JP4098372B2 - Method for producing heparin-binding growth factor - Google Patents

Method for producing heparin-binding growth factor Download PDF

Info

Publication number
JP4098372B2
JP4098372B2 JP20568493A JP20568493A JP4098372B2 JP 4098372 B2 JP4098372 B2 JP 4098372B2 JP 20568493 A JP20568493 A JP 20568493A JP 20568493 A JP20568493 A JP 20568493A JP 4098372 B2 JP4098372 B2 JP 4098372B2
Authority
JP
Japan
Prior art keywords
hhgf
growth factor
heparin
culture
hgf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20568493A
Other languages
Japanese (ja)
Other versions
JPH0739388A (en
Inventor
健久 石井
大地 仲
啓人 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP20568493A priority Critical patent/JP4098372B2/en
Publication of JPH0739388A publication Critical patent/JPH0739388A/en
Application granted granted Critical
Publication of JP4098372B2 publication Critical patent/JP4098372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明はヘパリン結合性増殖因子を生産する方法に関するものであり、詳しくは硫酸化多糖類またはそのアゴニストの存在下においてヘパリン結合性増殖因子を産生する形質転換細胞を培養することにより、その培養上清から該増殖因子を高産生で効率よく取得する方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年、種々の細胞増殖因子がクロ−ニングされているが、それらの中で、ヘパリンに強い親和性を有する一群の増殖因子が見出されている。これをヘパリン結合性増殖因子と総称するが、この中には線維芽細胞増殖因子(FGF)、ケラチノサイト増殖因子(KGF)、プレイオトロフィン、顆粒球/マクロファ−ジ・コロニ−形成刺激因子(GM−CSF)、インタ−ロイキン3及び7、血管内皮細胞増殖因子(VEGF)等、種々の既知または未同定の増殖因子が含まれる(実験医学,(14),1772(1991))。これらの因子は、ヘパリンやヘパラン硫酸に代表されるグリコサミノグリカンと結合することが知られており、中でもFGFは、ヘパラン硫酸プロテオグリカンとの結合により細胞表面や細胞外基質に貯蔵されること、及びFGFの有する生物学的活性がヘパリンによって調節され得ることが確認された(Cell,64,841(1991))。 最近、肝実質細胞を生体内より取り出して生体外においてその増殖を促進させうるヒト由来の蛋白性因子、即ちヒト肝細胞増殖因子(以下「hHGF」と略す。)が劇症肝炎患者血漿より見い出され(特開昭63−22526号公報)、さらにhHGF蛋白質をコ−ドするアミノ酸配列及びこれをコードする遺伝子(cDNA)の配列(特開平3−72883号公報)、さらにこのcDNAを用いたhHGF蛋白質の生産方法及び形質転換体(特開平3−285693号公報)が報告されている。かかる方法により生産される組み換えhHGF蛋白質は、生体外において肝実質細胞の増殖を促進する働きがみとめられている。また、ヒトに限らずHGF蛋白は、ヘパリンに強い親和性を有する上記ヘパリン結合性増殖因子の一種であることが判明している。本発明者らは、標的細胞におけるHGF結合・消費に硫酸化多糖類が及ぼす影響について調べたところ、HGFと種々の硫酸化多糖類とを混合することにより、HGFの標的細胞への結合および標的細胞によるhHGFの消費が強く抑制され、結果としてHGFの作用が持続かつ安定化することを見出した(欧州公開特許公報第517182号)。
【0003】
一方、一般に増殖因子の生産手段として、大腸菌などの微生物や哺乳動物由来細胞に該増殖因子のcDNAを導入する方法が広く利用されている(Molecular Cloning,2nd ed.,16.3−17.40,ColdSpring Harbor Laboratory Press(1989))。hHGFに代表されるような、糖鎖を持ち且つ分子内に多くのジスルフィド結合を有する複雑な構造の蛋白質の場合、専ら動物細胞がその生産に利用される。その中でも特に汎用されているのがチャイニ−ズ・ハムスタ−卵巣由来の上皮系細胞株CHOである。
【0004】
他方、ヘパリン結合性増殖因子の標的細胞上のレセプタ−分子も明らかになりつつあり、例えばHGFのレセプタ−分子は癌原遺伝子c−met産物(C−Met蛋白質)であることが判明しており(Science,251,802(1991))、また酸性型及びアルカリ型FGFやKGFのレセプターとして既に数種類のFGFレセプターファミリーが明らかにされている(実験医学,10,25(1992))。さらにそれ以外のレセプターとして、細胞表層のヘパラン硫酸プロテオグリカン(HSPG)も、分子内グリコサミノグリカンを介してヘパリン結合性増殖因子を捕捉することが知られている(蛋白質・核酸・酵素,34,853(1989))。HSPGは、極めて多くの細胞上に大量に発現する。 さらに、一般に増殖因子が細胞上の特異的レセプタ−に結合してその生理活性を惹起する際には、増殖因子自身が速やかに細胞内に取り込まれ、消費されることが広く認められている。HGFにおいても、本発明者らは、既に上皮系細胞株を用いた解析から、hHGFがレセプタ−に結合後極めて速く細胞内に取り込まれ(インタ−ナリゼ−ション)(t1/2 :5−10分)、分解を受けて培養上清中に放出される(デグラデ−ション)(t1/2 :30−60分)ことを明らかにしている(J.Cell.Biochem.suppl 0(16partB),184(1992))。
【0005】
従来の技術では、ヘパリン結合性増殖因子のcDNAを有する発現ベクタ−を適当な宿主細胞に導入して該増殖因子を生産した場合、発現した該増殖因子の一部が産生細胞自身の増殖因子レセプタ−及びHSPG分子を介して分解・消費されることを防げなかったため、産生細胞培養上清中から回収される該増殖因子の量は比較的低値であった。
【0006】
【課題を解決するための手段】
本発明者らは、該増殖因子産生細胞(形質転換体)の培養系に各種硫酸化多糖類を添加し、該増殖因子産生量を比較検討した。例えば、hHGFcDNAを導入したHGF産生CHO細胞(特開平3−285693号公報)の培養液中に硫酸化多糖類を1〜1000μg/mlの濃度で添加し、経時的に培養上清を回収してHGF含量を定量した。その結果、興味深いことに、硫酸化多糖類の添加によって約1.5〜5倍のHGF産生増強が認められた。
【0007】
一方、本発明者らは、HGF発現に用いた宿主CHO細胞のHGF応答性を検討したところ、該宿主細胞がC−Met蛋白質を持ち実際にHGF添加によってDNA合成が促進されること、及び宿主細胞がHGFを消費・分解することを見出した。さらに、本発明者らは、宿主細胞のHGF結合・分解に及ぼす硫酸化多糖類の影響について調べたところ、HGFと硫酸化多糖類とを混合することにより、HGFの宿主細胞への結合および宿主細胞によるHGFの消費が強く抑制されることを見出した。
【0008】
以上の結果から、HGF産生細胞培養系において、硫酸化多糖類を培養系に添加することで産生細胞自身によるHGF結合・消費・分解が回避され、培養上清からのHGF回収量が大幅に増強することが判明し、本発明を完成するに至った。 すなわち本発明の要旨は、ヘパリン結合性増殖因子をコードする遺伝子を導入して形質転換された細胞株を硫酸化多糖類またはそのアゴニストの存在下において培養し、その培養液からヘパリン結合性増殖因子を採取することを特徴とするヘパリン結合性増殖因子の生産方法、及びヘパリン結合性増殖因子をコードする遺伝子を導入して形質転換された細胞株の培養液中に硫酸化多糖類またはそのアゴニストを共存させることを特徴とするヘパリン結合性増殖因子の分解抑制方法に存する。
【0009】
以下、本発明につき詳細に説明する。
本発明で定義されるヘパリン結合性増殖因子とは、硫酸化多糖類に親和性を有する全てのヘパリン結合性増殖因子が該当する。具体的には、全アミノ酸配列が明らかとなっている酸性型FGF、アルカリ型FGF(Methods in Enzymology,147,120(1987))、KGF(Science,245,752(1989))、HGF等の蛋白性因子等が挙げられる。
【0010】
本発明で使用する該増殖因子産生細胞は、その表層にHSPGに代表される硫酸化多糖構造を有する細胞で、かつ組換え法により上記のような増殖因子cDNAを導入されたものである。具体的には、特開平3−285693号公報に記載された方法に従いhHGFをコ−ドするcDNAを含む発現ベクタ−を構築し、その発現ベクタ−をCHO細胞等の宿主に導入した産生株などが挙げられる。かかるHGF産生細胞系では、硫酸化多糖類添加によって約1.5〜5倍以上のHGF回収増大が認められる。かかる細胞株の培養は、常法により浮遊培養または付着培養で行うことができる。培地としては、MEM、RPMI−1640等が使用され、5−10%血清の存在下、もしくは適当量のインスリン、デキサメサゾン、トランスフェリン等の存在下において培養する。
【0011】
本発明において、上記ヘパリン結合性増殖因子を産生する形質転換細胞培養系に添加する硫酸化多糖類としては、天然グリコサミノグリカンを含むプロテオグリカン、グリコサミノグリカン、グルカン、それらの誘導体が挙げられる。硫酸化多糖類は、糖がグリコシド結合によって脱水縮合して生じる炭水化物、すなわちグリカンに硫酸基が付加したものであり、かかる多糖類とは、グリコサミノグリカンのごとく二糖類単位が繰り返してできた構造を有し、その二糖類の1つがグルコサミンまたはガラクトサミンから成るもの(生命の科学,39(4),306(1988))や、グルカンのように多糖類が硫酸エステル化されたもの、さらにはこれらの誘導体が含まれる。具体的には、例えばコンドロイチン硫酸、デルマタン硫酸、ヘパラン硫酸、ケラタン硫酸、ヘパリン、デキストラン硫酸等が挙げられる。またこれら硫酸化多糖類のアゴニストも、本発明の培養系に添加することができる。
【0012】
上記硫酸化多糖類またはそのアゴニストは、ヘパリン結合性増殖因子を産生する細胞培養液中に少なくとも1種類添加される。添加量としては、産生細胞の増殖に強い影響を与えない範囲であるならば特に制限はされないが、通常1〜1000μg/ml、より好ましくは10〜100μg/mlの範囲で好適に利用される。また添加する時期は、通常培養の当初から加え、培地を交換する毎に新たに添加する方法が採用されるが、培養の途中で加えても差し支えない。
【0013】
かかる培養により、ヘパリン結合性増殖因子はその形質転換細胞培養系の培養上清中に産生され、従ってこの培養上清から目的とするヘパリン結合性増殖因子を常法に従って分離・精製することができる。具体的には、培養上清を各種のクロマトグラフィー、例えばS−セファロース、硫酸化セルロファイン等の使用により容易に単離・精製することができる。
【0014】
【実施例】
以下に実施例を挙げて本発明をより具体的に説明するが、その要旨を越えない限り、以下の実施例に限定されるものではない。
実施例1 CHO細胞上のHGFレセプタ−の検出
精製された組換えhHGF標品(特開平3−72883号公報に記載の方法に従って調製)を、クロラミンT法(Nature,194,495(1962))にてヨ−ド標識した。すなわち、100μlの0.5M 塩化ナトリウム、0.5M リン酸緩衝液(pH7.4)に溶解したhHGF 20μgに1mg/ml クロラミンT 100μlを添加して反応を進行させ、次いで2.5mg/ml ピロ亜硫酸ナトリウム 100μlを加えて反応を停止した。反応液を0.25% ゼラチン、5mM ヨウ化カリウム含有PBS(−)にて平衡化したセファデックスG−25(ファルマシア社)カラムに添加し、標識されなかったヨ−ドを除いた。 125I標識hHGF(以下、「標識hHGF」と略す)は、0.2μmフィルタ−を通過させて無菌化し、分注して使用時まで−20℃にて保存した。
【0015】
底面積78.5cm2 のプラスチックディッシュ(コ−ニング社)にCHO細胞を培養し、ほぼ飽和密度に達した(セミコンフレント)ものを実験に使用した。細胞をディッシュに付着させた状態で、0.25% ゼラチン、25mM ヘペス含有DMEM培地(ギブコ社)pH7.4(以下、「結合培地」と略す)にて3回洗浄し、次いで0−200pM標識hHGFを含む結合培地10mlと共に4℃にて4時間ゆるやかに振とう培養した。対照として、200pM標識hHGFにさらに2nM非標識hHGFを加えたディッシュも用意した。上清を除去し、氷冷結合培地、次いで氷冷PBS(−)にて各4回洗浄後、5mlの架橋緩衝液(100μg/ml ビススベレ−ト含有140mM 塩化ナトリウム、1mM 塩化マグネシウム、10mMリン酸ナトリウム(pH8.3))中で4℃にて30分間反応させて、標識hHGFと細胞表面のhHGF結合蛋白とを化学架橋した。5mlの25mM トリス−塩酸緩衝液(pH7.4)、140mM塩化ナトリウム、1mM EDTAを添加して反応を停止させた後、細胞をスクレ−パ−にて剥離し、400μlの可溶化液(50mM トリス−塩酸(pH7.4)、140mM 塩化ナトリウム、1% ノニデットP−40、1mM EDTA、2mM フェニルメチルスルフォン酸フルオライド)を加え、氷上で1時間反応させて細胞を可溶化した。細胞可溶化液から、12000×g,4℃、30分間の遠心分離にて上清を得て、その一部を免疫沈降法、電気泳動及びオ−トラジオグラフィーに供した。
【0016】
上記細胞可溶化画分から、HGFの機能的レセプタ−分子の一つとして知られるc−Met蛋白質を分離する目的で、免疫沈降を行った。すなわち、細胞可溶化液に5μlの抗マウスc−Met抗血清(Eur.J.Biochem.,204,857(1992))と20μlのプロテイン−A セファロ−ス(ファルマシア社)を加えて、c−Met蛋白質/HGF複合体を免疫沈降させた。沈降物は、SDS−サンプル緩衝液(0.1M トリス−塩酸(pH6.8)、10% グリセロ−ル、1% ドデシル硫酸ナトリウム(SDS))中で煮沸後、6% ポリアクリルアミド濃度の非還元条件でのSDS−ポリアクリルアミド電気泳動に供し、ゲルを固定・乾燥後、オ−トラジオグラフィにて標識hHGFの結合する蛋白質を検出した。
【0017】
図1に結果を示す。図1においてレ−ン1、2、3、4はそれぞれ標識hHGF添加量50pM、100pM、200pM、200pM+非標識hHGF2nMのサンプルの結果を表す。左側の数字は、分子量マ−カ−の移動度をキロダルトン(kDa)で示してある。非還元下では70kDa付近に標識hHGF単独のバンドを認め、さらに250kDa付近に特異的バンドを検出した。このバンドは抗c−Met抗体で特異的に沈降すること、hHGFの分子量を差し引くと約180kDaの大きさであることから、hHGFとc−Met蛋白質の複合体であると結論される。
【0018】
以上の結果から、hHGF産生細胞株の親株であるCHO細胞上には、既にHGFの機能的レセプタ−の構成分子として知られるC−Met蛋白質が存在し、実際にhHGFがCHO細胞表面のc−Met蛋白質に特異的に結合することが判明した。
【0019】
実施例2 CHO細胞培養系における添加hHGF分子の残存量の測定
次にCHO細胞におけるhHGFの分解速度を調べる目的で、以下の実験を行った。すなわち、培養上清中に一定量のhHGFを添加し、経時的に上清中の残存HGF量をエンザイムイムノアッセイ(ELISA)法にて測定し、硫酸化多糖類の有無によるHGF分解速度の違いを比較検討した。
【0020】
CHO細胞を0.02%トリプシン−EDTA(エチレンジアミン四酢酸)含有の10mM リン酸緩衝液−生理食塩水 pH7.4(PBS(−))にて剥離し、低速遠心にて3回洗浄後、細胞濃度5×105 個/mlとなるよう10%ウシ胎児血清(FBS)含有eRDF培地(極東製薬社)にて懸濁した。この細胞液を、1mlずつ12ウェルマイクロプレ−ト(コスタ−社)に添加して、5%炭酸ガス含有空気気相下、37℃で1昼夜培養した。16時間後、培養ウェルの培養液を除き、PBS(−)にて2回洗浄後、2μg/mlのヒトリコンビナントHGFを含む新鮮な培地を1mlずつ添加した。この時、一部のウェルには最終濃度100μg/mlとなるようヘパリン(分子量4000−6000、シグマ社)を加えた。5%炭酸ガス含有空気気相下、37℃で培養を続け、1、2、5、24、68時間後に50μlずつ上清を採取して、ELISA法にて上清中の残存HGF量を測定した。上清は、測定直前まで−80℃にて凍結保存した。 上記被検培養上清中の残存HGF量を、hHGF特異的サンドイッチELISA法にて測定した。すなわち、被検上清を0.1% CHAPS、0.4M 塩化ナトリウム、0.1% ウシ血清アルブミン(BSA)(シグマ社、RIAグレ−ド)、0.05% Tween20含有10mM リン酸緩衝液(pH7.4)にて50、100、200倍に希釈した。ELISA用プレ−トとして、96ウェルマルチプレ−ト(ヌンク社、ELISA用)に予め抗hHGFモノクロ−ナル抗体を吸着させ(0.5μg/50μl−50mM 炭酸緩衝液(pH9.6)/ウェル)、次いで1% BSA、0.05% アジ化ナトリウム含有PBS(−)を1昼夜以上反応させてウェル壁をブロッキングしたものを用いた。
【0021】
被検希釈液をELISAプレ−トウェルに50μlずつ加え、4℃で1昼夜静置した。翌日、0.05% Tween20含有PBS(−)(PBST)にてウェルを4回洗浄後、二次抗体としてペルオキシダ−ゼ共役化抗hHGFポリクロ−ナル抗体を添加し、室温にて2時間以上反応させた。二次抗体は、ヒトリコンビナントHGFを免疫したウサギ血清よりプロテインAカラムにてアフィニティ−精製し、過ヨウ素酸法にてペルオキシダ−ゼを共役化して(J.Histochem.Cytochem.,22,1084(1974))作製した。
【0022】
インキュベ−ト後、ウェルをPBSTにて6回洗浄し、発色液(0.04% オルソフェニレンジアミン、0.02% 過酸化水素水含有リン酸クエン酸緩衝液(pH5.0))を50μl/ウェル添加して、室温で数分−数十分放置した。適度な発色の得られた時点で4.5N硫酸を加えて(50μl/ウェル)反応を停止し、イムノリ−ダ−(日本インタ−メッド社)にて490nmの吸光を測定した。検量線作成のために、予め濃度を吸光係数から算出しておいたhHGF標準品を0−40ng/mlの範囲で段階希釈して使用した。なお、ここで使用したELISA法がHGF分解産物を全く検出しないことを、酵素消化後hHGFの電気泳動のバンドとの対応から確認した。
【0023】
図2に結果を示す。横軸は培養開始後の時間を、縦軸は培養上清中のhHGF(μg/ml)を表している。培養上清中にヘパリン無添加群(●)では速やかにhHGF量が減少したのに対し、添加群(■)ではhHGFの減少速度が極めて遅延することが確かめられた。グラフの傾きから、上清中hHGFの減少速度t1/2 は、ヘパリン無添加群で約12時間、添加群で約135時間と算出された。 以上の結果から、酸化多糖類の一種であるヘパリンを培養液に添加することによって、hHGFのCHO細胞における分解が著しく抑制されることが判明した。
【0024】
実施例3 hHGF産生CHO細胞株のhHGF産生に及ぼすヘパリンの影響
実際のhHGF産生株において培養液中に硫酸化多糖類を加え、hHGFの回収量を検討した。
特開平3−285693号公報に記載の方法に従って、CHO細胞にhHGFcDNAを含む発現ベクタ−を導入し、hHGFを恒常的かつ安定して産生する形質転換hHGF生産株KBE、KT4−3およびGE43−19を得た。
hHGF生産株を細胞濃度4×104 個/mlで5%FBS含有eRDF培地に懸濁し、1mlずつ12ウェルマイクロプレ−トに播種した。ここに最終濃度0−1000μg/mlになるようヘパリン(シグマ社)を加えて培養を開始し、一定時間後に上清の一部を採取してhHGF特異的ELISA法(実施例2参照)にてhHGF含量を測定した。
【0025】
図3及び図4に結果を示す。図3は、KBE細胞培養開始後2−3日毎に培地交換して上清を採取し、培養11日目まで経時的にhHGF量を追跡したものである。横軸に培養日数を、縦軸に培養上清中のhHGF累積量をELISAユニット(U;OD490 ×希釈倍率)で示してある。本条件下では、培養4日目に細胞はほぼ飽和密度に達し、以降徐々に細胞数を減じて培養13日目には細胞生存率は30%以下であった。ヘパリン添加群において1μg/mlという低濃度の添加から顕著なhHGF量の上昇が認められ、10−100μg/mlヘパリン存在下でいずれの培養期間においても2−3倍のHGF量の増加が明らかとなった。図4は、KBE細胞が飽和密度に達した直後に培地交換をし、2日後の上清を採取してhHGF含量を測定したものである。横軸はヘパリン濃度を、縦軸はhHGF含量をヘパリン無添加群を1.0としたときの相対値で表す。ヘパリン添加群では、無添加群に比べて10μg/mlの添加で既に2倍以上のhHGF量の上昇が認められ、1000μg/mlまでの添加において2−2.5倍のhHGF量上昇が示された。
【0026】
次に、3種類のhHGF生産株において、ヘパリン添加による上清中hHGF量の変化を測定した結果を表1に示す。被検上清は、細胞飽和直後に培地交換して2日後のものを測定した。ヘパリン無添加群のhHGF含量を1.00として、ヘパリン10μg/ml添加群のhHGF含量を相対値として示した。いずれの株においても、2−5倍のhHGF回収量の増大が認められた。
【0027】
【表1】

Figure 0004098372
【0028】
以上の結果、hHGF産生細胞株の培養液中にヘパリンを添加することにより、回収されるhHGF量が数倍に増大することが判明した。
【0029】
実施例4 hHGF産生CHO細胞株のhHGF産生に及ぼす各種硫酸化多糖類の影響
次に、ヘパリン以外の硫酸化多糖類についても同様の検討を行った。
KBE株を4×105 個/ml/ウェルで12ウェルマイクロプレ−トに播種し、培養5日後の上清を採取して、上述のELISA法にて培養上清中のhHGF量を測定した。添加多糖類として、ヘパリン、ヘパラン硫酸、デキストラン(以上シグマ社)、デキストラン硫酸及びコンドロイチン硫酸(以上生化学工業社)を用いた。
【0030】
表2に結果を示す。ヘパリン、ヘパラン硫酸、デキストラン硫酸、コンドロイチン硫酸のいずれにおいてもhHGF含量の増大が認められた。ヘパリン、ヘパラン硫酸、デキストラン硫酸では10−100μg/mlの添加範囲で最大効果が得られ、2倍ないしそれ以上の上昇が示された。一方、コンドロイチン硫酸では効果は認められるものの、その増大効果はやや低く、有効必要用量も高用量側にシフトしていた。硫酸基を持たないデキストランでは、全く効果が認められなかった。
【0031】
【表2】
Figure 0004098372
【0032】
KBE株は、マイクロキャリア−(ファルマシア社)を用いた浮遊培養法によって数カ月以上HGF産生を維持させることが可能であるが、その場合も、硫酸化多糖類は同様の効果を数カ月間維持した。種々の培養形態・培養スケ−ルの検討においても、硫酸化多糖類の作用は付着培養(Tフラスコ、ディッシュ、ロ−ラ−ボトルなど)・浮遊培養(マイクロキャリア−を用いた、あるいは用いないスピナ−培養)に関わりなく、また96ウェルプレ−トのマイクロウェル培養から数リットル以上の培養規模において、同様に認められた。
【0033】
以上の結果から、HGF生産細胞の培養系に種々の硫酸化多糖類を加えることにより、回収されるHGF量が2倍ないし数倍に増大することが判明した。この効果は低用量の硫酸化多糖類添加で生じ、培養の方法や硫酸化多糖類の種類に関わりなく、培養数時間から数カ月間の長期に渡って維持され、HGF生産株で広く認められた。この効果の原理は、硫酸化多糖類がその硫酸基を介してHGFを結合し、HGF産生細胞上のレセプタ−(c−Met蛋白質及びヘパラン硫酸プロテオグリカンなど)へのHGF結合・消費・分解を著しく遅延させるためと理解された。
【0034】
【発明の効果】
本発明の生産方法によれば、ヘパリン結合性増殖因子の生産及び回収量を数倍に高めることが可能であり、その結果、該増殖因子の生産におけるコストを著しく軽減できるようになった。本発明を基にヘパリン結合性増殖因子を生産することにより、医療分野での広範な利用が期待できる。
【図面の簡単な説明】
【図1】CHO細胞におけるhHGF/c−Met蛋白質複合体の形成についてSDS−ポリアクリルアミド電気泳動の結果を示した図面である。
【図2】CHO細胞におけるhHGFの消費速度について、ヘパリン存在下及び非存在下での比較を示した図面である。
【図3】hHGF生産株における培養上清中のhHGF量について、ヘパリン存在下及び非存在下での比較を経時的に示した図面である。
【図4】hHGF生産株における培養上清中のhHGF量について、ヘパリン添加用量の影響を示した図面である。[0001]
[Industrial application fields]
The present invention relates to a method for producing a heparin-binding growth factor, and more specifically, by culturing a transformed cell that produces heparin-binding growth factor in the presence of a sulfated polysaccharide or an agonist thereof. The present invention relates to a method for efficiently obtaining the growth factor from Kiyo with high production.
[0002]
[Prior art and problems to be solved by the invention]
In recent years, various cell growth factors have been cloned, and among them, a group of growth factors having a strong affinity for heparin has been found. This is generically called heparin-binding growth factor, which includes fibroblast growth factor (FGF), keratinocyte growth factor (KGF), pleiotrophin, granulocyte / macrophage colony formation stimulating factor (GM). -CSF), interleukins 3 and 7, and various known or unidentified growth factors such as vascular endothelial growth factor (VEGF) (Experimental Medicine, 9 (14), 1772 (1991)). These factors are known to bind to glycosaminoglycans represented by heparin and heparan sulfate. Among them, FGF is stored on the cell surface and extracellular matrix by binding to heparan sulfate proteoglycan, And it was confirmed that the biological activity of FGF can be regulated by heparin (Cell, 64 , 841 (1991)). Recently, a human-derived protein factor that can take out liver parenchymal cells from the living body and promote their growth in vitro, that is, human hepatocyte growth factor (hereinafter abbreviated as “hHGF”) has been found in the plasma of fulminant hepatitis patients. (Japanese Patent Laid-Open No. 63-22526), an amino acid sequence encoding hHGF protein, a sequence of a gene (cDNA) encoding the same (Japanese Patent Laid-Open No. 3-72883), and hHGF using this cDNA A protein production method and a transformant (JP-A-3-285893) have been reported. The recombinant hHGF protein produced by such a method has been found to promote the growth of hepatocytes in vitro. Moreover, it has been found that the HGF protein, not limited to humans, is a kind of the above heparin-binding growth factor having a strong affinity for heparin. The present inventors examined the influence of sulfated polysaccharides on HGF binding and consumption in target cells. By mixing HGF and various sulfated polysaccharides, binding of HGF to target cells and target It was found that the consumption of hHGF by cells was strongly suppressed, and as a result, the action of HGF was sustained and stabilized (European Patent Publication No. 517182).
[0003]
On the other hand, as a means for producing a growth factor, a method for introducing cDNA of the growth factor into microorganisms such as Escherichia coli or mammalian cells has been widely used (Molecular Cloning, 2nd ed., 16.3-17.40). , Cold Spring Harbor Laboratory Press (1989)). In the case of a protein having a complex structure having a sugar chain and having many disulfide bonds in the molecule, such as hHGF, animal cells are exclusively used for its production. Among them, the epithelial cell line CHO derived from Chinese hamster ovary is particularly widely used.
[0004]
On the other hand, a receptor molecule on the target cell of heparin-binding growth factor is also becoming clear. For example, the receptor molecule of HGF has been found to be a proto-oncogene c-met product (C-Met protein). (Science, 251 , 802 (1991)) and several FGF receptor families have already been clarified as receptors for acidic and alkaline FGF and KGF (Experimental Medicine, 10 , 25 (1992)). Further, as other receptors, heparan sulfate proteoglycan (HSPG) on the cell surface is also known to capture heparin-binding growth factor via intramolecular glycosaminoglycan (protein, nucleic acid, enzyme, 34 , 853 (1989)). HSPG is expressed in large amounts on a large number of cells. Furthermore, it is widely accepted that growth factors themselves are quickly taken up into cells and consumed when growth factors bind to specific receptors on the cells to induce their physiological activity. In the case of HGF, the present inventors have already analyzed from the analysis using an epithelial cell line, and hHGF is taken into the cell very rapidly after binding to the receptor (internalization) (t 1/2 : 5- 10 minutes), and it is revealed that it is decomposed and released into the culture supernatant (degradation) (t 1/2 : 30-60 minutes) (J. Cell. Biochem. Suppl 0 (16partB)) , 184 (1992)).
[0005]
In the conventional technique, when an expression vector having a heparin-binding growth factor cDNA is introduced into an appropriate host cell to produce the growth factor, a part of the expressed growth factor is a growth factor receptor of the producing cell itself. The amount of the growth factor recovered from the production cell culture supernatant was relatively low because it could not be prevented from being decomposed and consumed via -and HSPG molecules.
[0006]
[Means for Solving the Problems]
The inventors added various sulfated polysaccharides to the culture system of the growth factor-producing cells (transformants), and compared the growth factor production amounts. For example, a sulfated polysaccharide is added at a concentration of 1-1000 μg / ml in the culture solution of HGF-producing CHO cells into which hHGF cDNA has been introduced (JP-A-3-285893), and the culture supernatant is recovered over time. HGF content was quantified. As a result, interestingly, about 1.5 to 5-fold enhancement of HGF production was recognized by the addition of sulfated polysaccharide.
[0007]
On the other hand, the present inventors examined the HGF responsiveness of the host CHO cells used for HGF expression, and found that the host cells have C-Met protein and that DNA synthesis is actually promoted by the addition of HGF. It has been found that cells consume and degrade HGF. Furthermore, the present inventors investigated the effect of sulfated polysaccharides on HGF binding / degradation of host cells. By mixing HGF and sulfated polysaccharides, binding of HGF to host cells and host It has been found that consumption of HGF by cells is strongly suppressed.
[0008]
From the above results, by adding sulfated polysaccharides to the culture system in the HGF-producing cell culture system, HGF binding / consumption / degradation by the production cells themselves is avoided, and the amount of HGF recovered from the culture supernatant is greatly enhanced. As a result, the present invention has been completed. That is, the gist of the present invention is that a cell line transformed by introducing a gene encoding a heparin-binding growth factor is cultured in the presence of a sulfated polysaccharide or an agonist thereof, and the heparin-binding growth factor is obtained from the culture solution. And a method for producing a heparin-binding growth factor characterized in that a sulfated polysaccharide or an agonist thereof is introduced into a culture solution of a cell line transformed by introducing a gene encoding a heparin-binding growth factor. The present invention resides in a method for inhibiting degradation of a heparin-binding growth factor characterized by coexistence.
[0009]
Hereinafter, the present invention will be described in detail.
The heparin-binding growth factor defined in the present invention corresponds to all heparin-binding growth factors having affinity for sulfated polysaccharides. Specifically, proteins such as acidic FGF, alkaline FGF (Methods in Enzymology, 147 , 120 (1987)), KGF (Science, 245 , 752 (1989)), HGF, etc. whose entire amino acid sequence has been clarified Sex factor etc. are mentioned.
[0010]
The growth factor-producing cell used in the present invention is a cell having a sulfated polysaccharide structure typified by HSPG on its surface, and into which the above growth factor cDNA has been introduced by a recombinant method. Specifically, a production strain in which an expression vector containing cDNA encoding hHGF is constructed according to the method described in JP-A-3-285893, and the expression vector is introduced into a host such as CHO cells. Is mentioned. In such HGF-producing cell lines, an increase in HGF recovery of about 1.5 to 5 times or more is observed by addition of sulfated polysaccharides. Such a cell line can be cultured by suspension culture or adherent culture by a conventional method. As the medium, MEM, RPMI-1640 or the like is used, and the medium is cultured in the presence of 5-10% serum, or in the presence of an appropriate amount of insulin, dexamethasone, transferrin or the like.
[0011]
In the present invention, the sulfated polysaccharide added to the transformed cell culture system producing the heparin-binding growth factor includes proteoglycans including natural glycosaminoglycans, glycosaminoglycans, glucans, and derivatives thereof. . A sulfated polysaccharide is a carbohydrate produced by dehydration condensation of a sugar by a glycosidic bond, that is, a glycan having a sulfate group added, and such a polysaccharide is composed of repeating disaccharide units such as glycosaminoglycan. One of which disaccharides are composed of glucosamine or galactosamine (Science of Life, 39 (4), 306 (1988)), polysaccharides sulfated like glucan, These derivatives are included. Specific examples include chondroitin sulfate, dermatan sulfate, heparan sulfate, keratan sulfate, heparin, dextran sulfate and the like. In addition, these sulfated polysaccharide agonists can also be added to the culture system of the present invention.
[0012]
At least one kind of the sulfated polysaccharide or its agonist is added to a cell culture medium that produces heparin-binding growth factor. The amount to be added is not particularly limited as long as it does not have a strong influence on the growth of production cells, but it is usually suitably used in the range of 1-1000 μg / ml, more preferably 10-100 μg / ml. The addition is usually performed from the beginning of the culture, and a method of adding a new medium every time the medium is exchanged. However, it may be added during the culture.
[0013]
By such culture, heparin-binding growth factor is produced in the culture supernatant of the transformed cell culture system, so that the desired heparin-binding growth factor can be separated and purified from this culture supernatant according to a conventional method. . Specifically, the culture supernatant can be easily isolated and purified by using various types of chromatography, for example, S-Sepharose, sulfated cellulofine, and the like.
[0014]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
Example 1 Detection of HGF receptor on CHO cells A purified recombinant hHGF preparation (prepared according to the method described in JP-A-3-72883) was prepared using the chloramine T method (Nature, 194 , 495 (1962)). It was labeled with iodine. That is, the reaction was allowed to proceed by adding 100 μl of 1 mg / ml chloramine T to 20 μg of hHGF dissolved in 100 μl of 0.5 M sodium chloride and 0.5 M phosphate buffer (pH 7.4), and then 2.5 mg / ml pyrol. The reaction was stopped by adding 100 μl of sodium sulfite. The reaction solution was added to a Sephadex G-25 (Pharmacia) column equilibrated with PBS (-) containing 0.25% gelatin and 5 mM potassium iodide to remove unlabeled iodine. 125 I-labeled hHGF (hereinafter abbreviated as “labeled hHGF”) was sterilized by passing through a 0.2 μm filter, dispensed, and stored at −20 ° C. until use.
[0015]
CHO cells were cultured in a plastic dish (Corning) having a bottom area of 78.5 cm 2, and the one that reached a nearly saturated density (semi-confined) was used for the experiment. With the cells attached to the dish, the cells were washed 3 times with 0.25% gelatin and 25 mM hepes-containing DMEM medium (Gibco) pH 7.4 (hereinafter abbreviated as “binding medium”), and then labeled with 0-200 pM. The culture was gently shaken for 4 hours at 4 ° C. with 10 ml of a binding medium containing hHGF. As a control, a dish in which 2 nM unlabeled hHGF was further added to 200 pM labeled hHGF was also prepared. The supernatant was removed, washed 4 times each with ice-cold binding medium and then with ice-cold PBS (-), and then 5 ml of cross-linking buffer (140 mM sodium chloride, 1 mM magnesium chloride, 10 mM phosphoric acid containing 100 μg / ml bis-suberate) The reaction was carried out in sodium (pH 8.3) at 4 ° C. for 30 minutes to chemically crosslink the labeled hHGF and the hHGF binding protein on the cell surface. After stopping the reaction by adding 5 ml of 25 mM Tris-HCl buffer (pH 7.4), 140 mM sodium chloride, and 1 mM EDTA, the cells were detached with a scraper, and 400 μl of lysate (50 mM Tris -Hydrochloric acid (pH 7.4), 140 mM sodium chloride, 1% nonidet P-40, 1 mM EDTA, 2 mM phenylmethylsulfonic acid fluoride) were added, and the mixture was reacted on ice for 1 hour to solubilize the cells. A supernatant was obtained from the cell lysate by centrifugation at 12,000 × g, 4 ° C. for 30 minutes, and a part thereof was subjected to immunoprecipitation, electrophoresis and autoradiography.
[0016]
For the purpose of separating c-Met protein known as one of functional receptor molecules of HGF from the cell solubilized fraction, immunoprecipitation was performed. That is, 5 μl of anti-mouse c-Met antiserum (Eur. J. Biochem., 204 , 857 (1992)) and 20 μl of Protein-A Sepharose (Pharmacia) were added to the cell lysate, and c- Met protein / HGF complex was immunoprecipitated. The precipitate was boiled in SDS-sample buffer (0.1 M Tris-HCl (pH 6.8), 10% glycerol, 1% sodium dodecyl sulfate (SDS)) and then non-reduced to a concentration of 6% polyacrylamide. The sample was subjected to SDS-polyacrylamide electrophoresis under conditions, the gel was fixed and dried, and the protein to which labeled hHGF was bound was detected by autoradiography.
[0017]
The results are shown in FIG. In FIG. 1, lanes 1, 2, 3, and 4 represent the results of samples with labeled hHGF addition amounts of 50 pM, 100 pM, 200 pM, 200 pM + unlabeled hHGF 2 nM, respectively. The numbers on the left indicate the mobility of the molecular weight marker in kilodaltons (kDa). Under non-reduction, a band of labeled hHGF alone was observed in the vicinity of 70 kDa, and a specific band was detected in the vicinity of 250 kDa. It is concluded that this band is a complex of hHGF and c-Met protein because it is specifically precipitated with an anti-c-Met antibody and is about 180 kDa when the molecular weight of hHGF is subtracted.
[0018]
From the above results, C-Met protein already known as a constituent molecule of HGF functional receptor already exists on CHO cells which are parent strains of hHGF-producing cell lines. It was found to bind specifically to the Met protein.
[0019]
Example 2 Measurement of remaining amount of added hHGF molecule in CHO cell culture system Next, the following experiment was conducted for the purpose of examining the degradation rate of hHGF in CHO cells. That is, a certain amount of hHGF was added to the culture supernatant, and the amount of HGF remaining in the supernatant was measured over time by an enzyme immunoassay (ELISA) method. The difference in the rate of HGF degradation depending on the presence or absence of sulfated polysaccharides A comparative study was conducted.
[0020]
The CHO cells were detached with 10 mM phosphate buffer-physiological saline pH 7.4 (PBS (-)) containing 0.02% trypsin-EDTA (ethylenediaminetetraacetic acid), washed three times by low speed centrifugation, and then the cells. The suspension was suspended in an eRDF medium (Kyokuto Pharmaceutical Co., Ltd.) containing 10% fetal bovine serum (FBS) at a concentration of 5 × 10 5 cells / ml. 1 ml of this cell solution was added to a 12-well microplate (Costa) and cultured at 37 ° C. for one day in an air gas phase containing 5% carbon dioxide. After 16 hours, the culture solution in the culture well was removed, and after washing twice with PBS (−), 1 ml of fresh medium containing 2 μg / ml human recombinant HGF was added. At this time, heparin (molecular weight: 4000-6000, Sigma) was added to some wells to a final concentration of 100 μg / ml. Cultivation was continued at 37 ° C. in an air gas phase containing 5% carbon dioxide, and 50 μl of each supernatant was collected after 1, 2, 5, 24, and 68 hours, and the amount of residual HGF in the supernatant was measured by ELISA. did. The supernatant was stored frozen at −80 ° C. until just before measurement. The amount of residual HGF in the test culture supernatant was measured by the hHGF-specific sandwich ELISA method. Specifically, the test supernatant was 0.1% CHAPS, 0.4 M sodium chloride, 0.1% bovine serum albumin (BSA) (Sigma, RIA grade), 0.05% Tween20-containing 10 mM phosphate buffer. (PH 7.4) was diluted 50, 100, 200 times. As an ELISA plate, an anti-hHGF monoclonal antibody was previously adsorbed on a 96-well multiplate (NUNK, for ELISA) (0.5 μg / 50 μl-50 mM carbonate buffer (pH 9.6) / well), Subsequently, PBS (-) containing 1% BSA and 0.05% sodium azide was allowed to react for one day or more to block the well wall.
[0021]
50 μl of the diluted test solution was added to the ELISA plate well and allowed to stand overnight at 4 ° C. The next day, the wells were washed 4 times with PBS (-) (PBST) containing 0.05% Tween 20, and then a peroxidase-conjugated anti-hHGF polyclonal antibody was added as a secondary antibody and reacted at room temperature for 2 hours or more. I let you. The secondary antibody was affinity-purified with a protein A column from rabbit serum immunized with human recombinant HGF and conjugated with peroxidase by the periodate method (J. Histochem. Cytochem., 22 , 1084 (1974). )) Made.
[0022]
After incubation, the wells were washed 6 times with PBST, and a coloring solution (0.04% orthophenylenediamine, 0.02% hydrogen peroxide-containing phosphate citrate buffer (pH 5.0)) was added at 50 μl / The well was added and left at room temperature for several minutes to several tens of minutes. When moderate color development was obtained, 4.5 N sulfuric acid was added (50 μl / well) to stop the reaction, and the absorbance at 490 nm was measured with an immunoleader (Nihon Intermed). In order to prepare a calibration curve, a standard hHGF whose concentration was calculated in advance from the extinction coefficient was used by serial dilution in the range of 0-40 ng / ml. In addition, it confirmed from the correspondence with the band of the electrophoresis of hHGF after enzyme digestion that the ELISA method used here did not detect an HGF degradation product at all.
[0023]
The results are shown in FIG. The horizontal axis represents the time after the start of culture, and the vertical axis represents hHGF (μg / ml) in the culture supernatant. In the culture supernatant, the amount of hHGF rapidly decreased in the group without addition of heparin (●), whereas it was confirmed that the decrease rate of hHGF was extremely delayed in the addition group (■). From the slope of the graph, the decrease rate t 1/2 of hHGF in the supernatant was calculated to be about 12 hours in the heparin-free group and about 135 hours in the added group. From the above results, it was found that the degradation of hHGF in CHO cells was remarkably suppressed by adding heparin, which is a kind of oxidized polysaccharide, to the culture medium.
[0024]
Example 3 Effect of heparin on hHGF production of hHGF-producing CHO cell line In the actual hHGF-producing strain, sulfated polysaccharide was added to the culture solution, and the amount of hHGF recovered was examined.
According to the method described in JP-A-3-285893, transformed hHGF production strains KBE, KT4-3, and GE43-19, which introduce an expression vector containing hHGF cDNA into CHO cells and produce hHGF constitutively and stably. Got.
The hHGF-producing strain was suspended in 5% FBS-containing eRDF medium at a cell concentration of 4 × 10 4 cells / ml, and 1 ml each was seeded on a 12-well microplate. Heparin (Sigma) was added thereto so that the final concentration was 0 to 1000 μg / ml, and the culture was started. A part of the supernatant was collected after a certain period of time by the hHGF specific ELISA method (see Example 2). The hHGF content was measured.
[0025]
The results are shown in FIGS. FIG. 3 shows a case in which the medium was changed every 2-3 days after the start of KBE cell culture, the supernatant was collected, and the amount of hHGF was traced over time until the 11th day of culture. The horizontal axis indicates the number of days of culture, and the vertical axis indicates the accumulated amount of hHGF in the culture supernatant as an ELISA unit (U; OD490 × dilution rate). Under the present conditions, the cells almost reached saturation density on the 4th day of culture, and thereafter the number of cells was gradually decreased, and the cell viability was 30% or less on the 13th day of culture. In the heparin-added group, a significant increase in the amount of hHGF was observed from the addition of a low concentration of 1 μg / ml, and a 2-3-fold increase in the amount of HGF was evident in any culture period in the presence of 10-100 μg / ml heparin. became. FIG. 4 shows the result of measuring the hHGF content by exchanging the medium immediately after the KBE cells reach the saturation density and collecting the supernatant after 2 days. The horizontal axis represents the heparin concentration, and the vertical axis represents the relative value when the hHGF content is 1.0 in the heparin-free group. In the heparin-added group, an increase in the hHGF amount of 2 times or more was already observed with the addition of 10 μg / ml compared to the non-addition group, and a 2-2.5-fold increase in the hHGF amount was shown with the addition of 1000 μg / ml. It was.
[0026]
Next, Table 1 shows the results of measuring changes in the amount of hHGF in the supernatant due to the addition of heparin in three types of hHGF-producing strains. The test supernatant was measured 2 days after the medium was changed immediately after cell saturation. The hHGF content of the heparin-free group was taken as 1.00, and the hHGF content of the heparin-added 10 μg / ml group was shown as a relative value. In all strains, 2-5-fold increase in the amount of recovered hHGF was observed.
[0027]
[Table 1]
Figure 0004098372
[0028]
As a result, it was found that the amount of hHGF recovered increases several times by adding heparin to the culture solution of the hHGF-producing cell line.
[0029]
Example 4 Effect of various sulfated polysaccharides on hHGF production of hHGF-producing CHO cell line Next, the same investigation was performed on sulfated polysaccharides other than heparin.
The KBE strain was seeded at 4 × 10 5 cells / ml / well in a 12-well microplate, the supernatant after 5 days of culture was collected, and the amount of hHGF in the culture supernatant was measured by the ELISA method described above. . As added polysaccharides, heparin, heparan sulfate, dextran (Sigma Co.), dextran sulfate and chondroitin sulfate (Seikagaku Corporation) were used.
[0030]
Table 2 shows the results. Increased hHGF content was observed in any of heparin, heparan sulfate, dextran sulfate, and chondroitin sulfate. In the case of heparin, heparan sulfate, and dextran sulfate, the maximum effect was obtained in the addition range of 10-100 μg / ml, and an increase of 2 times or more was shown. On the other hand, although chondroitin sulfate had an effect, its increase effect was somewhat low, and the effective necessary dose was shifted to the higher dose side. With dextran having no sulfate group, no effect was observed.
[0031]
[Table 2]
Figure 0004098372
[0032]
The KBE strain can maintain HGF production for several months or more by a suspension culture method using microcarrier (Pharmacia), but in this case, the sulfated polysaccharide maintained the same effect for several months. Even in the examination of various culture forms and culture scales, the action of sulfated polysaccharides is due to adherent culture (T flasks, dishes, roller bottles, etc.) and suspension culture (with or without microcarriers). Regardless of the spinner culture), the same was observed in microwell cultures of 96-well plates at culture scales of several liters or more.
[0033]
From the above results, it was found that the amount of HGF recovered increases two to several times by adding various sulfated polysaccharides to the culture system of HGF-producing cells. This effect is caused by the addition of low-dose sulfated polysaccharides, and is maintained for a long period of several hours to several months regardless of the culture method and the type of sulfated polysaccharides. . The principle of this effect is that sulfated polysaccharide binds HGF via its sulfate group and significantly binds, consumes and degrades HGF to receptors (such as c-Met protein and heparan sulfate proteoglycan) on HGF-producing cells. It was understood to delay.
[0034]
【The invention's effect】
According to the production method of the present invention, the production and recovery amount of heparin-binding growth factor can be increased several times, and as a result, the cost in production of the growth factor can be significantly reduced. By producing a heparin-binding growth factor based on the present invention, widespread use in the medical field can be expected.
[Brief description of the drawings]
FIG. 1 is a drawing showing the results of SDS-polyacrylamide electrophoresis for the formation of hHGF / c-Met protein complex in CHO cells.
FIG. 2 shows a comparison of hHGF consumption rate in CHO cells in the presence and absence of heparin.
FIG. 3 is a drawing showing a comparison of the amount of hHGF in the culture supernatant of a hHGF-producing strain in the presence and absence of heparin over time.
FIG. 4 is a graph showing the influence of the heparin addition dose on the amount of hHGF in the culture supernatant of the hHGF-producing strain.

Claims (3)

肝実質細胞増殖因子をコードする遺伝子を導入して形質転換されたCHO細胞株を硫酸化多糖類の存在下において培養し、その培養液から肝実質細胞増殖因子を採取することを特徴とする肝実質細胞増殖因子の生産方法。A liver characterized by culturing a CHO cell line transformed by introducing a gene encoding hepatocyte growth factor in the presence of a sulfated polysaccharide and collecting hepatocyte growth factor from the culture medium. Method for producing parenchymal cell growth factor. 硫酸化多糖類が硫酸基を含むプロテオグリカン、グリコサミノグリカン、グルカン、それらの誘導体から選ばれることを特徴とする請求項1記載の方法。  The method according to claim 1, wherein the sulfated polysaccharide is selected from proteoglycans, glycosaminoglycans, glucans and derivatives thereof containing sulfate groups. 肝実質細胞増殖因子をコードする遺伝子を導入して形質転換されたCHO細胞株の培養液中に硫酸化多糖類を共存させることを特徴とする肝実質細胞増殖因子の分解抑制方法。A method for inhibiting degradation of hepatocyte growth factor, characterized in that a sulfated polysaccharide is allowed to coexist in a culture solution of a CHO cell line transformed by introducing a gene encoding hepatocyte growth factor.
JP20568493A 1993-07-28 1993-07-28 Method for producing heparin-binding growth factor Expired - Lifetime JP4098372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20568493A JP4098372B2 (en) 1993-07-28 1993-07-28 Method for producing heparin-binding growth factor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20568493A JP4098372B2 (en) 1993-07-28 1993-07-28 Method for producing heparin-binding growth factor

Publications (2)

Publication Number Publication Date
JPH0739388A JPH0739388A (en) 1995-02-10
JP4098372B2 true JP4098372B2 (en) 2008-06-11

Family

ID=16510992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20568493A Expired - Lifetime JP4098372B2 (en) 1993-07-28 1993-07-28 Method for producing heparin-binding growth factor

Country Status (1)

Country Link
JP (1) JP4098372B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2491992A1 (en) 2002-07-09 2004-01-15 Baxter International, Inc. Animal protein free media for cultivation of cells
US20080032343A1 (en) * 2005-12-22 2008-02-07 Genentech, Inc. Recombinant Production of Heparin Binding Proteins
AU2007272412B2 (en) 2006-07-14 2013-11-07 Genentech, Inc. Refolding of recombinant proteins

Also Published As

Publication number Publication date
JPH0739388A (en) 1995-02-10

Similar Documents

Publication Publication Date Title
Scott et al. Immunohistochemical localization of the proteoglycans decorin, biglycan and versican and transforming growth factor‐β in human post‐burn hypertrophic and mature scars
Beeson et al. Adhesion of Plasmodium falciparum-infected erythrocytes to hyaluronic acid in placental malaria
Laurent et al. The properties and turnover of hyaluronan
Ten Dam et al. Antibody GD3G7 selected against embryonic glycosaminoglycans defines chondroitin sulfate-E domains highly up-regulated in ovarian cancer and involved in vascular endothelial growth factor binding
Herndon et al. Interactions of neural glycosaminoglycans and proteoglycans with protein ligands: assessment of selectivity, heterogeneity and the participation of core proteins in binding
JP2002520029A (en) Method for selecting potential antimetastatic and anti-inflammatory drugs using mammalian heparanase as a probe
Lord et al. Bioengineered human heparin with anticoagulant activity
Yamashita et al. Paucity of CD34-positive cells and increased expression of high-mobility group box 1 in coronary thrombus with type 2 diabetes mellitus
Gheduzzi et al. Heparan sulphate interacts with tropoelastin, with some tropoelastin peptides and is present in human dermis elastic fibers
Hallak et al. Interaction between respiratory syncytial virus and glycosaminoglycans, including heparan sulfate
Shamdani et al. Heparan sulfate functions are altered in the osteoarthritic cartilage
Abbadi et al. Hyaluronan rafts on airway epithelial cells
JP4098372B2 (en) Method for producing heparin-binding growth factor
Vogel et al. Cell‐surface glycosaminoglycans: Turnover in cultured human embryo fibroblasts (IMR‐90)
Beeson et al. Evaluating specific adhesion of Plasmodium falciparum-infected erythrocytes to immobilised hyaluronic acid with comparison to binding of mammalian cells
Oguri et al. Isolation, characterization, and localization of glycosaminoglycans in rabbit bone marrow
Takeda et al. Correction of abnormal matrix formed by cmd/cmd chondrocytes in culture by exogenously added cartilage proteoglycan.
US20050054560A1 (en) Cd44 variants carrying heparan sulfate chains and uses thereof
Silva et al. Identification of cells responsible for synthesis of sulphated glycosaminoglycans in schistosome-induced hepatic granulomas.
Okayama et al. Isolation and characterization of chondroitin 6-sulfate proteoglycans present in the extracellular matrix of rabbit bone marrow
Pye et al. Irradiation of bovine aortic endothelial cells enhances the synthesis and secretion of sulphated glycosaminoglycans
Kim Bioengineered growth factor delivery molecules for vascularisation and wound healing
JPH05148305A (en) Oligosaccharide having bondability to fibroblast growth factor and production thereof
Mi AN INVESTIGATION OF THE EFFECT OF CHITOSAN-BASED MATERIALS ON SKIN WOUND HEALING
BELTING et al. British Connective Tissue Society Introductory Comments: Heparin and Dermatan Sulphates at the BCTS Meeting

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040527

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070508

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

EXPY Cancellation because of completion of term