B1 (en) On-line monitoring system for metal included in gas sample
JPS647831B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Ref document number: 4099379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees