JP4096175B2 - Laminated yarn - Google Patents

Laminated yarn Download PDF

Info

Publication number
JP4096175B2
JP4096175B2 JP2002504709A JP2002504709A JP4096175B2 JP 4096175 B2 JP4096175 B2 JP 4096175B2 JP 2002504709 A JP2002504709 A JP 2002504709A JP 2002504709 A JP2002504709 A JP 2002504709A JP 4096175 B2 JP4096175 B2 JP 4096175B2
Authority
JP
Japan
Prior art keywords
yarn
properties
laminated
antibacterial
shielding properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002504709A
Other languages
Japanese (ja)
Other versions
JPWO2001098567A1 (en
Inventor
嶌崎佐太郎
大森美千子
Original Assignee
トリテック有限会社
豊島株式会社
大森 美千子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39560896&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4096175(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by トリテック有限会社, 豊島株式会社, 大森 美千子 filed Critical トリテック有限会社
Priority claimed from PCT/JP2001/002193 external-priority patent/WO2001098567A1/en
Publication of JPWO2001098567A1 publication Critical patent/JPWO2001098567A1/en
Application granted granted Critical
Publication of JP4096175B2 publication Critical patent/JP4096175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

技術分野
この発明は、積層構造を有する積層糸、特に、審美性、抗菌性、耐洗濯性、帯熱防止性、熱遮断性、帯電防止性、柔軟性、電磁波遮断性等の各種特性に優れた積層糸に関する。
背景技術
近年、衛生観念の発達から抗菌性を備えた商品が求められるようになってきており、医療用のガーゼや包帯はもちろんのこと、衣服や布巾にさえも抗菌性を備えたものが求められるようになってきている。これら抗菌性を備えたガーゼ等は、その材料として抗菌性を備えた抗菌糸から作られている。
このような抗菌糸としては、従来から、銀や銅を細長く伸ばしてなる極細金属糸や、合成繊維などの糸の表面に銀や銅をメッキしてなるメッキ糸、抗菌剤を練りこみ又は塗布してなる抗菌剤含有糸等が使用されている。
また、静電気による着衣者の不快感の低減や、静電気による電子製品の静電破壊防止の観点から、各種帯電防止繊維製品が使用されており、このような帯電防止繊維製品としては、従来から、炭素繊維糸を含むものや製糸や染色の段階で化学薬品による処理が行われたものが使用されている。
さらに、医療の現場においては、手術を行う際に、体内の縫合部にガーゼを巻いて患部を閉じ、当該ガーゼを一定期間後に取り出して縫合部からの出血量を測定し、手術後の経過を調べることが行われている。このようなガーゼとしては、その配置場所を見つけやすくするため、X線を遮断する塩化ビニール糸や極細金属糸を含むものが使用されている。
加えて、気温変化による不快感を減らすため、汗が気化する際の気化熱により冷却効果を高めた衣服、汗などの水分の蒸発を利用した発熱機能を備えた衣服、電熱線を織りこんだ衣服などが使用されている。
しかし、これら従来からある極細金属糸や炭素繊維等を繊維製品に使用し、繊維製品に抗菌性等の各種特性を付与しようとする場合には、次に掲げるような問題点があった。
まず、極細金属糸やメッキ糸には、その表面が経時変化や漂白剤などにより酸化して黒化するため、これらを繊維製品に使用すると当該繊維製品の見栄えが悪くなったり、抗菌性が低下するとの問題点があった。加えて、これら極細金属糸やメッキ糸の金属部分が赤外線等によって容易に熱せられるため、これらを材料として含む繊維製品を着用し、例えば赤外線温熱治療を行うと低温やけどを生じるとの問題点もあった。
つぎに、抗菌剤含有糸には、洗濯により抗菌剤が溶出するため、洗濯を繰り返すと抗菌性が低下し、抗菌性を短期間で喪失するとの問題点があった。
また、帯電防止繊維のひとつである炭素繊維糸は黒色糸であるため、商品の見栄えの点から使用可能な商品が限定されるとの問題点があり、製糸や染色の段階で化学薬品による処理が行われたものは、洗濯を繰り返すことにより耐電防止性を喪失するとの問題点があった。
また、塩化ビニール糸や極細金属糸からなるガーゼは、X線造影には寄与するものの、毒性や風合い・柔軟性に欠け繊維製品であるガーゼ本来の機能に問題点があった。さらに、汗が気化する際の気化熱により冷却効果を高めた衣服などは、一定の温度調節機能、熱遮断性はそなえているものの、冷却又は暖房のいずれか一方の機能のみを備えているだけであり、その用途も限定されていた。
加えて、これら複数の糸を組合せても、抗菌性、帯電防止性、帯熱防止性、柔軟性、電磁波遮断性、商品の美観等複数の特性を備えた繊維製品を作り出すのは困難であった。
そこで、この発明は、洗濯を繰り返しても抗菌力が低下せず、帯熱防止性,熱遮断性、帯電防止性、柔軟性、電磁波遮断性等に優れ、美観も優れた積層糸を提供することを課題とする。
発明の開示
すなわち、この発明にかかる積層糸は、合成樹脂フィルムに抗菌性金属を蒸着させて蒸着被膜を成膜し、成膜した合成樹脂フィルム同士を蒸着被膜が内側になるように接着し、接着されてサンドイッチ状構造となった積層体を縦方向に細長く切断して形成されたことを特徴とする。
また、合成樹脂フィルムの蒸着被膜が成膜されている面とは反対側の面に、コート層が設けられていてもよく、合成樹脂フィルムと蒸着皮膜の間、又は蒸着皮膜の上に、コート層が設けられてもよい。
発明を実施するための最良の形態
以下、この発明の実施の形態について、図面に基づいて説明する。
第1図は、この発明にかかる積層糸1の構造を模式的に示す図であり、この図に示すように、積層糸1は、合成樹脂フィルム11によって、抗菌性金属からなる蒸着被膜12を挟み込んだサンドイッチ状構造の糸であり、次に示すような手順によって形成される。
まず、合成樹脂フィルム11に抗菌性金属を真空蒸着法やイオン蒸着法等により蒸着し、蒸着被膜12を成膜する。つぎに、蒸着被膜12が成膜された合成樹脂フィルム11同士を、蒸着被膜が内側になるように接着剤によって接着して、抗菌性金属を合成樹脂フィルムで挟んだサンドイッチ状構造の積層体を製造する。最後に、積層体を縦方向に切断して積層糸1が完成する。
ここで、合成樹脂フィルムとは、ポリエステル、ナイロン、ポリエチレン、ポリプロピレン等から作られたフィルムであり、その厚さとしては、約4〜50ミクロンであり、なかでも約4〜12ミクロンが好ましい。
また、被膜となる金属とは、銀、銅、亜鉛等のイオン交換可能な抗菌性を有する金属であり、なかでも、錆が発生しにくく、抗菌性能の高さから、銀の使用が最適である。蒸着被膜12の厚さは、約20〜100nm程度であり、機能の担保と製品コストの点からも50〜100nm程度が好ましいが、700nm以上にするとコート層を設けることなく、赤外線からX線までの幅広い範囲の電磁波を遮断することができる。
さらに、上記接着剤としては、ポリウレタン系接着剤、ポリエステル系接着剤やアクリル系接着剤が考えられるが、低ホルマリン性を要求される繊維製品の安全性を考えると、ポリウレタン系やポリエステル系の接着剤が好ましい。
このように、積層糸1は、抗菌性金属からなる蒸着被膜12が合成樹脂フィルム11によって挟まれたサンドイッチ状構造の糸であり、抗菌性金属の色を備えた糸である。
なお、積層体を縦方向に切断する幅としては、約0.1〜1.0mmであり、なかでも、審美性、耐電防止性、熱遮断性などの各種特性の整合性から検討すると、約0.15〜0.226mmが望ましい。
このように、蒸着被膜12の側面は外部に露出しているため、酸化・塩化するものの、隣接する繊維と互いにこすれあって、当該酸化部分は取れてしまうこともあるし、取れなくても肉眼では見えない。また、蒸着被膜12の側面以外の部分は、合成樹脂フィルム11によって保護されているため、酸化・塩化しない。そのため、繰り返し洗濯を行ったり漂白剤を使用しても、抗菌力が低下したり、蒸着被膜12が黒化して、繊維製品の外観が悪化することはない。
また、外部から熱を加えても、金属の蒸着被膜12の大部分が合成樹脂フィルムに覆われているため、積層糸1の温度が急上昇して低温やけどを起こすこともなく、積層糸1が織り込まれた衣服等に静電気が生じても蒸着被膜12を通じて静電気が外部に移動するため、静電気を帯電させにくい。
さらに、蒸着皮膜を形成する金属によって、赤外線からX線に至る幅広い電磁波を遮断することができるので、高い電磁波遮断性及び熱遮断性を備えているとともに、合成樹脂フィルムを基盤とするため、高い柔軟性を備えている。
次に、この発明に係る積層糸を製造して各種試験を行い、この発明をさらに詳細に説明する。
「実験例1」
(1)積層糸の製造
厚さ12ミクロンのポリエステルフィルム(東洋紡績株式会社製)に純銀をイオン蒸着法により蒸着して、厚さ50nmの蒸着被膜を成膜する。つぎに、ポリエステル系接着剤によって、前記蒸着皮膜を持つポリエステルフィルム同士をその蒸着被膜が内側になるように接着して、サンドイッチ状構造の積層体を製造する。最後に、前記積層体を縦方向に幅226ミクロンに切断して積層糸とし、以下の各種試験に供した。
(2)抗菌性試験
地糸に積層糸を6mm間隔で織り込んだタオル地を使用して、シェークフラスコ法により抗菌性試験を行った。なお、供試菌として肺炎桿菌を使用し、無加工布(ナイロン製)を実験対照として使用した。その結果を表1に示す。

Figure 0004096175
つぎに、積層糸を約1ミリ間隔で編込んだ靴下のつま先部分を使用して、シェークフラスコ法により抗菌性試験を行った。なお、供試菌として肺炎桿菌を使用し、無加工布(ナイロン製)を実験対照として使用した。その結果を表2に示す。
Figure 0004096175
さらに、積層糸を2mm間隔で編み込んだパンティストッキングを使用して、SEK菌数測定法により抗菌性試験を行った。なお、供試菌として白癬菌を使用し、実験対照として無加工布(ナイロン製)を使用した。その結果を表3に示す。
Figure 0004096175
表1,表2および表3からも明らかなように、同数の供試菌を接種し、一定時間後の残存菌数を比較すると、試料と実験対照との間には抗菌力において充分な違いがあり、積層糸には十分な抗菌効果があることが認められた。また、上記積層糸の抗菌スペクトルは、細菌(原核生物)である肺炎桿菌から真菌(真核生物)である白癬菌にいたる幅広いものであることが認められた。
(3)耐洗濯性試験
地糸に積層糸を4mm間隔で織り込んだタオル地を規定回数洗濯したあと、シェークフラスコ法により抗菌性試験を行ない、洗濯による抗菌力の変化を調べた。なお、供試菌として肺炎桿菌を使用した。その結果を表4に示す。
Figure 0004096175
つぎに、積層糸を5mm間隔で織り込んだ食品ラップ布を規定回数洗濯したあと、シェークフラスコ法により抗菌性試験を行ない、洗濯による抗菌力の変化を調べた。なお、供試菌として大腸菌を使用した。その結果を表5に示す。
Figure 0004096175
さらに、積層糸を5mm間隔で織り込んだ食品ラップ布を規定回数洗濯したあと、SEK統一試験法により抗菌性試験を行ない、洗濯による抗菌力の変化を調べた。なお、供試菌として大腸菌O−157を使用し、実験対照として綿ガーゼを使用した。その結果を表6に示す。
Figure 0004096175
表4,表5および表6からも明らかなように、積層糸の抗菌力は、洗濯を繰り返しても低下することなく、むしろ洗濯を繰り返すほど不純物がなくなり抗菌力が向上することが分かった。
(4)耐塩素漂白剤性試験
約10グラムの積層糸を束ね、規定回数漂白したあとの色変化を観察した。なお、漂白液は蒸留水300mlに台所用漂白剤12mlを加えたものを使用し、温度による違いを見るために温度を変えて実験した。その結果を表7示す。
Figure 0004096175
表7からも明らかなように、束ねた積層糸を漂白しても、特に、50℃、30分という過酷な条件下で漂白しても、積層糸が黒化しないことが確認された。
(5)帯熱防止性試験
積層糸を5mm間隔で編みこんだ天竺でTシャツをつくり、当該Tシャツ上約20cmから赤外線ランプで加熱し、その表面及び生地内の温度変化を調べた。その結果を第2図のグラフに示す。なお、実験対照として積層糸を含まないTシャツを使用した。
第2図からも明らかなように、積層糸を織り込んでも、帯熱防止性は低下せず、実験対照と同程度にしか温度が上昇しないことが分かった。
(6)熱遮断性試験
積層糸を芯糸とし、綿短繊維で周囲をカバーした綿番手で30番単糸のコアヤーンを製糸し、当該コアヤーンを縦糸又は横糸として1インチあたりそれぞれ、20本(A)、12本(B)、7本(C)づつ含むコート生地を製造した。そして、コート生地(A),(B)、(C)及び積層糸を含まないコート生地(ブランク)の前側から、ライトを照射し生地前後の温度差を測定した。生地前後の温度差の経時変化を表8に示すとともに、5分照射後の各生地の測定温度を表9に示す。
Figure 0004096175
Figure 0004096175
表8及び表9において、ライト照射5分後の生地前後の温度差を比較すると、コアヤーンを1インチあたり20本含む(A)の温度差は、ブランクと比べて2〜3度程度大きいことがわかる。このことから、積層糸を含むコアヤーンを織り込むことにより、熱遮断性が向上していることがわかった。
(7)帯電防止性試験
(5)で製造したTシャツを使用して、JIS 1094−5に記載の方法に沿って帯電防止機能試験を行った。測定条件は、温度20℃、湿度20%である。その結果を表10に示す。なお、実験対照として積層糸を含まないTシャツを使用した。
Figure 0004096175
表10に示すように、Tシャツに蓄積する静電気の容量や電圧が低下しており、積層糸を織り込むことにより、帯電防止機能が向上していることが分かった。
「実験例2」
(8)撚糸の製造
厚さ9ミクロンのポリエステルフィルム(東レ製)に、真空蒸着技術によって、純銀(純度99.99%、三菱マテリアル製)からなる厚さ50nmの金属被膜を成膜し、成膜した合成樹脂フィルムを蒸着被膜同士が内側になるようにポリエステル系接着剤(住友3M製)で接着し、幅150ミクロンに裁断して積層糸を製造した。そして、その積層糸に、30デニール/5フィラメントのポリエステル糸を左右逆方向に1本づつ撚り合わせ撚糸を製造した。
(9)紳士スーツ裏地用生地の製造
50デニール/10フィラメントのポリエステル糸(東レ製)を1インチ間に150本入るように整経した縦糸に、75デニール/72フィラメントのポリエステル糸(東レ製)30本と(8)で製造した撚糸とが1インチ間に合計70本となるように組み合わせてなる横糸を綾織に織り込み、精錬したのち、分散染料で青色に染めて、紳士スーツ裏地用生地を製造した。なお、紳士スーツ裏地用生地中の撚糸は青のメタリック色を呈色し、その撚糸の間隔は約10ミリであった。
(10)帯電防止性試験
撚糸のかわりに75デニール/72フィラメントのポリエステル糸(東レ製)を使用した実験対照を(9)と同様の方法で製造し、温度20℃、湿度20%の環境下で、ナイロンとアクリルの生地で1分間摩擦し摩擦を止めた瞬間の帯電圧を測定して帯電防止性試験を行った。その結果、実験対照の耐電圧が4000ボルトを越えるのに対して、(9)で製造した紳士スーツ裏地用生地の帯電圧は300ボルト以下であった。
「実験例3」
(11)紳士スーツ裏地用生地の製造
(8)で製造した撚糸が1インチ間に均等なピッチで10本になること、及び分散染料で黒に染色することを除いて、(9)と同様の方法で紳士スーツ裏地用生地を製造した。なお、紳士スーツ裏地用生地中の撚糸は黒いメタリック色を呈色し、撚糸の間隔は約2.5ミリであった。
(12)熱遮断性試験
撚糸のかわりに75デニール/72フィラメントのポリエステル糸(東レ製)を使用した実験対照を(11)と同様の方法で製造し、次の(a)〜(d)の手順にしたがって熱遮断性試験を行った。まず、(a)片方向にライト(ナショナルランプ:PRF‐500wWB2個を使用)を設置し、(b)ライトから30cm離れた場所であって、ライトの光の進行方向に直角となる場所に、実験対照と(11)で製造した紳士スーツ裏地用生地を、それぞれ茶色の服地と2枚合せにしたのち、衝立状に置き、(c)5分間ライトを照射し、(d)実験対象と(11)で製造した紳士スーツ裏地用生地のライト側のとその反対側の温度差を計測した。
その結果、実験対照のライト側の温度は44.8℃であり、ライトの反対側の温度は29.1℃であった。また、(11)で製造した紳士スーツ裏地用生地ライト側の温度は46.1℃であり、ライトの反対側の温度は27.2℃であった。したがって、(11)で製造した紳士スーツ裏地用生地は、実験対照に比べ、ライト側(熱源側)で1.3℃、その反対側で1.9℃の熱を遮断したことが分かった。
「実験例4」
(13)コート用生地の製造
(1)で製造した積層糸を綿の繊維でカバーして、綿番手30番手のコアヤーンを製造した。つぎに、、1インチ当たり30番手の綿糸が150本となるように整経した縦糸に、前記コアヤーン1本に対して30番手綿糸が5本となるような割合で組み合わせた横糸を、1インチ当たり80本となるように同一間隔で織り込んでギャバジン生地を製造し、精錬したのち、反応染料と分散染料で黒色に染めて、コート用生地を製造した。
(14)熱遮断性試験
横糸として30番手綿糸のみを使用したことを除くと、(13)と同様にして製造したコート用生地を実験対象として、(12)と同様の方法で熱遮断性試験を行った。
その結果、実験対照のライト側の温度は40.5℃あり、ライトの反対側の温度は28.2℃であった。また、(13)で製造した紳士スーツ裏地用生地のライト側の温度は43.3℃であり、反対側の温度は26℃であった。したがって、(13)で製造したコート用生地は、実験対照に比べ、ライト側(熱源側)で2.8℃、その反対側で2.2℃の熱を遮断したことが分かった。
「実験例5」
(15)ワイシャツの製造
40番手の綿糸を1インチ間に130本整経した縦糸に、40番手綿糸4本と(13)で使用したコアヤーン1本の割合で組み合わせた横糸を、1インチ間に85本織り込んだブロード生地を晒ししてワイシャツを製造した。
(16)熱遮断性試験
同一人物が、気温18℃、湿度50%環境の中で、(15)で製造したワイシャツと実験対照のワイシャツを5分の歩行運動後に着用して、着用後静止状態を3分保ち、皮膚表面温度の差異をサーモグラフで測定した。なお、実験対象のワイシャツは、コアヤーンの代わりに40番手綿糸を使用したことを除けば、(15)と同様にして製造されたものである。
その結果、実験対照と比較して(15)で製造されたワイシャツは、保温力で3.2℃優れていることが分かった。
「実験例6」
(17)レースカーテン用布地の製造
1インチ間にポリエステル150デニールの糸90本と、その間に均等に挿入された撚糸((8)で製造したものと同一である)10本とを経糸として、経編機の一種であるラッシェル機により編んで、精錬し、レースカーテン用布地を製造した。
(18)熱遮断性試験
茶色の服地の代わりに標準白布(綿金巾)を使用したことを除いて、(12)と同様にして熱遮断性試験を行った。なお、実験対照としては、撚糸の代わりにポリエステル150デニールの糸を使用したことを除くと、(17)と同様にして製造したレースカーテン用布地を使用した。
その結果、実験対照のライト側の温度は41.7℃あり、ライトの反対側の温度は25.8℃であった。また、(17)で製造したレースカーテン用布地のライト側の温度は43.8℃であり、ライトの反対側の温度は26.3℃であった。したがって、(17)で製造したレースカーテン用布地はライト側で2.1℃高いことが分かった。
このように、積層糸1及び積層糸1を含む布地は、優れた抗菌性、耐洗濯性、耐熱防止性、熱遮断性、帯電防止性等を備えているとともに、優れた審美性を備えている。
なお、この発明は、上記実施の形態及び実施例に限定されるものではなく、特許請求の範囲に記載された技術的事項の範囲内において種々の変更が可能である。
例えば、第3図に示すように、積層糸2を構成する合成樹脂フィルム21の外側にコート層23を設けてもよい。コート層23の材料としては、例えば、酸化バリウム、光触媒機能を持つ酸化チタン、ケイ素化合物などが挙げられる。
酸化バリウムをコート層23に使用した場合には、積層糸2のX線遮断性を高めることができる。例えば、蒸着皮膜22が200nmの厚さの銀で構成され、合成樹脂フィルム21の上に酸化バリウムからなる5〜200ミクロン厚コート層を設けた積層糸2を織り込んだ布地はX線で造影され得るし、この積層糸2を縦糸、横糸にそれぞれ1インチ間に20〜30本打ちこんだ織物は、約60dbレベルの電磁波を遮断することができる。
酸化チタンをコート層23に使用した場合には、蒸着被膜22の抗菌性金属による死菌を光触媒(酸化チタン)によって発生した活性酸素により分解・無毒化することができ、ケイ素化合物をコート層23に使用した場合には、積層糸2の保温機能を高めることができる。
また、第4図に示すように、蒸着被膜32と合成樹脂フィルム31の間に酸化チタン等の顔料からなるコート層33を設けてもよい。これにより、抗菌性金属の金属色を消し、白衣のような金属色の糸が使用できないような繊維製品に対しても使用できるようになる。
そして、第5図に示すように、蒸着皮膜42の上に酸化バリウム等からなるコート層43を設けてもよい。これにより、蒸着皮膜42を構成する抗菌性金属の使用量を減らしても、同等の電磁波遮断性をうることができ、抗菌性金属が銀の場合には、生産コストを下げることができる。
さらに、積層糸をナイロンウーリィ等と撚り合せて撚糸としたり、積層糸の周囲に綿等の天然繊維やポリエステルなどの合成繊維からなる短繊維を巻きつけて、コアヤーンとしてもよい。これにより、積層糸の膚触りをよくすることができるとともに、染色性を高め、積層糸の利用範囲を拡張することこともできる。
加えて、積層糸は布製品のほかにも、合成樹脂フィルムの厚さを厚くすることによって、トイレ用等のブラシや掃除用モップの材料として使うこともでき、積層糸が含まれた布地をコンクリート壁、天井、床などに貼付したり、塗り込めて、電磁波除去材として使用することもできる。
産業上の利用可能性
この発明にかかる積層糸は、抗菌性金属からなる蒸着被膜の両側面を合成樹脂フィルムによって挟んだサンドイッチ状構造の糸であるため、外観が美しく、高い抗菌性を備え、洗濯を繰り返しても抗菌力が低下せず、高い帯熱防止性、熱遮断性、帯電防止性、電磁波遮断性、柔軟性を示した。
また、合成樹脂フィルムの外側にコート層を設けることによって、光触媒による分解機能、保温機能や電磁波遮断性を付与することもできた。
また、蒸着被膜と合成樹脂フィルムの間に酸化チタン等の顔料からなるのコート層を設けることによって、抗菌性金属の金属色を消して、様々な色を着色することができた。
さらに、蒸着被膜の上にコート層を設けることによって、蒸着皮膜として使用する銀などの抗菌性金属の使用量を低減することができ、より安価に積層糸を製造することもできた。
加えて、積層糸の周囲に綿短繊維などを巻きつけたコアヤーンとすることによって,積層糸の膚触りをよくすることができるとともに、染色性を高め、積層糸の利用範囲を拡張することこともできた。
【図面の簡単な説明】
第1図は、積層糸の構造を模式的に示した図である。また、第2図は、帯熱防止機能試験の結果を示すグラフである。さらに、第3図、第4図、第5図は、他の積層糸の構造を模式的に示した図である。TECHNICAL FIELD This invention is excellent in various properties such as laminated yarn having a laminated structure, in particular, aesthetic properties, antibacterial properties, washing resistance, anti-heat properties, heat shielding properties, antistatic properties, flexibility, electromagnetic wave shielding properties, etc. Related to laminated yarn.
Background Art In recent years, products with antibacterial properties have been demanded due to the development of hygiene concepts, and not only medical gauze and bandages but also clothes and cloths with antibacterial properties are required. It is getting to be. These antibacterial gauze and the like are made of antibacterial yarn having antibacterial properties as a material thereof.
As such antibacterial yarn, conventionally, an ultrafine metal yarn obtained by elongated silver or copper, a plated yarn obtained by plating silver or copper on the surface of a yarn such as a synthetic fiber, or an antibacterial agent is kneaded or applied. Antibacterial agent-containing yarns are used.
In addition, various antistatic fiber products have been used from the viewpoint of reducing the discomfort of the wearer due to static electricity and preventing the electrostatic breakdown of electronic products due to static electricity. Those containing carbon fiber yarns or those treated with chemicals at the stage of yarn production or dyeing are used.
Furthermore, in the medical field, when performing surgery, the gauze is wrapped around the suture part in the body, the affected part is closed, the gauze is taken out after a certain period of time, the amount of bleeding from the suture part is measured, and the progress after the surgery is measured. It is being investigated. As such a gauze, in order to make it easy to find the arrangement place, a gauze containing a vinyl chloride thread or an ultrafine metal thread that blocks X-rays is used.
In addition, in order to reduce discomfort due to temperature changes, clothes that have improved the cooling effect due to the heat of vaporization when sweat evaporates, clothes that have a heat generation function using evaporation of moisture such as sweat, and heating wires are woven Clothes are used.
However, when these conventional fine metal yarns, carbon fibers, etc. are used for textile products and various properties such as antibacterial properties are to be given to the textile products, there are the following problems.
First, the surface of ultra-fine metal yarns and plated yarns is oxidized and blackened due to aging or bleaching agents, so when they are used in textiles, the appearance of the textiles becomes worse or the antibacterial properties are reduced. Then there was a problem. In addition, since the metal parts of these ultrafine metal threads and plated threads can be easily heated by infrared rays or the like, there is a problem that low-temperature burns are caused when, for example, infrared heat treatment is carried out by wearing fiber products containing these as materials. there were.
Next, the antibacterial agent-containing yarn has a problem that since the antibacterial agent is eluted by washing, the antibacterial property is lowered and the antibacterial property is lost in a short period of time when washing is repeated.
In addition, carbon fiber yarn, which is one of the antistatic fibers, is a black yarn, so there is a problem that the products that can be used are limited from the point of view of the product, and treatment with chemicals at the stage of yarn production and dyeing However, there was a problem that the anti-static property was lost by repeating washing.
In addition, gauze made of vinyl chloride yarn or ultrafine metal yarn contributes to X-ray contrast, but has a problem in the original function of gauze, which is a fiber product lacking in toxicity, texture and flexibility. Furthermore, clothes that have improved the cooling effect due to the heat of vaporization when sweat evaporates have a certain temperature control function and heat insulation, but only have either a cooling or heating function. And its use was also limited.
In addition, it is difficult to create a textile product with multiple characteristics such as antibacterial properties, antistatic properties, anti-heat properties, flexibility, electromagnetic wave shielding properties, and product aesthetics even when these multiple yarns are combined. It was.
Therefore, the present invention provides a laminated yarn that has no antibacterial activity even after repeated washing, has excellent heat resistance, heat shielding properties, antistatic properties, flexibility, electromagnetic wave shielding properties, and the like, and has an excellent aesthetic appearance. This is the issue.
Disclosure of the invention, that is, the laminated yarn according to the present invention is to deposit an antibacterial metal on a synthetic resin film to form a vapor-deposited film, and bond the formed synthetic resin films to each other so that the vapor-deposited film is inside, It is characterized in that it is formed by cutting a laminated body that is bonded to form a sandwich-like structure in the longitudinal direction.
In addition, a coating layer may be provided on the surface opposite to the surface on which the vapor-deposited coating of the synthetic resin film is formed, and the coating layer may be provided between the synthetic resin film and the vapor-deposited coating or on the vapor-deposited coating. A layer may be provided.
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically showing the structure of a laminated yarn 1 according to the present invention. As shown in this figure, the laminated yarn 1 has a vapor-deposited coating 12 made of an antibacterial metal by a synthetic resin film 11. It is a sandwich-like structure thread that is sandwiched and formed by the following procedure.
First, an antibacterial metal is vapor-deposited on the synthetic resin film 11 by a vacuum vapor deposition method, an ion vapor deposition method, or the like to form a vapor deposition coating 12. Next, a laminate having a sandwich structure in which the synthetic resin films 11 on which the vapor-deposited film 12 is formed is bonded to each other with an adhesive so that the vapor-deposited film is inside, and an antibacterial metal is sandwiched between the synthetic resin films. To manufacture. Finally, the laminated body 1 is cut in the longitudinal direction to complete the laminated yarn 1.
Here, the synthetic resin film is a film made of polyester, nylon, polyethylene, polypropylene or the like, and its thickness is about 4 to 50 microns, and preferably about 4 to 12 microns.
In addition, the metal that forms the coating is an antibacterial metal that can exchange ions, such as silver, copper, and zinc. Among them, rust is not easily generated, and the use of silver is optimal because of its high antibacterial performance. is there. The thickness of the vapor-deposited coating 12 is about 20 to 100 nm, and is preferably about 50 to 100 nm from the viewpoint of function security and product cost. However, when the thickness is 700 nm or more, from infrared rays to X-rays without providing a coating layer. Can block a wide range of electromagnetic waves.
Furthermore, as the adhesive, polyurethane adhesive, polyester adhesive, and acrylic adhesive are conceivable, but considering the safety of textile products that require low formalin properties, polyurethane or polyester adhesive Agents are preferred.
Thus, the laminated yarn 1 is a yarn having a sandwich-like structure in which the vapor-deposited coating 12 made of an antibacterial metal is sandwiched between the synthetic resin films 11, and is a yarn having an antibacterial metal color.
In addition, as a width | variety which cut | disconnects a laminated body in the vertical direction, it is about 0.1-1.0 mm, and when considering from consistency of various characteristics, such as aesthetics, anti-electricity resistance, and heat insulation, 0.15-0.226 mm is desirable.
As described above, the side surface of the vapor-deposited film 12 is exposed to the outside, so that it oxidizes and chlorinates, but it rubs each other with adjacent fibers, and the oxidized portion may be removed. I can't see it. Moreover, since parts other than the side surface of the vapor deposition coating 12 are protected by the synthetic resin film 11, they are not oxidized or salified. Therefore, even if washing is performed repeatedly or a bleaching agent is used, the antibacterial power does not decrease, and the vapor-deposited coating 12 is not blackened, so that the appearance of the textile product is not deteriorated.
Further, even when heat is applied from the outside, most of the metal vapor-deposited coating 12 is covered with the synthetic resin film, so that the temperature of the laminated yarn 1 does not rise rapidly and causes low-temperature burns. Even if static electricity is generated in the woven clothes or the like, the static electricity is transferred to the outside through the vapor deposition coating 12, so that it is difficult to charge the static electricity.
Furthermore, since a wide range of electromagnetic waves from infrared rays to X-rays can be blocked by the metal forming the vapor deposition film, it has high electromagnetic wave blocking properties and heat blocking properties, and is based on a synthetic resin film, which is high. Has flexibility.
Next, the laminated yarn according to the present invention is manufactured and subjected to various tests, and the present invention is described in more detail.
"Experiment 1"
(1) Production of laminated yarn Pure silver is vapor-deposited on a 12 micron thick polyester film (manufactured by Toyobo Co., Ltd.) by an ion vapor deposition method to form a vapor-deposited film having a thickness of 50 nm. Next, the polyester film having the vapor-deposited film is bonded to each other with a polyester-based adhesive so that the vapor-deposited film is on the inside, thereby producing a laminate having a sandwich structure. Finally, the laminate was longitudinally cut into a width of 226 microns to obtain a laminated yarn, which was subjected to the following various tests.
(2) Antibacterial test An antibacterial test was conducted by a shake flask method using a towel fabric in which a laminated yarn was woven into the ground yarn at intervals of 6 mm. In addition, Klebsiella pneumoniae was used as a test bacterium, and an unprocessed cloth (made of nylon) was used as an experimental control. The results are shown in Table 1.
Figure 0004096175
Next, an antibacterial test was conducted by a shake flask method using a toe portion of a sock in which laminated yarn was knitted at intervals of about 1 mm. In addition, Klebsiella pneumoniae was used as a test bacterium, and an unprocessed cloth (made of nylon) was used as an experimental control. The results are shown in Table 2.
Figure 0004096175
Furthermore, an antibacterial test was performed by the SEK bacteria count method using pantyhose knitted with laminated yarn at intervals of 2 mm. In addition, ringworm bacteria were used as test bacteria, and unprocessed cloth (made of nylon) was used as an experimental control. The results are shown in Table 3.
Figure 0004096175
As is clear from Table 1, Table 2 and Table 3, when the same number of test bacteria are inoculated and the number of remaining bacteria after a certain time is compared, there is a sufficient difference in antibacterial activity between the sample and the experimental control. It was confirmed that the laminated yarn has a sufficient antibacterial effect. Moreover, it was recognized that the antibacterial spectrum of the above-mentioned laminated yarn ranges widely from bacteria (prokaryotes), Klebsiella pneumoniae to fungi (eukaryotes), ringworm.
(3) Washing resistance test After washing a specified number of times a towel fabric in which laminated yarn was woven at intervals of 4 mm, an antibacterial test was conducted by a shake flask method to examine changes in the antibacterial activity due to washing. In addition, Klebsiella pneumoniae was used as a test bacterium. The results are shown in Table 4.
Figure 0004096175
Next, the food wrap cloth in which the laminated yarns were woven at intervals of 5 mm was washed a specified number of times, and then the antibacterial test was conducted by the shake flask method to examine the change in the antibacterial power by washing. In addition, E. coli was used as a test bacterium. The results are shown in Table 5.
Figure 0004096175
Furthermore, after washing the food wrap cloth in which the laminated yarns were woven at intervals of 5 mm, the antibacterial property test was conducted by the SEK unification test method, and the change of the antibacterial activity due to washing was examined. In addition, Escherichia coli O-157 was used as a test bacterium, and cotton gauze was used as an experimental control. The results are shown in Table 6.
Figure 0004096175
As apparent from Table 4, Table 5 and Table 6, it was found that the antibacterial activity of the laminated yarn did not decrease even when washing was repeated, but rather the impurities were eliminated and the antibacterial activity was improved as washing was repeated.
(4) Chlorine bleach resistance test About 10 grams of laminated yarn was bundled and the color change after bleaching a specified number of times was observed. The bleaching solution was obtained by adding 300 ml of distilled water to 12 ml of kitchen bleach and changing the temperature to see the difference depending on the temperature. The results are shown in Table 7.
Figure 0004096175
As is clear from Table 7, it was confirmed that even if the bundled laminated yarn was bleached, especially when it was bleached under severe conditions of 50 ° C. and 30 minutes, the laminated yarn was not blackened.
(5) Test for preventing heat from heating A T-shirt was made with a tengu made of knitted laminated yarn at an interval of 5 mm, and the T-shirt was heated with an infrared lamp from about 20 cm, and the temperature change in the surface and the fabric was examined. The results are shown in the graph of FIG. As an experimental control, a T-shirt containing no laminated yarn was used.
As is clear from FIG. 2, it was found that even when the laminated yarn was woven, the heat resistance was not lowered and the temperature increased only to the same extent as the experimental control.
(6) Heat insulation test A core yarn of 30th single yarn is produced with a cotton yarn covered with a short cotton fiber as the core yarn, and the core yarn is used as warp yarn or weft yarn, 20 pieces per inch (each A) A coated fabric containing 12 pieces (B) and 7 pieces (C) was produced. And the light was irradiated from the front side of the coated fabric (blank) not including the coated fabric (A), (B), (C) and the laminated yarn, and the temperature difference before and after the fabric was measured. Table 8 shows the time-dependent change in temperature difference before and after the dough, and Table 9 shows the measured temperature of each dough after irradiation for 5 minutes.
Figure 0004096175
Figure 0004096175
In Table 8 and Table 9, when comparing the temperature difference before and after the dough 5 minutes after light irradiation, the temperature difference of (A) containing 20 core yarns per inch is about 2-3 degrees larger than the blank. Recognize. From this, it was found that the heat shielding property was improved by weaving the core yarn containing the laminated yarn.
(7) Antistatic property test Using the T-shirt produced in (5), an antistatic function test was conducted according to the method described in JIS 1094-5. The measurement conditions are a temperature of 20 ° C. and a humidity of 20%. The results are shown in Table 10. As an experimental control, a T-shirt containing no laminated yarn was used.
Figure 0004096175
As shown in Table 10, it was found that the electrostatic capacity and voltage accumulated in the T-shirt were reduced, and the antistatic function was improved by weaving the laminated yarn.
"Experimental example 2"
(8) Manufacture of twisted yarn A 50 nm thick metal film made of pure silver (purity 99.99%, manufactured by Mitsubishi Materials) was deposited on a 9 micron thick polyester film (manufactured by Toray) by vacuum deposition technology. The formed synthetic resin film was bonded with a polyester-based adhesive (manufactured by Sumitomo 3M) so that the vapor-deposited coatings were inside, and cut into a width of 150 microns to produce a laminated yarn. Then, a 30-denier / 5-filament polyester yarn was twisted into the laminated yarn one by one in the left and right direction to produce a twisted yarn.
(9) Manufacture of men's suit lining fabric 50 denier / filament polyester yarn (manufactured by Toray) warped so that 150 warps can be inserted in 1 inch, 75 denier / 72 filament polyester yarn (Toray) Weaving 30 weft yarns made in (8) to a total of 70 yarns per inch and weaving them in a twill weave, refining them, and dyeing them in blue with disperse dyes. Manufactured. The twisted yarn in the fabric for lining the men's suit had a blue metallic color, and the interval between the twisted yarns was about 10 mm.
(10) Antistatic test An experimental control using a 75 denier / 72 filament polyester yarn (made by Toray) instead of a twisted yarn was produced in the same manner as in (9), under an environment of temperature 20 ° C. and humidity 20%. The antistatic property test was conducted by measuring the charged voltage at the moment when the friction was stopped by rubbing with a nylon and acrylic fabric for 1 minute. As a result, the withstand voltage of the experimental control exceeded 4000 volts, while the charging voltage of the fabric for lining the gentleman suit manufactured in (9) was 300 volts or less.
"Experiment 3"
(11) Manufacture of men's suit lining fabric (8) Same as (9) except that the number of twisted yarns produced in (8) is 10 at an even pitch and dyed black with disperse dye The fabric for lining a gentleman's suit was manufactured by the method described above. The twisted yarn in the men's suit lining fabric had a black metallic color, and the interval between the twisted yarns was about 2.5 mm.
(12) Thermal barrier test An experimental control using polyester yarn of 75 denier / 72 filaments (manufactured by Toray) instead of twisted yarn was produced in the same manner as (11), and the following (a) to (d) A thermal barrier test was performed according to the procedure. First, (a) a light (one national lamp: two PRF-500wWBs) is installed in one direction, (b) 30 cm away from the light and at a right angle to the light traveling direction, The experiment control and the men's suit lining fabric produced in (11) were each combined with two pieces of brown clothing, then placed in a screen, (c) irradiated with light for 5 minutes, (d) subject to experiment ( The temperature difference between the light side and the opposite side of the men's suit lining fabric produced in 11) was measured.
As a result, the temperature on the light side of the experimental control was 44.8 ° C., and the temperature on the opposite side of the light was 29.1 ° C. Further, the temperature on the side of the gentleman lining fabric light manufactured in (11) was 46.1 ° C., and the temperature on the opposite side of the light was 27.2 ° C. Therefore, it was found that the gentleman suit lining fabric produced in (11) cut off heat of 1.3 ° C. on the light side (heat source side) and 1.9 ° C. on the opposite side as compared to the experimental control.
"Experimental example 4"
(13) Manufacture of coat fabric The laminated yarn produced in (1) was covered with cotton fibers to produce a core yarn with 30 cotton counts. Next, weft yarns that are warped so that the number of 30th cotton yarn per inch is 150 are combined with the weft yarn in a ratio of 5 for 30 core cotton to one core yarn. A gabardine fabric was produced by weaving at the same interval so as to be 80 per hit, refined, and dyed black with reactive dye and disperse dye to produce a coating fabric.
(14) Thermal barrier test Except that only 30th cotton yarn was used as the weft, the thermal barrier test was performed in the same manner as in (12) using the coating fabric produced in the same manner as in (13) as the test subject. Went.
As a result, the temperature on the light side of the experimental control was 40.5 ° C., and the temperature on the opposite side of the light was 28.2 ° C. Further, the temperature on the light side of the fabric for lining the gentleman suit manufactured in (13) was 43.3 ° C., and the temperature on the opposite side was 26 ° C. Therefore, it was found that the coating fabric produced in (13) blocked heat at 2.8 ° C. on the light side (heat source side) and 2.2 ° C. on the opposite side compared to the experimental control.
“Experimental Example 5”
(15) Manufacture of shirts Weft yarn, which is obtained by combining 40 cotton yarns with 130 warps per inch and 4 40 cotton yarns with the ratio of one core yarn used in (13), is used between 1 inch. A shirt was produced by exposing 85 broad cloths.
(16) Thermal barrier test The same person wears the shirt manufactured in (15) and the experimental control shirt after walking for 5 minutes in an environment with an air temperature of 18 ° C. and a humidity of 50%. Was kept for 3 minutes, and the difference in skin surface temperature was measured with a thermograph. The shirt for the experiment was manufactured in the same manner as (15) except that 40th cotton yarn was used instead of the core yarn.
As a result, it was found that the shirt manufactured in (15) was superior to the experimental control by 3.2 ° C. in heat retention.
"Experimental example 6"
(17) Production of lace curtain fabric 90 yarns of 150 denier polyester between 1 inch and 10 twisted yarns (equal to those produced in (8)) inserted evenly between them as warp yarns, A fabric for lace curtains was produced by knitting and refining with a Raschel machine, a type of warp knitting machine.
(18) Thermal barrier test The thermal barrier test was conducted in the same manner as (12) except that a standard white cloth (cotton cloth) was used instead of the brown fabric. As an experimental control, a lace curtain fabric produced in the same manner as in (17) was used except that polyester 150 denier yarn was used instead of twisted yarn.
As a result, the temperature on the light side of the experimental control was 41.7 ° C., and the temperature on the opposite side of the light was 25.8 ° C. The temperature on the light side of the lace curtain fabric produced in (17) was 43.8 ° C., and the temperature on the opposite side of the light was 26.3 ° C. Accordingly, it was found that the lace curtain fabric produced in (17) was 2.1 ° C. higher on the light side.
As described above, the laminated yarn 1 and the fabric including the laminated yarn 1 have excellent antibacterial properties, washing resistance, heat resistance, heat shielding properties, antistatic properties, and the like, and also have excellent aesthetics. Yes.
In addition, this invention is not limited to the said embodiment and Example, A various change is possible within the range of the technical matter described in the claim.
For example, as shown in FIG. 3, a coat layer 23 may be provided outside the synthetic resin film 21 constituting the laminated yarn 2. Examples of the material for the coat layer 23 include barium oxide, titanium oxide having a photocatalytic function, and a silicon compound.
When barium oxide is used for the coat layer 23, the X-ray shielding property of the laminated yarn 2 can be improved. For example, a fabric in which the deposited film 2 is made of silver having a thickness of 200 nm and a laminated yarn 2 in which a 5-200 micron thick coat layer made of barium oxide is provided on a synthetic resin film 21 is imaged with X-rays. In addition, a woven fabric in which 20-30 yarns are put into the warp yarn and the weft yarn for 1 inch each can cut off the electromagnetic wave of about 60 db level.
When titanium oxide is used for the coating layer 23, dead bacteria due to the antibacterial metal of the vapor deposition coating 22 can be decomposed and detoxified by active oxygen generated by the photocatalyst (titanium oxide), and the silicon compound is coated with the coating layer 23. When used for the above, the heat retaining function of the laminated yarn 2 can be enhanced.
Further, as shown in FIG. 4, a coat layer 33 made of a pigment such as titanium oxide may be provided between the vapor deposition coating 32 and the synthetic resin film 31. As a result, the metal color of the antibacterial metal is erased, and it becomes possible to use it for a textile product in which a metal color thread such as a white coat cannot be used.
And as shown in FIG. 5, you may provide the coating layer 43 which consists of barium oxide etc. on the vapor deposition film 42. As shown in FIG. Thereby, even if it reduces the usage-amount of the antibacterial metal which comprises the vapor deposition film 42, the equivalent electromagnetic wave shielding property can be obtained, and when an antibacterial metal is silver, production cost can be reduced.
Further, the laminated yarn may be twisted with nylon wooly or the like to form a twisted yarn, or a natural fiber such as cotton or a short fiber made of synthetic fiber such as polyester may be wound around the laminated yarn to form a core yarn. Thereby, the touch of the laminated yarn can be improved, the dyeability can be improved, and the utilization range of the laminated yarn can be expanded.
In addition, the laminated yarn can be used as a material for brushes and cleaning mops for toilets, etc. by increasing the thickness of the synthetic resin film in addition to cloth products. It can be affixed to concrete walls, ceilings, floors, etc., and can also be used as an electromagnetic wave removing material.
INDUSTRIAL APPLICABILITY The laminated yarn according to the present invention is a sandwich-like structure yarn in which both sides of a vapor-deposited coating made of an antibacterial metal are sandwiched between synthetic resin films, so that the appearance is beautiful and has high antibacterial properties. The antibacterial activity did not decrease even after repeated washing, and exhibited high heat-preventing properties, heat-blocking properties, antistatic properties, electromagnetic wave-blocking properties, and flexibility.
Further, by providing a coat layer on the outside of the synthetic resin film, it was possible to impart a decomposition function by a photocatalyst, a heat retention function, and an electromagnetic wave shielding property.
Moreover, by providing a coating layer made of a pigment such as titanium oxide between the vapor-deposited film and the synthetic resin film, the metal color of the antibacterial metal can be erased and various colors can be colored.
Furthermore, by providing a coat layer on the vapor deposition film, the amount of antibacterial metal such as silver used as the vapor deposition film can be reduced, and a laminated yarn can be produced at a lower cost.
In addition, it is possible to improve the silkiness of the laminated yarn by using a core yarn in which cotton short fibers are wound around the laminated yarn, to enhance the dyeability and to expand the use range of the laminated yarn. I was able to.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing the structure of a laminated yarn. Moreover, FIG. 2 is a graph which shows the result of a heating prevention function test. Furthermore, FIG. 3, FIG. 4, and FIG. 5 are diagrams schematically showing the structure of other laminated yarns.

Claims (12)

厚さ4〜12ミクロンの合成樹脂フィルムにを蒸着させて厚さ50〜100nmの蒸着被膜を成膜し、成膜した合成樹脂フィルム同士を蒸着被膜が内側になるように接着し、接着されてサンドイッチ状構造となった積層体を縦方向に巾0.15〜0.226mmに細長く切断して形成された、抗菌性のみならず、熱遮断性をも有することを特徴とする積層糸。 Silver is deposited on a synthetic resin film having a thickness of 4 to 12 microns to form a vapor-deposited film having a thickness of 50 to 100 nm. The formed synthetic resin films are bonded to each other so that the vapor-deposited film is inside. A laminated yarn formed by cutting a laminate having a sandwich-like structure into a length of 0.15 to 0.226 mm in the longitudinal direction and having not only antibacterial properties but also heat shielding properties . 厚さ4〜12ミクロンの合成樹脂フィルムに銀を蒸着させて厚さ200nmの蒸着被膜を成膜し、成膜した合成樹脂フィルム同士を蒸着被膜が内側になるように接着し、接着されてサンドイッチ状構造となった積層体の最外層に酸化バリウムによる厚さ5〜200ミクロンのコート層を設けた後、該積層体を縦方向に巾0.15〜0.226mmに細長く切断して形成された、抗菌性のみならず、熱遮断性、X線遮断性をも有することを特徴とする積層糸 Silver is deposited on a synthetic resin film having a thickness of 4 to 12 microns to form a vapor-deposited film having a thickness of 200 nm. After forming a coating layer having a thickness of 5 to 200 microns with barium oxide on the outermost layer of the layered structure, the layered structure is cut into a width of 0.15 to 0.226 mm in the longitudinal direction. A laminated yarn characterized by having not only antibacterial properties but also heat shielding properties and X-ray shielding properties . 厚さ4〜12ミクロンの合成樹脂フィルムに銀を蒸着させて厚さ50〜100nmの蒸着被膜を成膜し、成膜した合成樹脂フィルムと該蒸着皮膜との間に酸化チタンを原料とする顔料によるコート層を設け、合成樹脂フィルム同士を該蒸着皮膜同士が内側になるように接着し、接着されてサンドイッチ状構造となった積層体を縦方向に巾0.15〜0.226mmに細長く切断して形成された、抗菌性のみならず、熱遮断性をも有することを特徴とする積層糸 Pigment made of titanium oxide as a raw material between a deposited synthetic resin film and the deposited film by depositing silver on a synthetic resin film having a thickness of 4 to 12 microns to form a deposited film having a thickness of 50 to 100 nm. A coating layer is provided, and the synthetic resin films are bonded together so that the vapor-deposited films are inside, and the laminated body that is bonded to form a sandwich-like structure is cut into a width of 0.15 to 0.226 mm in the longitudinal direction. A laminated yarn characterized by having not only antibacterial properties but also heat shielding properties . 厚さ4〜12ミクロンの合成樹脂フィルムに銀を蒸着させて厚さ50〜100nmの蒸着被膜を成膜し、該蒸着皮膜上に酸化バリウムによるコート層を設け、合成樹脂フィルム同士を該コート層同士が内側になるように接着し、接着されてサンドイッチ状構造となった積層体を縦方向に巾0.15〜0.226mmに細長く切断して形成された、抗菌性のみならず、熱遮断性、電磁波遮断性をも有することを特徴とする積層糸 Silver is vapor-deposited on a synthetic resin film having a thickness of 4 to 12 microns to form a vapor-deposited film having a thickness of 50 to 100 nm, a coating layer made of barium oxide is provided on the vapor-deposited film, and the synthetic resin films are bonded to each other. Adhesive so that they are inside each other, formed by cutting the laminate that has been bonded into a sandwich-like structure into a width of 0.15 to 0.226 mm in the longitudinal direction, not only antibacterial but also heat shielding A laminated yarn characterized by having both properties and electromagnetic shielding properties . 請求項1に記載の積層糸に、天然繊維若しくは合成繊維からなる短繊維を巻きつけてなり、抗菌性のみならず、熱遮断性をも有することを特徴とするコアヤーン A core yarn obtained by winding short fibers made of natural fibers or synthetic fibers around the laminated yarn according to claim 1, and having not only antibacterial properties but also heat shielding properties . 請求項2に記載の積層糸に、天然繊維若しくは合成繊維からなる短繊維を巻きつけてなり、抗菌性のみならず、熱遮断性、X線遮断性をも有することを特徴とするコアヤーン A core yarn obtained by winding a short fiber made of natural fiber or synthetic fiber around the laminated yarn according to claim 2, and having not only antibacterial properties but also heat shielding properties and X-ray shielding properties . 請求項3に記載の積層糸に、天然繊維若しくは合成繊維からなる短繊維を巻きつけてなり、抗菌性のみならず、熱遮断性をも有することを特徴とするコアヤーン A core yarn obtained by winding a short fiber made of natural fiber or synthetic fiber around the laminated yarn according to claim 3, and having not only antibacterial properties but also heat shielding properties . 請求項4に記載の積層糸に、天然繊維若しくは合成繊維からなる短繊維を巻きつけてなり、抗菌性のみならず、熱遮断性、電磁波遮断性をも有することを特徴とするコアヤーン A core yarn obtained by winding short fibers made of natural fibers or synthetic fibers around the laminated yarn according to claim 4, and having not only antibacterial properties but also heat shielding properties and electromagnetic wave shielding properties . 請求項1に記載の積層糸に、ポリエステル糸を撚り合わせてなり、抗菌性のみならず、熱遮断性をも有することを特徴とする撚糸 A twisted yarn obtained by twisting a polyester yarn to the laminated yarn according to claim 1 and having not only antibacterial properties but also heat shielding properties . 請求項2に記載の積層糸に、ポリエステル糸を撚り合わせてなり、抗菌性のみならず、熱遮断性、X線遮断性をも有することを特徴とする撚糸 A twisted yarn obtained by twisting a polyester yarn to the laminated yarn according to claim 2 and having not only antibacterial properties but also heat shielding properties and X-ray shielding properties . 請求項3に記載の積層糸に、ポリエステル糸を撚り合わせてなり、抗菌性のみならず、熱遮断性をも有することを特徴とする撚糸 A twisted yarn obtained by twisting a polyester yarn to the laminated yarn according to claim 3 and having not only antibacterial properties but also heat shielding properties . 請求項4に記載の積層糸に、ポリエステル糸を撚り合わせてなり、抗菌性のみならず、熱遮断性、電磁波遮断性をも有することを特徴とする撚糸 A twisted yarn obtained by twisting a polyester yarn on the laminated yarn according to claim 4 and having not only antibacterial properties but also heat shielding properties and electromagnetic wave shielding properties .
JP2002504709A 2001-03-19 2001-03-19 Laminated yarn Expired - Lifetime JP4096175B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/002193 WO2001098567A1 (en) 2000-06-19 2001-03-19 Yarn having laminated structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006061500A Division JP2006188811A (en) 2006-03-07 2006-03-07 Laminated yarn

Publications (2)

Publication Number Publication Date
JPWO2001098567A1 JPWO2001098567A1 (en) 2004-01-08
JP4096175B2 true JP4096175B2 (en) 2008-06-04

Family

ID=39560896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002504709A Expired - Lifetime JP4096175B2 (en) 2001-03-19 2001-03-19 Laminated yarn

Country Status (1)

Country Link
JP (1) JP4096175B2 (en)

Also Published As

Publication number Publication date
JPWO2001098567A1 (en) 2004-01-08

Similar Documents

Publication Publication Date Title
US20090277575A1 (en) Yarn having laminated structure
WO1999057350A1 (en) Compound yarn and warp knitted fabric containing metal-plated thread
TWI318250B (en) Flame retardant textile fabric
US5215816A (en) Hospital textile
JP2006188811A (en) Laminated yarn
JP4096175B2 (en) Laminated yarn
CN110468463A (en) A kind of high-end knitting fabric and its processing method
JP4258884B2 (en) Antibacterial polyester spun yarn knitted fabric
JP2000282345A (en) Ultraviolet screening fabric
CN213322083U (en) Warp-knitted super-soft cashmere fabric
CN214646434U (en) Wear-resistant garment fabric with high toughness
CN213295691U (en) Structure fabric with functions of moisturizing, water locking, skin friendliness and ultraviolet resistance
CN211000273U (en) Anti-pilling fabric
JP6321530B2 (en) Woven knitted fabric with excellent see-through prevention
CN113862873A (en) Multifunctional graphene/polyester-viscose interwoven fabric and preparation method thereof
CN210139673U (en) Antistatic garment fabric
CN212528939U (en) Antistatic yarn-dyed fabric
CN218660849U (en) Antibacterial polyester low stretch yarn fabric
JP2000282344A (en) Ultraviolet screening fabric
JP2001049541A (en) Laminated yarn
CN214821392U (en) Flax cloth with uniform color scraping effect
TWM573347U (en) Composite fiber antibacterial cloth with copper alloy filament
CN218399700U (en) Antibacterial high-flame-retardant napped cloth
CN217099198U (en) Cool and comfortable textile fabric
CN214774382U (en) Wear-resistant coating fabric

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080226

R150 Certificate of patent or registration of utility model

Ref document number: 4096175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term