JP4095715B2 - Optical connector assembly - Google Patents

Optical connector assembly Download PDF

Info

Publication number
JP4095715B2
JP4095715B2 JP12999698A JP12999698A JP4095715B2 JP 4095715 B2 JP4095715 B2 JP 4095715B2 JP 12999698 A JP12999698 A JP 12999698A JP 12999698 A JP12999698 A JP 12999698A JP 4095715 B2 JP4095715 B2 JP 4095715B2
Authority
JP
Japan
Prior art keywords
optical
connector
optical connector
switch
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12999698A
Other languages
Japanese (ja)
Other versions
JPH11326699A (en
Inventor
一郎 横田
直樹 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Communication Technologies Ltd
Original Assignee
Hitachi Communication Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Communication Technologies Ltd filed Critical Hitachi Communication Technologies Ltd
Priority to JP12999698A priority Critical patent/JP4095715B2/en
Publication of JPH11326699A publication Critical patent/JPH11326699A/en
Application granted granted Critical
Publication of JP4095715B2 publication Critical patent/JP4095715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
本発明は、光コネクタの勘合状態を構造的に検出可能な光コネクタに関する。
【0002】
【従来の技術】
光コネクタが不完全に接続された場合、光入力または光出力レベルは、光コネクタの振動等により、容易に変動してしまう。光増幅器を用いる場合、この光入力または出力変動によって、光部品の破損等、装置に重大な影響を与えてしまう。この対策として、光を分岐してモニタすることによって、光変動、光有無を監視して装置を制御するといった光学的検出方法が取られている。
【0003】
この例として、特開平5−130043号公報があり、コネクタ外れを検出する例として特開平5−83201号公報がある。
【0004】
光増幅器は、単に光出力の増幅のみに限らず、機能光部品の損失補償としても使用される。波長分散がある光ファイバ伝送路の距離が長くなると分散値が大きくなり、分散の影響を除くために波長分散を補償する必要が生じる。特願平7−301831号公報には、波長分散補償器を増幅部の中央に入れ、長距離の伝送路で生じた損失と同時に分散を補償することが行われている。このとき光増幅器の中央に損失が生じる光部品を配置すると光増幅器の低雑音性を保ちながら、見かけ上光部品の損失を小さくし、励起効率を高くすることができる。前記公報記載の発明は、2段の増幅部に対して1台の励起光源を用いる方法であり、前方の増幅部の励起の残留励起光を後段の光増幅部に用いている。また別の構成として前方の増幅部と後方の増幅部に各々別に励起光源を用いる場合もある。
【0005】
また、作業者の安全性を考慮した光コネクタの搭載方法として、特開平2−272405号公報に記載がある。
【0006】
光コネクタ脱着検出方法として機械的手法を採用した場合、完全に光コネクタが勘合されているかを識別できるかが課題となる。装置保守等の場合、脱着を行う光コネクタは、基板に搭載した対向側の光コネクタと接続されるが、通常光コネクタ同士を保持するプリント基板に固定のアダプタに各々取り付けられる。脱着される可能性のある光コネクタがアダプタに完全に勘合された状態を見極め、その状態は他の状態、例えばコネクタ未接続状態と区別できなければならない。
【0007】
次に完全にコネクタ勘合を検出する機能が必要な場合を説明する。
光増幅器では光サージという問題がある。光サージは、光出力を規定の値に保つ制御を行う場合には、光入力が小さいと光増幅器の潜在利得が高くなり、そのときに急激に高い入力が入ると発生する。この光サージが発生すると次段につながる受光器をこわしシステム断となってしまう。このため、光サージを抑えることが必要である。
【0008】
この急激に立ち上がる高入力の要因の一つとして光コネクタの脱着がある。
光サージを抑えるには潜在利得の上昇を抑えることが一つのポイントとなり、潜在利得を励起を低くして抑える必要がある。上述の特開平5−130043号公報に記載のように、予め定めた光入力値以下に光入力が下がると光励起を落としてしまう方法がある。しかし、予め定めた光入力値ぎりぎりの光入力でも、まだ高い光励起状態が発生し、高い入力への復帰時に光サージが生じる。これを避けるためには絶対値判定の他に光入力を瞬時に相対値でも把握して規定の光変動以上の場合、直ちに励起を落とす制御をしなければならない。しかしこのような制御方法は有効ではあるが、回路構成が複雑になり高価となり、他の検出方法が望まれる。
【0009】
光コネクタに伴う光サージ抑制の手段として光増幅器の初段の入力部にコネクタ脱着検出機能の設置は効果的でない場合がある。なぜなら光増幅器に直接つながれる光コネクタは検出できるが、光増幅器に到達する途中の伝送路でコネクタが外された場合を検出して、瞬時に離れた光増幅器の励起を制御することは困難であるからである。また光が変動する要因として光コネクタ脱着以外にも考えれれ、光サージを本発明の構造物のみで対処するのは現実的でない。
【0010】
途中の伝送路を経由しない、例えば光増幅器の場合、中央部に光部品を挿入する構成は有効である。光増幅器の中間に光部品を挿入するとき、その光部品の光コネクタでの挿抜去時から再挿入時に光サージを発生させる危険がある。
【0011】
具体的に2段の増幅部に対して1台の励起光源を用いた場合で説明する。光増幅器として光入力は所定の値があっても、中間の挿入部品の光コネクタ抜去時には光学的に断線した状態となる。後段の光ファイバへの入力がないため励起状態が高くなる。この状態で光部品の光コネクタを再挿入すると前段で増幅された信号光が高励起状態の後段の増幅用光ファイバに入射するため、光出力側で光サージが発生する。このような中間への光部品の抜挿時における光サージを抑える必要がある。
【0012】
【発明が解決しようとする課題】
光増幅器の中間に光部品を光コネクタで挿抜可能な構成とするとき、後段の光出力が低下した場合、後段の増幅用光ファイバの光出力の劣化に関しての故障によるものか、それとも光部品のコネクタ抜けによるものか区別できない。光部品の未接続による光出力の低下か本当の光増幅器の故障か、この2つの状態を区別する方法が必要である。
【0013】
光送信器においては、光コネクタ脱着に伴う光変動が生じ、次段に光増幅器が幾台もつながると光サージが成長して受信器を破壊してしまう。完全に光結合が行われてからレーザ発光する機構が望まれる。
【0014】
受信器においては、コネクタ半挿入による光入力のふらつきは受信器の特性劣化につながり好ましくない。また光学的手法による入力光モニタは光部品が追加されコスト増となる。
【0015】
波長多重光伝送においては、多数の光ファイバがつながる。例えば64波長多重の場合、各光送信器を64個そろえ、各光ファイバを合波器に接続し光増幅器で一括増幅する構成がある。
【0016】
そのとき、各送信器の光出力は光増幅器を幾段にもつなぐと各波長の光出力がばらつき伝送距離を制限してしまう。このため各送信器の光出力は等しくなるように調整されるがコネクタ半挿入だと光増幅器に入力されるパワーが低下し最終的に伝送劣化を生じてしまう。これを防止するために光学的手法によるモニタを各波長で行う、もしくは光送信器の各波長に主信号に影響しない程度に変調して、その変調成分を光増幅器で観測して判断するといった手法もあるが、伝送路を介しないで一装置内のプリント基板間の光コネクタ接続の場合は、簡易に機械的に判断できる機構が望まれる。
【0017】
【課題を解決するための手段】
光コネクタに、プリント基板に搭載されているアダプタに完全に勘合されているかを判定できる機械的スイッチを持たせることにより上記課題を解決する。すなわち、完全に勘合されたとき、単数あるいは複数のスイッチが特有な状態となり、それを回路的に判定し光伝送装置を制御もしくはコネクタ状態の情報を判断し、必要に応じ他装置に伝達する。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて説明する。
まず、本発明の実施例である光コネクタ結合体を、図1ないし図4を用いて説明する。ここで、図1はアダプタ構造を説明する斜視図、図2は光コネクタとアダプタとの結合を説明する図、図3は光コネクタ結合体のスイッチ構造を説明する図、図4は光コネクタ結合体の断面図である。
【0019】
図1は、光コネクタが挿入されるアダプタ20であって、アダプタ20はコネクタ(図示しない)との結合用爪22とスイッチを構成する可動接点40と固定接点43とを含んでいる。組み付け後のアダプタでは、可動接点40はコネクタが挿入されるスリーブに設けた穴部21を通して固定接点43と接続しなお、本実施例では、2連のスイッチを用いているが、簡単のため1個のみ図示している。図2には、アダプタ20に固定されている対向側光コネクタ30と、脱着用光コネクタ31とを示す。図3の光コネクタ結合体のスイッチ部10はスイッチ11とスイッチ12の2つから構成され、スイッチ11は脱着を行う光コネクタ31がアダプタ20に入っているかの検出用であり、スイッチ12は光コネクタ31がアダプタに完全に勘合されているか検出用である。スイッチ11、スイッチ12の開閉情報を、スイッチ処理回路50を介し、回路51を制御する。
【0020】
まず光コネクタが挿入される場合を説明する。スイッチ11の構造はスイッチ12と同様な構造で、搭載位置をスイッチ12より前方に設置すればよい。光コネクタ31がアダプタ20に入るとスイッチ11の可動接点が押され固定接点と接続する構造となっている。接続されると回路的にONとなるように設定してある。
【0021】
更に挿入されるとスイッチ11がON状態を継続しながら、スイッチ12が動作する。これを、図4のスイッチ部の詳細断面図を用いて説明する。挿入された光コネクタの側壁がアダプタの爪22の内側に入り、爪22を押し広げ可動接点40にぶつかり図4の手前側に可動接点40が動き、アダプタ20のスリーブ側壁に設けられている穴部21を通って固定接点41と接続される。固定接点41は回路的にGNDに落としてある。つまり電気のルートは可動接点40−固定接点41(GND)となり、回路的にONとなる。これら構造物の材質は接点類は電気的導通のある金属、スイッチのベース42は接点A40,接点B41が電気的に接続しないようにプラスチック等の絶縁物、アダプタ20はプラスチック等の絶縁物である。また市販のアダプタはプラスチックの他に金属性のもあるが、この場合は図4に図示した絶縁シート43等でアダプタ20と接点B41を電気的に接触しないように構成する。
【0022】
次に更に深く光コネクタを挿入されると、アダプタの爪22が閉じ完全に光コネクタが勘合される仕組みとなっている。この動作を利用すると勘合状態ではアダプタ爪22が閉じているので、可動接点40はバネ力より押し戻されスイッチ12は切れて、回路的にはOFFとなる。
【0023】
また光コネクタを外す場合を説明する。勘合状態からコネクタを外そうと引っぱるとアダプタの爪22が押し広げられスイッチ12がONとなり、更に引っぱると爪22が閉じてスイッチ12はOFFとなる。完全にアダプタ20からはずれた時点でスイッチAがONからOFFとなる。
【0024】
【表1】

Figure 0004095715
【0025】
これらの光コネクタの各状態におけるスイッチ動作、スイッチ処理回路の動作の一例として光伝送装置である光増幅器の励起電流の制御を表1に示す。表1より分かるように本制御は一般にXORの回路で実現可能である。これより2つのスイッチを設けた理由を説明する。光増幅器特有の光サージを抑圧するためには完全にコネクタが勘合された場合のみ励起電流を通常状態にする必要がある。SC形光コネクタの場合、挿入されるとアダプタの爪22部分が開き完全に勘合すると爪22が閉じられる。つまり爪22が閉じた状態は、完全に勘合されたときと未挿入のときの2つあり区別をつけるため光コネクタ勘合用のスイッチ12の他に光コネクタ外れ検出用のスイッチ11を設けている。
【0026】
本実施例1ではSCコネクタを取りあげたが、他の光コネクタにおいても勘合状態を検知できる構造物を設ければ適用可能である。その際スイッチは必ずしも2つの必要はなく1つで勘合状態を他の状態と区別して検知できれば1つでよい。
【0027】
次に本発明の実施例の変形例である光増幅器の実施例を図5を用いて説明する。図5に本発明の実施例である2段1励起光増幅器の構成図を示す。この光増幅器は、光部品126を中間に含む前段増幅部101と後段増幅部102との2段構成からなる光増幅器である。前段増幅部101と後段増幅部102とが同一のプリント基板100に搭載され、中間に置かれる光部品126は他のプリント基板に搭載され、中間部品126は伝送路の特性等によって交換可能である。入力端光コネクタから入射する信号光110は光分岐120より一部の光が分離され受光器121に入力され入力光のモニタに使用される。励起光源123と信号光の合波器122とにより信号光に励起光が重畳され、前段の増幅用光ファイバ124を励起した後、励起光/信号光分離器125で残留励起光を信号光と分ける。信号光は中間光部品126に行くが、残留励起光は後段の励起光/信号光結合器129に行く。再度信号光と結合され後段の増幅用光ファイバ130に入射する。この構成は励起光源123が1つで中間の光部品126が挿入されても、損失を効率よくとらえる。増幅された信号光が光分岐131で一部の光が分離されて受光器132に入力し、光出力としてモニタされ、モニタされた光信号が一定になるように励起光123の負帰還を制御51する。
【0028】
次に光部品挿抜時の光サージを抑圧について説明する。後段光増幅部102に光入力モニタ用に光分岐127を設けて受光器128に入力し、光入力が光コネクタ抜け等による低下の場合励起光123を落としている。完全に落としてしまうとコネクタ接続時検出できないので検出できるレベルまで励起を行っている。また後段部の光入力モニタ部127、128を削除して出力モニタ部131、132で後段増幅部102の入力を検出する場合は、信号光が後段増幅用光ファイバ130を経由するので後段入力モニタ127、128で検出する場合に比べてより大きい励起電流が必要となる。その励起電流が光サージを誘因しない程度に設定することが肝要である。
【0029】
中間にある光部品126の光損失は、例えば分散補償ファイバの場合、光損失は分散量を補償する値によるので、敷設してあるファイバに依存する。分散補償の必要がない時は単にファイバのみの接続であるから0dBであり、一方最大量の分散を補償する時は15dB程ある場合が考えられる。後段の光入力モニタ127、128を分散補償ファイバの損失によらず定められた絶対値判定で行うと、光サージを抑制する閾値の設定は光部品の損失の変動0〜15dBを考慮しなければならず、最悪光入力の変動が15dBまで許容され光サージの要因となってしまう。15dB程を許容してしまうと、光サージが次に接続される装置の光部品を破壊する可能性がある。
【0030】
中間部における大きな光変動の要因として光コネクタの脱着が考えられる。この対策として回路的には絶対値判定の他に、光コネクタの脱着に伴う急激な光変動に対する対処は相対的に判定しなければならず回路構成が複雑になる。
【0031】
この変形例の実施例では装置内で脱着する可能性のある中間光部品126の光コネクタ部に脱着を検出する機械的スイッチ10とスイッチ処理回路50を設けている。光コネクタが抜かれた場合、瞬時に励起光123を光コネクタ再接続時に後段光増幅部の入力モニタ127、128が検出出来るレベルまで落とす。また光コネクタが抜去しすぐに挿入された場合、瞬時に励起光123を注入すると光サージが発生するので保護時間数十ms後励起電流を立ち上げるシーケンスとする。またこの機構より光コネクタの脱着が把握できることから、光信号出力111が正常でない場合、前段光増幅部101、後段光増幅部102の光出力の低下に関しての故障によるものか、それとも中間光部品126のコネクタ抜けによるものか区別できる。
【0032】
本発明の実施例の別の変形例として、光送信器がある。光送信器では光コネクタが完全に勘合してから、レーザ出力を発光する回路構成とする。これより送信器から出力される光がコネクタ脱着による光サージの要因となる低いレベルから急激に高出力まで立ち上がる光波形は生成されない。
またプリント基板の光コネクタを直接除いた状態では、挿入されるコネクタが外れており、発光していないため取り扱い者に対する安全性を確保できる。
【0033】
本発明の実施例の他の変形例として、光受信器がある。光受信器では光コネクタが完全に勘合してから、受光回路を動作させる回路構成とする。これよりコネクタの半挿入の場合等のコネクタ接続勘合不良の際、受光器に入力される変動による特性劣化が回避できる。
【0034】
本発明の実施例のその他の変形例として、光増幅器を用いた64波長多重伝送装置があり、その構成を図6に示す。送信装置140では光送信器141が64個あり、各々光出力が光コネクタから発出される。この64本の光ファイバを合波器142に結合し、合波器142から光増幅器143に接続される。送信器141、合波器142、光増幅器143は一つの装置内に収納され伝送路ファイバ144を経由しない。光コネクタの脱着検出機構10を各送信器141の64箇所の出力、結合される合波器142の光入力ポート64箇所、合波器142の出力1箇所、それを一括増幅する光増幅器143の入力に1箇所に設ける。これより光送信器141−合波器142−光増幅器143の光ファイバ勘合が検査でき、課題で述べたような光学的モニタの措置は不要となる。もしくは光入力をモニタする方法と併用してもよい。ファイバを多数扱うことから、構造的な光コネクタ勘合の状況が前述したように各光コネクタに対応して表示すれば、保守の場合など便利である。
【0035】
また、本発明の実施例のさらなる変形例として、受信装置145でも本発明の構造を用いるとよい。各光接続箇所の光増幅器143、分波器146、各受信器147にも光コネクタの脱着検出機構10が設置される。本発明の構造を用いた光伝送装置として、コネクタ勘合状態を判定し必ずしも装置を制御しなくてもよい。コネクタ外れ、不完全な勘合状態時ランプでプリント基板上に表示する。もしくは他の管理するプリント基板に情報を伝達して処理をしてもよい。
【0036】
【発明の効果】
本発明によれば、機械的に光コネクタの脱着が検出でき、特に光コネクタが完全に勘合されたかどうか判断できる。コネクタ脱着情報より、伝送装置を制御することにより信頼性、安全性を高められる。装置の光コネクタの脱着情報が把握できることから、使い勝手をよくする。
【図面の簡単な説明】
【図1】光アダプタの構造を示す斜視図である。
【図2】光コネクタ結合体を説明する図である。
【図3】光アダプタのスイッチ構成を説明する図である。
【図4】光コネクタ結合体の接合検出構造を説明する図である。
【図5】本発明の2段1励起光増幅器の構成を説明する図である。
【図6】本発明の波長多重伝送装置の構成を説明する図である。
【符号の説明】
10…スイッチ部、11、12… スイッチ、20…アダプタ、21…アダプタの横穴、22…光コネクタ勘合用の爪、30…プリント基板側光コネクタ、31…脱着光コネクタ、40…可動接点、41…固定接点、42…ベース、43…絶縁シート、50…スイッチ処理回路、51…回路制御部、52回路増幅器、53…コンパレータ、100…プリント基板、101…前段光増幅部、102…後段光増幅部、110…光信号入力、111…光信号出力、120…前段光入力用モニタ用光分岐器、121…前段光入力用モニタ用受光器、122…前段前方励起光/信号光結合器、123…前段・後段励起光源、124…前段増幅用光ファイバ、125…0.98μm/信号光分離器、126…中間挿入光部品、127…後段光入力用モニタ用光分岐器、128…後段光入力用モニタ用受光器、129…0.98μm/信号光結合器、130…後段増幅用光ファイバ、131…後段光出力用分岐器、132…後段光出力用モニタ用受光器、140…送信装置、141…送信器、142…合波器、143…光増幅器、144…光ファイバ伝送路、145…受信装置、146…分波器、147…受信器、150…光入力用モニタ用光分岐器、151…光入力用モニタ用受光器、152…前方励起光/信号光結合器、153…励起光源、154…増幅用光ファイバ、160…光増幅器、161…反射検出手段、162…利得制御手段、163…開放端。[0001]
The present invention relates to an optical connector capable of structurally detecting a fitting state of an optical connector.
[0002]
[Prior art]
When the optical connector is incompletely connected, the optical input or optical output level easily fluctuates due to vibration of the optical connector or the like. When an optical amplifier is used, this optical input or output fluctuation significantly affects the apparatus, such as damage to optical components. As a countermeasure, an optical detection method is adopted in which the device is controlled by monitoring light fluctuation and the presence or absence of light by branching and monitoring light.
[0003]
An example of this is Japanese Patent Laid-Open No. 5-130043, and an example of detecting a connector disconnection is Japanese Patent Laid-Open No. 5-83201.
[0004]
The optical amplifier is used not only for amplification of optical output but also for loss compensation of functional optical components. As the distance of the optical fiber transmission line with chromatic dispersion increases, the dispersion value increases, and it is necessary to compensate the chromatic dispersion in order to eliminate the influence of dispersion. In Japanese Patent Application No. 7-301831, a chromatic dispersion compensator is placed in the center of an amplifying unit, and dispersion is compensated simultaneously with a loss generated in a long-distance transmission path. At this time, if an optical component that causes a loss is arranged in the center of the optical amplifier, it is possible to apparently reduce the loss of the optical component and increase the pumping efficiency while maintaining the low noise property of the optical amplifier. The invention described in the publication is a method of using one pumping light source for a two-stage amplification unit, and uses the residual pumping light of the excitation of the front amplification unit for the subsequent optical amplification unit. As another configuration, an excitation light source may be used for each of the front amplification unit and the rear amplification unit.
[0005]
Japanese Laid-Open Patent Application No. 2-272405 discloses an optical connector mounting method in consideration of worker safety.
[0006]
When a mechanical method is employed as the optical connector attachment / detachment detection method, it is a problem whether it is possible to identify whether the optical connector is completely engaged. In the case of apparatus maintenance or the like, the optical connector to be attached / detached is connected to the optical connector on the opposite side mounted on the board, but is usually attached to an adapter fixed to the printed board holding the optical connectors. It is necessary to determine the state in which the optical connector that can be detached is completely fitted into the adapter, and to distinguish the state from other states, for example, the unconnected state of the connector.
[0007]
Next, a case where a function for completely detecting connector fitting is required will be described.
An optical amplifier has a problem of optical surge. In the case of performing control for keeping the optical output at a specified value, the optical surge is generated when the optical amplifier has a high potential gain when the optical input is small and a high input is suddenly input at that time. When this light surge occurs, the receiver connected to the next stage is broken and the system is cut off. For this reason, it is necessary to suppress optical surges.
[0008]
One of the causes of the high input that suddenly rises is the attachment / detachment of an optical connector.
In order to suppress the optical surge, it is necessary to suppress the increase of the latent gain, and it is necessary to suppress the latent gain by lowering the excitation. As described in Japanese Patent Application Laid-Open No. 5-130043, there is a method in which optical excitation is dropped when the light input falls below a predetermined light input value. However, even with an optical input that is close to the predetermined optical input value, a high photoexcitation state still occurs, and an optical surge occurs when returning to a high input. In order to avoid this, in addition to the absolute value determination, it is necessary to immediately grasp the light input even with the relative value and control to immediately turn off the excitation when the light fluctuation exceeds the specified light fluctuation. However, although such a control method is effective, the circuit configuration becomes complicated and expensive, and another detection method is desired.
[0009]
As a means for suppressing an optical surge associated with an optical connector, it may not be effective to install a connector attachment / detachment detection function at the first input section of the optical amplifier. Because it is possible to detect the optical connector directly connected to the optical amplifier, it is difficult to detect the case where the connector is removed in the transmission path in the middle of reaching the optical amplifier and to control the excitation of the optical amplifier that is immediately separated. Because there is. Moreover, it is conceivable that factors other than optical connector attachment / detachment may cause the light to fluctuate, and it is not practical to deal with an optical surge with only the structure of the present invention.
[0010]
For example, in the case of an optical amplifier that does not pass through an intermediate transmission path, a configuration in which an optical component is inserted at the center is effective. When an optical component is inserted in the middle of the optical amplifier, there is a risk of generating an optical surge when the optical component is inserted or removed from the optical connector and then reinserted.
[0011]
Specifically, a case where one excitation light source is used for a two-stage amplifier will be described. Even if the optical input of the optical amplifier has a predetermined value, it is in an optically disconnected state when the optical connector of the intermediate insertion part is removed. Since there is no input to the optical fiber in the subsequent stage, the excited state becomes high. When the optical connector of the optical component is reinserted in this state, the signal light amplified in the previous stage is incident on the amplification optical fiber in the subsequent stage of the high excitation state, so that an optical surge is generated on the optical output side. It is necessary to suppress the optical surge at the time of inserting / removing the optical component in the middle.
[0012]
[Problems to be solved by the invention]
When an optical component can be inserted into and removed from the optical amplifier with an optical connector, if the optical output at the rear stage decreases, it may be due to a failure related to the degradation of the optical output of the optical fiber for amplification at the rear stage, or It cannot be distinguished whether it is due to connector disconnection. There is a need for a method for distinguishing between these two states, ie, a decrease in optical output due to unconnected optical components or a true optical amplifier failure.
[0013]
In an optical transmitter, optical fluctuations occur when an optical connector is attached and detached, and when several optical amplifiers are connected to the next stage, an optical surge grows and destroys the receiver. A mechanism for laser emission after optical coupling is complete is desired.
[0014]
In the receiver, the fluctuation of the optical input due to the half-insertion of the connector is not preferable because it leads to deterioration of the characteristics of the receiver. Further, the input light monitor by the optical method adds an optical component and increases the cost.
[0015]
In wavelength multiplexing optical transmission, a large number of optical fibers are connected. For example, in the case of 64-wavelength multiplexing, there is a configuration in which 64 optical transmitters are arranged, each optical fiber is connected to a multiplexer, and is collectively amplified by an optical amplifier.
[0016]
At that time, if the optical output of each transmitter is connected to an optical amplifier, the optical output of each wavelength varies and limits the transmission distance. For this reason, the optical output of each transmitter is adjusted so as to be equal, but if the connector is half inserted, the power input to the optical amplifier is lowered, which ultimately causes transmission degradation. In order to prevent this, monitoring by optical method is performed at each wavelength, or each wavelength of the optical transmitter is modulated to the extent that it does not affect the main signal, and the modulation component is observed and judged by an optical amplifier. However, in the case of an optical connector connection between printed circuit boards in one apparatus without passing through a transmission path, a mechanism that can easily determine mechanically is desired.
[0017]
[Means for Solving the Problems]
The above problem is solved by providing the optical connector with a mechanical switch that can determine whether or not the optical connector is completely fitted into the adapter mounted on the printed circuit board. In other words, when completely fitted, one or more switches are in a unique state, which is determined by a circuit to control the optical transmission device or determine information on the connector state, and transmit it to other devices as necessary.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, an optical connector assembly according to an embodiment of the present invention will be described with reference to FIGS. Here, FIG. 1 is a perspective view illustrating the adapter structure, FIG. 2 is a diagram illustrating the coupling between the optical connector and the adapter, FIG. 3 is a diagram illustrating the switch structure of the optical connector assembly, and FIG. 4 is the optical connector coupling. It is sectional drawing of a body.
[0019]
FIG. 1 shows an adapter 20 into which an optical connector is inserted. The adapter 20 includes a claw 22 for coupling with a connector (not shown), a movable contact 40 constituting a switch, and a fixed contact 43. In the assembled adapter, the movable contact 40 is connected to the fixed contact 43 through the hole 21 provided in the sleeve into which the connector is inserted. In this embodiment, two switches are used. Only one is shown. In FIG. 2, the opposite side optical connector 30 fixed to the adapter 20 and the detachable optical connector 31 are shown. 3 includes two switches, a switch 11 and a switch 12. The switch 11 is for detecting whether an optical connector 31 to be attached / detached is in the adapter 20, and the switch 12 is an optical switch. This is for detecting whether the connector 31 is completely fitted to the adapter. Open / close information of the switch 11 and the switch 12 is controlled via the switch processing circuit 50 to the circuit 51.
[0020]
First, a case where an optical connector is inserted will be described. The structure of the switch 11 is the same as that of the switch 12, and the mounting position may be installed in front of the switch 12. When the optical connector 31 enters the adapter 20, the movable contact of the switch 11 is pushed and connected to the fixed contact. It is set so that it is turned on in a circuit when connected.
[0021]
When further inserted, the switch 12 operates while the switch 11 is kept ON. This will be described with reference to a detailed cross-sectional view of the switch portion of FIG. The side wall of the inserted optical connector enters the inside of the claw 22 of the adapter, spreads the claw 22 and collides with the movable contact 40, the movable contact 40 moves to the front side in FIG. 4, and the hole provided in the sleeve side wall of the adapter 20 The fixed contact 41 is connected through the part 21. The fixed contact 41 is dropped to GND in circuit. That is, the route of electricity is the movable contact 40-the fixed contact 41 (GND), and is turned on in terms of a circuit. The material of these structures is a metal with electrically conductive contacts, the switch base 42 is an insulator such as plastic so that the contacts A40 and B41 are not electrically connected, and the adapter 20 is an insulator such as plastic. . Commercially available adapters may be metallic in addition to plastic. In this case, the adapter 20 and the contact point B41 are configured not to be in electrical contact with the insulating sheet 43 shown in FIG.
[0022]
Next, when the optical connector is inserted further deeply, the claw 22 of the adapter is closed and the optical connector is completely fitted. When this operation is used, the adapter claw 22 is closed in the engaged state, so that the movable contact 40 is pushed back by the spring force, the switch 12 is turned off, and the circuit is turned off.
[0023]
A case where the optical connector is removed will be described. Pulling the connector to remove the connector from the mating state pushes the adapter claw 22 open and turns the switch 12 ON, and further pulling closes the claw 22 and turns the switch 12 OFF. When the switch 20 is completely disconnected from the adapter 20, the switch A is turned from ON to OFF.
[0024]
[Table 1]
Figure 0004095715
[0025]
Table 1 shows the control of the excitation current of the optical amplifier, which is an optical transmission device, as an example of the switch operation and the switch processing circuit in each state of these optical connectors. As can be seen from Table 1, this control can generally be realized by an XOR circuit. The reason why two switches are provided will now be described. In order to suppress the optical surge peculiar to the optical amplifier, it is necessary to set the excitation current to the normal state only when the connector is completely fitted. In the case of the SC type optical connector, when the adapter is inserted, the claw 22 portion of the adapter is opened, and the claw 22 is closed when completely fitted. That is, the closed state of the claw 22 is provided with a switch 11 for detecting the disconnection of the optical connector in addition to the switch 12 for fitting the optical connector in order to distinguish between the case where the claw 22 is completely fitted and the case where it is not inserted. .
[0026]
In the first embodiment, the SC connector is taken up, but other optical connectors can be applied if a structure capable of detecting the mating state is provided. In this case, two switches are not necessarily required, and only one switch is sufficient as long as the mating state can be detected separately from the other states.
[0027]
Next, an embodiment of an optical amplifier which is a modification of the embodiment of the present invention will be described with reference to FIG. FIG. 5 shows a configuration diagram of a two-stage one-pumping optical amplifier that is an embodiment of the present invention. This optical amplifier is an optical amplifier having a two-stage configuration including a front-stage amplifying unit 101 and a rear-stage amplifying unit 102 including an optical component 126 in the middle. The pre-amplifier 101 and the post-amplifier 102 are mounted on the same printed circuit board 100, the optical component 126 placed in the middle is mounted on another printed circuit board, and the intermediate component 126 can be exchanged depending on the characteristics of the transmission path. . The signal light 110 incident from the input end optical connector is partly separated from the optical branch 120 and input to the light receiver 121 to be used for monitoring the input light. The excitation light is superimposed on the signal light by the excitation light source 123 and the signal light multiplexer 122 to excite the amplification optical fiber 124 at the previous stage, and then the residual excitation light is converted into the signal light by the excitation light / signal light separator 125. Divide. The signal light goes to the intermediate optical component 126, but the residual pump light goes to the subsequent pump light / signal light coupler 129. It is combined with the signal light again and enters the subsequent amplification optical fiber 130. This configuration efficiently captures loss even when one excitation light source 123 is inserted and an intermediate optical component 126 is inserted. A part of the amplified signal light is separated by the optical branch 131 and input to the light receiver 132, monitored as an optical output, and the negative feedback of the excitation light 123 is controlled so that the monitored optical signal becomes constant. 51.
[0028]
Next, suppression of an optical surge at the time of optical component insertion / extraction will be described. An optical branch 127 for optical input monitoring is provided in the post-stage optical amplifying unit 102 and is input to the light receiver 128. When the optical input is lowered due to disconnection of the optical connector or the like, the excitation light 123 is dropped. If it is completely dropped, it cannot be detected when the connector is connected, so excitation is performed to a level where it can be detected. Further, when the optical input monitoring units 127 and 128 in the rear stage part are deleted and the input of the rear stage amplifying part 102 is detected by the output monitor parts 131 and 132, the signal light passes through the optical fiber 130 for rear stage amplification. A larger excitation current is required than in the case of detection at 127 and 128. It is important to set the excitation current so as not to induce an optical surge.
[0029]
For example, in the case of a dispersion compensating fiber, the optical loss of the optical component 126 in the middle depends on the fiber that is laid because the optical loss depends on a value that compensates for the amount of dispersion. When there is no need for dispersion compensation, it is 0 dB because it is simply a fiber connection. On the other hand, when the maximum amount of dispersion is compensated, there may be about 15 dB. If the optical input monitors 127 and 128 in the subsequent stage are determined by the absolute value determination determined regardless of the loss of the dispersion compensating fiber, the threshold value setting for suppressing the optical surge must take into consideration the fluctuation of the optical component loss of 0 to 15 dB. In other words, the fluctuation of the worst light input is allowed up to 15 dB, causing an optical surge. If about 15 dB is allowed, an optical surge may destroy the optical component of the next connected device.
[0030]
The optical connector can be attached and detached as a factor of a large light fluctuation in the intermediate part. As a countermeasure, in addition to the absolute value determination in terms of circuit, a countermeasure against abrupt light fluctuation accompanying the attachment / detachment of the optical connector must be relatively determined, and the circuit configuration becomes complicated.
[0031]
In this modified example, the mechanical switch 10 and the switch processing circuit 50 for detecting the attachment / detachment are provided in the optical connector portion of the intermediate optical component 126 that may be attached / detached in the apparatus. When the optical connector is disconnected, the excitation light 123 is instantaneously dropped to a level that can be detected by the input monitors 127 and 128 of the subsequent optical amplifying unit when the optical connector is reconnected. Further, when the optical connector is removed and inserted immediately, an optical surge occurs when the excitation light 123 is instantaneously injected. Therefore, the excitation current is raised after a protection time of several tens of ms. Further, since the optical connector can be grasped / removed from this mechanism, if the optical signal output 111 is not normal, it may be due to a failure related to a decrease in the optical output of the upstream optical amplifier 101 or the downstream optical amplifier 102, or the intermediate optical component 126. It can be distinguished whether it is due to the connector disconnection.
[0032]
There is an optical transmitter as another modification of the embodiment of the present invention . The optical transmitter has a circuit configuration in which the laser output is emitted after the optical connector is completely fitted. As a result, an optical waveform in which the light output from the transmitter rises rapidly from a low level, which causes an optical surge due to the attachment / detachment of the connector, to a high output is not generated.
Further, when the optical connector of the printed circuit board is directly removed, the inserted connector is disconnected and no light is emitted, so that safety for the operator can be secured.
[0033]
Another modification of the embodiment of the present invention is an optical receiver. The optical receiver is configured to operate the light receiving circuit after the optical connector is completely fitted. As a result, when the connector connection is poor, such as when the connector is half-inserted, characteristic deterioration due to fluctuations input to the light receiver can be avoided.
[0034]
As another modification of the embodiment of the present invention, there is a 64-wavelength multiplex transmission apparatus using an optical amplifier, and its configuration is shown in FIG. In the transmission device 140, there are 64 optical transmitters 141, and each optical output is emitted from an optical connector. The 64 optical fibers are coupled to the multiplexer 142 and connected from the multiplexer 142 to the optical amplifier 143. The transmitter 141, the multiplexer 142, and the optical amplifier 143 are accommodated in one device and do not pass through the transmission line fiber 144. The optical connector attachment / detachment detection mechanism 10 includes 64 outputs of each transmitter 141, 64 optical input ports of the multiplexer 142 to be coupled, 1 output of the multiplexer 142, and an optical amplifier 143 that amplifies the output collectively. Provided in one place for input. As a result, the optical fiber fitting of the optical transmitter 141 -the multiplexer 142 -the optical amplifier 143 can be inspected, and the optical monitor measures as described in the problem are unnecessary. Or you may use together with the method of monitoring optical input. Since a large number of fibers are handled, it is convenient for maintenance if the status of the structural optical connector fitting is displayed corresponding to each optical connector as described above.
[0035]
As a further modification of the embodiment of the present invention, the receiving apparatus 145 may use the structure of the present invention. The optical connector detachment detection mechanism 10 is also installed in the optical amplifier 143, the demultiplexer 146, and each receiver 147 at each optical connection location. As an optical transmission apparatus using the structure of the present invention, it is not always necessary to determine the connector fitting state and control the apparatus. When the connector is disconnected and incompletely mated, a lamp is displayed on the printed circuit board. Alternatively, processing may be performed by transmitting information to another managed printed circuit board.
[0036]
【The invention's effect】
According to the present invention, it is possible to mechanically detect the attachment / detachment of the optical connector, and in particular, it can be determined whether or not the optical connector is completely fitted. Reliability and safety can be improved by controlling the transmission device based on the connector removal information. Since it is possible to grasp the information on the attachment / detachment of the optical connector of the device, it is easy to use.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a structure of an optical adapter.
FIG. 2 is a diagram illustrating an optical connector assembly.
FIG. 3 is a diagram illustrating a switch configuration of an optical adapter.
FIG. 4 is a diagram illustrating a joining detection structure of an optical connector assembly.
FIG. 5 is a diagram illustrating a configuration of a two-stage one-pump optical amplifier according to the present invention.
FIG. 6 is a diagram illustrating the configuration of a wavelength division multiplexing transmission apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Switch part, 11, 12 ... Switch, 20 ... Adapter, 21 ... Side hole of adapter, 22 ... Claw for optical connector fitting, 30 ... Printed circuit board side optical connector, 31 ... Desorption optical connector, 40 ... Movable contact, 41 DESCRIPTION OF SYMBOLS ... Fixed contact, 42 ... Base, 43 ... Insulation sheet, 50 ... Switch processing circuit, 51 ... Circuit control part, 52 circuit amplifier, 53 ... Comparator, 100 ... Printed circuit board, 101 ... Pre-stage optical amplification part, 102 ... Post-stage optical amplification 110: optical signal input, 111: optical signal output, 120: optical splitter for monitoring the optical input of the previous stage, 121: optical receiver for monitoring of the optical input of the previous stage, 122 ... coupler for front pumping light / signal optical coupler of the previous stage, 123 ... Pre-stage and post-stage pumping light source, 124... Pre-stage amplification optical fiber, 125... 0.98 .mu.m / signal light separator, 126. Branching device, 128: optical receiver for monitoring the subsequent stage optical input, 129: 0.98 μm / signal optical coupler, 130: optical fiber for the subsequent stage, 131: branching unit for the subsequent optical output, 132: for monitoring the optical output of the subsequent stage Optical receiver 140 ... transmitting device 141 ... transmitter 142 ... multiplexer 143 ... optical amplifier 144 ... optical fiber transmission line 145 ... receiving device 146 ... demultiplexer 147 ... receiver 150 ... light Optical splitter for input monitor, 151... Receiver for optical input, 152. Forward pumping light / signal optical coupler, 153... Pumping light source, 154... Optical fiber for amplification, 160. Means 162 ... Gain control means 163 ... Open end.

Claims (1)

光コネクタと前記光コネクタを接続する光アダプタとからなる光コネクタ結合体であって、
前記光アダプタに前記光コネクタの挿入および前記光アダプタと前記光コネクタとの結合完了を検出するスイッチを設け、
前記スイッチは、一旦オン状態になった後、オフ状態になったことで結合完了を検出することを特徴とする光コネクタ結合体。
An optical connector assembly comprising an optical connector and an optical adapter for connecting the optical connector,
The optical adapter is provided with a switch for detecting insertion of the optical connector and completion of coupling between the optical adapter and the optical connector,
The optical connector assembly according to claim 1, wherein the switch detects the completion of coupling when the switch is once turned on and then turned off.
JP12999698A 1998-05-13 1998-05-13 Optical connector assembly Expired - Fee Related JP4095715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12999698A JP4095715B2 (en) 1998-05-13 1998-05-13 Optical connector assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12999698A JP4095715B2 (en) 1998-05-13 1998-05-13 Optical connector assembly

Publications (2)

Publication Number Publication Date
JPH11326699A JPH11326699A (en) 1999-11-26
JP4095715B2 true JP4095715B2 (en) 2008-06-04

Family

ID=15023576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12999698A Expired - Fee Related JP4095715B2 (en) 1998-05-13 1998-05-13 Optical connector assembly

Country Status (1)

Country Link
JP (1) JP4095715B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2455791A2 (en) 2010-11-19 2012-05-23 Sony Corporation Optical fiber adaptor and laser system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362254B1 (en) * 2000-06-17 2002-11-23 산일전기 주식회사 Opticalsensor anplifier for factory automation
US20030081905A1 (en) * 2001-10-25 2003-05-01 Bethea Clyde George Optical connector assembly
JP4489421B2 (en) * 2003-12-26 2010-06-23 三菱電機株式会社 Optical transmission equipment
JP5471227B2 (en) * 2009-09-16 2014-04-16 富士通株式会社 Optical amplifier and optical amplification method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2455791A2 (en) 2010-11-19 2012-05-23 Sony Corporation Optical fiber adaptor and laser system

Also Published As

Publication number Publication date
JPH11326699A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
JP3542253B2 (en) Optical fiber amplifier and optical transmission system using the same
JP2687933B2 (en) Optical direct amplifier
US7218442B2 (en) Optical communications system with fiber break detection in the presence of Raman amplification
US6266466B1 (en) Optical amplifier and optical transmission system
US7864389B2 (en) Method of controlling optical amplifier located along an optical link
JP4095715B2 (en) Optical connector assembly
JP3209242B2 (en) Output shutdown controller for high-power optical transmitter
EP1309108A1 (en) Optical transceiver with automatic power shut-down arrangement
JP2904131B2 (en) WDM optical amplifier and WDM optical transmission equipment
JP3000948B2 (en) Optical amplifier
US20070103766A1 (en) Method for monitoring an optical transmission line by means of an optical amplifier and optical amplifier therefor
JP4356545B2 (en) Optical transmission system
JP4633548B2 (en) Optical receiver
JP4079424B2 (en) Optical fiber amplifier and optical transmission system
JP2004240278A (en) Optical fiber communication system using distribution raman amplification
JP4018075B2 (en) Optical fiber fault isolation method
JP3050299B2 (en) WDM transmission equipment
CN105119136B (en) Raman optical fiber amplifier with differential loss detection function and optical fiber differential loss detection method thereof
EP1137129A2 (en) Optical gain equalizer and optical gain equalizing method
US6806998B2 (en) Raman amplifier with high power distribution bypass
US20030234973A1 (en) Method and device for optical fiber transmission using raman amplification
EP0674404A1 (en) Optical repeater
US8548321B2 (en) Optical transmission apparatus
KR101892196B1 (en) Miniaturized optical fiber amplifier
JP4678020B2 (en) Optical fiber amplifier and optical transmission system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees