JP4094846B2 - Two-phase flow contact treatment apparatus and two-phase flow contact treatment method - Google Patents

Two-phase flow contact treatment apparatus and two-phase flow contact treatment method Download PDF

Info

Publication number
JP4094846B2
JP4094846B2 JP2001384460A JP2001384460A JP4094846B2 JP 4094846 B2 JP4094846 B2 JP 4094846B2 JP 2001384460 A JP2001384460 A JP 2001384460A JP 2001384460 A JP2001384460 A JP 2001384460A JP 4094846 B2 JP4094846 B2 JP 4094846B2
Authority
JP
Japan
Prior art keywords
solvent
solute
impeller
introduction
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001384460A
Other languages
Japanese (ja)
Other versions
JP2003181266A (en
Inventor
顯 安藤
Original Assignee
株式会社テクナ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テクナ filed Critical 株式会社テクナ
Priority to JP2001384460A priority Critical patent/JP4094846B2/en
Publication of JP2003181266A publication Critical patent/JP2003181266A/en
Application granted granted Critical
Publication of JP4094846B2 publication Critical patent/JP4094846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は溶媒と溶質とを吸引・混合して接触処理を行い、所定の場所へ移送する二相流接触処理装置に関するものである。
【0002】
【従来の技術】
従来から溶媒としての水等の液体に溶質としての空気等の気体を接触・混合・吸収させ目的の処理を行い、高所に揚げたり、所定場所へ移送したりする手段としてはポンプを用いた二相流接触処理装置が用いられている。この二相流接触処理装置において、移送手段として使用されているポンプとして渦巻ポンプが知られている。
【0003】
この渦巻ポンプは、ケーシングに、吸引口と吐出口を備えており、吸引口は溶媒及び溶質をケーシング内部へと吸引する為に、溶媒及び溶質それぞれに対して各1つ形成され、吐出口は、混合によって得られた溶液を外部へと排出する為に1つ形成されている。このケーシングは、その内部に羽根車を収容しており、羽根車は、ケーシング外部に配置されたモーター等の駆動体によって回転可能に構成されている。この羽根車の外周面には、液体を導く為の複数の羽根部が設けられている。
【0004】
ポンプによって溶媒と溶質とを混合する際には、最初に、吸入口から溶媒が導入され、この溶媒を吸入する際の負圧を利用して、溶質も同時に吸入口からケーシング内部へと吸引される。すなわち、ポンプの中で羽根車の回転する時の遠心作用を利用して、溶媒を回転させ、溶媒を外周側へ移動させる。溶媒が羽根車の外周側へ移動することで羽根車の回転中心部が負圧となり、羽根車の回転中心に新たに溶媒や溶質が吸引される。溶媒及び溶質は羽根車の回転及び外周側環状流路内で撹拌・混合され吐出口から外部へと排出される。
【0005】
【発明が解決しようとする課題】
上記のような従来の渦巻きポンプを使用した二相流接触処理装置において、溶媒として液体を、溶質として気体を用いた場合、遠心力により液体が羽根車の外周側に押し出された際に発生する羽根車中心部の負圧を利用して、連続的に液体や気体を吸い込ませようとするものであるため、気体の体積が大きくなりすぎると、羽根車の回転中心部に気体が集まってしまい、液体を連続的に吸引するのに十分な負圧をつくる事ができず、液体の吸引ができなくなってしまったり、吐出圧・流量が著しく不安定となったりして、連続した運転が困難となったりしてしまう場合があった。
【0006】
この為、いわゆるエアーロックを生じないように、気体からなる溶質の量を5%前後に制限して使用しなければいけないという問題があった。つまり、混合する気体からなる溶質の割合を極めて少ない、一定値以下に制限しなければならないという問題が生じていた。
【0007】
この発明は、上述のような従来技術の不都合を解決する為になされたものである。
本発明の目的は、溶媒に対する溶質の接触・反応効率を高め、溶媒の機械的、化学的又は物理的反応を促進し、かつ溶媒に対する溶質の混合割合が大きくなっても、円滑に溶媒と溶質の吸引・混合・接触を行なう事ができ、装置の小型化をはかり、二相流接触処理を安価に行なうことが可能な二相流接触処理装置及び二相流接触処理方法を提供する事にある。
【0008】
【課題を解決するための手段】
前記課題は、本発明の二相流接触処理装置によれば、溶媒をケーシング内に導入する溶媒導入部と、溶質をケーシング内に導入する溶質導入部と、円盤状の羽根車と、溶媒と溶質を混合する環状混合室と、溶媒と溶質の混合されたものを吐出する吐出管を備えた二相流接触処理装置であって、前記羽根車は、溶媒導入用羽根車と、加圧兼用溶質導入用羽根車と、で構成され、前記溶媒導入用羽根車及び前記加圧兼用溶質導入用羽根車を回転軸方向に直列に配置し、前記溶媒導入用羽根車の外周部から前記溶媒導入用羽根車の加圧兼用溶質導入用羽根車側の側面に沿って一次圧縮室を備え、前記加圧兼用溶質導入用羽根車の中心側部分に貫通穴を設けてなることにより解決される。
【0009】
これにより、溶質が溶媒導入用羽根車の中心部付近に溜まることが阻止され、溶媒導入用羽根車の中心部付近を十分な負圧に維持することができ、吐き出し側揚程の低下も抑止できる。また、加圧兼用溶質導入用羽根車の中心部付近の貫通穴を通して溶媒導入用羽根車から溶媒が連続的に供給され、加圧兼用溶質導入用羽根車によって確実に溶媒と溶質の混合を行なうことができるようになる。
【0010】
このとき、前記加圧兼用溶質導入用羽根車に溶媒及び溶質の混合を目的として外周に向かった放射状の突条を、前記溶媒導入用羽根車が位置する面と反対側の面に形成してなるように構成すると好適である。
【0011】
これより、放射状の突条が形成された加圧兼用溶質導入用羽根車を高速回転させる事によって、気体である溶質の気泡を分断して微細にしたり、液体である溶質を分断して微細にしたりすることで二相流接触処理を促進することができる。
【0012】
さらに、前記加圧兼用溶質導入用羽根車は、円盤状の回転板と、突条車と、で構成され、前記回転板及び前記突条車を回転軸方向に直列に配置してなるように構成すると好適である。
【0013】
これにより、二相流接触処理装置の用途に応じて回転板と突条車とを適時組み合わせて、所望の加圧兼用溶質導入用羽根車を備える二相流接触処理装置を得ることができる。
【0014】
前記課題は、本発明の二相流接触処理方法によれば、溶媒導入部から液体よりなる溶媒をケーシング内に導入し、該導入された溶媒をケーシング内部で移動させ、溶質導入部から溶質をケーシング内に導入し、前記移動させた溶媒に溶質を混合し、該溶媒と溶質を混合したものに加圧を行い、溶媒と溶質を混合したものを吐出して、溶媒導入用羽根車と加圧兼用溶質導入用羽根車とが回転軸方向に直列となった羽根車と、前記溶媒導入用羽根車及び前記加圧兼用溶質導入用羽根車との間に形成された一次圧縮室を用いて、前記溶媒をケーシング内に導入するのは前記溶媒導入用羽根車で行い、前記溶媒をケーシング内部で移動させるのは前記溶媒導入用羽根車及び前記一次圧縮室を用いて行い、前記溶質をケーシング内に導入し、前記ケーシング内部で移動させた溶媒に溶質を混合し、前記溶媒と溶質を混合したものに加圧を行なうのは前記加圧兼用溶質導入用羽根車によって行なうこと、により解決される。
【0015】
これにより、溶質が溶媒の移動経路の途中に滞留して溶媒の移動を阻害することがなく、その結果、溶質の流量が多くても確実に溶媒の吸引と、溶媒と溶質の混合処理を行なう事ができる。
【0016】
また、溶媒導入用羽根車と加圧兼用溶質導入用羽根車とが回転軸方向に直列となった羽根車と、前記溶媒導入用羽根車及び前記加圧兼用溶質導入用羽根車との間に形成された一次圧縮室を用いて、前記溶媒をケーシング内に導入するのは前記溶媒導入用羽根車で行い、前記溶媒をケーシング内部で移動させるのは前記溶媒導入用羽根車及び前記一次圧縮室を用いて行い、前記溶質をケーシング内に導入し、前記ケーシング内部で移動させた溶媒に溶質を混合し、前記溶媒と溶質を混合したものに加圧を行なうのは前記加圧兼用溶質導入用羽根車によって行なう。
【0017】
これにより、溶媒導入用羽根車と加圧兼用溶質導入用羽根車と一次圧縮室を用いて、溶媒及び溶質の連続的な吸引、接触・混合処理を効率的に行なうことができる。
【0018】
【発明の実施の形態】
以下、本発明の一実施の形態を図面に基づいて説明する。なお、以下に説明する部材,配置等は本発明を限定するものでなく、本発明の趣旨の範囲内で種々改変することができるものである。
【0019】
図1乃至図6は本発明に係る一実施の形態を示すものであり、図1は二相流接触処理装置を示す要部を破断した正面図、図2は図1の部分拡大図、図3は図1の要部部分拡大図、図4は溶媒導入部側からみた溶媒導入用羽根車を示す部分拡大側断面図、図5は小空洞部側から見た加圧兼用溶質導入用羽根車を示す側面図、図6は二相流接触処理装置の要部分解斜視図である。
【0020】
本例の二相流接触処理装置11は、ケーシング部22と、モーター27と、回転軸28と、溶媒導入部23と、溶質導入部(溶質導入口部材38、溶質導入通路34b、小空洞部37)と、円盤状の羽根車31,32と、溶媒と溶質を混合する環状混合室39と、溶媒と溶質の混合されたものをケーシング部22の外へ吐出す吐出管24を備えている。
【0021】
本実施形態のケーシング部22を構成するケーシング25には溶媒導入部23が接続され、ケーシング25内の吐出口48と通じる吐出室49に連通する吐出管24がケーシング25に一体的に設けられており、ケーシング25の中央部に設けられた羽根車31,32は回転軸28で回転可能に軸支された円盤状の溶媒導入用羽根車31及び加圧兼用溶質導入用羽根車32が回転軸28方向に直列に2つ配設されたものである。溶媒導入用羽根車31は溶媒を導入するための羽根車であり、また、加圧兼用溶質導入用羽根車32は、溶質を導入するための羽根車で、溶媒及び溶質を加圧する役目も担うものである。
【0022】
溶媒導入部23は、ケーシング25内に溶媒を導入するために設けられており、溶媒が貯留されているタンク(図示せず)と連通する。また、溶媒導入部23には溶媒が貯留されているタンク以外からも溶媒を導入可能なように、溶媒導入用枝通路23aを設けておくとよい。例えば、一度ケーシング25内に導入された溶媒を再度溶媒導入部23に導いて再びケーシング25内に導入する場合のように、溶媒を循環して再利用するとき等に溶媒導入用枝通路23aを利用することができる。なお、溶媒導入用枝通路23aを使用しない時には、溶媒導入用枝通路23aはプラグやバルブで遮断される。
【0023】
溶媒導入部23とケーシング25との連結部には逆流防止用の逆止弁29が設けられている。逆止弁29は円盤状で、その上端部のみが固定されており、下部側は揺動自在となっている。従って溶媒は、溶媒導入部23よりケーシング25へ向かって流れる際は、逆止弁29が図2及び図3の二点鎖線で示すように、その流れによって揺動し、ケーシング25内へ流入することが可能となる。
【0024】
逆にケーシング25から溶媒導入部23側に向かって流れようとすると、溶媒の圧力によって逆止弁29が溶媒導入部23の開口縁部に押し当てられて、溶媒導入部23が閉成され、逆流が阻止される。このため、溶媒は、溶媒導入部23からケーシング25内に向かって一方向にのみ流れるようになっている。
【0025】
そして、この逆止弁29のケーシング25側内には、溶媒導入部23側から供給される溶媒が溜まる空洞部30がケーシング25の内部隔壁25aによって形成されている。また、ケーシング25の内部隔壁25aの空洞部30と反対側(モーター27側)の面には、円形皿部材33がボルトなどの固着具によって底面が空洞部30側を向くように内部隔壁25aに固着されており、溶媒導入用羽根車31が円形皿部材33に収容される。
【0026】
溶媒導入用羽根車31は、円盤状の基板31bと、突条31aと、軸孔31cから形成されており、基板31bの外周に向かって、渦を巻くように放射状とした突条31aが、等間隔で形成されている。そして、図4に示すように、溶媒導入用羽根車31は、溶媒が供給される空洞部30側に突条31aが形成された面が向くように軸孔31c内に回転軸28が挿入・固定され、回転軸28を中心にして回転可能に配置される。
【0027】
円形皿部材33の底面と内部隔壁25aには、空洞部30から溶媒導入用羽根車31へ溶媒を供給するために、溶媒導入用羽根車31の回転中心軸に対応する位置に穴が設けられ、溶媒供給穴30aが形成されている。なお、本実施形態では、溶媒導入用羽根車31が円形皿部材33に収容されているが、円形皿部材33を設けることなくケーシング25の内部隔壁25aを円形皿部材33の形状とするようにしてもよい。
【0028】
また、円形皿部材33の周壁で、上部側に位置する部分と下部側に位置する部分にはそれぞれ貫通孔33a,33bが設けられている。上部側に設けられた貫通孔33aは二相流接触処理装置11の停止時や起動時にエアー抜きを行なうために設けられている貫通孔である。下部側に設けられた貫通孔33bは二相流接触処理装置11内の溶媒等を抜き取るためのドレインとして設けられている貫通孔である。
【0029】
円形皿部材33のモーター27側の開口を塞ぐように、溶媒導入用羽根車31に隣接して、円形皿部材33とほぼ同一の外径を備えた加圧兼用溶質導入用羽根車32が回転軸28の軸方向に直列に配置される。
【0030】
加圧兼用溶質導入用羽根車32は、溶質の吸引・溶媒の再加圧・混合するものであり、軸孔32cを備える円盤状の回転板32bと、突条32aを備える突条車32dとから形成されている。本実施例では回転板32bと突条車32dとは溶接で接合されている。突条車32dは回転板32bの一方の面に溶接されるもので、加圧兼用溶質導入用羽根車32の外周に向かって直線的或いは、ゆるやかな円弧状の放射状に等間隔に形成された突条32aを形成する。また、回転板32bには、加圧兼用溶質導入用羽根車32の中心側部分に形成された軸孔32cの周辺部分に、円環状の貫通穴19が形成されている。なお、貫通穴19は円環状に連続した貫通穴に限らず、部分的に貫通穴19が形成されるようにしてもよい。
【0031】
加圧兼用溶質導入用羽根車32はケーシング25内に、加圧兼用溶質導入用羽根車32の突条32aが形成された面が、溶媒導入用羽根車31の位置する側と反対側(モーター27側)を向くように軸孔32c内に回転軸28が挿入・固定され、回転軸28を中心にして回転可能に配置される。
【0032】
そして、溶媒導入用羽根車31の外径は円形皿部材33の内径よりも小さく形成され、溶媒導入用羽根車31の基板31bと加圧兼用溶質導入用羽根車32の回転板32bとの間には間隔が設けられている。これにより、溶媒導入用羽根車31の外周部から、溶媒導入用羽根車31の加圧兼用溶質導入用羽根車32側の側面に沿って、円形皿部材33と加圧兼用溶質導入用羽根車32とによって囲まれる、一次圧縮室40が連続して形成されている。
【0033】
さらに、図2乃至図4に示すように、ケーシング25内には、円形皿部材33の外周面と加圧兼用溶質導入用羽根車32の外周面に沿って、環状混合室39が吐出口48に向かって徐々に広がるように形成されている。この環状混合室39には、溶媒の再加圧・溶質の吸引・混合を行なう加圧兼用溶質導入用羽根車32の回転によって外周側に送られる溶媒及び溶質が導かれ、その内部で更に混合・接触反応が行われ、減速・増圧を行なう。
【0034】
環状混合室39を通って吐出口48から排出された溶媒及び溶質を、吐出管24に導くために吐出管24と連通する吐出室49が形成されている。吐出口48より吐き出された溶媒及び溶質は、この吐出室49を通って吐出管24に送られ、所定の場所に移送されるようになっている。
【0035】
また、吐出室49には吐出管24以外に溶媒及び溶質を吐き出すための吐出用枝通路49aが設けるとよい。吐出用枝通路49aは、例えば、前述の溶媒導入用枝通路23aと連結することで、吐出用枝通路49aから排出された溶媒をケーシング25に供給する溶媒として再利用することもできる。また、吐出用枝通路49aから排出された溶媒を後述の冷却室41に導いて冷却液として利用することもできる。なお、吐出用枝通路49aを使用しない時には、吐出用枝通路49aはプラグやバルブで遮断される。
【0036】
ケーシング25のモーター27側の外壁には、前述の加圧兼用溶質導入用羽根車32を臨む位置に大開口が穿設されており、その大開口を塞ぐようにOリング35を介して蓋部材34が配置される。ケーシング25の大開口に臨む蓋部材34の側面と加圧兼用溶質導入用羽根車32との間には、加圧兼用溶質導入用羽根車32が回転する際に蓋部材34と加圧兼用溶質導入用羽根車32とが接触しない程度の微小な間隔が設けられる。
【0037】
蓋部材34には回転軸28を通すための軸孔34aが設けられている。軸孔34aの径は回転軸28の直径よりも充分に大きく形成され、軸孔34aに回転軸28が挿通された際に、軸孔34a内の空間が溶質を導入してくるための小空洞部37を構成する。このとき小空洞部37から加圧兼用溶質導入用羽根車32の回転中心軸付近に溶質を供給できるように、小空洞部37は加圧兼用溶質導入用羽根車32の回転中心軸付近を臨む位置に配置することとなる。
【0038】
また、蓋部材34には軸孔34aと連通するように、蓋部材34の半径方向に、軸孔34aから蓋部材34の外周面に向けて溶質導入通路34bが設けられる。溶質導入通路34bには溶質導入口部材38が接続される。溶質導入口部材38は、溶質を貯留してあるタンク(図示せず)又は各種ガス発生器(図示せず)と接続されており、供給されてくる溶質を溶質導入通路34b内に送るようになっている。
【0039】
したがって、図2及び図3に示すように、溶質導入口部材38から溶質導入通路34bに導かれた溶質は、軸孔34aの小空洞部37へ導かれ、さらに加圧兼用溶質導入用羽根車32の回転中心軸付近に導かれることになる。溶質導入口部材38、溶質導入通路34b、小空洞部37が本実施形態の溶質導入部を形成する。
【0040】
なお、溶質を大気又は外気とする場合は溶質導入口部材38の止め弁を介して運転中は大気に解放されるように構成する。その他、溶質導入口部材38に昇圧装置(図示せず)を接続し、溶質を高圧で溶質導入通路34b内に送り込むように構成することも可能である。溶質を高圧で送り込むことで、ケーシング内により多くの溶質を導入できるようにできる。
【0041】
蓋部材34と回転軸28とのモーター27側の境界には、蓋部材34と回転軸28との間から小空洞部37の外へ溶媒が漏れないように、オイルシール45が配設される。
【0042】
蓋部材34のモーター27側の側面には円管46と、回転軸28を通すための軸孔47aが設けられた円盤状の蓋47とがボルト等の固着具で固定されている。円管46は蓋部材34と蓋47との間に配置され、回転軸28のメカニカルシール42が円管46内部で蓋部材34と蓋47との間に挟持されている。
【0043】
円管46内部は冷却室41として構成される。冷却室41は加熱されやすい回転軸28のメカニカルシール42の外周に形成されている。円管46の周壁には、冷却室41に連通する冷却液通路46a,46bが形成される。冷却液通路46aは冷却液を冷却室41に導くために用いられる。冷却液通路46bは通常は閉鎖されており、冷却室41から冷却液を排出する時にドレインとして利用される。
【0044】
冷却液通路46aには連通管44を介して冷却液タンク43が設置される。冷却液タンク43内に貯蔵された冷却液は、連通管44、冷却液通路46aを介して冷却室41との間を移動し、メカニカルシール42の潤滑及び冷却が行われるようになっている。冷却液タンク43は冷却液として油以外に不活性な液体を封入したり、清水を通水・排水したりする場合もある。
【0045】
さらに、連通管44の途中に分岐管44aを設け、冷却液タンク43以外からの冷却液を分岐管44aから導入できるように構成しておくとよい。例えば、前述の吐出用枝通路49aと分岐管44aを接続し、冷却液タンク43以外からの冷却液として、前述の吐出用枝通路49aから排出された溶媒を利用することができる。このときに、冷却液通路46bと前述の溶媒導入用枝通路23aを連結して、冷却液通路46bから排出される溶媒(冷却液)をケーシング25に導入すれば、溶媒を冷却液として循環させて利用することができる。
【0046】
但し、吐出用枝通路49aから排出される溶媒を冷却液として利用する場合には、回転軸28及びメカニカルシール42を傷めないように溶媒に微粒子を含まないようにしなければならない。なお、溶媒が微粒子を含むものであっても、吐出用枝通路49aと分岐管44aとの間にフィルタを挿入して微粒子が冷却室41に入らないように構成し、溶媒を冷却液として利用してもよい。
【0047】
軸孔47a、円管46、軸孔34aを通ってケーシング25内に挿入されている回転軸28は、回転軸支持部50で回転可能に支持される。そして、モーター27側に位置する回転軸28の端部は軸連結部51で、モーター27の出力軸(図示せず)と連結され、モーター27の回転力が回転軸28に伝達される。
【0048】
さて、上記構成による二相流接触処理装置11においては、溶質として液体でも気体でも用いることができるものである。以下に、溶媒として金属加工又はメッキ工場などの表面処理過程で排出される重金属・貴金属成分を含む排水を、溶質として酸化分解剤であるオゾンガスを用いて、酸化分解反応による排水のBOD値、COD値の低減、及び金属成分含有物質の酸化分解・析出・回収を目的とした気液接触処理を行い、排水を所定の場所に移送する場合について説明する。
【0049】
まず、二相流接触処理装置11においては、排水を貯留するタンク(図示せず)から溶媒導入部23を介して、空洞部30内に排水を送る。その状態でモーター27を駆動させることにより、回転軸28を介して溶媒導入用羽根車31を回転させる。この溶媒導入用羽根車31の回転によって、空洞部30から溶媒供給穴30aに導かれる排水は突条31aに沿って回転しながら溶媒導入用羽根車31の外周側に移動されて一次圧縮室40内に吐き出される。溶媒供給穴30a付近に存在していた排水が溶媒導入用羽根車31の外周側に押し出されることで、溶媒導入用羽根車31の回転中心軸近傍が負圧になる。すると、空洞部30内の排水が溶媒導入用羽根車31の回転中心軸近くの溶媒供給穴30a付近に連続的に供給され、これに伴い、溶媒導入部23を介して空洞部30内に溶媒が連続的に吸引され続ける。
【0050】
溶媒導入用羽根車31の外周側に押し出された排水は、溶媒導入用羽根車31と加圧兼用溶質導入用羽根車32との間の一次圧縮室40によって溶媒導入用羽根車31の回転中心側に再び集められ、加圧兼用溶質導入用羽根車32の貫通穴19を通り加圧兼用溶質導入用羽根車32に配設された放射状の突条車32dによって、再度加圧されて加圧兼用溶質導入用羽根車32の外周側へ吐き出される状態になる。
【0051】
この状態で、オゾンガス発生器(図示せず)から溶質導入口部材38、溶質導入通路34bを介して小空洞部37内にオゾンガスを供給すると、小空洞部37内のオゾンガスは、加圧兼用溶質導入用羽根車32の回転によって溶媒が加圧兼用溶質導入用羽根車32外周方向へ吐きだされるときの遠心力により吸引される。オゾンガスは、溶媒導入用羽根車31及び一次圧縮室40によって移動してきた溶媒と、貫通穴19の小空洞部37側付近で接触し、溶質を吸引混合するための放射状の突条車32dに導かれ、加圧兼用溶質導入用羽根車32の回転によって溶媒と混合・接触処理され、加圧されて環状混合室39に吐き出される。そして排水とオゾンガスが混合・接触することで、排水のBOD値、COD値の低減や、含有重金属・貴金属成分の回収の為の酸化分解処理が行われ、吐出口48から吐出管24を通って所定の場所へ移送される。
【0052】
その後、吐出管24を通って所定の場所へ移送された排水から酸化処理により生じた析出物を回収し、回収された析出物を処理することで金属の回収・再利用を行なう。
【0053】
次に、本発明の作用効果を確認するために、本実施形態の二相流接触処理装置11を用いて、溶媒としての清水と、溶質としての空気とを接触混合した場合の実験を行なったので、以下に説明する。
【0054】
本実験は溶媒導入用羽根車と加圧兼用溶質導入用羽根車を回転速度3450rpmで回転させ、溶媒導入用羽根車の外径が110φ、加圧兼用溶質導入用羽根車の外径が140φとして、一次圧縮室における溶媒導入用羽根車と加圧兼用溶質導入用羽根車の間隔は約4mm〜約7mmであった。
【0055】
本実験は、溶質導入部を大気へ開放して大気圧(1atm)の空気を二相流接触処理装置に導入するようにした状態で、溶媒の流量を変化させた時に、二相流接触処理装置に導入される空気の流量を測定したものである。本実験の実験結果を示すグラフを図7に示す。
【0056】
図7は、本実験で得られた、二相流接触処理装置内に導入される清水の流量と、空気の流量との関係を示したグラフである。また、図7のグラフには、揚程と消費電力もあわせて示している。図7のCapacityは清水の流量を、Gasは空気の流量を、TOTAL HEADは溶媒と溶質との混合物の揚程を、SHAFT POWERはモーターの消費電力を示している。
【0057】
図7でわかるように、本実験のように大気圧(1atm)の空気を二相流接触処理装置に導入するようにした場合には、清水の流量に対して、10%の流量の空気を導入することができた。そして、このように清水の流量に対して10%の流量の空気が導入されても、エアーロックが生じることはなかった。
【0058】
本実施形態の二相流接触処理装置11及び二相流接触処理装置11を用いた二相流接触処理方法によれば次のような効果が発揮される。
・溶媒が導入される空洞部30と溶質が導入される小空洞部37とが溶媒導入用羽根車31,加圧兼用溶質導入用羽根車32及び一次圧縮室40を介して独立しているため、溶質が溶媒導入用羽根車31の中心部付近に溜まることが阻止され、溶媒導入用羽根車31の中心部付近を十分な負圧に維持することができ、吐き出し側揚程の低下も抑止できる。
【0059】
例えば溶質として気体を用いた場合に、従来のように、溶媒の移動経路の途中である溶媒導入用の羽根車の回転中心軸近傍に気体が滞留することによるエアーロックの発生を回避することができる。その結果、溶質の流量が大きすぎることにより溶媒の吸引ができなくなるといった事態の発生がなくなり、確実に溶媒の吸引と、溶媒と溶質の混合処理を行なう事ができる。また、溶媒と溶質を加圧兼用溶質導入用羽根車32により高い圧力で効率的に溶媒及び溶質の吸引・混合・接触を行なうことができる。さらに、外部から溶質を高圧で送り込むために昇圧装置を設けなくても、必要な吸引・混合・接触を行なうことができ、加圧兼用溶質導入用羽根車により溶媒と溶質の混合を確実に行なうことができるため、装置を小型化でき、かつ安価にすることができる。
【0060】
・加圧兼用溶質導入用羽根車32の中心部付近の貫通穴19を通して溶媒導入用羽根車31から溶媒が連続的に供給され、加圧兼用溶質導入用羽根車32によって確実に溶媒と溶質の混合を行なうことができる。
【0061】
・溶媒がケーシング内部で移動することで、連続的に溶媒を空洞部30内に吸引を行い、ケーシング内で移動した後の溶媒に対して溶質の混合と、混合した溶媒と溶質への加圧が行なわれるため、溶質が溶媒の移動経路の途中に滞留して溶媒の移動を阻害することがなく、その結果、溶質の流量が多くても確実に溶媒の吸引と、溶媒と溶質の混合処理を行なう事ができる。
【0062】
・溶媒導入用羽根車31と加圧兼用溶質導入用羽根車32と一次圧縮室40を用いて、溶媒及び溶質の連続的な吸引、接触・混合処理を効率的に行なうことができるので、二相流接触処理にかかるコストの低減を図ることができる。
【0063】
・溶媒が液体で溶質が気体であるとき、放射状の突条32aが形成された加圧兼用溶質導入用羽根車32を高速回転させる事によって、ケーシング内に導入された溶質の気泡が分断され微細となり混合接触反応を促進することができる。
【0064】
・溶質として気体を用いてガス発生器から溶質を導入する場合、小空洞部37は若干の負圧である為、通常のガス発生器自体の吐出圧のみで容易に二相流接触処理装置内に吸引され、混合接触処理を行なうことができる。このため、別途昇圧装置等を増設して溶質を二相流接触処理装置内に圧入する必要がなく、溶質を少ない部材で簡単に排水の中に吸収・接触させることができることから、コストの低減を図ることができる。
【0065】
・溶媒と溶質がともに液体のとき、放射状の突条32aが形成された加圧兼用溶質導入用羽根車32を高速回転させる事によって、溶質の液体が分断され微細となり良質なエマルジョン状態を得ることができ混合接触反応を促進することができる。例えば、Ph調整用化学薬品や医薬品の調合等、溶媒と溶質がともに液体であっても二相流接触処理装置11を使用することができる。
【0066】
・オゾンガスによる有効な排水の酸化分解処理を行なう事ができ、従来の塩素系の物質、例えば次亜塩素酸ソーダを用いた排水処理のように、副生成物として発ガン性物質を含んだ有機塩素系化合物が生じることがない。そのため、廃棄物の処理費用の削減、環境保護に貢献する。
【0067】
・溶媒導入用羽根車31は基板31bの中心から外周側へ向かって形成された複数の円弧状の突条31aを備え、加圧兼用溶質導入用羽根車32は中心から外周側に放射状に伸びる複数の突条32aを有する突条車32dを備えている、このため、溶媒を溶媒導入用羽根車31の外周側へ効果的に移動させることができるとともに、溶質を加圧兼用溶質導入用羽根車32の外周側へ効果的に移動させることができる。
【0068】
・冷却液タンク43内に封入された冷却液、オイル、又は不活性な液体、又は清水の通水によって回転軸28のメカニカルシール42が潤滑及び冷却すれば、メカニカルシール42の潤滑及び冷却を効率良く行なうことができ、メカニカルシール42を小さな固形物によって摩耗・破損させることがなく、安定したシール性能を発揮させることができる。
【0069】
なお、上記実施形態を次のように変更して具体化する事も可能である。
・回転板32bと32aとを一体形成として、加圧兼用溶質導入用羽根車32を構成するようにする。
上記実施形態では、回転板32bと突条32aを備える突条車32dが溶接で接合されているものであるが、突条車32dのかわりに、回転板32bに突条32aを鋳造等で一体に形成するようにしてもよい。
【0070】
・回転板32bと突条車32dとを着脱自在に接合して加圧兼用溶質導入用羽根車32を構成するようにする。
上記実施形態では、回転板32bと突条車32dが溶接で接合されているものであるが、回転板32bと突条車32dとをボルト等の固着具で着脱自在に接合して、回転板32bと突条車32dとが回転軸28の軸方向に対して直列に配置して加圧兼用溶質導入用羽根車32が構成されるようにしてもよい。
【0071】
このとき、貫通穴19の形状や位置の異なる回転板32bと、突条32aの形状や間隔の異なる突条車32dとを複数種類用意しておけば、取り扱う溶媒や溶質が異なる場合等、二相流接触処理装置11の用途に応じて回転板32bと突条車32dとの組み合わせを適宜変更して、所望の加圧兼用溶質導入用羽根車32を容易に作成することができる。これにより様々な溶媒や溶質に適用できる二相流接触処理装置11を容易かつ安価に得る事ができる。
【0072】
また、回転板32bと突条車32dとを着脱自在に直接固着具で接合しなくても、回転板32bと突条車32dとを個別にした状態で、回転板32bと突条車32dに回転軸28を挿通したときに、回転軸28と突条車32dとが回転軸28の軸方向に対して直列に配置して加圧兼用溶質導入用羽根車32を形成するようにしてもよい。
【0073】
・溶質として種々の気体や液体を吸引・混合し、機械的、化学的又は物理的な処理を行い移送する場合にも応用する。
前記実施形態では、金属加工工場又はメッキ工場などより排出される重金属・貴金属成分を含む排水と、オゾンガスとを混合接触させ、排水のBOD値、COD値の低減や、金属成分の回収を目的とした気液接触処理を行い、これを所定の場所に移送する場合について説明している。しかし、この発明による二相流接触処理装置はこのような使用に限定されるものでなく、他の気体や液体を適宜吸引・混合し、機械的、化学的又は物理的な処理を行い移送する場合にも応用することができる。
【0074】
例えば、一般排水の活性汚泥生物処理やその前処理を行なうための追加設備として二相流接触処理装置を用いたり、池・湖沼等の溶存酸素濃度の富加・上昇を目的としたばっ気処理、固液分離を目的とした加圧浮上分離処理、及びガス吸収による化学物質の反応、又は有害なガス、例えば塩素ガス等の溶媒への回収・無害化を目的とした吸収・移送に二相流接触処理装置を用いたりする事もできる。
【0075】
・加圧兼用溶質導入用羽根車32の突条32aの形状を、使用する溶質又は要求される反応効果によって、適宜変更する。
例えば使用目的に合わせて、直線的又は円弧状にする。この様に構成した場合、最良の形状が選択でき、二相流接触処理装置としての機能を良好に発揮することができる。
【0076】
・溶媒導入用羽根車31の突条31aを溶媒の種類・時間当たりに処理を行なう量に応じて、適宜変更する。
例えば、各突条31aの幅を狭くしたり高さを高くしたり、突条31aの数を増やしたり、形状を変更したりする事で、溶媒の種類・時間当たりに処理を行なう量に応じて、渦巻きポンプとして効果的に作動させることができる。
【0077】
【発明の効果】
以上のように、本発明に係る二相流接触処理装置によれば、溶質の流量が大きすぎることにより溶媒の吸引ができなくなるといった事態の発生がなくなり、確実に溶媒の吸引と、溶媒と溶質の混合処理を行なう事ができる。また、溶媒と溶質を加圧兼用溶質導入用羽根車により高い圧力で効率的に溶媒及び溶質の吸引・混合・接触を行なうことができる。さらに、外部から溶質を高圧で送り込むために昇圧装置を設けなくても、必要な吸引・混合・接触を行なうことができ、加圧兼用溶質導入用羽根車により溶媒と溶質の混合を確実に行なうことができるため、装置を小型化でき、かつ安価にすることができる。
【0078】
また、取り扱う溶媒や溶質が異なる場合等、二相流接触処理装置の用途に応じて回転板と突条車とを適時組み合わせて、所望の加圧兼用溶質導入用羽根車を備える二相流接触処理装置を容易かつ安価に得る事ができる。
【0079】
本発明に係る二相流接触処理方法によれば、溶媒がケーシング内部で移動することで、連続的に溶媒を空洞部内に吸引を行い、ケーシング内で移動した後の溶媒に対して溶質の混合と、混合した溶媒と溶質への加圧が行なわれるため、溶質が溶媒の移動経路の途中に滞留して溶媒の移動が阻害することがなく、その結果、溶質の流量が多くても確実に溶媒の吸引と、溶媒と溶質の混合処理を行なう事ができる。
【図面の簡単な説明】
【図1】二相流接触処理装置を示す要部を破断した正面図である。
【図2】図1の部分拡大図である。
【図3】図1の要部部分拡大図である。
【図4】溶媒導入部側からみた溶媒導入用羽根車を示す部分拡大側断面図である。
【図5】小空洞部側から見た加圧兼用溶質導入用羽根車を示す側面図である。
【図6】二相流接触処理装置の要部分解斜視図である。
【図7】二相流接触処理装置内に導入される清水の流量と、空気の流量との関係を示したグラフである。
【符号の説明】
11 二相流接触処理装置
19 貫通穴
22 ケーシング部
23 溶媒導入部
23a 溶媒導入用枝通路
24 吐出管
25 ケーシング
25a 内部隔壁
27 モーター
28 回転軸
29 逆止弁
30 空洞部
30a 溶媒供給穴
31 溶媒導入用羽根車
31a,32a 突条
31b 基板
31c,32c,34a,47a 軸孔
32 加圧兼用溶質導入用羽根車
32b 回転板
32d 突条車
33 円形皿部材
33a,33b 貫通孔
34 蓋部材
34b 溶質導入通路
35 Oリング
37 小空洞部
38 溶質導入口部材
39 環状混合室
40 一次圧縮室
41 冷却室
42 メカニカルシール
43 冷却液タンク
44 連通管
44a 分岐管
45 オイルシール
46 円管
46a,46b 冷却液通路
47 蓋
48 吐出口
49 吐出室
49a 吐出用枝通路
50 回転軸支持部
51 軸連結部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a two-phase flow contact treatment apparatus for carrying out contact treatment by sucking and mixing a solvent and a solute and transferring them to a predetermined place.
[0002]
[Prior art]
Conventionally, a liquid such as water as a solvent is contacted, mixed and absorbed with a gas such as air as a solute to perform a desired treatment, and a pump has been used as a means for lifting to a high place or transferring to a predetermined place. A two-phase flow contact treatment device is used. In this two-phase flow contact treatment apparatus, a spiral pump is known as a pump used as a transfer means.
[0003]
This centrifugal pump is provided with a suction port and a discharge port in the casing. One suction port is formed for each of the solvent and the solute in order to suck the solvent and the solute into the casing. One is formed to discharge the solution obtained by mixing to the outside. The casing accommodates an impeller therein, and the impeller is configured to be rotatable by a driving body such as a motor disposed outside the casing. A plurality of blade portions for guiding the liquid are provided on the outer peripheral surface of the impeller.
[0004]
When the solvent and solute are mixed by the pump, the solvent is first introduced from the suction port, and the solute is simultaneously sucked from the suction port into the casing by using the negative pressure when the solvent is sucked. The That is, the solvent is rotated using the centrifugal action when the impeller rotates in the pump, and the solvent is moved to the outer peripheral side. As the solvent moves to the outer peripheral side of the impeller, the rotation center of the impeller becomes negative pressure, and the solvent and solute are newly sucked into the rotation center of the impeller. The solvent and solute are agitated and mixed in the rotation of the impeller and in the outer peripheral annular flow path, and discharged from the discharge port to the outside.
[0005]
[Problems to be solved by the invention]
In the two-phase flow contact processing apparatus using the conventional centrifugal pump as described above, when liquid is used as the solvent and gas is used as the solute, the liquid is generated when the liquid is pushed out to the outer peripheral side of the impeller by centrifugal force. Since the negative pressure at the center of the impeller is used to continuously suck in liquid or gas, if the gas volume becomes too large, the gas will collect at the center of rotation of the impeller. Insufficient negative pressure to continuously suck in the liquid, making it impossible to suck the liquid, or making the discharge pressure / flow rate extremely unstable, making continuous operation difficult There was a case where it became.
[0006]
For this reason, there has been a problem that the amount of the solute consisting of gas must be limited to around 5% so as not to cause so-called air lock. That is, there has been a problem that the ratio of the solute composed of the gas to be mixed must be limited to a very small value or less.
[0007]
The present invention has been made to solve the disadvantages of the prior art as described above.
The object of the present invention is to increase the contact / reaction efficiency of the solute with respect to the solvent, promote the mechanical, chemical or physical reaction of the solvent, and smoothly increase the mixing ratio of the solute with respect to the solvent. To provide a two-phase flow contact treatment device and a two-phase flow contact treatment method capable of performing two-phase flow contact treatment at a low cost by reducing the size of the device. is there.
[0008]
[Means for Solving the Problems]
According to the two-phase flow contact treatment apparatus of the present invention, the subject is a solvent introduction part for introducing a solvent into the casing, a solute introduction part for introducing a solute into the casing, a disk-shaped impeller, and a solvent. A two-phase flow contact treatment apparatus comprising an annular mixing chamber for mixing solutes and a discharge pipe for discharging a mixture of a solvent and a solute, wherein the impeller includes a solvent introduction impeller and a pressurizing combined use A solute introduction impeller, and the solvent introduction impeller and the pressurizing solute introduction impeller In the direction of the rotation axis A pressure compression solute introduction vane, which is arranged in series and includes a primary compression chamber from the outer peripheral portion of the solvent introduction impeller along a side surface of the solvent introduction impeller on the pressure / solute introduction vane side. This can be solved by providing a through hole in the center of the vehicle.
[0009]
This prevents the solute from accumulating near the center of the solvent introduction impeller, can maintain the vicinity of the center of the solvent introduction impeller at a sufficient negative pressure, and can suppress a decrease in the discharge-side lift. . In addition, the solvent is continuously supplied from the impeller for introducing the solvent through the through hole near the center of the impeller for introducing the pressure and solute, and the solvent and the solute are surely mixed by the impeller for introducing the pressure and solute. Will be able to.
[0010]
At this time, radial ridges directed toward the outer periphery for the purpose of mixing the solvent and the solute are formed on the surface opposite to the surface on which the solvent introduction impeller is located. It is preferable to constitute so.
[0011]
From this, by rotating the impeller for introduction of pressure and solute formed with radial protrusions at high speed, the bubbles of the solute that is gas are divided and made fine, or the solute that is the liquid is divided and made fine. By doing so, the two-phase flow contact treatment can be promoted.
[0012]
Further, the pressurizing and solute introduction impeller includes a disk-shaped rotating plate and a protruding wheel, and the rotating plate and the protruding wheel are In the direction of the rotation axis It is preferable that they are arranged in series.
[0013]
Thereby, according to the use of a two-phase flow contact treatment apparatus, a two-phase flow contact treatment apparatus provided with the desired pressurization and solute introduction impeller can be obtained by combining a rotary plate and a protruding wheel at an appropriate time.
[0014]
According to the two-phase flow contact treatment method of the present invention, the problem is that a solvent composed of a liquid is introduced into the casing from the solvent introduction section, the introduced solvent is moved inside the casing, and the solute is removed from the solute introduction section. The solute is introduced into the casing, the solute is mixed with the moved solvent, the mixture of the solvent and the solute is pressurized, the mixture of the solvent and the solute is discharged, and the impeller for solvent introduction is added to the impeller. With the impeller for pressure and solute introduction In the direction of the rotation axis It is the solvent that introduces the solvent into the casing by using a primary compression chamber formed between the impeller in series, the impeller for introducing the solvent, and the impeller for introducing pressure and solute. The introduction of the impeller and moving the solvent inside the casing is performed using the solvent introduction impeller and the primary compression chamber, the solute is introduced into the casing, and the solvent is moved inside the casing. Mixing the solute and pressurizing the mixture of the solvent and the solute can be solved by performing the pressurization / solute introduction impeller.
[0015]
This prevents the solute from staying in the middle of the solvent movement path and hindering the movement of the solvent. As a result, the suction of the solvent and the mixing process of the solvent and the solute are surely performed even if the flow rate of the solute is large. I can do things.
[0016]
In addition, a solvent introduction impeller and a pressure-added solute introduction impeller In the direction of the rotation axis It is the solvent that introduces the solvent into the casing by using a primary compression chamber formed between the impeller in series, the impeller for introducing the solvent, and the impeller for introducing pressure and solute. The introduction of the impeller and moving the solvent inside the casing is performed using the solvent introduction impeller and the primary compression chamber, the solute is introduced into the casing, and the solvent is moved inside the casing. The solute is mixed and the mixture of the solvent and the solute is pressurized by the pressure / solute introduction impeller.
[0017]
Thus, continuous suction, contact, and mixing of the solvent and solute can be efficiently performed using the impeller for introducing the solvent, the impeller for introducing the solute for both pressurization and the primary compression chamber.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The members, arrangements, and the like described below are not intended to limit the present invention and can be variously modified within the scope of the gist of the present invention.
[0019]
FIG. 1 to FIG. 6 show an embodiment according to the present invention. FIG. 1 is a front view in which a main part showing a two-phase flow contact treatment device is broken, FIG. 2 is a partially enlarged view of FIG. 3 is a partially enlarged view of a main part of FIG. 1, FIG. 4 is a partially enlarged side sectional view showing a solvent introduction impeller as seen from the solvent introduction part side, and FIG. 5 is a pressure / solute introduction blade seen from the small cavity side. FIG. 6 is a side view showing a vehicle, and FIG.
[0020]
The two-phase flow contact treatment device 11 of this example includes a casing part 22, a motor 27, a rotating shaft 28, a solvent introduction part 23, a solute introduction part (a solute introduction port member 38, a solute introduction passage 34b, a small cavity part. 37), disk-shaped impellers 31 and 32, an annular mixing chamber 39 for mixing the solvent and the solute, and a discharge pipe 24 for discharging the mixture of the solvent and the solute to the outside of the casing portion 22. .
[0021]
A solvent introduction part 23 is connected to the casing 25 constituting the casing part 22 of the present embodiment, and a discharge pipe 24 communicating with a discharge chamber 49 communicating with the discharge port 48 in the casing 25 is integrally provided in the casing 25. The impellers 31 and 32 provided in the central portion of the casing 25 have a disk-shaped solvent introduction impeller 31 and a pressurizing and solute introduction impeller 32 that are rotatably supported by a rotation shaft 28. Two are arranged in series in 28 directions. The solvent introduction impeller 31 is an impeller for introducing a solvent, and the pressurizing and solute introduction impeller 32 is an impeller for introducing a solute, and also serves to pressurize the solvent and the solute. Is.
[0022]
The solvent introduction part 23 is provided to introduce the solvent into the casing 25 and communicates with a tank (not shown) in which the solvent is stored. In addition, the solvent introduction part 23 may be provided with a solvent introduction branch passage 23a so that the solvent can be introduced from a tank other than the tank in which the solvent is stored. For example, when the solvent once introduced into the casing 25 is introduced again into the casing 25 after being guided again to the solvent introduction section 23, the solvent introduction branch passage 23a is provided when the solvent is circulated and reused. Can be used. When the solvent introduction branch passage 23a is not used, the solvent introduction branch passage 23a is blocked by a plug or a valve.
[0023]
A check valve 29 for preventing a backflow is provided at a connection portion between the solvent introduction portion 23 and the casing 25. The check valve 29 is disk-shaped, and only its upper end is fixed, and the lower side is swingable. Therefore, when the solvent flows from the solvent introduction part 23 toward the casing 25, the check valve 29 swings by the flow and flows into the casing 25 as indicated by a two-dot chain line in FIGS. 2 and 3. It becomes possible.
[0024]
On the other hand, when trying to flow from the casing 25 toward the solvent introduction part 23 side, the check valve 29 is pressed against the opening edge of the solvent introduction part 23 by the pressure of the solvent, and the solvent introduction part 23 is closed, Backflow is prevented. For this reason, the solvent flows in only one direction from the solvent introduction part 23 into the casing 25.
[0025]
A hollow portion 30 in which the solvent supplied from the solvent introduction portion 23 side is formed in the casing 25 side of the check valve 29 is formed by an internal partition wall 25 a of the casing 25. Further, on the surface of the inner partition 25a of the casing 25 opposite to the cavity 30 (on the motor 27 side), the circular dish member 33 is attached to the inner partition 25a by a fastener such as a bolt so that the bottom surface faces the cavity 30 side. The solvent introduction impeller 31 is accommodated in the circular dish member 33.
[0026]
The solvent introduction impeller 31 is formed of a disc-shaped substrate 31b, a ridge 31a, and a shaft hole 31c, and the ridge 31a that radiates in a vortex toward the outer periphery of the substrate 31b. It is formed at equal intervals. As shown in FIG. 4, the solvent introduction impeller 31 has a rotary shaft 28 inserted into the shaft hole 31c so that the surface on which the protrusion 31a is formed faces the cavity 30 to which the solvent is supplied. It is fixed and is arranged so as to be rotatable about the rotation shaft 28.
[0027]
A hole is provided in the bottom surface of the circular dish member 33 and the inner partition wall 25a at a position corresponding to the rotation center axis of the solvent introduction impeller 31 in order to supply the solvent from the hollow portion 30 to the solvent introduction impeller 31. A solvent supply hole 30a is formed. In this embodiment, the solvent introduction impeller 31 is accommodated in the circular dish member 33, but the inner partition wall 25 a of the casing 25 is formed in the shape of the circular dish member 33 without providing the circular dish member 33. May be.
[0028]
Further, in the peripheral wall of the circular dish member 33, through holes 33a and 33b are provided in a portion located on the upper side and a portion located on the lower side, respectively. The through-hole 33a provided on the upper side is a through-hole provided for air bleeding when the two-phase flow contact treatment device 11 is stopped or started. The through hole 33b provided on the lower side is a through hole provided as a drain for extracting the solvent and the like in the two-phase flow contact treatment device 11.
[0029]
A pressurizing and solute introduction impeller 32 having substantially the same outer diameter as that of the circular dish member 33 is rotated adjacent to the solvent introduction impeller 31 so as to close the opening on the motor 27 side of the circular dish member 33. They are arranged in series in the axial direction of the shaft 28.
[0030]
The pressurizing and solute introduction impeller 32 is for sucking the solute, repressurizing and mixing the solvent, and includes a disk-shaped rotating plate 32b having a shaft hole 32c, and a ridge wheel 32d having a ridge 32a. Formed from. In this embodiment, the rotating plate 32b and the projecting wheel 32d are joined by welding. The protruding wheel 32d is welded to one surface of the rotating plate 32b, and is formed at equal intervals linearly or gently in a radial arc shape toward the outer periphery of the impeller 32 for introducing solute for both pressurization and use. The protrusion 32a is formed. In addition, an annular through hole 19 is formed in the peripheral portion of the shaft hole 32 c formed in the center side portion of the impeller 32 for introducing a pressure and solute in the rotating plate 32 b. Note that the through hole 19 is not limited to an annular continuous through hole, and the through hole 19 may be partially formed.
[0031]
The pressure / solute introducing impeller 32 has a casing 25 in which the surface on which the ridge 32a of the pressure / solute introducing impeller 32 is formed is opposite to the side where the solvent introducing impeller 31 is located (motor The rotating shaft 28 is inserted and fixed in the shaft hole 32c so as to face the (27 side), and is arranged to be rotatable about the rotating shaft 28.
[0032]
The outer diameter of the solvent introduction impeller 31 is formed to be smaller than the inner diameter of the circular dish member 33, and is between the substrate 31 b of the solvent introduction impeller 31 and the rotating plate 32 b of the pressurizing / solute introduction impeller 32. Is provided with a space. Thus, the circular dish member 33 and the pressure / solute introduction impeller are arranged from the outer peripheral portion of the solvent introduction impeller 31 along the side surface of the solvent introduction impeller 31 on the pressure / solute introduction impeller 32 side. The primary compression chamber 40 surrounded by 32 is continuously formed.
[0033]
Further, as shown in FIGS. 2 to 4, an annular mixing chamber 39 is disposed in the casing 25 along the outer peripheral surface of the circular dish member 33 and the outer peripheral surface of the pressure / solute introduction impeller 32. It is formed so as to spread gradually toward. In the annular mixing chamber 39, the solvent and the solute sent to the outer peripheral side are guided by the rotation of the impeller 32 for introducing the pressurizing and solute for repressurizing the solvent and sucking and mixing the solute, and further mixed therein.・ Contact reaction is performed, and deceleration and pressure increase are performed.
[0034]
A discharge chamber 49 that communicates with the discharge pipe 24 is formed to guide the solvent and solute discharged from the discharge port 48 through the annular mixing chamber 39 to the discharge pipe 24. The solvent and solute discharged from the discharge port 48 are sent to the discharge pipe 24 through the discharge chamber 49 and transferred to a predetermined place.
[0035]
The discharge chamber 49 may be provided with a discharge branch passage 49 a for discharging the solvent and solute in addition to the discharge pipe 24. For example, the discharge branch passage 49a can be reused as a solvent to be supplied to the casing 25 by connecting the solvent discharged from the discharge branch passage 49a with the solvent introduction branch passage 23a. Further, the solvent discharged from the discharge branch passage 49a can be led to a cooling chamber 41 described later and used as a cooling liquid. When the discharge branch passage 49a is not used, the discharge branch passage 49a is blocked by a plug or a valve.
[0036]
A large opening is formed in the outer wall of the casing 25 on the motor 27 side so as to face the aforementioned pressure / solute introduction impeller 32, and a lid member is interposed via an O-ring 35 so as to close the large opening. 34 is arranged. Between the side surface of the lid member 34 facing the large opening of the casing 25 and the impeller 32 for introducing the pressurizing and solute, when the impeller 32 for introducing the pressurizing and solute is rotated, the lid member 34 and the solute for combining pressurization are used. A very small interval is provided so as not to contact the introduction impeller 32.
[0037]
The lid member 34 is provided with a shaft hole 34a through which the rotary shaft 28 is passed. The diameter of the shaft hole 34a is sufficiently larger than the diameter of the rotary shaft 28, and when the rotary shaft 28 is inserted into the shaft hole 34a, the space in the shaft hole 34a introduces a solute. Part 37 is configured. At this time, the small cavity portion 37 faces the vicinity of the rotation center axis of the pressurization / solute introduction impeller 32 so that the solute can be supplied from the small cavity portion 37 to the vicinity of the rotation center axis of the pressurization / solute introduction impeller 32. Will be placed in position.
[0038]
The lid member 34 is provided with a solute introduction passage 34b from the shaft hole 34a toward the outer peripheral surface of the lid member 34 in the radial direction of the lid member 34 so as to communicate with the shaft hole 34a. A solute inlet member 38 is connected to the solute inlet passage 34b. The solute inlet member 38 is connected to a tank (not shown) or various gas generators (not shown) in which the solute is stored so as to send the supplied solute into the solute introduction passage 34b. It has become.
[0039]
Therefore, as shown in FIGS. 2 and 3, the solute introduced from the solute introduction member 38 to the solute introduction passage 34b is introduced to the small cavity portion 37 of the shaft hole 34a, and is further used as a solute introduction impeller for pressure application. It will be led to the vicinity of 32 rotation center axes. The solute introduction port member 38, the solute introduction passage 34b, and the small cavity portion 37 form the solute introduction portion of this embodiment.
[0040]
When the solute is air or outside air, it is configured to be released to the atmosphere during operation through the stop valve of the solute inlet member 38. In addition, a pressure increasing device (not shown) may be connected to the solute introduction port member 38 so that the solute is fed into the solute introduction passage 34b at a high pressure. By feeding the solute at high pressure, more solute can be introduced into the casing.
[0041]
An oil seal 45 is disposed at the boundary between the lid member 34 and the rotary shaft 28 on the motor 27 side so that the solvent does not leak from between the lid member 34 and the rotary shaft 28 to the outside of the small cavity portion 37. .
[0042]
On the side surface of the lid member 34 on the motor 27 side, a circular tube 46 and a disk-shaped lid 47 provided with a shaft hole 47a through which the rotary shaft 28 is passed are fixed by a fixing tool such as a bolt. The circular tube 46 is disposed between the lid member 34 and the lid 47, and the mechanical seal 42 of the rotating shaft 28 is sandwiched between the lid member 34 and the lid 47 inside the circular tube 46.
[0043]
The inside of the circular tube 46 is configured as a cooling chamber 41. The cooling chamber 41 is formed on the outer periphery of the mechanical seal 42 of the rotary shaft 28 that is easily heated. Cooling fluid passages 46 a and 46 b communicating with the cooling chamber 41 are formed on the peripheral wall of the circular tube 46. The coolant passage 46 a is used to guide the coolant to the cooling chamber 41. The coolant passage 46 b is normally closed and is used as a drain when the coolant is discharged from the cooling chamber 41.
[0044]
A coolant tank 43 is installed in the coolant passage 46 a via a communication pipe 44. The coolant stored in the coolant tank 43 moves between the cooling chamber 41 through the communication pipe 44 and the coolant passage 46a, and lubrication and cooling of the mechanical seal 42 are performed. The cooling liquid tank 43 may enclose an inert liquid other than oil as a cooling liquid, or may pass or drain fresh water.
[0045]
Further, a branch pipe 44a may be provided in the middle of the communication pipe 44 so that coolant from other than the coolant tank 43 can be introduced from the branch pipe 44a. For example, the discharge branch passage 49a and the branch pipe 44a are connected, and the solvent discharged from the discharge branch passage 49a can be used as the coolant from other than the coolant tank 43. At this time, by connecting the coolant passage 46b and the aforementioned solvent introduction branch passage 23a and introducing the solvent (coolant) discharged from the coolant passage 46b into the casing 25, the solvent is circulated as a coolant. Can be used.
[0046]
However, when the solvent discharged from the discharge branch passage 49a is used as the cooling liquid, the solvent should not contain fine particles so as not to damage the rotating shaft 28 and the mechanical seal 42. Even if the solvent contains fine particles, a filter is inserted between the discharge branch passage 49a and the branch pipe 44a so that the fine particles do not enter the cooling chamber 41, and the solvent is used as a cooling liquid. May be.
[0047]
The rotating shaft 28 inserted into the casing 25 through the shaft hole 47a, the circular tube 46, and the shaft hole 34a is rotatably supported by the rotating shaft support portion 50. The end of the rotating shaft 28 located on the motor 27 side is connected to an output shaft (not shown) of the motor 27 by a shaft connecting portion 51, and the rotational force of the motor 27 is transmitted to the rotating shaft 28.
[0048]
In the two-phase flow contact treatment device 11 having the above-described configuration, either a liquid or a gas can be used as a solute. Below, wastewater containing heavy metals and precious metal components discharged in the surface processing process such as metal processing or plating factory as solvent, ozone gas as oxidative decomposition agent as solute, BOD value of wastewater by oxidative decomposition reaction, COD A case will be described in which gas-liquid contact treatment is performed for the purpose of reducing the value and oxidative decomposition / deposition / recovery of the metal component-containing substance and the wastewater is transferred to a predetermined place.
[0049]
First, in the two-phase flow contact treatment device 11, the wastewater is sent into the cavity 30 from the tank (not shown) that stores the wastewater through the solvent introduction portion 23. By driving the motor 27 in this state, the solvent introduction impeller 31 is rotated via the rotation shaft 28. By the rotation of the solvent introduction impeller 31, the waste water guided from the cavity 30 to the solvent supply hole 30 a is moved along the ridge 31 a and moved to the outer peripheral side of the solvent introduction impeller 31, and the primary compression chamber 40. Vomited inside. The drainage that has existed in the vicinity of the solvent supply hole 30 a is pushed out to the outer peripheral side of the solvent introduction impeller 31, whereby the vicinity of the rotation center axis of the solvent introduction impeller 31 becomes negative pressure. Then, the waste water in the cavity 30 is continuously supplied to the vicinity of the solvent supply hole 30 a near the rotation center axis of the solvent introduction impeller 31, and accordingly, the solvent is introduced into the cavity 30 via the solvent introduction part 23. Continues to be aspirated.
[0050]
The waste water pushed out to the outer peripheral side of the solvent introduction impeller 31 is rotated by the primary compression chamber 40 between the solvent introduction impeller 31 and the pressurizing and solute introduction impeller 32. It is collected again on the side, passes through the through-hole 19 of the pressurizing / solute introduction impeller 32, and is again pressurized and pressurized by the radial projecting wheel 32 d disposed in the pressurization / solute introduction impeller 32. It will be in the state discharged to the outer peripheral side of the combined solute introduction impeller 32.
[0051]
In this state, when ozone gas is supplied into the small cavity portion 37 from the ozone gas generator (not shown) through the solute introduction port member 38 and the solute introduction passage 34b, the ozone gas in the small cavity portion 37 is converted into a pressurized solute. The solvent is sucked by the centrifugal force generated when the introduction impeller 32 is spouted toward the outer periphery of the pressurizing / solute introduction impeller 32. The ozone gas is brought into contact with the solvent moved by the solvent introduction impeller 31 and the primary compression chamber 40 in the vicinity of the small cavity portion 37 side of the through hole 19 and led to a radial projecting wheel 32d for sucking and mixing the solute. Then, it is mixed and contacted with the solvent by the rotation of the impeller 32 for introducing solute for both pressurization and pressurized, and is pressurized and discharged into the annular mixing chamber 39. The waste water and ozone gas are mixed and contacted to reduce the BOD value and COD value of the waste water, and to perform oxidative decomposition treatment for recovery of contained heavy metals and precious metal components. It is transferred to a predetermined place.
[0052]
Thereafter, the precipitate generated by the oxidation treatment is recovered from the wastewater transferred to a predetermined place through the discharge pipe 24, and the recovered precipitate is processed to recover and reuse the metal.
[0053]
Next, in order to confirm the effect of the present invention, using the two-phase flow contact treatment device 11 of the present embodiment, an experiment was conducted in the case where clean water as a solvent and air as a solute were contact-mixed. This will be described below.
[0054]
In this experiment, the solvent introduction impeller and the pressure / solute introduction impeller are rotated at a rotational speed of 3450 rpm, the outer diameter of the solvent introduction impeller is 110φ, and the outer diameter of the pressure / solute introduction impeller is 140φ. The distance between the solvent introduction impeller and the pressurizing and solute introduction impeller in the primary compression chamber was about 4 mm to about 7 mm.
[0055]
In this experiment, two-phase flow contact treatment was performed when the flow rate of the solvent was changed in a state where the solute introduction part was opened to the atmosphere and air at atmospheric pressure (1 atm) was introduced into the two-phase flow contact treatment device. This is a measurement of the flow rate of air introduced into the apparatus. A graph showing the experimental results of this experiment is shown in FIG.
[0056]
FIG. 7 is a graph showing the relationship between the flow rate of fresh water introduced into the two-phase flow contact treatment device and the flow rate of air, obtained in this experiment. Further, the graph of FIG. 7 also shows the head and power consumption. In FIG. 7, “Capacity” indicates the flow rate of fresh water, “Gas” indicates the flow rate of air, “TOTAL HEAD” indicates the head of the mixture of the solvent and the solute, and “SHAFT POWER” indicates the power consumption of the motor.
[0057]
As can be seen in FIG. 7, when air at atmospheric pressure (1 atm) is introduced into the two-phase flow contact treatment device as in this experiment, air at a flow rate of 10% with respect to the flow rate of fresh water is used. Could be introduced. And even if air having a flow rate of 10% with respect to the flow rate of fresh water was introduced in this way, no air lock occurred.
[0058]
According to the two-phase flow contact treatment device 11 and the two-phase flow contact treatment method using the two-phase flow contact treatment device 11 of the present embodiment, the following effects are exhibited.
Since the cavity 30 into which the solvent is introduced and the small cavity 37 into which the solute is introduced are independent via the impeller 31 for introducing the solvent, the impeller 32 for introducing the solute for both pressurization and the primary compression chamber 40. The solute is prevented from collecting near the center of the solvent introduction impeller 31, the vicinity of the center of the solvent introduction impeller 31 can be maintained at a sufficient negative pressure, and the lowering of the discharge-side lift can be suppressed. .
[0059]
For example, when gas is used as a solute, it is possible to avoid the occurrence of an air lock due to the gas staying in the vicinity of the rotation center axis of the solvent introduction impeller, which is in the middle of the solvent movement path, as in the past. it can. As a result, the situation that the solvent cannot be sucked due to the excessive flow rate of the solute is eliminated, and the sucking of the solvent and the mixing process of the solvent and the solute can be surely performed. Further, the solvent and solute can be efficiently sucked, mixed, and contacted at a high pressure by the impeller 32 for introducing the solute for both pressurization and solute. Furthermore, the necessary suction, mixing, and contact can be performed without providing a booster for feeding the solute from outside at high pressure, and the solvent and solute are reliably mixed by the solute introduction impeller for both pressurization. Therefore, the apparatus can be reduced in size and made inexpensive.
[0060]
The solvent is continuously supplied from the impeller 31 for introducing the solvent through the through hole 19 near the center of the impeller 32 for introducing the solute for both pressurization and the impeller 32 for introducing the solute for introducing the solvent reliably. Mixing can be performed.
[0061]
-As the solvent moves inside the casing, the solvent is continuously sucked into the cavity 30, and the solute is mixed with the solvent after moving inside the casing, and the mixed solvent and the solute are pressurized. Therefore, the solute stays in the middle of the solvent movement path and does not hinder the movement of the solvent. As a result, even if the flow rate of the solute is large, the suction of the solvent and the mixing process of the solvent and the solute Can be performed.
[0062]
Using the impeller 31 for introducing the solvent, the impeller 32 for introducing the solute for both pressurization and the primary compression chamber 40, the continuous suction, contact and mixing treatment of the solvent and the solute can be efficiently performed. The cost for the phase flow contact treatment can be reduced.
[0063]
When the solvent is a liquid and the solute is a gas, the solute bubbles introduced into the casing are finely divided by rotating the impeller 32 for introduction of pressure and solute formed with radial protrusions 32a at high speed. The mixed contact reaction can be promoted.
[0064]
When the solute is introduced from the gas generator using a gas as the solute, the small cavity 37 has a slight negative pressure, so that it is easily in the two-phase flow contact treatment apparatus only with the discharge pressure of the normal gas generator itself. The mixed contact process can be performed. For this reason, there is no need to add a separate pressure booster or the like to press the solute into the two-phase flow contact treatment device, and the solute can be easily absorbed and contacted into the waste water with a small number of members, reducing costs. Can be achieved.
[0065]
-When both the solvent and solute are liquid, the solute liquid is divided and becomes finer by obtaining a high-quality emulsion state by rotating the impeller 32 for introduction of pressure and solute formed with radial protrusions 32a at high speed. And can promote the mixed contact reaction. For example, the two-phase flow contact treatment device 11 can be used even if the solvent and solute are both liquids, such as the preparation of chemicals for adjusting Ph and pharmaceutical preparations.
[0066]
・ Efficient wastewater oxidative decomposition treatment with ozone gas can be performed, and organic substances containing carcinogenic substances as by-products, such as wastewater treatment using conventional chlorinated substances such as sodium hypochlorite Chlorine compounds are not generated. Therefore, it contributes to reduction of waste disposal costs and environmental protection.
[0067]
The solvent introduction impeller 31 includes a plurality of arc-shaped protrusions 31a formed from the center of the substrate 31b toward the outer peripheral side, and the pressurizing / solute introduction impeller 32 extends radially from the center to the outer peripheral side. It is provided with a projecting wheel 32d having a plurality of projecting ridges 32a. For this reason, the solvent can be effectively moved to the outer peripheral side of the solvent introduction impeller 31, and the solute is also used as a solute introduction blade. The vehicle 32 can be effectively moved to the outer peripheral side.
[0068]
If the mechanical seal 42 of the rotating shaft 28 is lubricated and cooled by the coolant, oil, inert liquid, or fresh water flowing in the coolant tank 43, the lubrication and cooling of the mechanical seal 42 is efficient. It is possible to perform well, and the mechanical seal 42 is not worn or damaged by a small solid material, and stable sealing performance can be exhibited.
[0069]
It should be noted that the embodiment described above can be modified and embodied as follows.
The rotating plate 32b and 32a are integrally formed to constitute the impeller 32 for introducing a solute for pressure application.
In the above-described embodiment, the rib 32d including the rotating plate 32b and the protrusion 32a is joined by welding. Instead of the protrusion 32d, the protrusion 32a is integrated with the rotating plate 32b by casting or the like. You may make it form in.
[0070]
The rotating plate 32b and the projecting wheel 32d are detachably joined to form the impeller 32 for introducing a solute for pressure application.
In the above embodiment, the rotating plate 32b and the protruding wheel 32d are joined by welding. However, the rotating plate 32b and the protruding wheel 32d are detachably joined with a fixing tool such as a bolt so that the rotating plate 32b and the projecting wheel 32d may be arranged in series with respect to the axial direction of the rotary shaft 28 so that the pressurizing and solute introduction impeller 32 may be configured.
[0071]
At this time, if a plurality of types of rotating plates 32b having different shapes and positions of the through holes 19 and projecting wheels 32d having different shapes and intervals of the protrusions 32a are prepared, two types of solvents and solutes are handled. The desired combination of pressure and solute introduction impeller 32 can be easily created by appropriately changing the combination of the rotating plate 32b and the projecting wheel 32d according to the use of the phase flow contact treatment device 11. Thereby, the two-phase flow contact treatment apparatus 11 applicable to various solvents and solutes can be obtained easily and inexpensively.
[0072]
In addition, the rotating plate 32b and the protruding wheel 32d can be attached to the rotating plate 32b and the protruding wheel 32d in a state where the rotating plate 32b and the protruding wheel 32d are separated from each other without directly joining the rotating plate 32b and the protruding wheel 32d with a fixing tool. When the rotary shaft 28 is inserted, the rotary shaft 28 and the projecting wheel 32d may be arranged in series with respect to the axial direction of the rotary shaft 28 to form the pressure / solute introduction impeller 32. .
[0073]
-It is also applied to the case where various gases and liquids are sucked and mixed as solutes and transferred by mechanical, chemical or physical treatment.
In the embodiment, wastewater containing heavy metals and noble metal components discharged from a metal processing factory or a plating factory and ozone gas are mixed and contacted, and the purpose is to reduce the BOD value and COD value of the wastewater and to recover the metal components. A case is described in which the gas-liquid contact process is performed and transferred to a predetermined place. However, the two-phase flow contact treatment apparatus according to the present invention is not limited to such use, and other gases and liquids are sucked and mixed as appropriate, and are transported after mechanical, chemical or physical treatment. It can also be applied to cases.
[0074]
For example, using a two-phase flow contact treatment device as an additional facility for activated sludge biological treatment of general wastewater and its pretreatment, aeration treatment for the purpose of enrichment and increase of dissolved oxygen concentration in ponds and lakes, Two-phase flow for pressure levitation separation for solid-liquid separation and chemical reaction due to gas absorption, or absorption / transfer for the purpose of recovery and detoxification in solvents such as harmful gases such as chlorine gas A contact processing device can also be used.
[0075]
-The shape of the ridge 32a of the impeller 32 for introducing the solute for both pressurization and use is appropriately changed depending on the solute to be used or the required reaction effect.
For example, it is linear or arcuate according to the purpose of use. When configured in this manner, the best shape can be selected, and the function as a two-phase flow contact treatment device can be exhibited well.
[0076]
The ridge 31a of the solvent introduction impeller 31 is appropriately changed depending on the type of solvent and the amount of treatment per time.
For example, depending on the type of solvent and the amount of processing per time, by reducing the width or height of each protrusion 31a, increasing the number of protrusions 31a, or changing the shape Thus, it can be effectively operated as a centrifugal pump.
[0077]
【The invention's effect】
As described above, according to the two-phase flow contact treatment apparatus according to the present invention, there is no occurrence of a situation in which the solvent cannot be sucked because the flow rate of the solute is too large, and the suction of the solvent and the solvent and the solute are surely performed. Can be mixed. Further, the solvent and solute can be efficiently sucked, mixed, and contacted at a high pressure by a solute introduction impeller for pressurization. Furthermore, the necessary suction, mixing, and contact can be performed without providing a booster for feeding the solute from outside at high pressure, and the solvent and solute are reliably mixed by the solute introduction impeller for both pressurization. Therefore, the apparatus can be reduced in size and made inexpensive.
[0078]
Also, when handling different solvents and solutes, etc., two-phase flow contact equipped with a desired pressure and solute introduction impeller by combining a rotating plate and a projecting wheel according to the application of the two-phase flow contact treatment device A processing apparatus can be obtained easily and inexpensively.
[0079]
According to the two-phase flow contact treatment method according to the present invention, the solvent moves inside the casing, so that the solvent is continuously sucked into the cavity, and the solute is mixed with the solvent after moving in the casing. Since the mixed solvent and solute are pressurized, the solute stays in the middle of the solvent movement path and does not hinder the movement of the solvent. As a result, even if the flow rate of the solute is high Solvent suction and solvent / solute mixing can be performed.
[Brief description of the drawings]
FIG. 1 is a front view in which a main part showing a two-phase flow contact treatment apparatus is broken.
FIG. 2 is a partially enlarged view of FIG.
FIG. 3 is an enlarged view of a main part of FIG. 1;
FIG. 4 is a partially enlarged side sectional view showing a solvent introduction impeller viewed from the solvent introduction portion side.
FIG. 5 is a side view showing a solute introduction impeller for pressurization as seen from the small cavity side.
FIG. 6 is an exploded perspective view of a main part of the two-phase flow contact treatment device.
FIG. 7 is a graph showing the relationship between the flow rate of fresh water introduced into the two-phase flow contact treatment device and the flow rate of air.
[Explanation of symbols]
11 Two-phase flow treatment equipment
19 Through hole
22 Casing part
23 Solvent introduction part
23a Solvent introduction branch passage
24 Discharge pipe
25 casing
25a Internal partition
27 motor
28 Rotating shaft
29 Check valve
30 cavity
30a Solvent supply hole
31 Impeller for solvent introduction
31a, 32a ridge
31b substrate
31c, 32c, 34a, 47a Shaft hole
32 Impeller for solute introduction
32b Rotating plate
32d ridge car
33 Circular dish
33a, 33b Through hole
34 Lid member
34b Solute introduction passage
35 O-ring
37 Small cavity
38 Solute inlet member
39 Annular mixing chamber
40 Primary compression chamber
41 Cooling room
42 Mechanical seal
43 Coolant tank
44 communication pipe
44a Branch pipe
45 Oil seal
46 round pipe
46a, 46b Coolant passage
47 lid
48 Discharge port
49 Discharge chamber
49a Discharge branch passage
50 Rotating shaft support
51 Shaft coupling part

Claims (4)

溶媒をケーシング内に導入する溶媒導入部と、溶質をケーシング内に導入する溶質導入部と、円盤状の羽根車と、溶媒と溶質を混合する環状混合室と、溶媒と溶質の混合されたものを吐出する吐出管を備えた二相流接触処理装置であって、
前記羽根車は、溶媒導入用羽根車と、加圧兼用溶質導入用羽根車と、で構成され、
前記溶媒導入用羽根車及び前記加圧兼用溶質導入用羽根車を回転軸方向に直列に配置し、前記溶媒導入用羽根車の外周部から前記溶媒導入用羽根車の加圧兼用溶質導入用羽根車側の側面に沿って一次圧縮室を備え、
前記加圧兼用溶質導入用羽根車の中心側部分に貫通穴を設けてなることを特徴とする二相流接触処理装置。
A solvent introduction part for introducing the solvent into the casing, a solute introduction part for introducing the solute into the casing, a disk-shaped impeller, an annular mixing chamber for mixing the solvent and the solute, and a mixture of the solvent and the solute. A two-phase flow contact treatment device comprising a discharge pipe for discharging
The impeller is composed of an impeller for introducing a solvent and an impeller for introducing a solute for both pressurization and
The solvent introduction impeller and the pressurization / solute introduction impeller are arranged in series in the rotation axis direction, and the pressure introduction / solute introduction impeller of the solvent introduction impeller from an outer peripheral portion of the solvent introduction impeller A primary compression chamber is provided along the side of the vehicle,
A two-phase flow contact treatment apparatus, wherein a through-hole is provided in a central portion of the impeller for introducing pressure and solute.
前記加圧兼用溶質導入用羽根車に溶媒及び溶質の混合を目的として外周に向かった放射状の突条を、前記溶媒導入用羽根車が位置する面と反対側の面に形成してなることを特徴とする請求項1記載の二相流接触処理装置。  A radial ridge toward the outer periphery for the purpose of mixing the solvent and the solute is formed on the surface opposite to the surface on which the solvent introduction impeller is positioned on the impeller for introducing pressure and solute. The two-phase flow contact treatment device according to claim 1, wherein 前記加圧兼用溶質導入用羽根車は、円盤状の回転板と、突条車と、で構成され、前記回転板及び前記突条車を回転軸方向に直列に配置してなることを特徴とする請求項1又は2記載の二相流接触処理装置。The impeller for introducing pressure and solute is composed of a disk-shaped rotating plate and a projecting wheel, and the rotating plate and the projecting wheel are arranged in series in the rotation axis direction. The two-phase flow contact treatment apparatus according to claim 1 or 2. 溶媒導入部から液体よりなる溶媒をケーシング内に導入し、該導入された溶媒をケーシング内部で移動させ、溶質導入部から溶質をケーシング内に導入し、前記移動させた溶媒に溶質を混合し、該溶媒と溶質を混合したものに加圧を行い、溶媒と溶質を混合したものを吐出する二相流接触処理方法であって、
溶媒導入用羽根車と加圧兼用溶質導入用羽根車とが回転軸方向に直列となった羽根車と、前記溶媒導入用羽根車及び前記加圧兼用溶質導入用羽根車との間に形成された一次圧縮室を用いて、
前記溶媒をケーシング内に導入するのは前記溶媒導入用羽根車で行い、
前記溶媒をケーシング内部で移動させるのは前記溶媒導入用羽根車及び前記一次圧縮室を用いて行い、
前記溶質をケーシング内に導入し、前記ケーシング内部で移動させた溶媒に溶質を混合し、前記溶媒と溶質を混合したものに加圧を行なうのは前記加圧兼用溶質導入用羽根車によって行なうことを特徴とする二相流接触処理方法。
A solvent comprising a liquid is introduced into the casing from the solvent introduction part, the introduced solvent is moved inside the casing, a solute is introduced into the casing from the solute introduction part, and the solute is mixed with the moved solvent, It is a two-phase flow contact treatment method for applying pressure to a mixture of the solvent and solute and discharging the mixture of the solvent and solute,
Formed between an impeller in which a solvent introduction impeller and a pressure / solute introduction impeller are arranged in series in the rotation axis direction, and the solvent introduction impeller and the pressure / solute introduction impeller. Using the primary compression chamber
The introduction of the solvent into the casing is performed by the solvent introduction impeller,
The solvent is moved inside the casing using the solvent introduction impeller and the primary compression chamber,
The solute is introduced into the casing, the solute is mixed with the solvent moved inside the casing, and the pressure applied to the mixture of the solvent and the solute is performed by the solute introduction impeller. A two-phase flow contact treatment method.
JP2001384460A 2001-12-18 2001-12-18 Two-phase flow contact treatment apparatus and two-phase flow contact treatment method Expired - Fee Related JP4094846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001384460A JP4094846B2 (en) 2001-12-18 2001-12-18 Two-phase flow contact treatment apparatus and two-phase flow contact treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001384460A JP4094846B2 (en) 2001-12-18 2001-12-18 Two-phase flow contact treatment apparatus and two-phase flow contact treatment method

Publications (2)

Publication Number Publication Date
JP2003181266A JP2003181266A (en) 2003-07-02
JP4094846B2 true JP4094846B2 (en) 2008-06-04

Family

ID=27594189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001384460A Expired - Fee Related JP4094846B2 (en) 2001-12-18 2001-12-18 Two-phase flow contact treatment apparatus and two-phase flow contact treatment method

Country Status (1)

Country Link
JP (1) JP4094846B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083774A (en) * 2004-09-16 2006-03-30 Dengyosha Oridea:Kk Inline pump
JP5289246B2 (en) * 2009-09-03 2013-09-11 株式会社帝国電機製作所 Fluid dispersion pump

Also Published As

Publication number Publication date
JP2003181266A (en) 2003-07-02

Similar Documents

Publication Publication Date Title
US3650950A (en) Material shearing mixer and aerator
EP1745852A3 (en) Centrifugal separation apparatus and method for separating fluid components
JPH10109007A (en) Filter device
JP2009108697A (en) Vertical type self-priming pump and vertical type self-priming pump with filtering device
JP4094846B2 (en) Two-phase flow contact treatment apparatus and two-phase flow contact treatment method
KR101254873B1 (en) Areation Aapparatus
US5032260A (en) Eductor system for water ring vacuum pump
JP4967586B2 (en) Wastewater treatment equipment
JP3550991B2 (en) Photo-oxidation fluid processing apparatus and composite photocatalyst particles used therein
JP3949811B2 (en) Wastewater treatment equipment
JP2004073953A (en) Apparatus for agitating-and-mixing gas and liquid
KR100337533B1 (en) Micro bubble generator and air flotation system using the same
JPH08103778A (en) Apparatus and method for purifying sewage containing water bloom
KR102071718B1 (en) Apparatus for solid-liquid separation and air diffusing and Slurries treatment apparatus having the same
JPH11319529A (en) Gas absorbing apparatus
JP5704430B2 (en) Gas-liquid and liquid-liquid mixing apparatus and method
JP2003001286A (en) Water treating apparatus
CN218491604U (en) Sewage treatment device
JP2002001014A (en) Circular filtration apparatus
JPH0726626B2 (en) Liquid ring pump device
JPH0544680A (en) Peripheral pump
JP3142695B2 (en) Liquid suction and discharge device
JP2003340442A (en) Dissolved inorganic matter adsorption apparatus, dissolved inorganic matter adsorption method, and dissolved inorganic matter adsorbent
KR200203016Y1 (en) floating and suction apparatus for liquid, granular bodies and their mixture
JP2005000790A (en) Ozone water treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees