JP4099034B2 - Thermosetting molding material for press-fitting molded products and molded products - Google Patents

Thermosetting molding material for press-fitting molded products and molded products Download PDF

Info

Publication number
JP4099034B2
JP4099034B2 JP2002326321A JP2002326321A JP4099034B2 JP 4099034 B2 JP4099034 B2 JP 4099034B2 JP 2002326321 A JP2002326321 A JP 2002326321A JP 2002326321 A JP2002326321 A JP 2002326321A JP 4099034 B2 JP4099034 B2 JP 4099034B2
Authority
JP
Japan
Prior art keywords
molding material
fitting
press
molding
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002326321A
Other languages
Japanese (ja)
Other versions
JP2004161813A (en
Inventor
昌宏 箱谷
和広 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Composite Co Ltd
Uchihama Kasei Co Ltd
Original Assignee
Japan Composite Co Ltd
Uchihama Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Composite Co Ltd, Uchihama Kasei Co Ltd filed Critical Japan Composite Co Ltd
Priority to JP2002326321A priority Critical patent/JP4099034B2/en
Publication of JP2004161813A publication Critical patent/JP2004161813A/en
Application granted granted Critical
Publication of JP4099034B2 publication Critical patent/JP4099034B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、圧入性に優れた熱硬化成形品を形成する不飽和ポリエステル樹脂からなる熱硬化成形材料に関する。より詳しくは、本発明の熱硬化性成形材料は、射出成形法による熱硬化成形が可能であり、金属片等を内包した該熱硬化射出成形品を金属などのあらかじめ決められた寸法の隙間に挿入し固定する際に、該熱硬化射出成形硬化物が十分な柔軟性を有することにより圧入を可能とするものである。さらには、金属片等を内包する際に圧入性を要しない部位についても固定凹側の壁面と金属片等との接触を避けるため例えば30〜100μmといった非常に薄膜の保護層を設けるものである。これにより、熱硬化射出成形品内包された金属片等があらかじめ決められた寸法の隙間の壁面に金属片が直接接触することなしに圧入固定することを可能とするものである。
より詳しくは、例えば、開口部幅50.0mm, 高さ5.2mmで奥行き50.0mmの金属よりなる角穴に幅40.0mm、高さ5.0mm、奥行き45.0mmの金属片を同角穴の壁に接触させることなく固定することを目的とする際に、同金属片を140℃に加熱された幅50.5mm 厚さ5.2mm、奥行き50.0mmの金型キャビティー内に位置決め治具等によりあらかじめ正確に固定し、熱硬化性成形材料をその周辺に射出成形することにより、金属片を内包した金型キャビティーと同外形状の成形品を得て、同成形品を角穴に圧入により固定せしめるものである(図1,2参照)。
【0002】
【従来の技術】
BMC(Bulk Molding Compound)と称される不飽和ポリエステル樹脂を熱硬化性樹脂に用いたバルク状成形材料は、その成形品の絶縁性、耐熱性および寸法精度などの優れた性能とハンドリングならびに射出成形性により生産性に優れた成形材料として、広く用いられている。例えば、電気機器部品や自動車ヘッドランプリフレクターなどはそれら特徴を活かした用途であり、国内外を問わず広く用いられている。
【0003】
しかしながら、これら一般用途のBMCは硬さを要求されるため、その硬化成形品は柔軟性に欠け、これを所定の隙間に嵌合、固定することは困難である。無理に嵌合しようとすると、BMC成形品が金属により削り取られるため、圧入の反力による固定が困難になる。
したがって、従来のBMCは、このような圧入嵌合用の成形品としては使用できなかった。
【0004】
【発明が解決しようとする課題】
本発明は、こうした状況の下に、不飽和ポリエステル樹脂を用いた射出成形可能な熱硬化性成形材料であって、特に圧入による嵌合、固定性に優れた成形材料およびその硬化成形品を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明者らは、同用途に要求される成形品の圧入性と、成形材料としての作業性を鋭意検討した結果、以下の知見を得た。
▲1▼樹脂硬さ、無機充填材配合量を検討し様々な硬さの硬化物を検討した結果、ショアーD硬度を90以下とすることにより、圧入性に優れた成形品を得ることが可能である。
▲2▼ショアーD硬度を90以下とするためには、二重結合濃度が2.0ミリモル/g以下でガラス転移温度が70℃以下の軟質の熱硬化性樹脂を配合する必要があるが、該樹脂を少なくとも固形分基準で全熱硬化性樹脂の50wt%以上配合する必要がある。
▲3▼寸法精度向上や強度向上の為に添加されるガラス繊維などの繊維状および水酸化アルミ、炭酸カルシウム粒子など粒子状の無機充填材合計の体積含有率が成形材料全体の50vol%を越えるとショアーD硬度は90以上となり、圧入性が損なわれる。
▲4▼成形材料の硬さが針入度で30未満では、100μm以下の隙間を充填するには、流動性が不十分である。
▲5▼成形材料の硬さが針入度で150を越えるとハンドリングならびに射出成形機での計量性が乏しく量産に適さない。
▲6▼従って、成形材料の硬さは、針入度(JIS K 2235)で30以上150以下である必要がある。
▲7▼従来のアルカリ土類金属の酸化物ならびに水酸化物によるによる化学的増粘の他に、熱可塑性樹脂粒子による物理的増粘を単独または化学的増粘と併用することによっても▲6▼記載の針入度を示す材料を作ることができる。
【0006】
これらの知見により、成形材料硬化物が圧入するに十分な柔軟性を有し、射出硬化成形前の成形材料がハンドリングおよび量産性に優れる成形材料を発明するに至った。
【0007】
すなわち、本発明は、
1)熱硬化性樹脂として不飽和ポリエステル樹脂を用いた、射出成形法による熱硬化成形が可能な熱硬化性成形材料であって、固形分基準で全熱硬化性樹脂の50wt%以上が、二重結合濃度が2.0ミリモル/g以下でガラス転移温度が70℃以下の不飽和ポリエステル樹脂であり、繊維状および粒子状無機充填材総量の体積含有率が成形材料全体の50vol%以下であり、成形材料の針入度(JIS K 2235)が30〜150 (3〜15mm)、ショアーD(ASTM D676−55T)硬度が90以下の圧入性に優れた熱硬化嵌合成形品を形成し得ることを特徴とする圧入嵌合成形品用射出成形用熱硬化性成形材料。
2)熱硬化性樹脂として不飽和ポリエステル樹脂を用いた、成形温度100〜200℃、成形サイクル5分以下の射出成形法による熱硬化成形が可能な熱硬化性成形材料であって、固形分基準で全熱硬化性樹脂の50wt%以上が、二重結合濃度が2.0ミリモル/g以下でガラス転移温度が70℃以下の不飽和ポリエステル樹脂であり、繊維状および粒子状無機充填材総量の体積含有率が成形材料全体の50vol%以下であり、成形材料の針入度(JIS K 2235)が30〜150 (3〜15mm)、ショアーD(ASTM D676−55T)硬度が90以下の圧入性に優れた熱硬化嵌合成形品を形成し得ることを特徴とする圧入嵌合成形品用射出成形用熱硬化性成形材料。
)熱可塑性樹脂粒子を物理増粘剤として添加した前記1)又は2)に記載の圧入嵌合成形品用射出成形用熱硬化性樹脂成形材料、
)前記1)〜)のいずれかに記載の熱硬化性成形材料を成形してなる圧入嵌合成形品、
よりなる。
【0008】
なお、上記の固形分基準とは不飽和ポリエステル樹脂中のビニル単量体を含まない固形分のみをあらわす。
またガラス転移温度は動的粘弾性測定の損失正接が最大を示す温度により求めた。
本発明の成形材料は射出成形における量産性、流動性に優れることから、100ミクロン以下の隙間にも十分成形材料が流入することが可能であり、圧入性を要求される金属片を内包した成形品を成形する成形材料として有効である。
【0009】
例えば、上下面が平面上の金属片が配設され、100〜200℃に加熱された金型キャビティ内で本発明の熱硬化性成形材料を射出成形して、前記金属片の上下面の間の周面および下面に所定厚さの熱硬化した樹脂層を形成することができる。その際に、本発明の熱硬化性成形材料は、成形時の流動性がよいため、熱硬化した樹脂で成形された周面および下面以外の上面にも30〜100ミクロンといった非常に薄い樹脂膜を形成することができる。この薄い樹脂膜は、成形した金属片の保護膜として機能する(図1,2参照)。
【0010】
本発明で用いる不飽和ポリエステルは、α、β―オレフィン系不飽和ジカルボン酸と2価のグリコールとの縮合で合成されるものである。該ポリエステルの合成には、これら2成分のほかに飽和ジカルボン酸や芳香族ジカルボン酸あるいはジカルボン酸と反応するジシクロペンタジエンなども併用することができる。
【0011】
α、β―オレフィン系不飽和カルボン酸の例としては、例えばマレイン酸、フマル酸、イタコン酸、シトラコン酸、およびこれらジカルボン酸の無水物が挙げられる。これらα、β―オレフィン系ジカルボン酸と併用されるジカルボン酸の例としては、例えばアジピン酸、セバシル酸、コハク酸、グルコン酸、フタル酸無水物、o―フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、テトラクロロフタル酸などが挙げられる。
【0012】
2価のグリコールとしては、例えばアルカンジオール、オキサアルカンジオール、ビスフェノールAにエチレンオキシドやプロピレンオキシドなどのアルキレンオキサイドを付加したジオール等が用いられる。これに加えてモノオールや3価のトリオールを用いてもよい。
【0013】
アルカンジオールの例としては、例えばエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,3―ブタンジオール、1、4―ブタンジオール、ネオペンチルグリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、シクロヘキサンジオール等が挙げられる。
【0014】
オキサアルカンジオールとしては、例えばジオキシエチレングリコール、トリエチレングリコール等が挙げられる。これらグリコールと併用される1価あるいは3価のアルコールとしては、例えばオクチルアルコール、オレイルアルコール、トリメチロールプロパン等が挙げられる。不飽和ポリエステルの合成は一般に加熱下で実施され、副生する水を除去しながら反応を進める。
【0015】
一般に、不飽和ポリエステルは、使用する原料により架橋密度を低くすることおよび、使用原料に例えばアジピン酸、セバシン酸、グリコールでは例えばジエチレングリコールやプロピレングリコールなどの長鎖の分子構造をもつ原料を使用することにより軟らかくガラス転移温度が低い樹脂を得ることができる。また反対に架橋密度を高くすることおよび、使用原料にグリコールでは例えば水素化ビスフェノールAなどの剛直な構造をもつ原料を用いることにより硬く、ガラス転移温度が高い樹脂を得ることができる。
【0016】
二重結合濃度が2.0ミリモル/g以下で、好ましくは0.2ミリモル/g以上1.0ミリモル/g以下でガラス転移温度が70℃以下の軟質の熱硬化性樹脂は固形分基準で全熱硬化性樹脂の50wt%以上含まれる必要があり、80〜100wt%含まれることがより好ましい。該樹脂の含有量が50wt%未満では熱硬化性成形材料硬化物の硬さが硬くなり過ぎ圧入性が得られず、また50〜80wt%においても併用される不飽和ポリエステル樹脂のガラス転移温度が非常に高い場合には熱硬化性成形材料硬化物の硬さが硬くなり過ぎ圧入性が得られない場合がある。
本発明の熱硬化した圧入嵌合成形品は、その硬度がショアーD(ASTM D676−55T)硬度で90以下であり、好ましくは40〜90である。また、その硬化前の熱硬化性成形材料は、針入度(JIS K2235)が30〜150(3〜15mm)であり、好ましくは50〜120である。
【0017】
本発明で用いるビニル単量体としては、従来から不飽和ポリエステルの希釈剤ないし架橋剤として慣用されているモノビニル単量体、例えばスチレン、p―クロルスチレン、ビニルトルエンなどの芳香族系モノビニル単量体、アクリル酸、アクリル酸メチルエステル、メタクリル酸、メタクリル酸メチルエステル、アクリロニトリルなどアクリル系モノビニル単量体を挙げることができるが、特にスチレンが好ましい。このビニル単量体は通常不飽和ポリエステルおよび熱可塑性樹脂の希釈剤として不飽和ポリエステルおよび熱可塑性樹脂に配合される。
【0018】
本発明の熱硬化性成形材料は、必要に応じて上記以外の粒子状ならびに繊維状無機充填材、低収縮化剤、硬化剤、硬化調整剤、顔料、内部離型剤、増粘剤を配合することができる。
粒子状無機充填材としては炭酸カルシウム、水酸化アルミニウム等が挙げられる。繊維状無機充填材としては、アスペクト比が10以上のガラス繊維、ビニロン繊維、炭素繊維、アラミド繊維などが挙げられ、特に繊維長50μm〜25mmのチョップドグラスファイバーが好ましく、繊維長1〜3mm程度のものが本発明の成形性と補強効果の点からはより好ましい。
【0019】
粒子状および繊維状無機充填材の配合量は、本発明の成形材料のハンドリング、成形性および硬化物の硬さに大きく影響を及ぼし、無機充填材総量の体積含有率は成形材料全体の0〜50vol%が好ましく、20〜40vol%がより好ましい。無機充填材の総量が50vol%を越えると硬化物の硬さが硬くなり過ぎ圧入性を得ることができず。無機充填材の総量が20vol%以下と少ない場合は、その他有機物成分の増粘調整により目的のハンドリング、成形性を示す成形材料を得ることは可能であるものの、調整が厳密になる傾向があり、20vol%以上配合する場合の方が、成形材料の調整は容易である。
【0020】
低収縮化剤としては、酢酸ビニル系重合体や、飽和ポリエステル、スチレンなどにビニル芳香族化合物からなる重合体ブロックとブタジエン、イソプレンなどの共役ジエン化合物からなる重合体ブロックとからなるゴム系重合体、ポリスチレン、部分架橋ポリスチレン、アクリル系重合体、ポリエチレン、などを挙げることができる。
【0021】
本発明においては、低収縮化剤は、本来の目的である低収縮効果を得るために添加するものであるが、硬化物の圧入性を考慮すると比較的軟質の低収縮化剤である酢酸ビニル重合体や飽和ポリエステルやゴム系重合体などが好ましく、さらには不飽和ポリエステル樹脂との相溶性に優れる酢酸ビニル重合体や飽和ポリエステルがより好ましい。低収縮化剤の添加量としては不飽和ポリエステル、ビニル単量体および熱可塑性樹脂の混合物100重量部の中で0〜50重量部が好ましい。
【0022】
硬化剤としては、t―ブチルパーオキシベンゾエート、t―ブチルパーオクトエートに代表されるパーオキシエステル類、1,1―ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサンに代表されるパーオキシケタール類、t−ブチルパーオキシイソプロピルカーボネートに代表されるパーオキシカーボネート類等が挙げられ、少なくとも1種を、不飽和ポリエステル、ビニル単量体および熱可塑性樹脂の混合物100重量部に対し0.5〜5重量部、好ましくは1〜3重量部使用する。
【0023】
硬化調整剤としてはパラベンゾキノン、t−ブチルカテコール等が挙げられる。顔料としては、例えばカーボンブラック、酸化チタン、弁柄、フタロシアニンブルー等が挙げられる。内部離型剤としては離型性と成形温度に応じて使用可能であるが、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸などが挙げられる。
【0024】
増粘剤としては、一般的な化学増粘剤および物理増粘剤を単独もしくは併用することができる。化学増粘剤としてはマグネシウム、カルシウム等の酸化物または水酸化物が挙げられる。不飽和ポリエステルの化学的増粘法は、不飽和ポリエステルの酸価等の化学的性質ならびに系中の水分および化学的増粘剤添加量によりコントロールされる必要がある。
【0025】
物理増粘剤としては、例えば、WO96/00753に記載のアクリル酸エステル、メタクリル酸エステル及び芳香族ビニル化合物の中から選ばれた少なくとも1種類の単量体単位を50wt%以上含有する樹脂粉末を有効成分とする増粘剤などが挙げられるが、同様の機構による物理的増粘効果が得られるものであれば使用可能である。物理増粘剤としては、該物理増粘剤を含む不飽和ポリエステル、ビニル単量体および熱可塑性樹脂の混合物100重量部の中で0〜50重量部添加されていることが好ましく、5〜30重量部添加されることがより好ましい。
【0026】
物理的増粘法は、その他成形材料成分と物理増粘剤の溶解性パラメーターや物理増粘剤の添加量により、増粘速度および最終的な増粘度がコントロールされるが、水分による影響が少ないことから成形材料製造時の不確定要素が少なくなり、本発明のように成形材料の硬さ(針入度)の管理が厳密である場合においては、物理増粘剤の化学増粘剤との併用または単独使用は有効な手段であると言える。
このような各種配合剤を用いて、慣用の手段、装置により成形材料とすることができる。また、本発明の成形材料は圧縮ならびに射出成形により金型中で加熱硬化(圧力5〜12MPa、温度100〜200℃)させることにより成形物を製造する事ができる。成形サイクルならびに金属片のインサート成形を考慮すると射出成形がもっとも好ましい。
【0027】
【実施例】
以下に具体例を挙げて、本発明をさらに具体的に説明する。
【合成例】
以下に実施例に使用した不飽和ポリエステル樹脂の合成例を示す。
【0028】
(1)不飽和ポリエステル樹脂Aの合成
ジエチレングリコール2910g、無水マレイン酸422g、アジピン酸1050g、オルソフタル酸1083g、イソフタル酸1215gを常法により反応温度200℃で酸価15まで反応させることにより不飽和ポリエステルを調整し、エステル100重量部に対してスチレン67重量部を混合し、不飽和ポリエステル樹脂Aを得た。
不飽和ポリエステル樹脂Aの二重結合濃度を計算したところ0.7ミリモル/gであり、動的粘弾性によるガラス転移温度は48℃であった。
【0029】
(2)不飽和ポリエステル樹脂Bの合成
プロピレングリコール5010g、イソフタル酸6250gを常法により反応温度200℃で酸価15まで一次反応させた後、プロピレングリコール2320g、無水マレイン酸5530gを加え常法により反応温度200℃で酸価20まで二次反応させることにより不飽和ポリエステルを調整し、エステル100重量部に対してスチレン67重量部を混合し、不飽和ポリエステル樹脂Bを得た。
不飽和ポリエステル樹脂Bの二重結合濃度を計算したところ3.4ミリモル/gであり、動的粘弾性によるガラス転移温度は160℃であった。
【0030】
実施例1
表1に示すように不飽和ポリエステルA 60重量部に対して、ポリ酢酸ビニル樹脂(三井武田ケミカル株式会社製ポリマール9966) 40重量部、t−Butyl peroxy 2−ethyl hexanoate(日本油脂株式会社製パーブチルO) 1重量部、 パラベンゾキノン 0.02重量部、 ステアリン酸亜鉛 3重量部、 酸化マグネシウム 0.50重量部を分散攪拌した後、汎用のプラネタリーミキサーに該樹脂液を入れ、同ミキサーに水酸化アルミ粒子(日本軽金属株式会社製細粒水酸化アルミニウムB−103) 100重量部を添加後5分間の混練により均一分散させた後、チョップドグラスファイバー(日本板硝子株式会社製RES015−BM47) 30重量部を添加し5分間の混練を行った後、該混練物を40℃×24時間の熟成を経て成形材料を得た。
完成した成形材料はハンドリングも良好であり、射出成形機と140℃に温度調節された金型により60秒サイクルにて射出成形したところ、30μm、100μmの隙間にも充填可能でかつ得られた成形品の圧入性は良好であった。
【0031】
実施例2
表1に示すように不飽和ポリエステル樹脂A 40重量部に対して、不飽和ポリエステル樹脂B 20重量部、ポリ酢酸ビニル樹脂(三井武田ケミカル株式会社製ポリマール9966) 40重量部、t−Butyl peroxy 2−ethyl hexanoate(日本油脂株式会社製パーブチルO) 1重量部、 パラベンゾキノン 0.02重量部、 ステアリン酸亜鉛 3重量部、 酸化マグネシウム 0.50重量部を分散攪拌した後、汎用のプラネタリーミキサーに該樹脂液を入れたのち同ミキサーに水酸化アルミ粒子(日本軽金属株式会社製細粒水酸化アルミニウムB−103) 100重量部を添加後5分間の混練により均一分散させた後、チョップドグラスファイバー(日本板硝子株式会社製RES015−BM47) 30重量部を添加し5分間の混練を行った後、該混練物を40℃×24時間の熟成を経て成形材料を得た。
完成した成形材料はハンドリングも良好であり、射出成形機と140℃に温度調節された金型により60秒サイクルにて射出成形したところ、30μm、100μmの隙間にも充填可能でかつ得られた成形品の圧入性は良好であった。
【0032】
実施例3
表1に示すように不飽和ポリエステル樹脂A 60重量部に対して、ポリ酢酸ビニル樹脂(三井武田ケミカル株式会社製ポリマール9966) 40重量部、t−Butyl peroxy 2−ethyl hexanoate(日本油脂株式会社製パーブチルO) 1重量部、 パラベンゾキノン 0.02重量部、 ステアリン酸亜鉛 3重量部、 酸化マグネシウム 0.50重量部を分散攪拌した後、汎用のプラネタリーミキサーに該樹脂液を入れたのち同ミキサーに水酸化アルミ粒子(日本軽金属株式会社製細 粒水酸化アルミニウムB−103) 50重量部を添加後5分間の混練により均一分散させた後、チョップドグラスファイバー(日本板硝子株式会社製RES015−BM47) 30重量部を添加し5分間の混練を行った後、該混練物を40℃×24時間の熟成を経て成形材料を得た。
完成した成形材料はハンドリングも良好であり、射出成形機と140℃に温度調節された金型により60秒サイクルにて射出成形したところ、30μm、100μmの隙間にも充填可能でかつ得られた成形品の圧入性は良好であった。
【0033】
実施例4
表1に示すように不飽和ポリエステル樹脂A 60重量部に対して、ポリ酢酸ビニル樹脂(三井武田ケミカル株式会社製ポリマール9966) 30重量部、t−Butyl peroxy 2−ethyl hexanoate(日本油脂株式会社製パーブチルO) 1重量部、 パラベンゾキノン 0.02重量部、 ステアリン酸亜鉛 3重量部、 酸化マグネシウム 0.25重量部を分散攪拌し、さらに物理増粘剤(日本ゼオン株式会社製ポリメタクリル酸メチル粒子F320) 10重量部を添加分散攪拌した後、汎用のプラネタリーミキサーに該樹脂液を入れたのち同ミキサーに水酸化アルミ粒子(日本軽金属株式会社製細 粒水酸化アルミニウムB−103) 100重量部を添加後5分間の混練により均一分散させた後、チョップドグラスファイバー(日本板硝子株式会社製RES015−BM47) 30重量部を添加し5分間の混練を行った後、該混練物を40℃×24時間の熟成を経て成形材料を得た。
完成した成形材料はハンドリングも良好であり、射出成形機と140℃に温度調節された金型により60秒サイクルにて射出成形したところ、30μm、100μmの隙間にも充填可能でかつ得られた成形品の圧入性は良好であった。
【0034】
実施例5
表1に示すように不飽和ポリエステル樹脂A 60重量部に対して、ポリ酢酸ビニル樹脂(三井武田ケミカル株式会社製ポリマール9966) 20重量部、t−Butyl peroxy 2−ethyl hexanoate(日本油脂株式会社製パーブチルO) 1重量部、 パラベンゾキノン 0.02重量部、 ステアリン酸亜鉛 3重量部を分散攪拌し、さらに物理増粘剤(日本ゼオン株式会社製ポリメタクリル酸メチル粒子 F320) 20重量部を添加分散攪拌した後、汎用のプラネタリーミキサーに該樹脂液を入れたのち同ミキサーに水酸化アルミ粒子(日本軽金属株式会社製細 粒水酸化アルミニウムB−103)100重量部を添加後5分間の混練により均一分散させた後、チョップドグラスファイバー(日本板硝子株式会社製RES015−BM47) 30重量部を添加し5分間の混練を行った後、該混練物を40℃×24時間の熟成を経て成形材料を得た。
完成した成形材料はハンドリングも良好であり、射出成形機と140℃に温度調節された金型により60秒サイクルにて射出成形したところ、30μm、100μmの隙間にも充填可能でかつ得られた成形品の圧入性は良好であった。
【0035】
比較例1
表1に示すように不飽和ポリエステル樹脂B 60重量部に対して、ポリ酢酸ビニル樹脂(三井武田ケミカル株式会社製ポリマール9966) 40重量部、t−Butyl peroxy 2−ethyl hexanoate(日本油脂株式会社製パーブチルO) 1重量部、 パラベンゾキノン 0.02重量部、 ステアリン酸亜鉛 3重量部、 酸化マグネシウム 0.50重量部を分散攪拌した後、汎用のプラネタリーミキサーに該樹脂液を入れたのち同ミキサーに水酸化アルミ粒子(日本軽金属株式会社製細 粒水酸化アルミニウムB−103) 100重量部を添加後5分間の混練により均一分散させた後、チョップドグラスファイバー(日本板硝子株式会社製RES015−BM47) 30重量部を添加し5分間の混練を行った後、該混練物を40℃×24時間の熟成を経て成形材料を得た。
完成した成形材料はハンドリングも良好であり、射出成形機と140℃に温度調節された金型により60秒サイクルにて射出成形したところ、30μm、100μmの隙間への充填は可能であったが、圧入の際に手作業による圧入性は不可能であり、ハンマーにて圧入を試みたところ、成形部が破損し圧入できなかった。
【0036】
比較例2
表1に示すように不飽和ポリエステル樹脂A 20重量部に対して、不飽和ポリエステル樹脂B 40重量部ポリ酢酸ビニル樹脂(三井武田ケミカル株式会社製ポリマール9966) 40重量部、t−Butyl peroxy 2−ethyl hexanoate(日本油脂株式会社製パーブチルO) 1重量部、 パラベンゾキノン0.02重量部、 ステアリン酸亜鉛 3重量部、 酸化マグネシウム 0.50重量部を分散攪拌した後、汎用のプラネタリーミキサーに該樹脂液を入れたのち同ミキサーに水酸化アルミ粒子(日本軽金属株式会社製細 粒水酸化アルミニウムB−103) 100重量部を添加後5分間の混練により均一分散させた後、チョップドグラスファイバー(日本板硝子株式会社製RES015−BM47) 30重量部を添加し5分間の混練を行った後、該混練物を40℃×24時間の熟成を経て成形材料を得た。
完成した成形材料はハンドリングも良好であり、射出成形機と140℃に温度調節された金型により60秒サイクルにて射出成形したところ、30μm、100μmの隙間への充填は可能であったが、圧入の際に手作業による圧入性は不可能であり、ハンマーにて圧入を試みたところ、成形部が破損し圧入できなかった。
【0037】
比較例3
表1に示すように不飽和ポリエステル樹脂A 60重量部に対してポリ酢酸ビニル樹脂(三井武田ケミカル株式会社製ポリマール9966) 40重量部、t−Butyl peroxy 2−ethyl hexanoate(日本油脂株式会社製パーブチルO) 1重量部、 パラベンゾキノン0.02重量部、 ステアリン酸亜鉛 3重量部、 酸化マグネシウム 0.50重量部を分散攪拌した後、汎用のプラネタリーミキサーに該樹脂液を入れたのち同ミキサーに水酸化アルミ粒子(日本軽金属株式会社製細 粒水酸化アルミニウムB−103) 300重量部を添加後5分間の混練により均一分散させた後、チョップドグラスファイバー(日本板硝子株式会社製RES015−BM47) 30重量部を添加し5分間の混練を行った後、該混練物を40℃×24時間の熟成を経て成形材料を得た。
完成した成形材料はハンドリングも良好であり、射出成形機と140℃に温度調節された金型により60秒サイクルにて射出成形したところ、30μm、100μmの隙間への充填不良を生じ、圧入の際に手作業による圧入性は不可能であり、ハンマーにて圧入を試みたところ、成形部が破損し圧入できなかった。
【0038】
比較例4
表1に示すように不飽和ポリエステルA 60重量部に対して、ポリ酢酸ビニル樹脂(三井武田ケミカル株式会社製ポリマール9966) 40重量部、t−Butyl peroxy 2−ethyl hexanoate(日本油脂株式会社製パーブチルO) 1重量部、 パラベンゾキノン 0.02重量部、 ステアリン酸亜鉛 3重量部、 酸化マグネシウム 2.0重量部を分散攪拌した後、汎用のプラネタリーミキサーに該樹脂液を入れたのち同ミキサーに水酸化アルミ粒子(日本軽金属株式会社製細 粒水酸化アルミニウムB−103) 100重量部を添加後5分間の混練により均一分散させた後、チョップドグラスファイバー(日本板硝子株式会社製RES015−BM47) 30重量部を添加し5分間の混練を行った後、該混練物を40℃×24時間の熟成を経て成形材料を得た。
完成した成形材料はハンドリングも良好であり、射出成形機と140℃に温度調節された金型により60秒サイクルにて射出成形したところ、30μm、100μmの隙間への充填不良を生じたが圧入には問題はなかった。該成形材料は圧入のみを目的とする場合には十分であるものの、優れた成形性が要求される場合には問題がある。
【0039】
比較例5
表1に示すように不飽和ポリエステルA 60重量部に対して、ポリ酢酸ビニル樹脂(三井武田ケミカル株式会社製ポリマール9966) 40重量部、t−Butyl peroxy 2−ethyl hexanoate(日本油脂株式会社製パーブチルO) 1重量部、 パラベンゾキノン 0.02重量部、 ステアリン酸亜鉛 3重量部、 酸化マグネシウム 0.05重量部を分散攪拌した後、汎用のプラネタリーミキサーに該樹脂液を入れたのち同ミキサーに水酸化アルミ粒子(日本軽金属株式会社製細 粒水酸化アルミニウムB−103) 100重量部を添加後5分間の混練により均一分散させた後、チョップドグラスファイバー(日本板硝子株式会社製RES015−BM47) 30重量部を添加し5分間の混練を行った後、該混練物を40℃×24時間の熟成を経て成形材料を得た。
射出成形機と140℃に温度調節された金型により60秒サイクルにて射出成形試みたところ、成形材料はハンドリングに問題があり、ポリエチレン製手袋によりハンドリング゛行っても、手袋表面に成形材料が多く付着する状態であり、他の成形材料と同様の設定では射出量が十分でなく、成形機の隙間から材料が漏れて計量性に問題がある様子がうかがえた。成形品は30μm、100μmの隙間にも充填可能でかつ得られた成形品の圧入性は良好であった。該成形材料は総じて作業性が悪く量産に使用できるものではなかった。
以上の結果を表に示す。
【0040】
【表1】

Figure 0004099034
【0041】
これら実施例、比較例より、ショアーD硬度が90以下の場合に圧入性に問題ない成形品が得られることが判る。また、薄い隙間への充填は成形材料の針入度が30以下の場合には充填不良が生じることが判る。
圧入性に優れた成形品を得るには、ショアーD硬度は90以下とする必要があり、薄い隙間への充填性がありかつ良好なハンドリング性を得るためには成形材料の針入度は30〜150である必要がある。
【0042】
【発明の効果】
本発明の成形材料は、薄い隙間にBMCを用いて射出成形された成形物は、寸法精度が高く柔軟であることから、金属等からなる隙間に圧入可能であり、射出成形時に金属などの部品をインサート成形すれば、同部品を容易に圧入、固定することができる。
【0043】
【図面の簡単な説明】
【図1】本発明の熱硬化性成形材料を使用した金属内包成形品の金属隙間への圧入嵌合を説明する図。
【図2】本発明の熱硬化性成形材料を使用した金属内包射出成形の概念を説明する図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermosetting molding material comprising an unsaturated polyester resin that forms a thermosetting molded article excellent in press-fitting properties. More specifically, the thermosetting molding material of the present invention can be thermoset by an injection molding method, and the thermoset injection molded product containing a metal piece or the like is placed in a gap of a predetermined dimension such as a metal. When inserting and fixing, the thermosetting injection-molded cured product has sufficient flexibility to enable press-fitting. Furthermore, a very thin protective layer of, for example, 30 to 100 μm is provided to avoid contact between the fixed concave wall surface and the metal piece or the like even in a portion that does not require press fit when enclosing the metal piece or the like. . Thus, the metal piece or the like contained in the thermosetting injection molded product can be press-fitted and fixed without the metal piece directly contacting the wall surface of the gap having a predetermined size.
More specifically, for example, a metal piece having a width of 40.0 mm, a height of 5.0 mm, and a depth of 45.0 mm is placed in a square hole made of a metal having an opening width of 50.0 mm, a height of 5.2 mm, and a depth of 50.0 mm. When the metal piece is intended to be fixed without being brought into contact with the wall of the square hole, the metal piece is heated in a mold cavity having a width of 50.5 mm, a thickness of 5.2 mm, and a depth of 50.0 mm. By accurately fixing in advance with a positioning jig, etc., and thermosetting molding material is injection-molded around it, a molded product with the same shape as the mold cavity containing the metal piece is obtained. It is fixed by press-fitting into a square hole (see FIGS. 1 and 2).
[0002]
[Prior art]
Bulk molding material using unsaturated polyester resin called BMC (Bulk Molding Compound) as thermosetting resin has excellent performance such as insulation, heat resistance and dimensional accuracy, handling and injection molding. It is widely used as a molding material with excellent productivity due to its properties. For example, electrical equipment parts and automobile headlamp reflectors are applications that take advantage of these characteristics, and are widely used regardless of domestic or overseas.
[0003]
However, since these BMCs for general use are required to be hard, the cured molded product lacks flexibility, and it is difficult to fit and fix it in a predetermined gap. When trying to fit forcefully, the BMC molded product is scraped off by metal, so that it becomes difficult to fix by a reaction force of press-fitting.
Therefore, the conventional BMC cannot be used as a molded product for such press fitting.
[0004]
[Problems to be solved by the invention]
Under such circumstances, the present invention provides a thermosetting molding material capable of injection molding using an unsaturated polyester resin, and particularly a molding material excellent in fitting and fixing by press-fitting and a cured molding product thereof. It is intended to do.
[0005]
[Means for Solving the Problems]
As a result of intensive studies on the press-fit property of molded products required for the same application and workability as a molding material, the present inventors have obtained the following knowledge.
(1) As a result of examining the hardness of the resin and the amount of inorganic filler and examining cured products of various hardnesses, it is possible to obtain molded products with excellent press-fitting properties by reducing the Shore D hardness to 90 or less. It is.
(2) To make the Shore D hardness 90 or less, it is necessary to blend a soft thermosetting resin having a double bond concentration of 2.0 mmol / g or less and a glass transition temperature of 70 ° C. or less. It is necessary to blend the resin at least 50 wt% of the total thermosetting resin on the basis of the solid content.
(3) The volume content of the total of inorganic fillers in the form of fibers such as glass fibers and aluminum hydroxide and calcium carbonate particles added to improve dimensional accuracy and strength exceeds 50 vol% of the entire molding material. And Shore D hardness becomes 90 or more, and press fit property is impaired.
(4) When the hardness of the molding material is less than 30, the fluidity is insufficient to fill a gap of 100 μm or less.
(5) When the hardness of the molding material exceeds 150 in terms of penetration, handling and injection molding machines are poor in measurement and not suitable for mass production.
(6) Therefore, the hardness of the molding material needs to be 30 or more and 150 or less in terms of penetration (JIS K 2235).
(7) In addition to chemical thickening by conventional alkaline earth metal oxides and hydroxides, physical thickening by thermoplastic resin particles can be used alone or in combination with chemical thickening. The material which shows the penetration of ▼ can be made.
[0006]
Based on these findings, the inventors have invented a molding material that has sufficient flexibility to allow the cured molding material to be press-fitted and the molding material before injection-curing molding is excellent in handling and mass productivity.
[0007]
That is, the present invention
1) An unsaturated polyester resin was used as the thermosetting resin. Can be thermoset by injection molding A thermosetting molding material comprising 50 wt% or more of the total thermosetting resin based on solid content, an unsaturated polyester resin having a double bond concentration of 2.0 mmol / g or less and a glass transition temperature of 70 ° C. or less. Yes The volume content of the total amount of fibrous and particulate inorganic filler is 50 vol% or less of the entire molding material, and the penetration of the molding material (JIS K 2235) is 30 to 150 (3 to 15 mm), For press-fitting molded products characterized by being able to form thermoset fitting molded products having excellent press-fit properties with a Shore D (ASTM D676-55T) hardness of 90 or less For injection molding Thermosetting molding material.
2) A thermosetting molding material capable of thermosetting molding by an injection molding method using an unsaturated polyester resin as a thermosetting resin at a molding temperature of 100 to 200 ° C. and a molding cycle of 5 minutes or less, 50% by weight or more of the total thermosetting resin based on solid content is an unsaturated polyester resin having a double bond concentration of 2.0 mmol / g or less and a glass transition temperature of 70 ° C. or less. The volume content of the total material is 50 vol% or less of the entire molding material, and the penetration of the molding material (JIS K 2235) is 30 to 150 (3 to 15 mm), For press-fitting molded products characterized by being able to form thermoset fitting molded products having excellent press-fit properties with a Shore D (ASTM D676-55T) hardness of 90 or less For injection molding Thermosetting molding material.
3 1) For press-fitting molded products according to 1) or 2) above, wherein thermoplastic resin particles are added as a physical thickener. For injection molding Thermosetting resin molding material,
4 1) to above 3 ) A press-fitting molded product formed by molding the thermosetting molding material according to any one of
It becomes more.
[0008]
In addition, said solid content reference | standard shows only the solid content which does not contain the vinyl monomer in unsaturated polyester resin.
The glass transition temperature was determined from the temperature at which the loss tangent of the dynamic viscoelasticity measurement was maximum.
Since the molding material of the present invention is excellent in mass production and fluidity in injection molding, the molding material can sufficiently flow into a gap of 100 microns or less, and includes a metal piece that requires press-fitting. It is effective as a molding material for molding products.
[0009]
For example, the upper and lower surfaces of metal pieces having flat surfaces are disposed, and the thermosetting molding material of the present invention is injection-molded in a mold cavity heated to 100 to 200 ° C. A heat-cured resin layer having a predetermined thickness can be formed on the peripheral surface and the lower surface. At that time, since the thermosetting molding material of the present invention has good flowability at the time of molding, a very thin resin film of 30 to 100 microns is also formed on the upper surface other than the peripheral surface and the lower surface molded with the thermoset resin. Can be formed. This thin resin film functions as a protective film for the molded metal piece (see FIGS. 1 and 2).
[0010]
The unsaturated polyester used in the present invention is synthesized by condensation of an α, β-olefinic unsaturated dicarboxylic acid and a divalent glycol. In addition to these two components, a saturated dicarboxylic acid, an aromatic dicarboxylic acid, dicyclopentadiene that reacts with a dicarboxylic acid, or the like can be used in combination for the synthesis of the polyester.
[0011]
Examples of the α, β-olefin unsaturated carboxylic acid include maleic acid, fumaric acid, itaconic acid, citraconic acid, and anhydrides of these dicarboxylic acids. Examples of dicarboxylic acids used in combination with these α, β-olefin dicarboxylic acids include, for example, adipic acid, sebacic acid, succinic acid, gluconic acid, phthalic anhydride, o-phthalic acid, isophthalic acid, terephthalic acid, tetrahydro Examples include phthalic acid and tetrachlorophthalic acid.
[0012]
Examples of the divalent glycol include alkanediol, oxaalkanediol, and diol obtained by adding alkylene oxide such as ethylene oxide and propylene oxide to bisphenol A. In addition, monool or trivalent triol may be used.
[0013]
Examples of alkanediols include, for example, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, Examples include 1,6-hexanediol and cyclohexanediol.
[0014]
Examples of the oxaalkanediol include dioxyethylene glycol and triethylene glycol. Examples of the monovalent or trivalent alcohol used in combination with these glycols include octyl alcohol, oleyl alcohol, and trimethylolpropane. The synthesis of unsaturated polyester is generally carried out under heating, and the reaction proceeds while removing by-product water.
[0015]
In general, unsaturated polyester should have a low cross-linking density depending on the raw material used, and a raw material having a long-chain molecular structure such as adipic acid, sebacic acid, or glycol, such as diethylene glycol or propylene glycol, should be used. Thus, a soft resin having a low glass transition temperature can be obtained. On the other hand, a resin having a high glass transition temperature can be obtained by increasing the crosslink density and using a raw material having a rigid structure such as hydrogenated bisphenol A as the raw material used.
[0016]
A soft thermosetting resin having a double bond concentration of 2.0 mmol / g or less, preferably 0.2 mmol / g or more and 1.0 mmol / g or less and a glass transition temperature of 70 ° C. or less is based on solid content. It is necessary to contain 50 wt% or more of the total thermosetting resin, and more preferably 80 to 100 wt%. If the content of the resin is less than 50 wt%, the thermosetting molding material cured product becomes too hard to obtain press fit, and the glass transition temperature of the unsaturated polyester resin used in combination at 50 to 80 wt% is too high. If it is very high, the thermosetting molding material cured product may be too hard to obtain press fit.
The heat-cured press-fitting molded product of the present invention has a Shore D (ASTM D676-55T) hardness of 90 or less, preferably 40-90. Moreover, the thermosetting molding material before the curing has a penetration (JIS K2235) of 30 to 150 (3 to 15 mm), preferably 50 to 120.
[0017]
The vinyl monomer used in the present invention is a monovinyl monomer conventionally used as a diluent or crosslinking agent for unsaturated polyester, for example, an aromatic monovinyl monomer such as styrene, p-chlorostyrene, vinyltoluene and the like. And acrylic monovinyl monomers such as acrylic acid, acrylic acid methyl ester, methacrylic acid, methacrylic acid methyl ester, and acrylonitrile, with styrene being particularly preferred. This vinyl monomer is usually blended into unsaturated polyester and thermoplastic resin as a diluent for unsaturated polyester and thermoplastic resin.
[0018]
The thermosetting molding material of the present invention contains particulate and fibrous inorganic fillers other than the above, a low shrinkage agent, a curing agent, a curing regulator, a pigment, an internal release agent, and a thickener as necessary. can do.
Examples of the particulate inorganic filler include calcium carbonate and aluminum hydroxide. Examples of the fibrous inorganic filler include glass fibers having an aspect ratio of 10 or more, vinylon fibers, carbon fibers, and aramid fibers. Particularly, chopped glass fibers having a fiber length of 50 μm to 25 mm are preferable, and the fiber length is about 1 to 3 mm. The thing is more preferable from the point of the moldability and the reinforcing effect of the present invention.
[0019]
The blending amount of the particulate and fibrous inorganic filler greatly affects the handling of the molding material of the present invention, the moldability and the hardness of the cured product, and the volume content of the total amount of the inorganic filler is 0 to 0 of the entire molding material. 50 vol% is preferable, and 20 to 40 vol% is more preferable. When the total amount of the inorganic filler exceeds 50 vol%, the hardness of the cured product becomes too hard to obtain press fit. When the total amount of the inorganic filler is as small as 20 vol% or less, although it is possible to obtain a molding material exhibiting the desired handling and moldability by adjusting the thickening of other organic components, the adjustment tends to be strict. Adjustment of the molding material is easier when 20 vol% or more is blended.
[0020]
As a low shrinkage agent, a vinyl polymer, a rubber polymer comprising a polymer block comprising a vinyl aromatic compound in saturated polyester, styrene, etc. and a polymer block comprising a conjugated diene compound such as butadiene, isoprene, etc. , Polystyrene, partially cross-linked polystyrene, acrylic polymer, polyethylene, and the like.
[0021]
In the present invention, the low shrinkage agent is added in order to obtain the original low shrinkage effect, but vinyl acetate is a relatively soft low shrinkage agent in view of the press fit of the cured product. Polymers, saturated polyesters, rubber-based polymers, and the like are preferable, and vinyl acetate polymers and saturated polyesters that are excellent in compatibility with unsaturated polyester resins are more preferable. The addition amount of the low shrinkage agent is preferably 0 to 50 parts by weight in 100 parts by weight of the mixture of unsaturated polyester, vinyl monomer and thermoplastic resin.
[0022]
Curing agents include t-butyl peroxybenzoate, peroxyesters represented by t-butyl peroctoate, and 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane. Peroxyketals, peroxycarbonates typified by t-butylperoxyisopropyl carbonate, etc., and at least one kind is used with respect to 100 parts by weight of a mixture of unsaturated polyester, vinyl monomer and thermoplastic resin. 0.5 to 5 parts by weight, preferably 1 to 3 parts by weight is used.
[0023]
Examples of the curing regulator include parabenzoquinone and t-butylcatechol. Examples of the pigment include carbon black, titanium oxide, petiole, and phthalocyanine blue. The internal mold release agent can be used depending on the mold release property and the molding temperature, and examples thereof include zinc stearate, calcium stearate, and stearic acid.
[0024]
As the thickener, general chemical thickeners and physical thickeners can be used alone or in combination. Examples of the chemical thickener include oxides or hydroxides such as magnesium and calcium. The chemical thickening method of the unsaturated polyester needs to be controlled by the chemical properties such as the acid value of the unsaturated polyester and the water and chemical thickener addition amount in the system.
[0025]
As the physical thickener, for example, a resin powder containing at least 50 wt% of at least one monomer unit selected from the acrylic acid esters, methacrylic acid esters, and aromatic vinyl compounds described in WO96 / 00753. A thickening agent as an active ingredient can be mentioned, and any thickening agent having a physical thickening effect by the same mechanism can be used. The physical thickener is preferably added in an amount of 0 to 50 parts by weight in 100 parts by weight of a mixture of unsaturated polyester, vinyl monomer and thermoplastic resin containing the physical thickener. More preferably, parts by weight are added.
[0026]
In the physical thickening method, the speed of thickening and final thickening are controlled by the solubility parameters of other molding material components and physical thickeners and the amount of physical thickener added, but the effect of moisture is small. As a result, there are fewer uncertainties during the production of the molding material, and when the control of the hardness (penetration) of the molding material is strict as in the present invention, the physical thickener and the chemical thickener It can be said that combined use or single use is an effective means.
Using such various compounding agents, a molding material can be obtained by a conventional means and apparatus. Moreover, the molding material of this invention can manufacture a molding by heat-hardening (pressure 5-12 Mpa, temperature 100-200 degreeC) in a metal mold | die by compression and injection molding. In view of the molding cycle and insert molding of metal pieces, injection molding is most preferred.
[0027]
【Example】
Hereinafter, the present invention will be described more specifically with reference to specific examples.
[Synthesis example]
The synthesis example of the unsaturated polyester resin used for the Example below is shown.
[0028]
(1) Synthesis of unsaturated polyester resin A
An unsaturated polyester was prepared by reacting 2910 g of diethylene glycol, 422 g of maleic anhydride, 1050 g of adipic acid, 1083 g of orthophthalic acid, and 1215 g of isophthalic acid at a reaction temperature of 200 ° C. to an acid value of 15 by a conventional method. Unsaturated polyester resin A was obtained by mixing 67 parts by weight of styrene.
The double bond concentration of unsaturated polyester resin A was calculated to be 0.7 mmol / g, and the glass transition temperature by dynamic viscoelasticity was 48 ° C.
[0029]
(2) Synthesis of unsaturated polyester resin B
First, 5010 g of propylene glycol and 6250 g of isophthalic acid were subjected to a primary reaction at a reaction temperature of 200 ° C. to an acid value of 15 by a conventional method. Then, 2320 g of propylene glycol and 5530 g of maleic anhydride were added, and secondary reaction was carried out to a acid value of 20 at a reaction temperature of 200 ° C. The unsaturated polyester was adjusted by reacting, and 67 parts by weight of styrene was mixed with 100 parts by weight of the ester to obtain an unsaturated polyester resin B.
The double bond concentration of unsaturated polyester resin B was calculated to be 3.4 mmol / g, and the glass transition temperature by dynamic viscoelasticity was 160 ° C.
[0030]
Example 1
As shown in Table 1, with respect to 60 parts by weight of unsaturated polyester A, 40 parts by weight of polyvinyl acetate resin (Polymer 9966 manufactured by Mitsui Takeda Chemical Co., Ltd.), t-Butyl peroxy 2-ethyl hexanoate (Perbutyl manufactured by NOF Corporation) O) 1 part by weight, 0.02 part by weight of parabenzoquinone, 3 parts by weight of zinc stearate, 0.50 part by weight of magnesium oxide were dispersed and stirred, and then the resin liquid was put into a general-purpose planetary mixer. After 100 parts by weight of aluminum oxide particles (Nippon Light Metal Co., Ltd. fine-grain aluminum hydroxide B-103) were added and uniformly dispersed by kneading for 5 minutes, chopped glass fiber (RES015-BM47 manufactured by Nippon Sheet Glass Co., Ltd.) 30 weights After adding 5 parts and kneading for 5 minutes, A molding material was obtained after aging for 24 hours.
The finished molding material has good handling, and when it is injection-molded in a 60-second cycle using an injection molding machine and a mold whose temperature is adjusted to 140 ° C., it can be filled into gaps of 30 μm and 100 μm, and the obtained molding The press-fit property of the product was good.
[0031]
Example 2
As shown in Table 1, with respect to 40 parts by weight of unsaturated polyester resin A, 20 parts by weight of unsaturated polyester resin B, 40 parts by weight of polyvinyl acetate resin (polymer 9966 made by Mitsui Takeda Chemical Co., Ltd.), t-Butyl peroxide 2 -Ethyl hexanoate (Nippon Yushi Co., Ltd. Perbutyl O) 1 part by weight, parabenzoquinone 0.02 part by weight, zinc stearate 3 parts by weight, magnesium oxide 0.50 part by weight was dispersed and stirred, and then a general-purpose planetary mixer was used. After adding the resin solution, 100 parts by weight of aluminum hydroxide particles (Nippon Light Metal Co., Ltd. fine-grained aluminum hydroxide B-103) was added to the mixer and uniformly dispersed by kneading for 5 minutes, and then chopped glass fiber ( Nippon Plate Glass Co., Ltd. RES015-BM47) 30 parts by weight After you and kneaded for 5 minutes to obtain a molding material through the aging of the kneaded mixture 40 ° C. × 24 hours.
The finished molding material has good handling, and when it is injection-molded in a 60-second cycle using an injection molding machine and a mold whose temperature is adjusted to 140 ° C., it can be filled into gaps of 30 μm and 100 μm, and the obtained molding The press-fit property of the product was good.
[0032]
Example 3
As shown in Table 1, with respect to 60 parts by weight of unsaturated polyester resin A, 40 parts by weight of polyvinyl acetate resin (Polymer 9966 manufactured by Mitsui Takeda Chemical Co., Ltd.), t-Butyl peroxy 2-ethyl hexanoate (manufactured by NOF Corporation) 1 part by weight of perbutyl O), 0.02 part by weight of parabenzoquinone, 3 parts by weight of zinc stearate, 0.50 part by weight of magnesium oxide were dispersed and stirred, and then the resin liquid was put into a general-purpose planetary mixer. After adding 50 parts by weight of aluminum hydroxide particles (Nihon Light Metal Co., Ltd. fine-grained aluminum hydroxide B-103), the mixture was uniformly dispersed by kneading for 5 minutes, and then chopped glass fiber (RES015-BM47 manufactured by Nippon Sheet Glass Co., Ltd.). After adding 30 parts by weight and kneading for 5 minutes, To obtain a molding material through the aging 0 ° C. × 24 hours.
The finished molding material has good handling, and when it is injection-molded in a 60-second cycle using an injection molding machine and a mold whose temperature is adjusted to 140 ° C., it can be filled into gaps of 30 μm and 100 μm, and the obtained molding The press-fit property of the product was good.
[0033]
Example 4
As shown in Table 1, with respect to 60 parts by weight of unsaturated polyester resin A, 30 parts by weight of polyvinyl acetate resin (polymer 9966 made by Mitsui Takeda Chemical Co., Ltd.), t-Butyl peroxy 2-ethyl hexanoate (manufactured by NOF Corporation) 1 part by weight of perbutyl O) 0.02 part by weight of parabenzoquinone, 3 parts by weight of zinc stearate, 0.25 part by weight of magnesium oxide were dispersed and stirred, and a physical thickener (polymethyl methacrylate particles manufactured by Nippon Zeon Co., Ltd.) F320) After adding and dispersing and stirring 10 parts by weight, the resin liquid was put into a general-purpose planetary mixer, and then aluminum hydroxide particles (fine aluminum hydroxide B-103 manufactured by Nippon Light Metal Co., Ltd.) 100 parts by weight. And then uniformly dispersed by kneading for 5 minutes, and then chopped glass fiber Bar (Nippon Sheet Glass Co., Ltd. RES015-BM47) after kneading of the added 5 minutes 30 parts by weight, to obtain a molding material through the aging of the kneaded mixture 40 ° C. × 24 hours.
The finished molding material has good handling, and when it is injection-molded in a 60-second cycle using an injection molding machine and a mold whose temperature is adjusted to 140 ° C., it can be filled into gaps of 30 μm and 100 μm, and the obtained molding The press-fit property of the product was good.
[0034]
Example 5
As shown in Table 1, with respect to 60 parts by weight of unsaturated polyester resin A, 20 parts by weight of polyvinyl acetate resin (polymer 9966 made by Mitsui Takeda Chemical Co., Ltd.), t-Butyl peroxy 2-ethyl hexanoate (manufactured by NOF Corporation) 1 part by weight of perbutyl O) 0.02 part by weight of parabenzoquinone and 3 parts by weight of zinc stearate are dispersed and stirred, and further 20 parts by weight of a physical thickener (polymethyl methacrylate particles F320 manufactured by ZEON CORPORATION) are added and dispersed. After stirring, the resin solution is put into a general-purpose planetary mixer, and then 100 parts by weight of aluminum hydroxide particles (fine aluminum hydroxide B-103 manufactured by Nippon Light Metal Co., Ltd.) are added to the mixer, followed by kneading for 5 minutes. After uniform dispersion, chopped glass fiber (RES manufactured by Nippon Sheet Glass Co., Ltd.) 015-BM47) After adding 30 parts by weight and kneading for 5 minutes, the kneaded product was aged at 40 ° C. for 24 hours to obtain a molding material.
The finished molding material has good handling, and when it is injection-molded in a 60-second cycle using an injection molding machine and a mold whose temperature is adjusted to 140 ° C., it can be filled into gaps of 30 μm and 100 μm, and the obtained molding The press-fit property of the product was good.
[0035]
Comparative Example 1
As shown in Table 1, with respect to 60 parts by weight of unsaturated polyester resin B, 40 parts by weight of polyvinyl acetate resin (Polymer 9966 manufactured by Mitsui Takeda Chemical Co., Ltd.), t-Butyl peroxy 2-ethyl hexanoate (manufactured by NOF Corporation) 1 part by weight of perbutyl O), 0.02 part by weight of parabenzoquinone, 3 parts by weight of zinc stearate, 0.50 part by weight of magnesium oxide were dispersed and stirred, and then the resin liquid was put into a general-purpose planetary mixer. After adding 100 parts by weight of aluminum hydroxide particles (Nippon Light Metal Co., Ltd., fine-grain aluminum hydroxide B-103) and uniformly dispersing by kneading for 5 minutes, chopped glass fiber (RES015-BM47 manufactured by Nippon Sheet Glass Co., Ltd.) After adding 30 parts by weight and kneading for 5 minutes, the kneaded product To obtain a molding material through the aging 40 ° C. × 24 hours.
The finished molding material has good handling, and when it was injection-molded in a 60-second cycle with an injection molding machine and a mold temperature-controlled at 140 ° C., filling into gaps of 30 μm and 100 μm was possible, When press-fitting, manual press-fitting was impossible, and when trying to press-fit with a hammer, the molded part was damaged and could not be pressed.
[0036]
Comparative Example 2
As shown in Table 1, with respect to 20 parts by weight of unsaturated polyester resin A, 40 parts by weight of unsaturated polyester resin B 40 parts by weight of polyvinyl acetate resin (Polymer 9966 manufactured by Mitsui Takeda Chemical Co., Ltd.), t-Butyl peroxide 2- Ethyl hexanoate (Nippon Yushi Co., Ltd., Perbutyl O) 1 part by weight, parabenzoquinone 0.02 part by weight, zinc stearate 3 parts by weight, magnesium oxide 0.50 part by weight was dispersed and stirred. After adding the resin liquid, 100 parts by weight of aluminum hydroxide particles (Nippon Light Metal Co., Ltd. fine-grain aluminum hydroxide B-103) was added to the mixer and dispersed uniformly by kneading for 5 minutes, and then chopped glass fiber (Japan Plate glass Co., Ltd. RES015-BM47) Add 30 parts by weight After kneading for 5 minutes to obtain a molding material through the aging of the kneaded mixture 40 ° C. × 24 hours.
The finished molding material has good handling, and when it was injection-molded in a 60-second cycle with an injection molding machine and a mold temperature-controlled at 140 ° C., filling into gaps of 30 μm and 100 μm was possible, When press-fitting, manual press-fitting was impossible, and when trying to press-fit with a hammer, the molded part was damaged and could not be pressed.
[0037]
Comparative Example 3
As shown in Table 1, 40 parts by weight of polyvinyl acetate resin (Polymer 9966 made by Mitsui Takeda Chemical Co., Ltd.), 60 parts by weight of unsaturated polyester resin A, t-Butyl peroxy 2-ethyl hexanoate (Perbutyl, manufactured by NOF Corporation) O) 1 part by weight, 0.02 part by weight of parabenzoquinone, 3 parts by weight of zinc stearate, 0.50 part by weight of magnesium oxide were dispersed and stirred, and then the resin liquid was put into a general-purpose planetary mixer. Aluminum hydroxide particles (Nippon Light Metal Co., Ltd. fine-grain aluminum hydroxide B-103) 300 parts by weight were added and dispersed uniformly by kneading for 5 minutes, and then chopped glass fiber (Nippon Sheet Glass Co., Ltd. RES015-BM47) 30 After adding parts by weight and kneading for 5 minutes, To obtain a molding material through the aging 0 ° C. × 24 hours.
The finished molding material is also easy to handle. When injection molding is performed in a 60-second cycle using an injection molding machine and a mold whose temperature is adjusted to 140 ° C., filling defects in the gaps of 30 μm and 100 μm occur. However, manual press-fitability was impossible, and when press-fitting was attempted with a hammer, the molded part was damaged and could not be press-fitted.
[0038]
Comparative Example 4
As shown in Table 1, with respect to 60 parts by weight of unsaturated polyester A, 40 parts by weight of polyvinyl acetate resin (Polymer 9966 manufactured by Mitsui Takeda Chemical Co., Ltd.), t-Butyl peroxy 2-ethyl hexanoate (Perbutyl manufactured by NOF Corporation) O) 1 part by weight, 0.02 part by weight of parabenzoquinone, 3 parts by weight of zinc stearate, 2.0 parts by weight of magnesium oxide were dispersed and stirred, and then the resin liquid was put into a general-purpose planetary mixer. Aluminum hydroxide particles (Nippon Light Metal Co., Ltd. fine-grain aluminum hydroxide B-103) 100 parts by weight were added and uniformly dispersed by kneading for 5 minutes, and then chopped glass fiber (Nippon Sheet Glass Co., Ltd. RES015-BM47) 30 After adding parts by weight and kneading for 5 minutes, × obtain a molding material through aging 24 hours.
The finished molding material has good handling, and injection molding was performed in a 60-second cycle using an injection molding machine and a mold temperature-controlled at 140 ° C., which resulted in poor filling in gaps of 30 μm and 100 μm. There was no problem. Although the molding material is sufficient for the purpose of press-fitting only, there is a problem when excellent moldability is required.
[0039]
Comparative Example 5
As shown in Table 1, with respect to 60 parts by weight of unsaturated polyester A, 40 parts by weight of polyvinyl acetate resin (Polymer 9966 manufactured by Mitsui Takeda Chemical Co., Ltd.), t-Butyl peroxy 2-ethyl hexanoate (Perbutyl manufactured by NOF Corporation) O) 1 part by weight, 0.02 part by weight of parabenzoquinone, 3 parts by weight of zinc stearate, 0.05 part by weight of magnesium oxide were dispersed and stirred, and then the resin liquid was put into a general-purpose planetary mixer. Aluminum hydroxide particles (Nippon Light Metal Co., Ltd. fine-grain aluminum hydroxide B-103) 100 parts by weight were added and uniformly dispersed by kneading for 5 minutes, and then chopped glass fiber (Nippon Sheet Glass Co., Ltd. RES015-BM47) 30 After adding parts by weight and kneading for 5 minutes, To obtain a molding material through the aging ° C. × 24 hours.
I tried injection molding in a 60-second cycle with an injection molding machine and a mold controlled at 140 ° C, and the molding material had a problem in handling. Even if it was handled with polyethylene gloves, the molding material was not on the surface of the glove. It was in a state of many adhesions, and the injection amount was not sufficient with the same setting as other molding materials, and it seemed that the material leaked from the gap of the molding machine and there was a problem in meterability. The molded product could be filled in gaps of 30 μm and 100 μm, and the press fit of the obtained molded product was good. The molding material was generally poor in workability and could not be used for mass production.
The above results are shown in the table.
[0040]
[Table 1]
Figure 0004099034
[0041]
From these Examples and Comparative Examples, it can be seen that when the Shore D hardness is 90 or less, a molded product having no problem with press fit can be obtained. Further, it can be seen that filling into a thin gap causes a filling failure when the penetration of the molding material is 30 or less.
In order to obtain a molded article excellent in press-fit property, the Shore D hardness needs to be 90 or less, and in order to obtain a good handling property with a filling property in a thin gap, the penetration of the molding material is 30 Must be ~ 150.
[0042]
【The invention's effect】
Since the molding material of the present invention is injection-molded by using BMC in a thin gap and has high dimensional accuracy and is flexible, it can be press-fitted into a gap made of metal or the like. Can be press-fitted and fixed easily.
[0043]
[Brief description of the drawings]
FIG. 1 is a view for explaining press-fitting fitting of a metal-containing molded product using a thermosetting molding material of the present invention into a metal gap.
FIG. 2 is a view for explaining the concept of metal inclusion injection molding using the thermosetting molding material of the present invention.

Claims (4)

熱硬化性樹脂として不飽和ポリエステル樹脂を用いた熱硬化性成形材料であって、固形分基準で全熱硬化性樹脂の50wt%以上が、二重結合濃度が2.0ミリモル/g以下でガラス転移温度が70℃以下の不飽和ポリエステル樹脂であり、繊維状および粒子状無機充填材総量の体積含有率が成形材料全体の50vol%以下であり、成形材料の針入度(JIS K 2235)が30〜150 (3〜15mm)、ショアーD(ASTM D676−55T)硬度が90以下の圧入性に優れた熱硬化嵌合成形品を形成し得ることを特徴とする圧入嵌合成形品用射出成形用熱硬化性成形材料。A thermosetting molding material using an unsaturated polyester resin as a thermosetting resin, wherein 50 wt% or more of the total thermosetting resin on the basis of solid content is a glass having a double bond concentration of 2.0 mmol / g or less. It is an unsaturated polyester resin having a transition temperature of 70 ° C. or less, the volume content of the total amount of fibrous and particulate inorganic fillers is 50 vol% or less of the entire molding material, and the penetration of the molding material (JIS K 2235) is 30 to 150 (3 to 15 mm), Shore D (ASTM D676-55T) hardness of 90 or less can be formed thermosetting fitting molded article excellent in press fitting characteristics, injection molding for press fitting molded article use thermosetting molding material. 熱硬化性樹脂として不飽和ポリエステル樹脂を用いた、成形温度100〜200℃、成形サイクル5分以下の射出成形法による熱硬化成形が可能な熱硬化性成形材料であって、固形分基準で全熱硬化性樹脂の50wt%以上が、二重結合濃度が2.0ミリモル/g以下でガラス転移温度が70℃以下の不飽和ポリエステル樹脂であり、繊維状および粒子状無機充填材総量の体積含有率が成形材料全体の50vol%以下であり、成形材料の針入度(JIS K 2235)が30〜150 (3〜15mm)、ショアーD(ASTM D676−55T)硬度が90以下の圧入性に優れた熱硬化嵌合成形品を形成し得ることを特徴とする圧入嵌合成形品用射出成形用熱硬化性成形材料。Using unsaturated polyester resin as the thermosetting resin, the molding temperature 100 to 200 ° C., a heat-curable molding material capable thermoset molding by the molding cycle 5 minutes following injection molding, the total on a solids basis 50 wt% or more of the thermosetting resin is an unsaturated polyester resin having a double bond concentration of 2.0 mmol / g or less and a glass transition temperature of 70 ° C. or less, and contains a total volume of fibrous and particulate inorganic fillers. The rate is 50 vol% or less of the entire molding material, the penetration of the molding material (JIS K 2235) is 30 to 150 (3 to 15 mm), and the Shore D (ASTM D676-55T) hardness is 90 or less and excellent in press-fitting properties. press-fitting the synthetic form products for injection molding the thermosetting molding material, characterized in that to form a thermoset fitting synthetic molded product was. 熱可塑性樹脂粒子よりなる物理増粘剤を含む請求項1又は2に記載の圧入嵌合成形品用射出成形用熱硬化性樹脂成形材料。The thermosetting resin molding material for injection molding for press-fitting fitting products according to claim 1 or 2 , comprising a physical thickener made of thermoplastic resin particles. 請求項1〜のいずれかに記載の熱硬化性成形材料を成形してなる圧入嵌合成形品。A press-fit fitting product formed by molding the thermosetting molding material according to any one of claims 1 to 3 .
JP2002326321A 2002-11-11 2002-11-11 Thermosetting molding material for press-fitting molded products and molded products Expired - Fee Related JP4099034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002326321A JP4099034B2 (en) 2002-11-11 2002-11-11 Thermosetting molding material for press-fitting molded products and molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002326321A JP4099034B2 (en) 2002-11-11 2002-11-11 Thermosetting molding material for press-fitting molded products and molded products

Publications (2)

Publication Number Publication Date
JP2004161813A JP2004161813A (en) 2004-06-10
JP4099034B2 true JP4099034B2 (en) 2008-06-11

Family

ID=32805258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002326321A Expired - Fee Related JP4099034B2 (en) 2002-11-11 2002-11-11 Thermosetting molding material for press-fitting molded products and molded products

Country Status (1)

Country Link
JP (1) JP4099034B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5426932B2 (en) * 2009-05-29 2014-02-26 大成プラス株式会社 Composite of metal alloy and thermosetting resin and method for producing the same
JP5541522B2 (en) * 2010-11-04 2014-07-09 Dic化工株式会社 Molding material, molded product, flooring and method for producing molded product
US20210380801A1 (en) * 2018-10-19 2021-12-09 Japan Composite Co., Ltd. Unsaturated polyester resin composition, molding material, molded article, and battery pack housing for electric vehicles

Also Published As

Publication number Publication date
JP2004161813A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP4598822B2 (en) Unsaturated polyester resin composition for lamp reflector and molded product thereof
JPH01315458A (en) Unsaturated polyester resin composition, molding aqueous and molded article
EP0985695B1 (en) Resin composition having excellent vibration-damping properties and molded article made thereof
JP4099034B2 (en) Thermosetting molding material for press-fitting molded products and molded products
JP5262846B2 (en) Diallyl phthalate cross-linked low shrinkable unsaturated polyester resin molding composition and molded article thereof
JP2007177127A (en) Thermosetting molding material
JP6956656B2 (en) Antifouling and deterioration resistant resin insulation
JP2002212408A (en) Unsaturated polyester resin composition
JP2007217500A (en) Black vinyl ester resin molding material
JP3491114B2 (en) Thermosetting resin composition for sliding members
JPH07126504A (en) Unsaturated polyester resin composition
JP2004075702A (en) Vibration-damping resin composition having engine oil resistance and vibration-damping resin molded article for structural use using the same
JPS63268722A (en) Unsaturated polyester resin composition
JPH06122812A (en) Unsaturated polyester resin composition, molding material and molded article
JP2000143959A (en) Resin composition and molded product having excellent vibration-damping property
JP2003292757A (en) Bulk molding compound
JPH0662840B2 (en) Unsaturated polyester composition
US6143810A (en) Method for the apparatus of conductive curable polyester moulding compounds
JPH0689240B2 (en) Unsaturated polyester resin composition
JPH0762214A (en) Unsaturated polyester resin composition
JPH08333426A (en) Thermosetting molding material and method for molding the same
JP2002103343A (en) Method for manufacturing artificial marble
JP2022041470A (en) Resin composition, molding material and molded article of the same
JPH04265262A (en) Resin composition for artificial marble
JPH11256019A (en) Unsaturated polyester resin composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050830

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4099034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees