JP4094222B2 - Shape recognition sensor, robot hand, and shape recognition method - Google Patents

Shape recognition sensor, robot hand, and shape recognition method Download PDF

Info

Publication number
JP4094222B2
JP4094222B2 JP2000386347A JP2000386347A JP4094222B2 JP 4094222 B2 JP4094222 B2 JP 4094222B2 JP 2000386347 A JP2000386347 A JP 2000386347A JP 2000386347 A JP2000386347 A JP 2000386347A JP 4094222 B2 JP4094222 B2 JP 4094222B2
Authority
JP
Japan
Prior art keywords
bag
shape
electrode
substance
shape recognition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000386347A
Other languages
Japanese (ja)
Other versions
JP2002188902A (en
JP2002188902A5 (en
Inventor
忠克 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2000386347A priority Critical patent/JP4094222B2/en
Publication of JP2002188902A publication Critical patent/JP2002188902A/en
Publication of JP2002188902A5 publication Critical patent/JP2002188902A5/ja
Application granted granted Critical
Publication of JP4094222B2 publication Critical patent/JP4094222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は形状認識センサ、ロボットハンド及び形状認識方法に関し、詳細には接触式の形状計測に用いられるセンサに関する。
【0002】
【従来の技術】
従来においては部品などの形状の認識に関しては、接触式のゲージすなわちリニアゲージやレーザー測長器などの一次元方向の直線距離の測定器を、測定対象に対して走査するなどして形状認識を行っていた。また最近では画像処理技術の発展と画像処理装置の普及によりCCDカメラを用いた画像処理による形状認識がある。すなわち測定対象物をCCDカメラなどにより画像を取り込み、その取り込んだ画像情報を画像処理装置などを用いて演算を行うもので、現在の形状認識技術については、応用例がもっとも豊富な方法とも言えて、形状認識技術の主流になりつつある。ただ、CCDカメラによる画像処理手段は2次元方向の形状認識を容易に行う手段である。
【0003】
【発明が解決しようとする課題】
しかしながら、リニアゲージやレーザー測長器は元よりCCDカメラによる画像処理においても測定対象物体の3次元的な形状認識は極めて困難である。例えばレーザー測長器で3次元的な形状認識を行うには測定対象物に沿って2次元的な走査を行う装置が必要になってくる。その方法は様々であるがいずれにしても余分な機構を必要とする。もちろんコストの面に関しても問題は多々存在する。また、CCDカメラによる画像処理においても測定対象物への照明の工夫や複数台のCCDカメラの使用など、この方法においても3次元的な形状認識は困難である。
【0004】
本発明はこれらの問題点を解決するためのものであり、上述の困難が発生することなく測定対象物の3次元形状の測定が可能となる形状認識センサ、ロボットハンド及び形状認識方法を提供することを目的とする。
【0005】
前記問題点を解決するために、本発明の形状認識センサは、柔軟かつ伸縮可能な絶縁性のあるフィルム状の電極部材の表面又は内部に、規則性のある配列で電極を配した電極部材を少なくとも2枚用いて対向位置に配して貼り合わせることで袋状の形状にした電極部と、測定対象物の材質等の種類に応じて、袋状の形状で構成した電極部の袋内部に入れる物質の入れ換えを制御する物質入れ換え制御手段と、各電極部材の電極に所定値の電気信号を出力する電気的出力手段と、各電極部材の電極間に生じる電気信号を電気的に計測する電気的計測手段とを設けた。そして、物質入れ換え制御手段によって袋状の形状で構成した電極部の袋内部に入れる物質の入れ換えを制御し、電気的出力手段から所定値の電気信号が供給された各電極部材の電極間に生じた電気信号の変化を電気的計測手段によって計測し、計測した電気信号の変化に基づいて電極部材に接した測定対象物の形状を認識する形状認識情報を得る。よって、3次元形状の情報を外乱の影響除去した安定した計測により電気信号で取り出すことが可能になり、その電気信号を元に3次元形状認識も容易になる。
【0006】
また、本発明の形状認識センサは、柔軟かつ伸縮可能な絶縁性のあるフィルム状の電極部材の表面又は内部に、規則性のある配列で電極を配した電極部材を少なくとも2枚用いて対向位置に配して貼り合わせることで袋状の形状にした電極部と、測定対象物の材質等の種類に応じて、袋状の形状で構成した電極部の袋内部に入れる物質の量を制御する物質量制御手段と、各電極部材の電極に所定値の電気信号を出力する電気的出力手段と、各電極部材の電極間に生じる電気信号を電気的に計測する電気的計測手段とを設けた。そして、物質量制御手段によって袋状の形状で構成した電極部の袋内部に入れる物質の量を測定対象物の材質等の種類に応じて制御し、電気的出力手段から所定値の電気信号が供給された各電極部材の電極間に生じた電気信号の変化を電気的計測手段によって計測し、計測した電気信号の変化に基づいて電極部材に接した測定対象物の形状を認識する形状認識情報を得る。よって、3次元形状の情報を外乱の影響除去した安定した計測により電気信号で取り出すことが可能になり、その電気信号を元に3次元形状認識も容易になる
【0007】
更に、袋状の形状で構成した電極部の袋内部に気体、液体、粉体又は流動体等の物質を入れることにより、電極部の接触部分にコンプライアンス性を持たすことが可能になり柔軟な接触を可能にする。
【0008】
また、袋状の形状で構成した電極部の袋内部に、抵抗率が明らかな物質を入れることにより、電極間抵抗から電極間距離が線形な値として演算できる。
【0009】
更に、袋状の形状で構成した電極部の袋内部に、誘電率が明らかな物質を入れることにより、電極間容量から電極間距離が線形な値として演算できる。
【0011】
更に、袋状の形状で構成した電極部の袋内部の物質の圧力を検出するセンサ物質圧力検出手段を備えたことにより、接触圧力を測定して様々な圧力測定範囲を設定できる。
【0012】
また、センサ内物質圧力検出手段は、袋状の形状で構成した前記電極部の袋内部に入れる物質の粘度Snと、電気的計測手段により計測された各電極部材の電極間に生じた電気信号の変化から求められる電極間の距離dとに基づき、袋状の形状で構成した電極部の袋内部の物質の圧力値を求めることにより、センサ内部の物質の粘度が既知なら簡単な構成によりセンサ内部の物質の圧力を求めることができる。
【0013】
更に、別の発明としてのロボットハンドは、上記形状認識センサを用いたことに特徴がある。よって、多くの品質の部品等の測定対象物に対して形状認識を同一のセンサで測定することができる汎用性の高いロボットハンドを提供することができる。
【0015】
更に、別の発明としての形状認識方法によれば、柔軟かつ伸縮可能な絶縁性のあるフィルム状の電極部材の表面又は内部に、規則性のある配列で電極を配した電極部材を少なくとも2枚用いて対向位置に配して貼り合わせることで袋状の形状にした電極部を用い、測定対象物の材質等の種類に応じて袋状の形状で構成した袋の内部に入れる物質の入れ換えを制御し、所定値の電気信号を供給した各電極部材の電極間に生じた電気信号の変化を計測し、計測した電気信号の変化に基づいて電極部材に接した測定対象物の形状を認識する形状認識情報を得ることに特徴がある。よって、3次元形状の情報を外乱の影響除去した安定した計測により電気信号で取り出すことが可能になり、その電気信号を元に3次元形状認識も容易になる。
【0016】
また、別の発明としての形状認識方法によれば、柔軟かつ伸縮可能な絶縁性のあるフィルム状の電極部材の表面又は内部に、規則性のある配列で電極を配した電極部材を少なくとも2枚用いて対向位置に配して貼り合わせることで袋状の形状にした電極部を用い、測定対象物の材質等の種類に応じて袋状の形状で構成した袋内部に入れる物質の量を制御し、所定値の電気信号を供給した各電極部材の電極間に生じた電気信号の変化を計測し、計測した電気信号の変化に基づいて電極部材に接した測定対象物の形状を認識する形状認識情報を得ることに特徴がある。よって、3次元形状の情報を外乱の影響除去した安定した計測により電気信号で取り出すことが可能になり、その電気信号を元に3次元形状認識も容易になる。
【0017】
また、対向させた前記電極部材を少なくとも2枚用いて貼り合せて構成した袋の内部に、気体、液体、粉体又は流動体等の物質を入れることにより、電極部の接触部分にコンプライアンス性を持たすことが可能になり柔軟な接触を可能にする。
【0018】
更に、対向させた電極部材を少なくとも2枚用いて貼り合せて構成した袋の内部に、抵抗率が明らかな物質を入れることにより、電極間抵抗から電極間距離が線形な値として演算できる。
【0019】
また、対向させた電極部材を少なくとも2枚用いて貼り合せて構成した袋の内部に、誘電率が明らかな物質を入れることにより、電極間容量から電極間距離が線形な値として演算できる。
【0021】
また、対向させた電極部材を少なくとも2枚用いて貼り合せて構成した袋の内部の物質の圧力を検出することにより、接触圧力を測定して様々な圧力測定範囲を設定できる。
【0022】
また、対向させた電極部材を少なくとも2枚用いて貼り合せて構成した袋内部に入れる物質の粘度Sn、計測された各電極部材の電極間に生じた電気信号の変化から求められる電極間の距離dとに基づき、袋状の形状で構成した袋の内部の物質の圧力値を求めることにより、センサ内部の物質の粘度が既知なら簡単な構成によりセンサ内部の物質の圧力を求めることができる。
【0026】
【発明の実施の形態】
本発明の形状認識センサは、柔軟かつ伸縮可能な絶縁性のあるフィルム状の電極部材の表面又は内部に、規則性のある配列で電極を配した電極部材を少なくとも2枚用いて対向位置に配して貼り合わせることで袋状の形状にした電極部と、測定対象物の材質等の種類に応じて、袋状の形状で構成した電極部の袋内部に入れる物質の入れ換えを制御する物質入れ換え制御手段と、各電極部材の電極に所定値の電気信号を出力する電気的出力手段と、各電極部材の電極間に生じる電気信号を電気的に計測する電気的計測手段とを有する。
【0027】
【実施例】
図1は本発明の第1の実施例に係る形状認識センサの概略構成を示す斜視図である。同図において、本実施例の形状認識センサ1は、マトリックス状電極フィルム11とマトリックス状電極フィルム12を図のような対向位置に配置して構成されている。マトリックス状電極フィルム11上に実装されている電極接続端子13を通して、接続ケーブル14が電気的出力手段及び電気的計測手段を有する形状認識センサコントローラ15に接続されている。同様に、マトリックス状電極フィルム12上に実装されている電極接続端子16を通して、接続ケーブル17が形状認識センサコントローラ15に接続されている。形状認識センサコントローラ15はマトリックス状電極フィルム11,12間に電位差を生じさせて、マトリックス状電極毎の電位差を計測するものである。このような構成を有する形状認識センサ1において、図2に示すようにマトリックス状電極フィルム11に測定対象物18が接触したとき、マトリックス状電極フィルム11の形状が測定対象物18に沿って変化する。マトリックス状電極フィルム11が接触した計測対象物18に対して変形し、マトリックス状電極フィルム11,12との間の電極間距離19が図2に示すように変化する。そして、形状認識線センサコントローラ15が各マトリクス状電極フィルム11,12の間に対応して2次元状の電位差計測結果を出力する。
【0028】
図3は本発明の第2の実施例に係る形状認識センサの概略構成を示す斜視図である。本実施例の形状認識センサ2は2枚のマトリックス状電極フィルムの少なくとも一辺を除く周囲又は全ての周囲を貼り合わせた形状認識センサである。貼り合わせ部20により2枚のマトリックス状電極フィルムを貼り合わせることによりセンサ内部に物質を入れることが可能な袋状の形状になっている。なお、電極接続端子21は図示していない接続ケーブルを介して形状認識センサコントローラに接続されている。実際には、図4に示すような注入部22と排出部23を備えることにより、気体や液体、紛体、流動体などの物質を袋内部に入れることができる。その内部の物質には抵抗率が明らかな物質を注入した場合、測定対象物の接触により形状認識センサのマトリックス状電極フィルムの形状が変化し、電極間ギャップが変化することにより電極間抵抗も変化するので、形状認識センサコントローラにより電位差も変化する。抵抗値の変化はギャップに比例して起こり、ギャップが短ければ抵抗値も小さくなる。また、誘電率が明らかな物質を注入した場合、上記と同様に測定対象物の接触により電極間ギャップが変化することにより電極間容量も変化する。容量値の変化はギャップに反比例して起こり、ギャップが短くなれば容量値は大きくなる。
【0029】
このように、本実施例の形状認識センサ2の袋状内部に入れる物質を入れ換えることにより、コンプライアンス性の異なった形状認識センサを構成することができる。例えば、測定対象物が柔らかいもので、よりコンプライアンス性の高い微妙な測定が必要なときは気体をセンサ袋状内部に入れることにより可能になり、逆に硬い物質を測定したい場合でかつ接触部に大きな圧力がかかる場合などは紛体や流動体を入れて接触する部分のコンプライアンス性を低めて、接触時の衝撃力をより弱めることも可能になる。たとえ形状認識センサの測定対象物が変わったとしてもセンサ袋状内部に入れる物質を入れ換える制御することにより、様々な物質の測定が可能となる。
【0030】
また、図5に示すように、センサ袋状内部の物質を入れ換えるセンサ内部物質入れ換え装置24を備えることにより、上記のセンサ袋状内部の物質入れ換えの制御が可能になる。このようにセンサ内部物質入れ換え装置24を備えてセンサ内部の物質の入れ換えを制御を行う方法について以下に図6に示す動作フローに従って説明する。先ず、様々な測定対象物に対して材質情報や形状情報を予め登録してあるデータベースを構築しておく。そして、オペレータは測定対象物の属性や型番などの種別データを上位装置に入力する(ステップS101)。入力された測定対象物の種別データに基づいてデータベースから測定対象物に適切な内部物質データを取得する(ステップS102)。取得した内部物質と既にセンサ内部に残存する内部物質とが整合しているか否かを判定し、整合していればそのまま残存する内部物質で形状認識を行う(ステップS103;YES、ステップS105,S104)。一方、整合していなければ、図5のセンサ内部物質入れ換え装置24によって適切な内部物質に入れ換え、入れ換えた内部物質データを上位装置内の記憶部に記録しておき、入れ換えた内部物質で形状認識を行う(ステップS103;NO、ステップS105,S106)。このように、データベースからの測定対象物の種別データを元にセンサ内部の物質の入れ換えを制御し、センサ内部の物質を測定対象物に適した物質に入れ換えることができる。例えば、測定対象物が柔らかい材質である場合粘度が低く微妙な変化量に対応できる物質に入れ換え、あるいは硬い材質の測定対象物には粘度が高い物質を多くの量注入して高い圧力まで耐えられるセンサとすることが可能となる。組立や分解などを行う自動化ラインのロボットハンドに本発明の形状認識センサを採用した場合、多品質の部品に対しての形状認識を同一センサで測定することができる。
【0031】
ここで、従来は図7に示すようにセンサへの注入部又は排出部の弁等に圧力計25を取り付けて当該圧力計25によって直接内部圧力を測定していた。これに対して、本発明の図8に示す形状認識センサ2は、上述のセンサ内部入れ換え装置24とセンサを接続する部分にセンサ内部物質の圧力を検出するセンサ内部物質圧力検出センサ26を取り付けたものである。このセンサ内部物質圧力検出センサ26はセンサ接続ケーブル27によって圧力測定装置28に接続されており、センサ袋状内部物質の圧力を測定することにより、測定対象物のセンサへの接触によりセンサ袋状内部の物質の圧力が変化し、その変化量を測定するものである。詳細には、センサ内部の物質の粘度とセンサ出力との相関を取り、センサ出力値、即ち電極フィルム間の距離から演算するものである。センサ内部の物質の粘度をSn[cps]としたとき、電極間の距離d[mm]と圧力P[Pa]には以下の関係がある。
【0032】
P=a/(d・Sn)
ただし、aは定数[Pa/(mm・cps)]、d>0、Sn>0。
【0033】
このように、圧力は物質粘度と距離に反比例している。よって、セン内部の物質の粘度が既知ならば、形状認識測定と同時にセンサ内部の物質の圧力を計測できるので、形状認識測定データから接触部分の面積が求まり、測定対象物への接触力を測定することも可能になる。また、センサ袋状内部の物質により圧力測定範囲を選択することができるので、一つのセンサで様々な圧力測定範囲を持つことが可能となる。
【0034】
また、図9に示す形状認識センサ2は電気的計測手段により測定された電気信号を演算する測定電気信号演算装置31を接続したものである。この測定電気信号演算装置31はマトリックス状電極毎の測定値を3次元データとして演算できるものである。つまり、電極位置とそれぞれの位置での測定値からマトリックス状電極フィルムの形状変化を3次元データとして演算して、測定対象物の接触部分の形状を演算するものである。例えば、本実施例における形状認識センサの電極が100×100個配列されていたとすると、100×100行列の値でセンサ出力は検出される。100×100行列の各成分の値は形状認識センサの電極間抵抗値又は電極間容量値により求まる。その各成分の値が接触しているワークの形状を表すデータである。例えば図10に示すような形状の測定対象面32を測定する際に、接触式形状センサの非接触状態の基準抵抗値を100とし、その時形状の出っ張り1mmに対して抵抗値が10だけ下がるとする。図11に図10の形状を測定したときのセンサ出力イメージを図示する。図11の空白部分では基準抵抗値である100が出力される。測定対象面の外形(30mm×16mm)の範囲35でセンサ出力がなされる。この部分の抵抗値が95と測定されると外形部分の接触深さが0.5mmと定義できる。その場合に6mm×7mm×2.5mmの形状の出っ張り部分が図11の部分33のように出力として現れて抵抗値としては2.5mm+0.5mm=3mmなので抵抗値70と出力される。また、4mm×10mm×1mmの形状部分は図11の部分34のように出力として現れて抵抗値としては1.5mmなので抵抗値85と出力される。即ち、センサ出力の抵抗値変化が形状データであり、深さデータであるので3次元データとして演算していることになる。
【0035】
また、このような演算データを連続的に行うことにより測定対象物の接触時の時間的変化を演算できる接触形状時間的変化演算装置36を接続した構成が図12に示すものである。この接触形状時間的変化演算装置36は上述した測定対象物の接触形状の演算を連続的に行い、接触時の時間的変化量を計測できるものである。よって、接触時の時間的変化を演算できることにより、接触部分の接触量を制御することが可能になり、接触部分が限定される測定対象物においても接触部分を制御した形状測定が可能となる。
【0036】
なお、本発明は上記実施例に限定されるものではなく、特許請求の範囲内の記載であれば多種の変形や置換可能であることは言うまでもない。
【0037】
【発明の効果】
以上説明したように、本発明の形状認識センサは、柔軟かつ伸縮可能な絶縁性のあるフィルム状の電極部材の表面又は内部に、規則性のある配列で電極を配した電極部材を少なくとも2枚用いて対向位置に配して貼り合わせることで袋状の形状にした電極部と、測定対象物の材質等の種類に応じて、袋状の形状で構成した電極部の袋内部に入れる物質の入れ換えを制御する物質入れ換え制御手段と、各電極部材の電極に所定値の電気信号を出力する電気的出力手段と、各電極部材の電極間に生じる電気信号を電気的に計測する電気的計測手段とを設けた。そして、物質入れ換え制御手段によって袋状の形状で構成した電極部の袋内部に入れる物質の入れ換えを制御し、電気的出力手段から所定値の電気信号が供給された各電極部材の電極間に生じた電気信号の変化を電気的計測手段によって計測し、計測した電気信号の変化に基づいて電極部材に接した測定対象物の形状を認識する形状認識情報を得る。よって、3次元形状の情報を外乱の影響除去した安定した計測により電気信号で取り出すことが可能になり、その電気信号を元に3次元形状認識も容易になる。
【0038】
また、本発明の形状認識センサは、柔軟かつ伸縮可能な絶縁性のあるフィルム状の電極部材の表面又は内部に、規則性のある配列で電極を配した電極部材を少なくとも2枚用いて対向位置に配して貼り合わせることで袋状の形状にした電極部と、測定対象物の材質等の種類に応じて、袋状の形状で構成した電極部の袋内部に入れる物質の量を制御する物質量制御手段と、各電極部材の電極に所定値の電気信号を出力する電気的出力手段と、各電極部材の電極間に生じる電気信号を電気的に計測する電気的計測手段とを設けた。そして、物質量制御手段によって袋状の形状で構成した電極部の袋内部に入れる物質の量を測定対象物の材質等の種類に応じて制御し、電気的出力手段から所定値の電気信号が供給された各電極部材の電極間に生じた電気信号の変化を電気的計測手段によって計測し、計測した電気信号の変化に基づいて電極部材に接した測定対象物の形状を認識する形状認識情報を得る。よって、3次元形状の情報を外乱の影響除去した安定した計測により電気信号で取り出すことが可能になり、その電気信号を元に3次元形状認識も容易になる
【0039】
更に、袋状の形状で構成した電極部の袋内部に気体、液体、粉体又は流動体等の物質を入れることにより、電極部の接触部分にコンプライアンス性を持たすことが可能になり柔軟な接触を可能にする。
【0040】
また、袋状の形状で構成した電極部の袋内部に、抵抗率が明らかな物質を入れることにより、電極間抵抗から電極間距離が線形な値として演算できる。
【0041】
更に、袋状の形状で構成した電極部の袋内部に、誘電率が明らかな物質を入れることにより、電極間容量から電極間距離が線形な値として演算できる。
【0043】
更に、袋状の形状で構成した電極部の袋内部の物質の圧力を検出するセンサ物質圧力検出手段を備えたことにより、接触圧力を測定して様々な圧力測定範囲を設定できる。
【0044】
また、センサ内物質圧力検出手段は、袋状の形状で構成した前記電極部の袋内部に入れる物質の粘度Snと、電気的計測手段により計測された各電極部材の電極間に生じた電気信号の変化から求められる電極間の距離dとに基づき、袋状の形状で構成した電極部の袋内部の物質の圧力値を求めることにより、センサ内部の物質の粘度が既知なら簡単な構成によりセンサ内部の物質の圧力を求めることができる。
【0045】
更に、別の発明としてのロボットハンドは、上記形状認識センサを用いたことに特徴がある。よって、多くの品質の部品等の測定対象物に対して形状認識を同一のセンサで測定することができる汎用性の高いロボットハンドを提供することができる。
【0047】
更に、別の発明としての形状認識方法によれば、柔軟かつ伸縮可能な絶縁性のあるフィルム状の電極部材の表面又は内部に、規則性のある配列で電極を配した電極部材を少なくとも2枚用いて対向位置に配して貼り合わせることで袋状の形状にした電極部を用い、測定対象物の材質等の種類に応じて袋状の形状で構成した袋の内部に入れる物質の入れ換えを制御し、所定値の電気信号を供給した各電極部材の電極間に生じた電気信号の変化を計測し、計測した電気信号の変化に基づいて電極部材に接した測定対象物の形状を認識する形状認識情報を得ることに特徴がある。よって、3次元形状の情報を外乱の影響除去した安定した計測により電気信号で取り出すことが可能になり、その電気信号を元に3次元形状認識も容易になる。
【0048】
また、別の発明としての形状認識方法によれば、柔軟かつ伸縮可能な絶縁性のあるフィルム状の電極部材の表面又は内部に、規則性のある配列で電極を配した電極部材を少なくとも2枚用いて対向位置に配して貼り合わせることで袋状の形状にした電極部を用い、測定対象物の材質等の種類に応じて袋状の形状で構成した袋内部に入れる物質の量を制御し、所定値の電気信号を供給した各電極部材の電極間に生じた電気信号の変化を計測し、計測した電気信号の変化に基づいて電極部材に接した測定対象物の形状を認識する形状認識情報を得ることに特徴がある。よって、3次元形状の情報を外乱の影響除去した安定した計測により電気信号で取り出すことが可能になり、その電気信号を元に3次元形状認識も容易になる。
【0049】
また、対向させた前記電極部材を少なくとも2枚用いて貼り合せて構成した袋の内部に、気体、液体、粉体又は流動体等の物質を入れることにより、電極部の接触部分にコンプライアンス性を持たすことが可能になり柔軟な接触を可能にする。
【0050】
更に、対向させた電極部材を少なくとも2枚用いて貼り合せて構成した袋の内部に、抵抗率が明らかな物質を入れることにより、電極間抵抗から電極間距離が線形な値として演算できる。
【0051】
また、対向させた電極部材を少なくとも2枚用いて貼り合せて構成した袋の内部に、誘電率が明らかな物質を入れることにより、電極間容量から電極間距離が線形な値として演算できる。
【0053】
また、対向させた電極部材を少なくとも2枚用いて貼り合せて構成した袋の内部の物質の圧力を検出することにより、接触圧力を測定して様々な圧力測定範囲を設定できる。
【0054】
また、対向させた電極部材を少なくとも2枚用いて貼り合せて構成した袋内部に入れる物質の粘度Sn、計測された各電極部材の電極間に生じた電気信号の変化から求められる電極間の距離dとに基づき、袋状の形状で構成した袋の内部の物質の圧力値を求めることにより、センサ内部の物質の粘度が既知なら簡単な構成によりセンサ内部の物質の圧力を求めることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例に係る形状認識センサの概略構成を示す斜視図である。
【図2】第1の実施例の形状認識センサに測定対象物を接触させたときの様子を示す概略断面図である。
【図3】本発明の第2の実施例に係る形状認識センサの概略構成を示す斜視図である。
【図4】袋状内部への注入・排出口を備えた形状認識センサの構成を示す概略斜視図である。
【図5】センサ内部物質入れ換え装置を備えた形状認識センサの構成を示す概略斜視図である。
【図6】センサ内部物質入れ換え制御の動作を示すフローチャートである。
【図7】従来のセンサ内部の圧力測定の構成を示す概略斜視図である。
【図8】圧力測定装置を備えた形状認識センサの構成を示す概略斜視図である。
【図9】測定電気信号演算装置を備えた形状認識センサの構成を示す概略斜視図である。
【図10】測定対象物を袋状形状の形状認識センサに入れた様子を示す図である。
【図11】形状認識センサの出力イメージを示す図である。
【図12】接触形状時間的変化演算装置を備えた形状認識センサの構成を示す概略斜視図である。
【符号の説明】
1,2;形状認識センサ、11,12;マトリックス状電極フィルム、
13,16,21;電極接続端子、14,17,29;接続ケーブル、
15;形状認識センサコントローラ、18;測定対象物、
19;電極間距離、20;貼り合わせ部、22;注入部、23;排出部、
24;センサ内部物質入れ換え装置、25;圧力計、
26;センサ内部物質圧力検出センサ、
27;センサ接続ケーブル、28;圧力測定装置、
31;測定電気信号演算装置、36;接触形状時間的変化演算装置。
[0001]
BACKGROUND OF THE INVENTION
  The present invention is a shape recognition sensor., Robot handIn particular, the present invention relates to a sensor for use in contact-type shape measurement.
[0002]
[Prior art]
Conventionally, for shape recognition of parts, etc., shape recognition is performed by scanning a measurement object with a one-dimensional linear distance such as a contact gauge, that is, a linear gauge or a laser length measuring instrument, against the measurement object. I was going. Recently, shape recognition by image processing using a CCD camera has been performed due to the development of image processing technology and the spread of image processing apparatuses. In other words, the measurement object is captured by a CCD camera or the like, and the captured image information is calculated using an image processing device or the like. The current shape recognition technology can be said to be the most abundant application example. The shape recognition technology is becoming mainstream. However, the image processing means by the CCD camera is means for easily recognizing the shape in the two-dimensional direction.
[0003]
[Problems to be solved by the invention]
However, it is extremely difficult to recognize the three-dimensional shape of the measurement target object in the image processing by the CCD camera as well as the linear gauge and the laser length measuring instrument. For example, in order to perform three-dimensional shape recognition using a laser length measuring device, a device that performs two-dimensional scanning along the measurement object is required. There are various methods, but anyway, an extra mechanism is required. Of course, there are many problems in terms of cost. Even in image processing using a CCD camera, three-dimensional shape recognition is difficult even in this method, such as a device for illuminating a measurement object or using a plurality of CCD cameras.
[0004]
  The present invention is for solving these problems, and a shape recognition sensor capable of measuring a three-dimensional shape of a measurement object without causing the above-mentioned difficulties., Robot handIt is another object of the present invention to provide a shape recognition method.
[0005]
  In order to solve the above-mentioned problems, the shape recognition sensor of the present invention includes an electrode member in which electrodes are arranged in a regular arrangement on the surface or inside of a flexible and stretchable insulating film-like electrode member. Use at least 2 sheets and place them in the opposite positionMade into a bag shape by pasting togetherAn electrode part;Depending on the type of material to be measured, the substance replacement control means for controlling the replacement of the substance to be put inside the bag of the electrode part configured in a bag shape, andElectrical output means for outputting an electrical signal of a predetermined value to the electrodes of each electrode member and electrical measurement means for electrically measuring an electrical signal generated between the electrodes of each electrode member are provided. AndControl the replacement of the substance to be put inside the bag of the electrode portion configured in a bag shape by the substance replacement control means,Changes in the electrical signal generated between the electrodes of each electrode member supplied with an electrical signal of a predetermined value from the electrical output means were measured by the electrical measurement means, and contacted with the electrode member based on the measured change in the electrical signal Shape recognition information for recognizing the shape of the measurement object is obtained. Therefore, 3D shape informationStable measurement that eliminates the influence of disturbanceIt becomes possible to take out with an electric signal, and three-dimensional shape recognition is facilitated based on the electric signal.
[0006]
  Also,The shape recognition sensor of the present invention is arranged at the opposite position using at least two electrode members in which electrodes are arranged in a regular arrangement on the surface or inside of a flexible and stretchable insulating film-like electrode member. The amount of material that controls the amount of material that can be placed inside the bag of the electrode part configured in a bag shape according to the type of material such as the electrode part that is formed into a bag shape and the object to be measured Control means, electrical output means for outputting electrical signals of a predetermined value to the electrodes of each electrode member, and electrical measurement means for electrically measuring electrical signals generated between the electrodes of each electrode member are provided. Then, the amount of the substance put into the bag of the electrode part configured in the bag shape by the substance amount control means is controlled according to the kind of the material of the measurement object, and an electric signal of a predetermined value is outputted from the electric output means. Shape recognition information that recognizes the shape of the measurement object in contact with the electrode member based on the change in the measured electrical signal by measuring the change in the electrical signal generated between the electrodes of each supplied electrode member. Get. Therefore, it becomes possible to take out the information of the three-dimensional shape as an electric signal by the stable measurement from which the influence of the disturbance is removed, and the three-dimensional shape recognition becomes easy based on the electric signal..
[0007]
Furthermore, by putting a substance such as gas, liquid, powder or fluid into the bag of the electrode part configured in a bag shape, the contact part of the electrode part can be made compliant and flexible contact is made. Enable.
[0008]
In addition, by putting a substance having a clear resistivity into the bag of the electrode portion configured in a bag shape, the interelectrode distance can be calculated as a linear value from the interelectrode resistance.
[0009]
Furthermore, by putting a substance having a clear dielectric constant into the bag of the electrode portion configured in a bag shape, the interelectrode distance can be calculated as a linear value from the interelectrode capacitance.
[0011]
  Furthermore, the inside of the bag of the electrode part configured in a bag shapeMaterialDetect pressureSensorInsideMaterial pressureBy providing the detection means, various pressure measurement ranges can be set by measuring the contact pressure.
[0012]
  Also,The substance pressure detection means in the sensor isViscosity of the substance to be put inside the bag of the electrode part configured in a bag shapeBased on Sn and the distance d between the electrodes determined from the change of the electrical signal generated between the electrodes of each electrode member measured by the electrical measuring means,Inside the bag of the electrode part configured in a bag shapeMaterial pressureBy calculating the value, if the viscosity of the substance inside the sensor is known,MaterialThe pressure can be determined.
[0013]
  Further, a robot hand as another invention is characterized by using the shape recognition sensor. Therefore, it is possible to provide a highly versatile robot hand capable of measuring shape recognition with the same sensor for measurement objects such as many quality parts.
[0015]
  MoreAccording to the shape recognition method as another invention, at least two electrode members in which electrodes are arranged in a regular arrangement on the surface or inside of a flexible and stretchable insulating film-like electrode member are used. Placed in the opposite positionUsing the electrode part that has a bag-like shape by bonding together, it controls the replacement of the substance put into the bag-shaped bag according to the type of material to be measured., Shape recognition that measures the change in the electrical signal generated between the electrodes of each electrode member supplied with the electrical signal of a predetermined value and recognizes the shape of the measurement object in contact with the electrode member based on the measured change in the electrical signal It is characterized by obtaining information. Therefore, 3D shape informationStable measurement that eliminates the influence of disturbanceIt becomes possible to take out with an electric signal, and three-dimensional shape recognition is facilitated based on the electric signal.
[0016]
  According to the shape recognition method as another invention, at least two electrode members in which electrodes are arranged in a regular arrangement on the surface or inside of a flexible and stretchable insulating film-like electrode member are provided. Using the electrode part made into a bag shape by arranging it at the opposite position and bonding it together, the amount of substance put in the bag shaped bag according to the type of material etc. to be measured is controlled And measuring the change of the electric signal generated between the electrodes of each electrode member supplied with the electric signal of a predetermined value, and recognizing the shape of the measurement object in contact with the electrode member based on the measured change of the electric signal It is characterized by obtaining recognition information. Therefore, it becomes possible to take out the information of the three-dimensional shape as an electric signal by stable measurement in which the influence of the disturbance is removed, and the three-dimensional shape recognition is facilitated based on the electric signal.
[0017]
In addition, by putting a substance such as gas, liquid, powder, or fluid into a bag formed by laminating at least two electrode members facing each other, the contact portion of the electrode portion is made compliant. It can be held and flexible contact is possible.
[0018]
Furthermore, the distance between electrodes can be calculated as a linear value from the resistance between electrodes by putting a substance having a clear resistivity into a bag formed by bonding at least two electrode members opposed to each other.
[0019]
Further, by putting a substance having a clear dielectric constant into a bag formed by bonding at least two electrode members facing each other, the interelectrode distance can be calculated as a linear value from the interelectrode capacitance.
[0021]
  Moreover, the inside of the bag constituted by bonding using at least two electrode members opposed to each otherMaterialBy detecting the pressure, various pressure measurement ranges can be set by measuring the contact pressure.
[0022]
  In addition, the viscosity of the substance to be put inside the bag formed by bonding at least two electrode members facing each otherSnWhenBased on the distance d between the electrodes obtained from the change in the electrical signal generated between the electrodes of each measured electrode memberIt consists of a bag-like shapeBagInsideMaterial pressureBy calculating the value, if the viscosity of the substance inside the sensor is known,MaterialThe pressure can be determined.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
  The shape recognition sensor of the present invention is arranged at the opposite position using at least two electrode members in which electrodes are arranged in a regular arrangement on the surface or inside of a flexible and stretchable insulating film-like electrode member. do itMade into a bag shape by pasting togetherAn electrode part;Depending on the type of material to be measured, the substance replacement control means for controlling the replacement of the substance to be put inside the bag of the electrode part configured in a bag shape, andElectrical output means for outputting an electrical signal of a predetermined value to the electrodes of each electrode member, and electrical measurement means for electrically measuring an electrical signal generated between the electrodes of each electrode member.
[0027]
【Example】
FIG. 1 is a perspective view showing a schematic configuration of a shape recognition sensor according to a first embodiment of the present invention. In the figure, the shape recognition sensor 1 of the present embodiment is configured by disposing a matrix electrode film 11 and a matrix electrode film 12 at opposing positions as shown in the figure. A connection cable 14 is connected to a shape recognition sensor controller 15 having electrical output means and electrical measurement means through electrode connection terminals 13 mounted on the matrix electrode film 11. Similarly, the connection cable 17 is connected to the shape recognition sensor controller 15 through the electrode connection terminals 16 mounted on the matrix electrode film 12. The shape recognition sensor controller 15 generates a potential difference between the matrix electrode films 11 and 12 and measures the potential difference for each matrix electrode. In the shape recognition sensor 1 having such a configuration, when the measurement object 18 comes into contact with the matrix electrode film 11 as shown in FIG. 2, the shape of the matrix electrode film 11 changes along the measurement object 18. . The measurement object 18 in contact with the matrix electrode film 11 is deformed, and the inter-electrode distance 19 between the matrix electrode films 11 and 12 changes as shown in FIG. Then, the shape recognition line sensor controller 15 outputs a two-dimensional potential difference measurement result corresponding to each matrix electrode film 11, 12.
[0028]
FIG. 3 is a perspective view showing a schematic configuration of a shape recognition sensor according to the second embodiment of the present invention. The shape recognition sensor 2 of the present embodiment is a shape recognition sensor in which the periphery or all of the periphery of at least one side of two matrix electrode films are bonded together. By bonding the two matrix-like electrode films by the bonding unit 20, the bag-like shape is formed so that a substance can be put inside the sensor. The electrode connection terminal 21 is connected to the shape recognition sensor controller via a connection cable (not shown). Actually, by providing the injection part 22 and the discharge part 23 as shown in FIG. 4, substances such as gas, liquid, powder and fluid can be put into the bag. When a material with a clear resistivity is injected into the internal material, the shape of the matrix-like electrode film of the shape recognition sensor changes due to contact with the object to be measured, and the resistance between the electrodes also changes due to the change in the gap between the electrodes. Therefore, the potential difference is also changed by the shape recognition sensor controller. The change in resistance value occurs in proportion to the gap, and the shorter the gap, the smaller the resistance value. In addition, when a substance with a clear dielectric constant is injected, the interelectrode capacitance changes due to the change in the interelectrode gap caused by the contact of the measurement object as described above. The change in the capacitance value occurs in inverse proportion to the gap, and the capacitance value increases as the gap becomes shorter.
[0029]
As described above, by replacing the material to be placed in the bag shape of the shape recognition sensor 2 of the present embodiment, it is possible to configure shape recognition sensors having different compliance properties. For example, if the object to be measured is soft and needs more delicate measurement with higher compliance, this can be done by putting gas inside the sensor bag. When a large pressure is applied, it becomes possible to lower the compliance of the portion that comes into contact with the powder or fluid and to weaken the impact force at the time of contact. Even if the measurement object of the shape recognition sensor is changed, various substances can be measured by controlling the substance to be inserted in the sensor bag.
[0030]
In addition, as shown in FIG. 5, by providing the sensor internal substance replacement device 24 that replaces the substance inside the sensor bag shape, the substance replacement inside the sensor bag shape can be controlled. A method of controlling the substance exchange inside the sensor by providing the sensor inside substance exchange device 24 in this way will be described below according to the operation flow shown in FIG. First, a database in which material information and shape information are registered in advance for various measurement objects is constructed. Then, the operator inputs type data such as the attribute of the measurement object and the model number to the host device (step S101). Based on the input type data of the measurement object, internal substance data appropriate for the measurement object is acquired from the database (step S102). It is determined whether or not the acquired internal substance and the internal substance already remaining in the sensor are matched, and if they match, shape recognition is performed with the remaining internal substance (step S103; YES, steps S105 and S104). ). On the other hand, if they do not match, the sensor internal substance replacement device 24 in FIG. 5 replaces the internal substance with an appropriate internal substance, records the replaced internal substance data in the storage unit in the host apparatus, and recognizes the shape with the replaced internal substance. (Step S103; NO, Steps S105 and S106). In this way, the replacement of the substance inside the sensor can be controlled based on the type data of the measurement object from the database, and the substance inside the sensor can be replaced with a substance suitable for the measurement object. For example, if the object to be measured is a soft material, replace it with a substance that has low viscosity and can handle subtle changes, or inject a large amount of a substance with high viscosity into the object to be measured that is hard and can withstand high pressure. A sensor can be obtained. When the shape recognition sensor of the present invention is employed in an automated line robot hand that performs assembly or disassembly, the shape recognition for multi-quality parts can be measured by the same sensor.
[0031]
  Here, conventionally, as shown in FIG. 7, a pressure gauge 25 is attached to a valve or the like of an injection part or a discharge part to the sensor and the internal pressure is directly measured by the pressure gauge 25. On the other hand, in the shape recognition sensor 2 shown in FIG. 8 of the present invention, a sensor internal substance pressure detection sensor 26 for detecting the pressure of the sensor internal substance is attached to a portion connecting the sensor internal exchange device 24 and the sensor. Is. The sensor internal substance pressure detection sensor 26 is connected to a pressure measuring device 28 by a sensor connection cable 27, and the sensor bag-like internalofBy measuring the pressure of the substance, the inside of the sensor bag can beMaterialThe pressure changes and the amount of change is measured. Specifically, the correlation between the viscosity of the substance inside the sensor and the sensor output is taken, and the calculation is made from the sensor output value, that is, the distance between the electrode films. When the viscosity of the substance inside the sensor is Sn [cps], the distance d [mm] between the electrodes and the pressure P [Pa] have the following relationship.
[0032]
P = a / (d · Sn)
However, a is a constant [Pa / (mm · cps)], d> 0, Sn> 0.
[0033]
  Thus, pressure is inversely proportional to material viscosity and distance. Therefore, if the viscosity of the substance in Sen is known,MaterialSince the pressure can be measured, the area of the contact portion can be obtained from the shape recognition measurement data, and the contact force to the measurement object can be measured. In addition, since the pressure measurement range can be selected depending on the substance in the sensor bag shape, it is possible to have various pressure measurement ranges with one sensor.
[0034]
Further, the shape recognition sensor 2 shown in FIG. 9 is connected to a measurement electric signal calculation device 31 for calculating an electric signal measured by an electric measurement means. The measurement electric signal calculation device 31 can calculate the measurement value for each matrix electrode as three-dimensional data. That is, the shape change of the matrix electrode film is calculated as three-dimensional data from the electrode positions and the measured values at the respective positions, and the shape of the contact portion of the measurement object is calculated. For example, if 100 × 100 electrodes of the shape recognition sensor in this embodiment are arranged, the sensor output is detected with a value of 100 × 100 matrix. The value of each component of the 100 × 100 matrix is obtained from the interelectrode resistance value or interelectrode capacitance value of the shape recognition sensor. The value of each component is data representing the shape of the workpiece in contact. For example, when measuring the measurement target surface 32 having a shape as shown in FIG. 10, if the reference resistance value in the non-contact state of the contact type sensor is set to 100, and the resistance value decreases by 10 with respect to the protruding 1 mm of the shape at that time. To do. FIG. 11 illustrates a sensor output image when the shape of FIG. 10 is measured. In the blank portion of FIG. 11, 100, which is the reference resistance value, is output. The sensor output is made in the range 35 of the outer shape (30 mm × 16 mm) of the measurement target surface. When the resistance value of this portion is measured as 95, the contact depth of the outer shape portion can be defined as 0.5 mm. In this case, a protruding portion having a shape of 6 mm × 7 mm × 2.5 mm appears as an output as a portion 33 in FIG. 11, and the resistance value is 2.5 mm + 0.5 mm = 3 mm, so that a resistance value 70 is output. Further, the shape portion of 4 mm × 10 mm × 1 mm appears as an output like the portion 34 in FIG. 11 and the resistance value is 1.5 mm, so that the resistance value 85 is output. That is, since the change in resistance value of the sensor output is shape data and depth data, it is calculated as three-dimensional data.
[0035]
Moreover, the structure which connected the contact shape temporal change calculating device 36 which can calculate the temporal change at the time of contact of a measurement object by performing such calculation data continuously is shown in FIG. This contact shape temporal change calculation device 36 can continuously calculate the contact shape of the measurement object described above and measure the temporal change amount at the time of contact. Therefore, by calculating the temporal change at the time of contact, it is possible to control the contact amount of the contact portion, and it is possible to perform shape measurement with the contact portion controlled even in a measurement object in which the contact portion is limited.
[0036]
In addition, this invention is not limited to the said Example, It cannot be overemphasized that various deformation | transformation and substitution are possible if it is description in a claim.
[0037]
【The invention's effect】
  As described above, the shape recognition sensor of the present invention has at least two electrode members in which electrodes are arranged in a regular arrangement on the surface or inside of an insulating film-like electrode member that is flexible and stretchable. Use to place in the opposite positionMade into a bag shape by pasting togetherAn electrode part;Depending on the type of material to be measured, the substance replacement control means for controlling the replacement of the substance to be put inside the bag of the electrode part configured in a bag shape, andElectrical output means for outputting an electrical signal of a predetermined value to the electrodes of each electrode member and electrical measurement means for electrically measuring an electrical signal generated between the electrodes of each electrode member are provided. AndControl the replacement of the substance to be put inside the bag of the electrode portion configured in a bag shape by the substance replacement control means,Changes in the electrical signal generated between the electrodes of each electrode member supplied with an electrical signal of a predetermined value from the electrical output means were measured by the electrical measurement means, and contacted with the electrode member based on the measured change in the electrical signal Shape recognition information for recognizing the shape of the measurement object is obtained. Therefore, 3D shape informationStable measurement that eliminates the influence of disturbanceIt becomes possible to take out with an electric signal, and three-dimensional shape recognition is facilitated based on the electric signal.
[0038]
  Also,The shape recognition sensor of the present invention is arranged at the opposite position using at least two electrode members in which electrodes are arranged in a regular arrangement on the surface or inside of a flexible and stretchable insulating film-like electrode member. The amount of material that controls the amount of material that can be placed inside the bag of the electrode part configured in a bag shape according to the type of material such as the electrode part that is formed into a bag shape and the object to be measured Control means, electrical output means for outputting electrical signals of a predetermined value to the electrodes of each electrode member, and electrical measurement means for electrically measuring electrical signals generated between the electrodes of each electrode member are provided. Then, the amount of the substance put into the bag of the electrode part configured in the bag shape by the substance amount control means is controlled according to the kind of the material of the measurement object, and an electric signal of a predetermined value is outputted from the electric output means. Shape recognition information that recognizes the shape of the measurement object in contact with the electrode member based on the change in the measured electrical signal by measuring the change in the electrical signal generated between the electrodes of each supplied electrode member. Get. Therefore, it becomes possible to take out the information of the three-dimensional shape as an electric signal by the stable measurement from which the influence of the disturbance is removed, and the three-dimensional shape recognition becomes easy based on the electric signal..
[0039]
Furthermore, by putting a substance such as gas, liquid, powder or fluid into the bag of the electrode part configured in a bag shape, the contact part of the electrode part can be made compliant and flexible contact is made. Enable.
[0040]
In addition, by putting a substance having a clear resistivity into the bag of the electrode portion configured in a bag shape, the interelectrode distance can be calculated as a linear value from the interelectrode resistance.
[0041]
Furthermore, by putting a substance having a clear dielectric constant into the bag of the electrode portion configured in a bag shape, the interelectrode distance can be calculated as a linear value from the interelectrode capacitance.
[0043]
  Furthermore, the inside of the bag of the electrode part configured in a bag shapeMaterialDetect pressureSensorInsideMaterial pressureBy providing the detection means, various pressure measurement ranges can be set by measuring the contact pressure.
[0044]
  Also,The substance pressure detection means in the sensor isViscosity of the substance to be put inside the bag of the electrode part configured in a bag shapeBased on Sn and the distance d between the electrodes determined from the change of the electrical signal generated between the electrodes of each electrode member measured by the electrical measuring means,Inside the bag of the electrode part configured in a bag shapeMaterial pressureBy calculating the value, if the viscosity of the substance inside the sensor is known,MaterialThe pressure can be determined.
[0045]
  Further, a robot hand as another invention is characterized by using the shape recognition sensor. Therefore, it is possible to provide a highly versatile robot hand capable of measuring shape recognition with the same sensor for measurement objects such as many quality parts.
[0047]
  MoreAccording to the shape recognition method as another invention, at least two electrode members in which electrodes are arranged in a regular arrangement on the surface or inside of a flexible and stretchable insulating film-like electrode member are used. Placed in the opposite positionUsing the electrode part that has a bag-like shape by bonding together, it controls the replacement of the substance put into the bag-shaped bag according to the type of material to be measured., Shape recognition that measures the change in the electrical signal generated between the electrodes of each electrode member supplied with the electrical signal of a predetermined value and recognizes the shape of the measurement object in contact with the electrode member based on the measured change in the electrical signal It is characterized by obtaining information. Therefore, 3D shape informationStable measurement that eliminates the influence of disturbanceIt becomes possible to take out with an electric signal, and three-dimensional shape recognition is facilitated based on the electric signal.
[0048]
  According to the shape recognition method as another invention, at least two electrode members in which electrodes are arranged in a regular arrangement on the surface or inside of a flexible and stretchable insulating film-like electrode member are provided. Using the electrode part made into a bag shape by arranging it at the opposite position and bonding it together, the amount of substance put in the bag shaped bag according to the type of material etc. to be measured is controlled And measuring the change of the electric signal generated between the electrodes of each electrode member supplied with the electric signal of a predetermined value, and recognizing the shape of the measurement object in contact with the electrode member based on the measured change of the electric signal It is characterized by obtaining recognition information. Therefore, it becomes possible to take out the information of the three-dimensional shape as an electric signal by stable measurement in which the influence of the disturbance is removed, and the three-dimensional shape recognition is facilitated based on the electric signal.
[0049]
In addition, by putting a substance such as gas, liquid, powder, or fluid into a bag formed by laminating at least two electrode members facing each other, the contact portion of the electrode portion is made compliant. It can be held and flexible contact is possible.
[0050]
Furthermore, the distance between electrodes can be calculated as a linear value from the resistance between electrodes by putting a substance having a clear resistivity into a bag formed by bonding at least two electrode members opposed to each other.
[0051]
Further, by putting a substance having a clear dielectric constant into a bag formed by bonding at least two electrode members facing each other, the interelectrode distance can be calculated as a linear value from the interelectrode capacitance.
[0053]
  Moreover, the inside of the bag constituted by bonding using at least two electrode members opposed to each otherMaterialBy detecting the pressure, various pressure measurement ranges can be set by measuring the contact pressure.
[0054]
  In addition, the viscosity of the substance to be put inside the bag formed by bonding at least two electrode members facing each otherSnWhenBased on the distance d between the electrodes obtained from the change in the electrical signal generated between the electrodes of each measured electrode memberIt consists of a bag-like shapeBagInsideMaterial pressureBy calculating the value, if the viscosity of the substance inside the sensor is known,MaterialThe pressure can be determined.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a schematic configuration of a shape recognition sensor according to a first embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing a state when a measurement object is brought into contact with the shape recognition sensor of the first embodiment.
FIG. 3 is a perspective view showing a schematic configuration of a shape recognition sensor according to a second embodiment of the present invention.
FIG. 4 is a schematic perspective view showing a configuration of a shape recognition sensor provided with an inlet / outlet port into a bag-like interior.
FIG. 5 is a schematic perspective view showing a configuration of a shape recognition sensor including a sensor internal substance replacement device.
FIG. 6 is a flowchart showing an operation of sensor internal substance replacement control.
FIG. 7 is a schematic perspective view showing the configuration of pressure measurement inside a conventional sensor.
FIG. 8 is a schematic perspective view showing a configuration of a shape recognition sensor including a pressure measuring device.
FIG. 9 is a schematic perspective view illustrating a configuration of a shape recognition sensor including a measurement electric signal calculation device.
FIG. 10 is a diagram showing a state in which a measurement object is placed in a bag-like shape recognition sensor.
FIG. 11 is a diagram showing an output image of a shape recognition sensor.
FIG. 12 is a schematic perspective view showing a configuration of a shape recognition sensor including a contact shape temporal change calculation device.
[Explanation of symbols]
1, 2; shape recognition sensor, 11, 12; matrix electrode film,
13, 16, 21; electrode connection terminal, 14, 17, 29; connection cable,
15; shape recognition sensor controller; 18; measurement object;
19; distance between electrodes, 20; bonding portion, 22; injection portion, 23; discharge portion,
24; substance changing device inside the sensor; 25; pressure gauge;
26; sensor pressure sensor inside the sensor,
27; sensor connection cable, 28; pressure measuring device,
31: Measurement electric signal calculation device, 36: Contact shape temporal change calculation device.

Claims (15)

柔軟かつ伸縮可能な絶縁性のあるフィルム状の電極部材の表面又は内部に、規則性のある配列で電極を配した電極部材を少なくとも2枚用いて対向位置に配して貼り合わせることで袋状の形状にした電極部と、
測定対象物の材質等の種類に応じて、袋状の形状で構成した前記電極部の袋内部に入れる物質の入れ換えを制御する物質入れ換え制御手段と、
各電極部材の電極に所定値の電気信号を出力する電気的出力手段と、
各電極部材の電極間に生じる電気信号を電気的に計測する電気的計測手段とを設け、
前記物質入れ換え制御手段によって袋状の形状で構成した前記電極部の袋内部に入れる物質の入れ換えを制御し、前記電気的出力手段から所定値の電気信号が供給された各電極部材の電極間に生じた電気信号の変化を前記電気的計測手段によって計測し、計測した電気信号の変化に基づいて電極部材に接した測定対象物の形状を認識する形状認識情報を得ることを特徴とする形状認識センサ。
A bag-like by attaching and bonding at least two electrode members with electrodes arranged in a regular arrangement on the surface or inside of a flexible and stretchable insulating film-like electrode member An electrode part having the shape of
Depending on the type of material to be measured, etc., a substance replacement control means for controlling the replacement of the substance to be put into the bag of the electrode part configured in a bag shape,
Electrical output means for outputting an electrical signal of a predetermined value to the electrode of each electrode member;
An electrical measuring means for electrically measuring an electrical signal generated between the electrodes of each electrode member;
The substance replacement control means controls the replacement of the substance put into the bag of the electrode portion configured in a bag shape, and between the electrodes of each electrode member to which an electrical signal of a predetermined value is supplied from the electrical output means. The shape recognition is characterized in that a change in the generated electric signal is measured by the electric measuring means, and shape recognition information for recognizing the shape of the measurement object in contact with the electrode member is obtained based on the change in the measured electric signal. Sensor.
柔軟かつ伸縮可能な絶縁性のあるフィルム状の電極部材の表面又は内部に、規則性のある配列で電極を配した電極部材を少なくとも2枚用いて対向位置に配して貼り合わせることで袋状の形状にした電極部と、
測定対象物の材質等の種類に応じて、袋状の形状で構成した前記電極部の袋内部に入れる物質の量を制御する物質量制御手段と、
各電極部材の電極に所定値の電気信号を出力する電気的出力手段と、
各電極部材の電極間に生じる電気信号を電気的に計測する電気的計測手段とを設け、
前記物質量制御手段によって袋状の形状で構成した前記電極部の袋内部に入れる物質の量を測定対象物の材質等の種類に応じて制御し、前記電気的出力手段から所定値の電気信号が供給された各電極部材の電極間に生じた電気信号の変化を前記電気的計測手段によって計測し、計測した電気信号の変化に基づいて電極部材に接した測定対象物の形状を認識する形状認識情報を得ることを特徴とする形状認識センサ。
A bag-like by attaching and bonding at least two electrode members with electrodes arranged in a regular arrangement on the surface or inside of a flexible and stretchable insulating film-like electrode member An electrode part having the shape of
Depending on the type of material to be measured, etc., a substance amount control means for controlling the amount of substance to be put inside the bag of the electrode part configured in a bag shape,
Electrical output means for outputting an electrical signal of a predetermined value to the electrode of each electrode member;
An electrical measuring means for electrically measuring an electrical signal generated between the electrodes of each electrode member;
The amount of the substance put into the bag of the electrode part configured in a bag shape by the substance amount control means is controlled according to the kind of material of the measurement object, and an electric signal of a predetermined value from the electric output means A shape in which a change in an electric signal generated between the electrodes of each electrode member to which the electrode is supplied is measured by the electric measuring means, and a shape of a measurement object in contact with the electrode member is recognized based on the change in the measured electric signal. A shape recognition sensor characterized by obtaining recognition information .
袋状の形状で構成した前記電極部の袋内部に、気体、液体、粉体又は流動体等の物質を入れる請求項1又は2記載の形状認識センサ。The shape recognition sensor according to claim 1 or 2, wherein a substance such as gas, liquid, powder, or fluid is placed inside the bag of the electrode portion configured in a bag shape. 袋状の形状で構成した前記電極部の袋内部に、抵抗率が明らかな物質を入れる請求項1〜3のいずれかに記載の形状認識センサ。The shape recognition sensor according to any one of claims 1 to 3, wherein a substance having a clear resistivity is placed inside the bag of the electrode portion configured in a bag shape. 袋状の形状で構成した前記電極部の袋内部に、誘電率が明らかな物質を入れる請求項1〜3のいずれかに記載の形状認識センサ。The shape recognition sensor according to any one of claims 1 to 3, wherein a substance having a clear dielectric constant is placed inside the bag of the electrode portion configured in a bag shape. 袋状の形状で構成した前記電極部の袋内部の物質の圧力を検出するセンサ内物質圧力検出手段を備えた請求項〜5のいずれかに記載の形状認識センサ。The shape recognition sensor according to any one of claims 1 to 5, further comprising an in-sensor substance pressure detecting means for detecting a pressure of a substance inside the bag of the electrode portion configured in a bag shape. 前記センサ内物質圧力検出手段は、袋状の形状で構成した前記電極部の袋内部に入れる物質の粘度Snと、前記電気的計測手段により計測された各電極部材の電極間に生じた電気信号の変化から求められる電極間の距離dとに基づき、袋状の形状で構成した前記電極部の袋内部の物質の圧力値を求める請求項6記載の形状認識センサ。 The substance pressure detection means in the sensor includes a viscosity Sn of the substance to be put inside the bag of the electrode portion configured in a bag shape, and an electric signal generated between the electrodes of each electrode member measured by the electric measurement means. The shape recognition sensor according to claim 6, wherein the pressure value of the substance inside the bag of the electrode portion configured in a bag shape is obtained based on the distance d between the electrodes obtained from the change of the electrode . 請求項1〜7のいずれかに記載の形状認識センサを用いたロボットハンド A robot hand using the shape recognition sensor according to claim 1 . 柔軟かつ伸縮可能な絶縁性のあるフィルム状の電極部材の表面又は内部に、規則性のある配列で電極を配した電極部材を少なくとも2枚用いて対向位置に配して貼り合わせることで袋状の形状にした電極部を用いた形状認識方法であって、
測定対象物の材質等の種類に応じて袋状の形状で構成した袋の内部に入れる物質の入れ換えを制御し、所定値の電気信号を供給した各電極部材の電極間に生じた電気信号の変化を計測し、計測した電気信号の変化に基づいて電極部材に接した測定対象物の形状を認識する形状認識情報を得ることを特徴とする形状認識方法
A bag-like by attaching and bonding at least two electrode members with electrodes arranged in a regular arrangement on the surface or inside of a flexible and stretchable insulating film-like electrode member A shape recognition method using an electrode part having a shape of
Depending on the type of material to be measured, the replacement of the substance to be put into the bag configured in the bag shape is controlled, and the electric signal generated between the electrodes of each electrode member that supplies the electric signal of a predetermined value is controlled. A shape recognition method characterized by measuring a change and obtaining shape recognition information for recognizing a shape of a measurement object in contact with an electrode member based on the measured change in an electrical signal .
柔軟かつ伸縮可能な絶縁性のあるフィルム状の電極部材の表面又は内部に、規則性のある配列で電極を配した電極部材を少なくとも2枚用いて対向位置に配して貼り合わせることで袋状の形状にした電極部を用いた形状認識方法であって、
測定対象物の材質等の種類に応じて袋状の形状で構成した袋の内部に入れる物質の量を 制御し、所定値の電気信号を供給した各電極部材の電極間に生じた電気信号の変化を計測し、計測した電気信号の変化に基づいて電極部材に接した測定対象物の形状を認識する形状認識情報を得ることを特徴とする形状認識方法
A bag-like by attaching and bonding at least two electrode members with electrodes arranged in a regular arrangement on the surface or inside of a flexible and stretchable insulating film-like electrode member A shape recognition method using an electrode part having a shape of
Depending on the type of material to be measured, etc., the amount of the substance put into the bag configured in the bag shape is controlled, and the electric signal generated between the electrodes of each electrode member that supplied the electric signal of the predetermined value is controlled. A shape recognition method characterized by measuring a change and obtaining shape recognition information for recognizing a shape of a measurement object in contact with an electrode member based on the measured change in an electrical signal .
対向させた前記電極部材を少なくとも2枚用いて貼り合せて構成した袋の内部に、気体、液体、粉体又は流動体等の物質を入れる請求項9又は10に記載の形状認識方法 The shape recognition method according to claim 9 or 10, wherein a substance such as a gas, a liquid, a powder, or a fluid is put into a bag formed by bonding at least two electrode members facing each other . 対向させた前記電極部材を少なくとも2枚用いて貼り合せて構成した袋の内部に、抵抗率が明らかな物質を入れる請求項9〜11のいずれかに記載の形状認識方法 The shape recognition method according to any one of claims 9 to 11, wherein a substance with a clear resistivity is placed inside a bag formed by bonding at least two electrode members facing each other . 対向させた前記電極部材を少なくとも2枚用いて貼り合せて構成した袋の内部に、誘電率が明らかな物質を入れる請求項9〜11のいずれかに記載の形状認識方法。 The shape recognition method according to any one of claims 9 to 11, wherein a substance having a clear dielectric constant is placed in a bag formed by bonding at least two electrode members facing each other . 対向させた前記電極部材を少なくとも2枚用いて貼り合せて構成した袋の内部の物質の圧力を検出する請求項9〜13のいずれかに記載の形状認識方法。The shape recognition method according to any one of claims 9 to 13 , wherein the pressure of a substance in a bag formed by bonding at least two electrode members facing each other is detected . 対向させた前記電極部材を少なくとも2枚用いて貼り合せて構成した袋の内部に入れる物質の粘度Snと、計測された各電極部材の電極間に生じた電気信号の変化から求められる電極間の距離dとに基づき、対向させた前記電極部材を少なくとも2枚用いて貼り合せて構成した袋内部の物質の圧力値を求める請求項14記載の形状認識方法。Between the electrodes determined from the viscosity Sn of the substance to be put in the bag constituted by bonding the electrode members facing each other using at least two sheets, and the change in the electrical signal generated between the electrodes of each measured electrode member The shape recognition method according to claim 14 , wherein a pressure value of a substance inside a bag formed by bonding at least two electrode members facing each other is determined based on the distance d .
JP2000386347A 2000-12-20 2000-12-20 Shape recognition sensor, robot hand, and shape recognition method Expired - Fee Related JP4094222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000386347A JP4094222B2 (en) 2000-12-20 2000-12-20 Shape recognition sensor, robot hand, and shape recognition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000386347A JP4094222B2 (en) 2000-12-20 2000-12-20 Shape recognition sensor, robot hand, and shape recognition method

Publications (3)

Publication Number Publication Date
JP2002188902A JP2002188902A (en) 2002-07-05
JP2002188902A5 JP2002188902A5 (en) 2005-08-18
JP4094222B2 true JP4094222B2 (en) 2008-06-04

Family

ID=18853460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000386347A Expired - Fee Related JP4094222B2 (en) 2000-12-20 2000-12-20 Shape recognition sensor, robot hand, and shape recognition method

Country Status (1)

Country Link
JP (1) JP4094222B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2844349B1 (en) * 2002-09-06 2005-06-24 Nanotec Solution CAPACITIVE SENSOR PROXIMITY DETECTOR
JP4522130B2 (en) * 2004-03-31 2010-08-11 明人 佐野 Deformation detection member
KR100876635B1 (en) 2003-12-26 2009-01-09 도요타 지도샤(주) Convexo concave amplifying device and convexo concave detecting method by use thereof, deformation sensing device and convexo concave detecting method by use thereof, and convexo concave position exhibiting device and convexo concave position exhibiting method
JP2006297717A (en) * 2005-04-19 2006-11-02 Sumitomo Electric Ind Ltd Method and apparatus for inspecting thin film made of resin
JP4633851B2 (en) * 2009-12-07 2011-02-16 明人 佐野 Unevenness detection position display device and unevenness detection position display method

Also Published As

Publication number Publication date
JP2002188902A (en) 2002-07-05

Similar Documents

Publication Publication Date Title
Padmanabha et al. Omnitact: A multi-directional high-resolution touch sensor
WO2017044617A1 (en) Tactile sensors and methods of fabricating tactile sensors
Göger et al. Tactile proximity sensors for robotic applications
US20150168238A1 (en) Pressure Signature Based Biometric Systems, Sensor Assemblies and Methods
Agrawal et al. An Overview of Tactile Sensing
WO2011079258A1 (en) System and method for runtime determination of camera miscalibration
JP4094222B2 (en) Shape recognition sensor, robot hand, and shape recognition method
RU2008134715A (en) PRESSURE SENSOR DAMAGE DETECTION
Del Prete et al. A novel pressure array sensor based on contact resistance variation: Metrological properties
CN102356307A (en) Capacitive gage pressure sensor with vacuum dielectric
JP2006071644A (en) Capacitance-type temperature sensor
CN106289595A (en) The force transducer of shearing force can be detected
JP2002113685A (en) Contact type shape sensing robot hand
US20220187971A1 (en) Force sensor
De Clercq et al. A soft barometric tactile sensor to simultaneously localize contact and estimate normal force with validation to detect slip in a robotic gripper
CN110567663B (en) Method and device for detecting abnormality of connection part
CN107710127B (en) Method and device for detecting pressure
CN109859840B (en) Pulse condition perception position determining method and device, computer equipment and storage medium
CN107735657A (en) Portable electric appts and its pressure-detecting device and method
Saito et al. 3D shape measurement of underwater objects using motion stereo
KR102240611B1 (en) Apparatus and method of imaging pressure distribution by using multi-layered pressure sensor
Affortunati et al. Tomographic Artificial Skin for Robotic Application
JP5314018B2 (en) Factor measurement and display device, factor measurement and display method, factor measurement and display program for causing computer to execute factor measurement and display method, and acoustic scanner
CN109805902B (en) Pulse condition perception position determining method and device, computer equipment and storage medium
EP4098988A1 (en) Condition detection of pressure transmitter diaphragm

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees