JP4093450B2 - Optical scanning device, method of manufacturing optical scanning device, image forming apparatus including optical scanning device, and reader including optical scanning device - Google Patents

Optical scanning device, method of manufacturing optical scanning device, image forming apparatus including optical scanning device, and reader including optical scanning device Download PDF

Info

Publication number
JP4093450B2
JP4093450B2 JP2001311975A JP2001311975A JP4093450B2 JP 4093450 B2 JP4093450 B2 JP 4093450B2 JP 2001311975 A JP2001311975 A JP 2001311975A JP 2001311975 A JP2001311975 A JP 2001311975A JP 4093450 B2 JP4093450 B2 JP 4093450B2
Authority
JP
Japan
Prior art keywords
optical scanning
substrate
scanning device
movable electrode
fixed electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001311975A
Other languages
Japanese (ja)
Other versions
JP2003121776A (en
Inventor
光美 藤井
幸人 佐藤
剛一 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001311975A priority Critical patent/JP4093450B2/en
Publication of JP2003121776A publication Critical patent/JP2003121776A/en
Application granted granted Critical
Publication of JP4093450B2 publication Critical patent/JP4093450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光走査装置、及び、その光走査装置の製造方法、並びに、その光走査装置を具備する画像形成装置、及び、その光走査装置を具備する読取装置に関し、詳しくは、静電力でねじり回動軸を回動して入射光の反射方向を変えて光走査を行なう光走査装置、及び、その光走査装置の製造方法、並びにその光走査装置を具備する電子写真プロセスで光書き込みを行なって画像を形成する画像形成装置、及び、その光走査装置を具備する被読み取り面を光走査して読み取りを行なう読取装置に関する。
【0002】
【従来の技術】
従来の光走査装置は、2本の梁で支持された薄膜で形成されたミラー基板を、ミラー基板に対向する位置に設けた電極との間の静電引力で、2本の梁をねじり回転軸として往復振動させている。
このように、マイクロマシニング技術で薄膜で形成される光走査装置は、従来のモーターを使ったポリゴンミラーの回転による光走査装置と比較して、構造が簡単で半導体プロセスでの一括形成が可能なため、小型化が容易で製造コストも低く、また単一の反斜面であるため複数面による精度のばらつきがなく、さらに往復走査であるため高速化にも対応できる等の効果が期待されて、電子写真プロセスで光書き込みを行なって画像を形成する画像形成装置や光走査を行なって読み取りを行なう読取装置等に搭載することが提案されている。
このような、静電駆動のねじり振動型の光走査装置としては、梁をS字型として剛性を下げ、小さな駆動力で大きな振れ角が得られるようにしたもの(特許第2924200号の公報を参照)、梁の厚さをミラー基板、フレーム基板よりも薄くしたもの(特開平7−92409の公報を参照)、固定電極をミラー部の振動方向に重ならない位置に配置したもの(特許第3011144号の公報等を参照)、又、対向電極をミラーの振れの中心位置から傾斜させて設置することで、ミラーの振れ角を変えずに駆動電圧を下げたものが公知である。
更に、小さなミラー基板の振れ角で大きな光走査角が得られるようにする為に、光偏向部と対向して反射部を設け、両者間で2回以上反射させて走査するねじり振動型の光走査装置が、同一出願人の発明者から提案されている。
然し、これらは、構造が複雑で、歩留まりも低く、コスト高である。
【0003】
図13は従来例の斜視図、図14はその断面図であり、従来の光走査装置300は、ミラー301を有するミラー基板302を支持する2本の梁部材からなるねじり回動軸303が形成された基板305と、ミラー基板302に設けた可動電極304と、可動電極304に対向して設けた固定電極306を有し、可動電極304と固定電極306との間の静電引力で、2本の梁部材からなるねじり回動軸303を回動軸としてミラー基板302を往復振動させるようにして、ミラー301を回動して入射光の反射方向を変えて光走査を行なうようになっている。
そこで、共振状態におけるミラー301を有するミラー基板302の振れ角(θ)は、θ=(Tq/I)・K、の式で与えられる。
但し、(Tq)はミラー301を有するミラー基板302に働く静電トルク、(I)はミラー301を有するミラー基板302の慣性モーメント、(K)は2本の梁部材からなるねじり回動軸303によって決まる常数である。
即ち、ミラー基板302上のミラー301の振れ角(θ)を大きくしようとすると、静電トルク(Tq)を大きくするか、ミラー301を有するミラー基板302の慣性モーメント(I)を小さくする方法がとられる。
特に、画像形成装置の電子写真プロセスでレーザープリンタ等の光書き込み装置として用いる場合、感光体面に形成されるビーム形状に決まってくる反射面のミラーをミラー基板に持つことが必要になる。
よって、ミラー慣性モーメント(I)は小さく出来ない。
他方、静電トルク(Tq)は、駆動電圧に比例して大きくなり、振れ角(θ)を大きくすると、駆動電圧が高くなりコストが高くなっていた。
即ち、従来の光走査装置、及び、その光走査装置を具備する画像形成装置及、び、その光走査装置を具備する読取装置は、ミラーの振れ角(θ)を大きくすると駆動電圧が高くなり、コスト高になる。
従って、従来の静電力でねじり回動軸を回動して入射光の反射方向を変えて光走査を行なう光走査装置は、構造が複雑で、光走査を行なう振れ角が小さく、駆動電圧が高く、歩留まりも低く、コスト高であると言う不具合が生じていた。
【0004】
【発明が解決しようとする課題】
そこで本発明の課題は、このような問題点を解決するものである。即ち、構造が簡単で、光走査を行なう振れ角が大きく、駆動電圧が低く、歩留まりも高く、低コストである光走査装置、及び、その光走査装置の製造方法、並びに、その光走査装置を具備する画像形成装置、及び、その光走査装置を具備する読取装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1の本発明は、静電力でねじり回動軸を回動して入射光の反射方向を変えて光走査を行なう光走査装置において、入射光を正反射する反射手段と、上記反射手段を保持する反射手段保持基板と、上記反射手段保持基板を回動可能に両端部を支持する2本の梁部材からなるねじり回動軸と、上記ねじり回動軸に支持された上記反射手段保持基板の側面の可動電極と、上記可動電極を上記ねじり回動軸を介して形成して支持する第1の基板と、上記第1の基板と上記第1の基板に重ねて接合した第2の基板との側面で、上記可動電極と対向する面に形成される固定電極と、を備え、上記固定電極は、上記第1の基板と第2の基板の表面に形成された絶縁膜上に形成された導電性薄膜からなることを特徴とする。
請求項2の本発明は、請求項1に記載の光走査装置において、上記ねじり回動軸は、上記反射手段保持基板を回動可能に両端部を支持する同一直線上に設けた2本の梁からなることを特徴とする。
請求項3の本発明は、請求項1に記載の光走査装置において、上記絶縁膜は、酸化珪素により形成されていることを特徴とする
請求項の本発明は、請求項1乃至の何れか一項に記載の光走査装置において、上記第1の基板のシリコン基板と上記第2の基板のシリコン基板を直接接合により接合したことを特徴とする。
請求項の本発明は、請求項1乃至の何れか一項に記載の光走査装置において、上記第1の基板のシリコン基板と上記第2の基板のガラス板を陽極接合により接合したことを特徴とする。
請求項の本発明は、請求項1乃至の何れか一項に記載の光走査装置において、上記可動電極は、上記固定電極に対向する対向面が凹凸形状の可動電極凹凸形状対向面からなることを特徴とする。
【0006】
請求項の本発明は、請求項に記載の光走査装置において、上記可動電極凹凸形状対向面は、櫛歯形状対向面からなることを特徴とする。
請求項の本発明は、請求項1乃至の何れか一項に記載の光走査装置において、上記固定電極は、上記可動電極に対向する対向面が凹凸形状の固定電極凹凸形状対向面からなることを特徴とする。
請求項の本発明は、請求項に記載の光走査装置において、上記固定電極凹凸形状対向面は、櫛歯形状対向面からなることを特徴とする。
請求項10の本発明は、静電力でねじり回動軸を回動して入射光の反射方向を変えて光走査を行なう請求項1乃至の何れか一項に記載の光走査装置の製造方法において、
第1の基板のシリコン基板に、第2の基板のシリコン基板を真空中で重ね、大気に解放後に加熱する直接接合で製造することを特徴とする。
請求項11の本発明は、静電力でねじり回動軸を回動して入射光の反射方向を変えて光走査を行なう請求項1乃至の何れか一項に記載の光走査装置の製造方法において、
シリコン基板からなる第1の基板とガラス板からなる第2の基板を真空中で、接合荷重を加え、接合電圧を印加し、接合温度に加熱する陽極接合で製造することを特徴とする。
【0007】
請求項12の本発明は、電子写真プロセスで光書き込みを行なって画像を形成する画像形成装置において、回動可能に保持されて形成画像を担持する画像担持体と、上記画像担持体上を光書き込みを行なって潜像を形成する請求項1乃至の何れか一項に記載の光走査装置からなる潜像形成手段と、上記潜像形成手段の上記光走査装置によって形成された潜像を顕像化してトナー画像を形成する現像手段と、上記現像手段で形成されたトナー画像を被転写体に転写する転写手段とからなることを特徴とする。
請求項13の本発明は、光走査を行なって読み取りを行なう読取装置において、被読み取り面を光走査する請求項1乃至の何れか一項に記載の光走査装置と、上記光走査装置が被読み取り面を光走査した反射光を受光する受光素子とからなることを特徴とする。
【0008】
【発明の実施の形態】
次に、本発明の実施の形態を図面を参照して詳細に説明する。
図1及び図2は本発明の実施形態に係る光走査装置の断面図及び分解斜視図であり、静電力でねじり回動軸を回動して入射光の反射方向を変えて光走査を行なう光走査装置0は、入射光を正反射する反射手段1のミラーと、上記反射手段1のミラーを保持する反射手段保持基板2と、上記反射手段保持基板2を回動可能に両端部を支持する同一直線上に設けた2本の梁部材からなるねじり回動軸3と、上記ねじり回動軸3に支持された上記反射手段1のミラーを保持する上記反射手段保持基板2の側面の可動電極4と、上記可動電極4を上記ねじり回動軸3を介して形成して支持する第1の基板5と、上記第1の基板5に重ねた環状の第2の基板6を接合して上記可動電極4と対向する固定電極7とからなり、構造が簡単で、光走査を行なう振れ角が更に大きく、駆動電圧が更に低く、歩留まりも高く、低コストである。
上記第1の基板5は、エッチングによる加工により、上記反射手段1のミラーを保持する上記反射手段保持基板2の両側面に、上記ねじり回動軸3が形成されている。
上記第1の基板5に、図示の矢印(A)方向から位置合わせされて重ねた上記第2の基板6を直接接合、又は、陽極接合した後に、重ねて接合された上記第1の基板5と上記第2の基板6の表面に、上記可動電極4と上記固定電極7間が格安に絶縁状態が確実に確保されるように形成される酸化珪素(SiO)の絶縁膜8上に形成された導電性薄膜からなる上記固定電極7が、上記可動電極4と対向して形成されている。
上記可動電極4と上記固定電極7は、図示のように駆動電圧印加手段10に接続され、上記駆動電圧印加手段10による駆動電圧の印加で、静電力で上記ねじり回動軸3が回動して入射光の反射方向を変えて光走査が行なわれるようになっている。
上記光走査装置0においては、共振状態における上記反射手段1のミラーを保持する上記反射手段保持基板2の振れ角(θ)は、(θ)=(Tq/I)・K、の式で与えられる。
但し、(Tq)は上記反射手段1のミラーを保持する上記反射手段保持基板2に働く静電トルク、(I)は上記反射手段1のミラーを保持する上記反射手段保持基板2の慣性モーメント、(K)は上記ねじり回動軸3よって決まる常数である。
静電トルク(Tq)は、(Tq)∝S・(V/g)、の式で与えられる。
但し、(S)は上記可動電極4と上記固定電極7間との対向面積、(V)は上記駆動電圧印加手段10による印加電圧、(g)は上記可動電極4と上記固定電極7間との電極間距離である。
【0009】
上記光走査装置0は、上記第1の基板5に位置合わせされて重ねた上記第2の基板6を接合することにより形成されているので、上記第1の基板5の板厚を薄くする事により、上記可動電極4と上記固定電極7間の電極間隙(g)を小さく加工することが可能となる。
又、上記第1の基板5に上記第2の基板6を接合するため、上記可動電極4に対向する上記固定電極7の対向面積(S)を大きくすることが出来るから、(Tq)∝S・(V/g)、の式において対向面積(S)は大きく、上記可動電極4と上記固定電極7間の電極間隙(g)も小さくなり、より静電トルク(Tq)は大きくできる。
従って、構造が簡単で、光走査を行なう振れ角が大きく、駆動電圧が低く、歩留まりも高く、低コストである上記光走査装置0を提供することが出来るようになった。
上記第1の基板5に位置合わせされて重ねた上記第2の基板6を接合する直接接合方法は、上記第1の基板5のシリコン基板5aの、表面に上記第2の基板6のシリコン基板6aを真空中で図示の矢印(A)方向から重ね合わせた後に(図2を参照)、又は、裏面に図示しない後述する第3の基板9のシリコン基板9aを真空中で図示の矢印(B)方向から重ね合わせた後に(図2を参照)、大気に解放後に1000℃に加熱して行なわれて製造されるから、ウエファー単位で接合され、接合コストを低下することが出来る。
従って、更に、低コストの上記光走査装置0の製造方法を提供することが出来るようになった。
【0010】
図3において、上記第1の基板5の上記シリコン基板5aの表面に位置合わせされて重ねた上記第2の基板6のパイレックスガラスのガラス板6b、又は、再度、裏面に位置合わせされて重ねた図示しない上記第3の基板9のパイレックスガラスのガラス板9bの陽極接合は、陽極接合装置20により、バキュームポンプ25により内部を負圧に保ちながら、観測窓21で内部観察が行なわれ、重り22で接合加重が50(gf/cm)に制御され、電源23で接合電圧を500(V)×25(分)にコントロールされ、ヒーター24は接合温度を温度制御装置24aにより500℃にコントロールされて製造されるから、接合強度が大きく、歩留まりも向上することが出来る。
従って、接合強度が大きく、歩留まりも向上して、更に、低コストの上記光走査装置0、及び、その上記光走査装置0の製造方法を提供することが出来るようになった。
【0011】
図4及び図5は他の実施形態の構成を示す断面図及び分解斜視図であり、静電力でねじり回動軸を回動して入射光の反射方向を変えて光走査を行なう上記光走査装置0は、入射光を正反射する上記反射手段1のミラーと、上記反射手段1のミラーを保持する上記反射手段保持基板2と、上記反射手段保持基板2を回動可能に両端部を支持する同一直線上に設けた2本の梁部材からなる上記ねじり回動軸3と、上記ねじり回動軸3に支持された上記反射手段1のミラーを保持する上記反射手段保持基板2の側面の上記可動電極4と、上記可動電極4を上記ねじり回動軸3を介して形成して支持する上記第1の基板5と、上記第1の基板5に重ねた上記第2の基板6と上記第3の基板9を接合して上記可動電極4と対向する固定電極7’とからなり、構造が簡単で、光走査を行なう振れ角が更に大きく、駆動電圧が更に低く、歩留まりも高く、低コストである。
上記第1の基板5は、エッチングによる加工により、上記反射手段1のミラーを保持する上記反射手段保持基板2の両側面に、上記ねじり回動軸3が形成されている。
上記第1の基板5に、図示のように矢印(A)方向から位置合わせされて重ねた上記第2の基板6と図示のように矢印(B)方向から位置合わせされて重ねた上記第3の基板9を直接接合、又は、陽極接合した後に、重ねて接合された上記第1の基板5に、上記第2の基板6と上記第3の基板9の表面に、格安に絶縁状態が確保されるように形成される酸化珪素(SiO)の上記絶縁膜8上に形成された導電性薄膜からなる上記固定電極7’が、上記可動電極4と対向して形成されている。
上記可動電極4と上記固定電極7’は、図示のように駆動電圧印加手段10に接続され、上記駆動電圧印加手段10による駆動電圧の印加で、静電力で上記ねじり回動軸3が回動して入射光の反射方向を変えて光走査が行なわれるようになっている。
【0012】
上記光走査装置0においては、共振状態における上記反射手段1のミラーを保持する上記反射手段保持基板2の振れ角(θ)は、(θ)=(Tq/I)・K、の式で与えられる。
但し、(Tq)は上記反射手段1のミラーを保持する上記反射手段保持基板2に働く静電トルク、(I)は上記反射手段1のミラーを保持する上記反射手段保持基板2の慣性モーメント、(K)は上記ねじり回動軸3よって決まる常数である。
静電トルク(Tq)は、(Tq)∝S・(V/g)、の式で与えられる。
但し、(S)は上記可動電極4と上記固定電極7’間との対向面積、(V)は上記駆動電圧印加手段10による印加電圧、(g)は上記可動電極4と上記固定電極7’間との電極間距離である。
上記光走査装置0は、上記第1の基板5に、位置合わせされて重ねた上記第2の基板6と上記第3の基板9を接合することにより形成されているので、上記第1の基板5の板厚を、更に、薄くする事により、上記可動電極4と上記固定電極7’間の電極間隙(g)を、更に、小さく加工することが可能となる。
又、上記第1の基板5に、上記第2の基板6と上記第3の基板9を接合するため、上記可動電極4に対向する上記固定電極7’の対向面積(S)を、更に、大きくすることが出来るから、(Tq)∝S・(V/g)、の式において対向面積(S)は更に大きく、上記可動電極4と上記固定電極7’間の電極間隙(g)は更に小さくなり、より更に静電トルク(Tq)は大きくできる。
従って、構造が簡単で、光走査を行なう振れ角が更に大きく、駆動電圧が更に低く、歩留まりも更に高く、更に低コストである上記光走査装置0を提供することが出来るようになった。
【0013】
図6及び図7は本発明の他の実施形態に係る断面図及び分解斜視図であり、静電力でねじり回動軸を回動して入射光の反射方向を変えて光走査を行なう上記光走査装置0は、入射光を正反射する上記反射手段1のミラーと、上記反射手段1のミラーを保持する上記反射手段保持基板2と、上記反射手段保持基板2を回動可能に両端部を支持する同一直線上に設けた2本の梁部材からなる上記ねじり回動軸3と、上記ねじり回動軸3に支持された上記反射手段1のミラーを保持する上記反射手段保持基板2の側面の上記可動電極4の凹凸形状に形成された可動電極凹凸形状対向面4aの櫛歯形状の櫛歯形状対向面4aと、上記櫛歯形状対向面4aを上記ねじり回動軸3を介して形成して支持する上記第1の基板5と、上記第1の基板5に重ねた上記第2の基板6を接合して上記櫛歯形状対向面4aと互い違いに対向する櫛歯形状の櫛歯形状対向面7aとからなり、構造が簡単で、光走査を行なう振れ角が更に大きく、駆動電圧が更に低く、歩留まりも高く、低コストである。
上記第1の基板5は、エッチングによる加工により、上記反射手段1のミラーを保持する上記反射手段保持基板2の両側面に、上記ねじり回動軸3が形成されている。
上記第1の基板5に、図示の矢印(A)方向から位置合わせされて重ねた上記第2の基板6を直接接合、又は、陽極接合した後に、重ねて接合された上記第1の基板5と上記第2の基板6の表面に、格安に絶縁状態が確保されるように形成される酸化珪素(SiO)の上記絶縁膜8上に形成された導電性薄膜からなる上記固定電極7の凹凸形状に形成された上記固定電極凹凸形状対向面7aの櫛歯形状の上記櫛歯形状対向面7aが、上記可動電極4の凹凸形状に形成された上記櫛歯形状対向面4aと互い違いに対向して形成されている。
櫛歯形状の上記櫛歯形状対向面4aと櫛歯形状の上記櫛歯形状対向面7aとは、図示のように上記駆動電圧印加手段10に接続され、上記駆動電圧印加手段10による駆動電圧の印加で、静電力で上記ねじり回動軸3が回動して入射光の反射方向を変えて光走査が行なわれるようになっている。
【0014】
上記光走査装置0においては、共振状態における上記反射手段1のミラーを保持する上記反射手段保持基板2の振れ角(θ)は、(θ)=(Tq/I)・K、の式で与えられる。
但し、(Tq)は上記反射手段1のミラーを保持する上記反射手段保持基板2に働く静電トルク、(I)は上記反射手段1のミラーを保持する上記反射手段保持基板2の慣性モーメント、(K)は上記ねじり回動軸3よって決まる常数である。
静電トルク(Tq)は、(Tq)∝S・(V/g)、の式で与えられる。
但し、(S)は上記可動電極4の凹凸形状に形成された可動電極凹凸形状対向面4aの櫛歯形状の櫛歯形状対向面4aと上記固定電極7の凹凸形状に形成された上記固定電極凹凸形状対向面7aの櫛歯形状の上記櫛歯形状対向面7a間との互い違いの対向面積、(V)は上記駆動電圧印加手段10による印加電圧、(g)は上記可動電極4の凹凸形状に形成された上記可動電極凹凸形状対向面4aの櫛歯形状の上記櫛歯形状対向面4aと上記固定電極7の凹凸形状に形成された上記固定電極凹凸形状対向面7aの櫛歯形状の上記櫛歯形状対向面7a間との電極間距離である。
上記光走査装置0は、上記第1の基板5に位置合わされて重ねた上記第2の基板6を接合することにより形成されているので、上記第1の基板5の板厚を薄くする事により、上記可動電極4の凹凸形状に形成された上記可動電極凹凸形状対向面4aの櫛歯形状の上記櫛歯形状対向面4aと上記固定電極7の凹凸形状に形成された上記固定電極凹凸形状対向面7aの櫛歯形状の上記櫛歯形状対向面7a間の電極間隙(g)を小さく加工することが可能となる。
又、上記第1の基板5に上記第2の基板6を接合するため、上記可動電極4の凹凸形状に形成された上記可動電極凹凸形状対向面4aの櫛歯形状の上記櫛歯形状対向面4aと互い違いに対向する上記固定電極7の凹凸形状に形成された上記固定電極凹凸形状対向面7aの櫛歯形状の上記櫛歯形状対向面7aとの対向面積(S)を、更に、大きくすることが出来るから、(Tq)∝S・(V/g)、の式において対向面積(S)は、更に、大きく、上記可動電極4の凹凸形状に形成された上記可動電極凹凸形状対向面4aの櫛歯形状の上記櫛歯形状対向面4aと上記固定電極7の凹凸形状に形成された上記固定電極凹凸形状対向面7aの櫛歯形状の上記櫛歯形状対向面7a間の電極間隙(g)を更に小さくなり、より静電トルク(Tq)は、更に、大きくできる。
従って、構造が簡単で、光走査を行なう振れ角が更に大きく、駆動電圧が更に低く、歩留まりも高く、低コストである上記光走査装置0を提供することが出来るようになった。
【0015】
図8及び図9は他の実施形態に係る光走査装置の断面図及び分解斜視図であり、静電力でねじり回動軸を回動して入射光の反射方向を変えて光走査を行なう上記光走査装置0は、入射光を正反射する上記反射手段1のミラーと、上記反射手段1のミラーを保持する上記反射手段保持基板2と、上記反射手段保持基板2を回動可能に両端部を支持する同一直線上に設けた2本の梁部材からなる上記ねじり回動軸3と、上記ねじり回動軸3に支持された上記反射手段1のミラーを保持する上記反射手段保持基板2の側面の上記可動電極4の凹凸形状に形成された上記可動電極凹凸形状対向面4aの櫛歯形状の上記櫛歯形状対向面4aと、櫛歯形状の上記櫛歯形状対向面4aを上記ねじり回動軸3を介して形成して支持する第1の基板5と、上記第1の基板5に重ねた上記第2の基板6と上記第3の基板9を接合して櫛歯形状の上記櫛歯形状対向面4aと対向する固定電極7’とからなり、構造が簡単で、光走査を行なう振れ角が更に大きく、駆動電圧が更に低く、歩留まりも高く、低コストである。
上記第1の基板5は、エッチングによる加工により、上記反射手段1のミラーを保持する上記反射手段保持基板2の両側面に、上記ねじり回動軸3が形成されている。
上記第1の基板5に、図示のように矢印(A)方向から位置合わせされて重ねた上記第2の基板6と図示のように矢印(B)方向から位置合わせされて重ねた上記第3の基板9を直接接合、又は、陽極接合した後に、重ねて接合された上記第1の基板5に、上記第2の基板6と上記第3の基板9の表面に、格安に絶縁状態が確保されるように形成される酸化珪素(SiO)の上記絶縁膜8上に形成された導電性薄膜からなる上記固定電極7’の凹凸形状に形成された上記固定電極凹凸形状対向面7aの櫛歯形状の上記櫛歯形状対向面7aが、櫛歯形状の上記櫛歯形状対向面4aと互い違いに対向して形成されている。
櫛歯形状の上記櫛歯形状対向面4aと上記固定電極7’の凹凸形状に形成された上記固定電極凹凸形状対向面7aの櫛歯形状の上記櫛歯形状対向面7aは、図示のように上記駆動電圧印加手段10に接続され、上記駆動電圧印加手段10による駆動電圧の印加で、静電力で上記ねじり回動軸3が回動して入射光の反射方向を変えて光走査が行なわれるようになっている。
【0016】
上記光走査装置0においては、共振状態における上記反射手段1のミラーを保持する上記反射手段保持基板2の振れ角(θ)は、(θ)=(Tq/I)・K、の式で与えられる。
但し、(Tq)は上記反射手段1のミラーを保持する上記反射手段保持基板2に働く静電トルク、(I)は上記反射手段1のミラーを保持する上記反射手段保持基板2の慣性モーメント、(K)は上記ねじり回動軸3よって決まる常数である。
静電トルク(Tq)は、(Tq)∝S・(V/g)、の式で与えられる。
但し、(S)は上記可動電極4の凹凸形状に形成された上記可動電極凹凸形状対向面4aの櫛歯形状の上記櫛歯形状対向面4aと上記固定電極7’の凹凸形状に形成された上記固定電極凹凸形状対向面7aの櫛歯形状の上記櫛歯形状対向面7a間の互い違いの対向面積、(V)は上記駆動電圧印加手段10による印加電圧、(g)は上記可動電極4の凹凸形状に形成された上記可動電極凹凸形状対向面4aの櫛歯形状の上記櫛歯形状対向面4aと上記固定電極7’の凹凸形状に形成された上記固定電極凹凸形状対向面7aの櫛歯形状の上記櫛歯形状対向面7a間との電極間距離である。
上記光走査装置0は、上記第1の基板5に、位置合わせされて重ねた上記第2の基板6と上記第3の基板9を接合することにより形成されているので、上記第1の基板5の板厚を更に薄くする事により、櫛歯形状の上記櫛歯形状対向面4aと櫛歯形状の上記櫛歯形状対向面7a間の電極間隙(g)を、更に、小さく加工することが可能となる。
又、上記第1の基板5に、上記第2の基板6と上記第3の基板9を接合するため、櫛歯形状の上記櫛歯形状対向面4aに対向する櫛歯形状の上記櫛歯形状対向面7aの対向面積(S)を、更に、大きくすることが出来るから、(Tq)∝S・(V/g)、の式において 対向面積(S)は更に大きく、上記可動電極4の凹凸形状に形成された上記可動電極凹凸形状対向面4aの櫛歯形状の上記櫛歯形状対向面4aと上記固定電極7’の凹凸形状に形成された上記固定電極凹凸形状対向面7aの櫛歯形状の上記櫛歯形状対向面7a間の電極間隙(g)は更に小さくなり、より更に静電トルク(Tq)は大きくできる。
従って、構造が簡単で、光走査を行なう振れ角が更に大きく、駆動電圧が更に低く、歩留まりも更に高く、更に低コストである上記光走査装置0を提供することが出来るようになった。
【0017】
図10と図11において、電子写真プロセスで光書き込みを行なって画像を形成する画像形成装置100は、図示の矢印(C)方向に回動可能に保持されて形成画像を担持する画像担持体101のドラム形状の感光体と、帯電手段105で均一に帯電された上記画像担持体101のドラム形状の感光体上を上記光走査装置0からなる潜像形成手段102で光書き込みを行なって潜像を形成し、上記潜像形成手段102の上記光走査装置0によって形成された潜像を現像手段103で顕像化してトナー画像を形成し、上記現像手段103で形成されたトナー画像を転写手段104で被転写体(P)の転写用紙に転写して、被転写体(P)の転写用紙に転写されたトナー画像を定着手段106で定着した後に、被転写体(P)の転写用紙を排紙トレイ107に排紙して収納される。
他方、トナー画像を上記転写手段104で被転写体(P)の転写用紙に転写した後の上記画像担持体101のドラム形状の感光体は、クリーニング手段108でクリーニングされて次工程の画像形成に備えるようになっている。
上記光走査装置0からなる潜像形成手段102は、複数個の上記光走査装置0を主走査方向に配置されていて、書き込み幅に対して、複数個の上記光走査装置0により書き込みが行なわれる(図11を参照)。
光源102aは、半導体レーザであり、図示しない画像信号生成装置による画像信号に基づき発光する。
光源102aからの入射光束(R)を、第1のレンズシステム102bを介して上記光走査装置0に照射し、上記光走査装置0は画像情報に応じて、上記反射手段1のミラーを通じて入射光束(R)を第2のレンズシステム102cを通じて上記画像担持体101のドラム形状の感光体上の表面に結像させるようになっている。
従って、構造が簡単で、光走査を行なう振れ角が大きく、駆動電圧が低く、歩留まりも高く、低コストである上記光走査装置0を具備する部品数が少なく小型で製造コストも低く高精度で高速化にも対応出来る電子写真プロセスで光書き込みを行なって画像を形成する上記画像形成装置100を提供することが出来るようになった。
【0018】
図12において、光走査を行なって読み取りを行なう読取装置200のバーコードリーダやスキャナーは、上記光走査装置0が光走査を行って、読み取りを行なう入射光束(R)の反射方向を変えて被読み取り面(O)を照射して、上記光走査装置0の光走査による被読み取り面(O)の光情報を受光素子201で受光して読み取りが行なわれるようになっている。
上記光走査装置0は、光源202からの入射ビーム(R)が上記光走査装置0に照射され、上記光走査装置0の上記反射手段1のミラーにより反射し、投影レンズ203、及び、絞り204を介して被読み取り面(O)に投影する。
従って、構造が簡単で、光走査を行なう振れ角が大きく、駆動電圧が低く、歩留まりも高く、低コストである上記光走査装置0を具備する上記読取装置200を提供することが出来るようになった。
【0019】
【発明の効果】
本発明は、以上説明したように構成されているので、請求項1の発明によれば、入射光を正反射する反射手段を保持する反射手段保持基板をねじり回動軸で回動可能に両端部を支持して、ねじり回動軸を介して支持された反射手段保持基板の側面に形成した可動電極を形成して支持する第1の基板に重ねた第2の基板を接合して形成した固定電極を可動電極と対向すると共に固定電極は重ねて接合された第1の基板と第2の基板の表面に形成された絶縁膜上に形成された導電性薄膜からなるようにしたので、可動電極と固定電極間の絶縁状態が確実に確保され、構造が簡単で、光走査を行なう振れ角が大きく、駆動電圧が低く、歩留まりも高く、低コストである光走査装置を提供することが出来るようになった。
請求項2の発明によれば、入射光を正反射する反射手段を保持する反射手段保持基板を同一直線上に設けた2本の梁からなるねじり回動軸で回動可能に両端部を支持して、ねじり回動軸を介して支持された反射手段保持基板の側面に形成した可動電極を形成して支持する第1の基板に重ねた第2の基板を接合して形成した固定電極を可動電極と対向するようにしたので、構造が簡単で、光走査を行なう振れ角が更に大きく、駆動電圧が更に低く、歩留まりも高く、低コストである光走査装置を提供することが出来るようになった。
請求項の発明によれば、入射光を正反射する反射手段を保持する反射手段保持基板をねじり回動軸で回動可能に両端部を支持して、ねじり回動軸を介して支持された反射手段保持基板の側面に形成した可動電極を形成して支持する第1の基板に重ねた第2の基板を接合して形成した固定電極を可動電極と対向すると共に固定電極は重ねて接合された第1の基板と第2の基板の表面に形成された酸化珪素(SiO2)により形成されている絶縁膜上に形成された導電性薄膜からなるようにしたので、可動電極と固定電極間の絶縁状態が格安で確実に確保され、構造が簡単で、光走査を行なう振れ角が大きく、駆動電圧が低く、歩留まりも高く、更に低コストである光走査装置を提供することが出来るようになった。
【0020】
請求項の発明によれば、入射光を正反射する反射手段を保持する反射手段保持基板をねじり回動軸で回動可能に両端部を支持して、ねじり回動軸を介して支持された反射手段保持基板の側面に形成した可動電極を形成して支持する第1の基板に重ねた第2の基板を接合して形成した固定電極を可動電極と対向すると共に第1の基板のシリコン基板と第2の基板のシリコン基板を直接接合により接合されるようにしたので、第1の基板と第2の基板のウエファー単位で接合されて接合コストを低下して、構造が簡単で、光走査を行なう振れ角が大きく、駆動電圧が低く、歩留まりも高く、更に低コストである光走査装置を提供することが出来るようになった。
請求項の発明によれば、入射光を正反射する反射手段を保持する反射手段保持基板をねじり回動軸で回動可能に両端部を支持して、ねじり回動軸を介して支持された反射手段保持基板の側面に形成した可動電極を形成して支持する第1の基板に重ねた第2の基板を接合して形成した固定電極を可動電極と対向すると共に第1の基板のシリコン基板と第2の基板のガラス板を陽極接合により接合されるようにしたので、第1の基板と第2の基板の接合強度が大きく歩留まりも向上して、構造が簡単で、光走査を行なう振れ角が大きく、駆動電圧が低く、歩留まりも高く、更に低コストである光走査装置を提供することが出来るようになった。
【0021】
請求項6の発明によれば、入射光を正反射する反射手段を保持する反射手段保持基板をねじり回動軸で回動可能に両端部を支持して、ねじり回動軸を介して支持された反射手段保持基板の側面に形成した可動電極を形成して支持する第1の基板に重ねた第2の基板を接合して形成した固定電極を可動電極と対向すると共に可動電極は固定電極に対向する対向面が凹凸形状の可動電極凹凸形状対向面からなるようにしたので、可動電極の対向面積は大きく固定電極間の電極間隙は小さくなり静電トルクは大きくなり、構造が簡単で、光走査を行なう振れ角が更に大きく、駆動電圧が更に低く、歩留まりも高く、低コストである光走査装置を提供することが出来るようになった。
請求項の発明によれば、入射光を正反射する反射手段を保持する反射手段保持基板をねじり回動軸で回動可能に両端部を支持して、ねじり回動軸を介して支持された反射手段保持基板の側面に形成した可動電極を形成して支持する第1の基板に重ねた第2の基板を接合して形成した固定電極を可動電極と対向すると共に可動電極は固定電極に対向する対向面が凹凸形状の可動電極凹凸形状対向面の櫛歯形状対向面からなるようにしたので、可動電極の対向面積は更に大きく固定電極間の電極間隙は更に小さくなり静電トルクは更に大きくなり、構造が簡単で、光走査を行なう振れ角が更に大きく、駆動電圧が更に低く、歩留まりも高く、低コストである光走査装置を提供することが出来るようになった。
【0022】
請求項の発明によれば、入射光を正反射する反射手段を保持する反射手段保持基板をねじり回動軸で回動可能に両端部を支持して、ねじり回動軸を介して支持された反射手段保持基板の側面に形成した可動電極を形成して支持する第1の基板に重ねた第2の基板を接合して形成した固定電極を可動電極と対向すると共に固定電極は可動電極に対向する対向面が凹凸形状の固定電極凹凸形状対向面からなるようにしたので、固定電極の対向面積は大きく可動電極間の電極間隙は小さくなり静電トルクは大きくなり、構造が簡単で、光走査を行なう振れ角が更に大きく、駆動電圧が更に低く、歩留まりも高く、低コストである光走査装置を提供することが出来るようになった。
請求項の発明によれば、入射光を正反射する反射手段を保持する反射手段保持基板をねじり回動軸で回動可能に両端部を支持して、ねじり回動軸を介して支持された反射手段保持基板の側面に形成した可動電極を形成して支持する第1の基板に重ねた第2の基板を接合して形成した固定電極を可動電極と対向すると共に固定電極は可動電極に対向する対向面が凹凸形状の固定電極凹凸形状対向面の櫛歯形状対向面からなるようにしたので、固定電極の対向面積は更に大きく可動電極間の電極間隙は更に小さくなり静電トルクは更に大きくなり、構造が簡単で、光走査を行なう振れ角が更に大きく、駆動電圧が更に低く、歩留まりも高く、低コストである光走査装置を提供することが出来るようになった。
請求項10の発明によれば、入射光を正反射する反射手段を保持する反射手段保持基板をねじり回動軸で回動可能に両端部を支持して、ねじり回動軸を介して支持された反射手段保持基板の側面に形成した可動電極を形成して支持する第1の基板に重ねた第2の基板を接合して形成した固定電極を可動電極と対向する光走査装置の第1の基板のシリコン基板に第2の基板のシリコン基板を真空中で重ね、大気に解放後に加熱する直接接合で製造するようにしたので、ウエファー単位で接合され接合コストを低下して、構造が簡単で、光走査を行なう振れ角が大きく、駆動電圧が低く、歩留まりも更に高く、低コストである光走査装置の製造方法を提供することが出来るようになった。
【0023】
請求項11の発明によれば、入射光を正反射する反射手段を保持する反射手段保持基板をねじり回動軸で回動可能に両端部を支持して、ねじり回動軸を介して支持された反射手段保持基板の側面に形成した可動電極を形成して支持する第1の基板に重ねた第2の基板を接合して形成した固定電極を可動電極と対向する光走査装置の第1の基板のシリコン基板にガラス板からなる第2の基板を真空中で、接合荷重を加え、接合電圧を印加し、接合温度に加熱する陽極接合で製造するようにしたので、接合強度が大きく歩留まりも向上することが出来る、構造が簡単で、光走査を行なう振れ角が大きく、駆動電圧が低く、歩留まりも更に高く、低コストである光走査装置の製造方法を提供することが出来るようになった。
請求項12の発明によれば、回動可能に保持されて形成画像を担持する画像担持体上を光書き込みを行なって潜像を形成する請求項1乃至の何れか一項に記載の光走査装置からなる潜像形成手段の光走査装置によって形成された潜像を顕像化してトナー画像を形成する現像手段で形成されたトナー画像を転写手段で被転写体に転写するようにしたので、構造が簡単で、光走査を行なう振れ角が大きく、駆動電圧が低く、歩留まりも高く、低コストである光走査装置を具備して、例えば、従来のポリゴンスキャナーと比較しても、部品数が少なく小型で製造コストも低く高精度で高速化にも対応出来る電子写真プロセスで光書き込みを行なって画像を形成する画像形成装置を提供することが出来るようになった。
請求項13の発明によれば、被読み取り面を光走査する請求項1乃至の何れか一項に記載の光走査装置が被読み取り面を光走査した反射光を受光素子が受光して読み取りを行なうようにしたので、構造が簡単で、光走査を行なう振れ角が大きく、駆動電圧が低く、歩留まりも高く、低コストである光走査装置を具備して部品数が少なく小型で製造コストも低く高精度で高速化にも対応出来る光走査を行なって読み取りを行なう読取装置を提供することが出来るようになった。
【図面の簡単な説明】
【図1】本発明の実施の形態例を示す光走査装置を説明する説明図である。
【図2】本発明の実施の形態例を示す光走査装置の主要部を説明する展開図である。
【図3】本発明の他の実施の形態例を示す光走査装置の製造方法を説明する説明図である。
【図4】本発明の他の実施の形態例を示す光走査装置を説明する説明図である。
【図5】本発明の他の実施の形態例を示す光走査装置の主要部を説明する展開図である。
【図6】本発明の他の実施の形態例を示す光走査装置を説明する説明図である。
【図7】本発明の他の実施の形態例を示す光走査装置の主要部を説明する展開図である。
【図8】本発明の他の実施の形態例を示す光走査装置を説明する説明図である。
【図9】本発明の他の実施の形態例を示す光走査装置の主要部を説明する展開図である。
【図10】本発明の実施の形態例を示す光走査装置を具備する画像形成装置を説明する説明図である。
【図11】本発明の実施の形態例を示す光走査装置を具備する画像形成装置の主要部を説明する説明図である。
【図12】本発明の実施の形態例を示す光走査装置を具備する読取装置を説明する説明図である。
【図13】従来の光走査装置を説明する説明図である。
【図14】従来の光走査装置を説明する斜視図である。
【符号の説明】
0 光走査装置
1 反射手段
2 反射手段保持基板
3 ねじり回動軸
4 可動電極、4a 可動電極凹凸形状対向面、
4a 櫛歯形状対向面
5 第1の基板、5a シリコン基板
6 第2の基板、6a シリコン基板、
6b ガラス板
7 固定電極、7a 固定電極凹凸形状対向面、
7a 櫛歯形状対向面
7’ 固定電極、
8 絶縁膜
9 第3の基板、9a シリコン基板、
9b ガラス板
10 駆動電圧印加手段
20 陽極接合装置
21 観測窓
22 重り
23 電源
24 ヒータ、24a 温度制御装置
25 バキュームポンプ
100 画像形成装置
101 画像担持体
102 潜像形成手段、102a 光源、
102b 第1のレンズシステム、
102c 第2のレンズシステム
103 現像手段
104 転写手段
105 帯電手段
106 定着手段
107 排紙トレイ
108 クリーニング手段
200 読取装置
201 受光素子
202 光源
203 投影レンズ
204 絞り
300 光走査装置
301 ミラー
302 ミラー基板
303 ねじり回動軸
304 可動電極
305 基板
306 固定電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical scanning device, a method for manufacturing the optical scanning device, an image forming apparatus including the optical scanning device, and a reading device including the optical scanning device. Optical scanning device that performs optical scanning by rotating a torsional rotation shaft to change the reflection direction of incident light, a method for manufacturing the optical scanning device, and an optical writing process that includes the optical scanning device The present invention relates to an image forming apparatus that forms an image in a row, and a reading apparatus that performs scanning by optically scanning a surface to be read that includes the optical scanning apparatus.
[0002]
[Prior art]
A conventional optical scanning device twists and rotates two beams by electrostatic attraction between a mirror substrate formed of a thin film supported by two beams and an electrode provided at a position facing the mirror substrate. The shaft is reciprocatingly oscillated.
As described above, the optical scanning device formed with a thin film by the micromachining technology has a simple structure and can be collectively formed in a semiconductor process as compared with the optical scanning device based on rotation of a polygon mirror using a conventional motor. Therefore, it is easy to downsize and low in manufacturing cost, and since it is a single anti-slope, there are no variations in accuracy due to multiple surfaces, and since it is a reciprocating scan, it can be expected to have an effect such as being able to cope with high speed, It has been proposed to be mounted on an image forming apparatus for forming an image by performing optical writing in an electrophotographic process, a reading apparatus for performing scanning by performing optical scanning, or the like.
As such an electrostatically driven torsional vibration type optical scanning device, a beam is formed into an S shape to reduce rigidity and obtain a large deflection angle with a small driving force (see Japanese Patent No. 2924200). Reference), a beam made thinner than a mirror substrate and a frame substrate (see Japanese Patent Laid-Open No. 7-92409), and a fixed electrode arranged at a position not overlapping with the vibration direction of the mirror part (Japanese Patent No. 3011144) In addition, it is known that the driving voltage is lowered without changing the deflection angle of the mirror by installing the counter electrode so as to be inclined from the center position of the deflection of the mirror.
Furthermore, in order to obtain a large optical scanning angle with a small mirror substrate swing angle, a torsional vibration type light that is provided with a reflecting portion facing the light deflecting portion and reflected by scanning at least twice between the two is used. A scanning device has been proposed by the inventor of the same applicant.
However, they have a complicated structure, a low yield, and a high cost.
[0003]
FIG. 13 is a perspective view of a conventional example, and FIG. 14 is a cross-sectional view thereof. In the conventional optical scanning device 300, a torsional rotation shaft 303 formed of two beam members for supporting a mirror substrate 302 having a mirror 301 is formed. The movable substrate 304, the movable electrode 304 provided on the mirror substrate 302, and the fixed electrode 306 provided to face the movable electrode 304, and the electrostatic attractive force between the movable electrode 304 and the fixed electrode 306 is 2 The mirror substrate 302 is reciprocally oscillated with a torsional rotation shaft 303 formed of a beam member as a rotation axis, and the mirror 301 is rotated to change the reflection direction of incident light to perform optical scanning. Yes.
Therefore, the deflection angle (θ) of the mirror substrate 302 having the mirror 301 in the resonance state is given by the equation θ = (Tq / I) · K.
However, (Tq) is the electrostatic torque acting on the mirror substrate 302 having the mirror 301, (I) is the moment of inertia of the mirror substrate 302 having the mirror 301, and (K) is the torsional rotation shaft 303 composed of two beam members. It is a constant determined by.
That is, in order to increase the deflection angle (θ) of the mirror 301 on the mirror substrate 302, there is a method of increasing the electrostatic torque (Tq) or reducing the moment of inertia (I) of the mirror substrate 302 having the mirror 301. Be taken.
In particular, when it is used as an optical writing device such as a laser printer in an electrophotographic process of an image forming apparatus, it is necessary to have a mirror with a reflecting surface determined by the beam shape formed on the surface of the photoreceptor.
Therefore, the mirror moment of inertia (I) cannot be reduced.
On the other hand, the electrostatic torque (Tq) increases in proportion to the drive voltage. When the deflection angle (θ) is increased, the drive voltage increases and the cost increases.
That is, in the conventional optical scanning device, the image forming apparatus including the optical scanning device, and the reading device including the optical scanning device, the driving voltage increases when the mirror swing angle (θ) is increased. The cost will be high.
Therefore, the conventional optical scanning device that performs the optical scanning by rotating the torsional rotation shaft by the electrostatic force and changing the reflection direction of the incident light has a complicated structure, a small deflection angle for performing the optical scanning, and a driving voltage. There was a problem of high cost, low yield, and high cost.
[0004]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to solve such problems. That is, an optical scanning device having a simple structure, a large deflection angle for performing optical scanning, a low driving voltage, a high yield, and a low cost, a method for manufacturing the optical scanning device, and the optical scanning device are provided. An object of the present invention is to provide an image forming apparatus and a reading apparatus including the optical scanning device.
[0005]
[Means for Solving the Problems]
  In order to achieve the above object, the present invention of claim 1 is directed to specular reflection of incident light in an optical scanning device that performs optical scanning by rotating a torsional rotation shaft by electrostatic force to change the reflection direction of incident light. Reflecting means, a reflecting means holding substrate for holding the reflecting means, a torsion rotating shaft comprising two beam members that rotatably support the reflecting means holding substrate, and the torsion rotating shaft. The movable electrode on the side surface of the reflecting means holding substrate supported by the first substrate, the first substrate that forms and supports the movable electrode via the torsional rotation shaft, the first substrate, and the first substrate A fixed electrode formed on a surface facing the movable electrode on a side surface of the second substrate overlapped and bonded to the surface of the first substrate and the second substrate. It is characterized by comprising a conductive thin film formed on the formed insulating film.
  According to a second aspect of the present invention, there is provided the optical scanning device according to the first aspect, wherein the torsional rotation shaft is provided on the same straight line that rotatably supports the reflecting means holding substrate and supports both ends thereof. It consists of beams.
  According to a third aspect of the present invention, in the optical scanning device according to the first aspect, the insulating film is made of silicon oxide..
  Claim4The present invention of claim 1 to3In the optical scanning device according to any one of the above, the silicon substrate of the first substrate and the silicon substrate of the second substrate are bonded by direct bonding.
  Claim5The present invention of claim 1 to3The optical scanning device according to any one of the above, wherein the silicon substrate of the first substrate and the glass plate of the second substrate are joined by anodic bonding.
  Claim6The present invention of claim 1 to5In the optical scanning device according to any one of the above, the movable electrode has a movable electrode concavo-convex shape opposed surface having a concavo-convex shape on a surface facing the fixed electrode.
[0006]
  Claim7The invention of claim6In the optical scanning device according to the item 1, the movable electrode concavo-convex shape facing surface is formed of a comb-tooth shaped facing surface.
  Claim8The present invention of claim 1 to7In the optical scanning device according to any one of the above, the fixed electrode has a concavo-convex fixed electrode concavo-convex shape opposing surface that faces the movable electrode.
  Claim9The invention of claim8In the optical scanning device described in (1), the fixed electrode concavo-convex facing surface is a comb-shaped facing surface.
  Claim10According to the present invention, the torsional rotation shaft is rotated by an electrostatic force to change the reflection direction of the incident light and perform optical scanning.9In the manufacturing method of the optical scanning device according to any one of
  The silicon substrate of the second substrate is added to the silicon substrate of the first substrate.BoardIt is characterized in that it is manufactured by direct bonding which is heated in vacuum after being released into the atmosphere.
  Claim11According to the present invention, the torsional rotation shaft is rotated by an electrostatic force to change the reflection direction of the incident light and perform optical scanning.9In the manufacturing method of the optical scanning device according to any one of
  A first substrate made of a silicon substrate and a second substrate made of a glass plateBoardIt is characterized by being manufactured by anodic bonding in which a bonding load is applied in vacuum, a bonding voltage is applied, and the bonding temperature is heated.
[0007]
  Claim12The present invention relates to an image forming apparatus for forming an image by performing optical writing in an electrophotographic process, an image carrier that is rotatably held and carries a formed image, and optical writing is performed on the image carrier. And forming a latent image.9A latent image forming unit comprising the optical scanning device according to any one of the above, a developing unit that visualizes the latent image formed by the optical scanning device of the latent image forming unit to form a toner image, and the above And a transfer unit that transfers the toner image formed by the developing unit to a transfer target.
  Claim13According to the present invention, in a reading apparatus that performs reading by performing optical scanning, the surface to be read is optically scanned.9The optical scanning device according to any one of the above, and a light receiving element that receives reflected light obtained by optically scanning the surface to be read by the optical scanning device.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
1 and 2 are a cross-sectional view and an exploded perspective view of an optical scanning device according to an embodiment of the present invention, in which the torsional rotation shaft is rotated by an electrostatic force to change the reflection direction of incident light and perform optical scanning. The optical scanning device 0 supports a mirror of the reflecting means 1 that regularly reflects incident light, a reflecting means holding substrate 2 that holds the mirror of the reflecting means 1, and both ends of the reflecting means holding substrate 2 so as to be rotatable. The torsional rotation shaft 3 composed of two beam members provided on the same straight line, and the movable side surface of the reflection means holding substrate 2 holding the mirror of the reflection means 1 supported by the torsional rotation shaft 3. An electrode 4, a first substrate 5 that forms and supports the movable electrode 4 via the torsional rotation shaft 3, and an annular second substrate 6 that is superimposed on the first substrate 5 are joined together. Consisting of the movable electrode 4 and the fixed electrode 7 facing, the structure is simple and optical scanning is performed. Is angle larger, the driving voltage further lowered, the yield is high, and low cost.
The torsional rotation shaft 3 is formed on both side surfaces of the reflection means holding substrate 2 that holds the mirror of the reflection means 1 by processing the first substrate 5 by etching.
The first substrate 5, which is bonded to the first substrate 5 after being directly bonded or anodic bonded to the second substrate 6 which is aligned and overlapped from the direction of the arrow (A) shown in the figure. And silicon oxide (SiO 2) formed on the surface of the second substrate 6 so as to ensure an inexpensive and reliable insulation between the movable electrode 4 and the fixed electrode 7.2The fixed electrode 7 made of a conductive thin film formed on the insulating film 8 is formed so as to face the movable electrode 4.
The movable electrode 4 and the fixed electrode 7 are connected to a driving voltage applying means 10 as shown in the figure, and the torsional rotating shaft 3 is rotated by an electrostatic force when the driving voltage is applied by the driving voltage applying means 10. Thus, optical scanning is performed by changing the reflection direction of incident light.
In the optical scanning device 0, the deflection angle (θ) of the reflection means holding substrate 2 that holds the mirror of the reflection means 1 in a resonance state is given by the equation (θ) = (Tq / I) · K. It is done.
Where (Tq) is an electrostatic torque acting on the reflecting means holding substrate 2 that holds the mirror of the reflecting means 1, and (I) is an inertia moment of the reflecting means holding substrate 2 that holds the mirror of the reflecting means 1, (K) is a constant determined by the torsional rotation shaft 3.
The electrostatic torque (Tq) is (Tq) ∝S · (V / g)2It is given by the following formula.
However, (S) is the facing area between the movable electrode 4 and the fixed electrode 7, (V) is the voltage applied by the drive voltage applying means 10, and (g) is between the movable electrode 4 and the fixed electrode 7. The distance between the electrodes.
[0009]
Since the optical scanning device 0 is formed by bonding the second substrate 6 that is aligned and overlapped with the first substrate 5, the thickness of the first substrate 5 is reduced. Accordingly, it is possible to process the electrode gap (g) between the movable electrode 4 and the fixed electrode 7 to be small.
In addition, since the second substrate 6 is bonded to the first substrate 5, the facing area (S) of the fixed electrode 7 facing the movable electrode 4 can be increased, so (Tq) ∝S・ (V / g)2, The facing area (S) is large, the electrode gap (g) between the movable electrode 4 and the fixed electrode 7 is also small, and the electrostatic torque (Tq) can be further increased.
Therefore, it is possible to provide the optical scanning device 0 having a simple structure, a large deflection angle for optical scanning, a low driving voltage, a high yield, and a low cost.
The direct bonding method for bonding the second substrate 6 that is aligned and overlapped with the first substrate 5 is the same as that of the silicon substrate 5a of the first substrate 5 and the silicon substrate of the second substrate 6 on the surface. 6a is overlapped in the direction indicated by the arrow (A) in a vacuum (see FIG. 2), or a silicon substrate 9a of a third substrate 9, which will be described later (not shown), is shown on the rear surface in the direction indicated by an arrow (B ) After being superposed from the direction (see FIG. 2), it is manufactured by heating to 1000 ° C. after being released to the atmosphere, so that it is bonded in units of wafers, and the bonding cost can be reduced.
Therefore, it is possible to provide a method for manufacturing the optical scanning device 0 at a lower cost.
[0010]
In FIG. 3, the Pyrex glass plate 6 b of the second substrate 6 that is aligned and overlapped with the surface of the silicon substrate 5 a of the first substrate 5, or is again aligned and overlapped with the back surface. The anodic bonding of the Pyrex glass plate 9b of the third substrate 9 (not shown) is internally observed by the observing window 21 while the inside is kept at a negative pressure by the vacuum pump 25 by the anodic bonding apparatus 20, and the weight 22 The joint weight is 50 (gf / cm2), The junction voltage is controlled to 500 (V) × 25 (minutes) by the power source 23, and the heater 24 is manufactured by controlling the junction temperature to 500 ° C. by the temperature controller 24a. Yield can be improved.
Therefore, the bonding strength is high, the yield is improved, and the low-cost optical scanning device 0 and the manufacturing method of the optical scanning device 0 can be provided.
[0011]
4 and 5 are a cross-sectional view and an exploded perspective view showing the configuration of another embodiment, in which the optical scanning is performed by rotating the torsional rotation shaft by electrostatic force to change the reflection direction of incident light. The apparatus 0 supports the both ends of the mirror of the reflection means 1 that regularly reflects incident light, the reflection means holding substrate 2 that holds the mirror of the reflection means 1, and the reflection means holding substrate 2 that can rotate. The torsional rotation shaft 3 composed of two beam members provided on the same straight line, and the side surface of the reflection means holding substrate 2 that holds the mirror of the reflection means 1 supported by the torsional rotation shaft 3. The movable electrode 4, the first substrate 5 that forms and supports the movable electrode 4 via the torsional rotation shaft 3, the second substrate 6 overlaid on the first substrate 5, and the above The third substrate 9 is joined to the movable electrode 4 and the fixed electrode 7 'facing the movable electrode 4. , The structure is simple, the larger deflection angle for optical scanning, the driving voltage further lowered, the yield is high, and low cost.
The torsional rotation shaft 3 is formed on both side surfaces of the reflection means holding substrate 2 that holds the mirror of the reflection means 1 by processing the first substrate 5 by etching.
The third substrate 6 aligned and overlapped from the direction of the arrow (B) as shown in the drawing and the second substrate 6 aligned and overlapped from the direction of the arrow (A) as shown in the drawing. The substrate 9 is directly bonded or anodic bonded, and the first substrate 5 is overlapped and bonded to the surface of the second substrate 6 and the third substrate 9 at a low cost. Formed silicon oxide (SiO2The fixed electrode 7 ′ made of a conductive thin film formed on the insulating film 8) is formed to face the movable electrode 4.
The movable electrode 4 and the fixed electrode 7 ′ are connected to a drive voltage application means 10 as shown in the figure, and the torsional rotation shaft 3 is rotated by an electrostatic force when a drive voltage is applied by the drive voltage application means 10. Thus, the optical scanning is performed by changing the reflection direction of the incident light.
[0012]
In the optical scanning device 0, the deflection angle (θ) of the reflection means holding substrate 2 that holds the mirror of the reflection means 1 in a resonance state is given by the equation (θ) = (Tq / I) · K. It is done.
Where (Tq) is an electrostatic torque acting on the reflecting means holding substrate 2 that holds the mirror of the reflecting means 1, and (I) is an inertia moment of the reflecting means holding substrate 2 that holds the mirror of the reflecting means 1, (K) is a constant determined by the torsional rotation shaft 3.
The electrostatic torque (Tq) is (Tq) ∝S · (V / g)2It is given by the following formula.
However, (S) is an opposing area between the movable electrode 4 and the fixed electrode 7 ′, (V) is a voltage applied by the drive voltage applying means 10, and (g) is the movable electrode 4 and the fixed electrode 7 ′. The distance between the electrodes.
Since the optical scanning device 0 is formed by bonding the second substrate 6 and the third substrate 9 which are aligned and overlapped with the first substrate 5, the first substrate 5 is formed. By further reducing the plate thickness of 5, the electrode gap (g) between the movable electrode 4 and the fixed electrode 7 ′ can be further reduced.
Further, in order to join the second substrate 6 and the third substrate 9 to the first substrate 5, the facing area (S) of the fixed electrode 7 ′ facing the movable electrode 4 is further increased. Since it can be increased, (Tq) gS · (V / g)2In the above equations, the facing area (S) is larger, the electrode gap (g) between the movable electrode 4 and the fixed electrode 7 'is further reduced, and the electrostatic torque (Tq) can be further increased.
Accordingly, it is possible to provide the optical scanning device 0 having a simple structure, a larger deflection angle for optical scanning, a lower driving voltage, a higher yield, and a lower cost.
[0013]
6 and 7 are a cross-sectional view and an exploded perspective view according to another embodiment of the present invention, in which the light is scanned by changing the reflection direction of incident light by rotating the torsional rotation shaft by electrostatic force. The scanning device 0 includes a mirror of the reflection unit 1 that regularly reflects incident light, the reflection unit holding substrate 2 that holds the mirror of the reflection unit 1, and both ends of the reflection unit holding substrate 2 that are rotatable. The side surface of the reflection means holding substrate 2 holding the torsional rotation shaft 3 composed of two beam members provided on the same straight line to be supported and the mirror of the reflection means 1 supported by the torsional rotation shaft 3. The comb-shaped opposing surface 4a of the comb-like shape of the movable electrode concave-convex shaped opposing surface 4a formed in the concave-convex shape of the movable electrode 41And the comb-shaped facing surface 4a1The first substrate 5 that is formed and supported via the torsional rotation shaft 3 and the second substrate 6 stacked on the first substrate 5 are joined to each other to form the comb-shaped facing surface 4a.1Comb-shaped facing surface 7a of a comb-tooth shape alternately opposed to each other1Therefore, the structure is simple, the deflection angle for optical scanning is larger, the driving voltage is lower, the yield is higher, and the cost is lower.
The torsional rotation shaft 3 is formed on both side surfaces of the reflection means holding substrate 2 that holds the mirror of the reflection means 1 by processing the first substrate 5 by etching.
The first substrate 5, which is bonded to the first substrate 5 after being directly bonded or anodic bonded to the second substrate 6 which is aligned and overlapped from the direction of the arrow (A) shown in the figure. And silicon oxide (SiO 2) formed on the surface of the second substrate 6 so as to ensure an inexpensive insulating state.2) Of the fixed electrode 7 formed on the insulating film 8 and formed in the uneven shape of the fixed electrode 7.1However, the comb-shaped opposing surface 4a formed in the concavo-convex shape of the movable electrode 41And are formed opposite each other.
Comb-shaped opposed surface 4a having a comb-teeth shape1And the comb-shaped opposed surface 7a of the comb-tooth shape1Is connected to the drive voltage applying means 10 as shown in the figure, and by applying the drive voltage by the drive voltage applying means 10, the torsional rotation shaft 3 is rotated by an electrostatic force to change the reflection direction of incident light. Instead, optical scanning is performed.
[0014]
In the optical scanning device 0, the deflection angle (θ) of the reflection means holding substrate 2 that holds the mirror of the reflection means 1 in a resonance state is given by the equation (θ) = (Tq / I) · K. It is done.
Where (Tq) is an electrostatic torque acting on the reflecting means holding substrate 2 that holds the mirror of the reflecting means 1, and (I) is an inertia moment of the reflecting means holding substrate 2 that holds the mirror of the reflecting means 1, (K) is a constant determined by the torsional rotation shaft 3.
The electrostatic torque (Tq) is (Tq) ∝S · (V / g)2It is given by the following formula.
However, (S) is a comb-tooth-shaped opposing surface 4a of the comb-tooth shape of the movable electrode uneven-shaped opposing surface 4a formed in the uneven shape of the movable electrode 4.1And the comb-shaped opposing surface 7a of the comb-shaped shape of the fixed electrode concave-convex facing surface 7a formed in the concave-convex shape of the fixed electrode 7.1(V) is a voltage applied by the drive voltage applying means 10, and (g) is a comb-teeth shape of the movable electrode concavo-convex facing surface 4 a formed in the concavo-convex shape of the movable electrode 4. Comb-shaped facing surface 4a1And the comb-shaped opposing surface 7a of the comb-shaped shape of the fixed electrode concave-convex facing surface 7a formed in the concave-convex shape of the fixed electrode 7.1The distance between the electrodes.
Since the optical scanning device 0 is formed by joining the second substrate 6 that is aligned and overlapped with the first substrate 5, the thickness of the first substrate 5 is reduced. The comb-shaped opposing surface 4a of the comb-shaped shape of the movable electrode concave-convex facing surface 4a formed in the concave-convex shape of the movable electrode 41And the comb-shaped opposing surface 7a of the comb-shaped shape of the fixed electrode concave-convex facing surface 7a formed in the concave-convex shape of the fixed electrode 7.1It is possible to process the gap (g) between the electrodes small.
Further, the comb-shaped opposing surface of the comb-like shape of the movable electrode concave-convex shaped opposing surface 4 a formed in the concave-convex shape of the movable electrode 4 in order to join the second substrate 6 to the first substrate 5. 4a1The comb-shaped opposing surface 7a of the comb-shaped shape of the fixed electrode concave-convex shaped opposing surface 7a formed in the concave-convex shape of the fixed electrode 7 alternately opposed to each other.1(Sq) can be further increased, so that (Tq) ∝S · (V / g)2In the above formula, the facing area (S) is further large, and the comb-shaped facing surface 4a of the comb-shaped shape of the movable electrode concave-convex shaped opposing surface 4a formed in the concave-convex shape of the movable electrode 4 is obtained.1And the comb-shaped opposing surface 7a of the comb-shaped shape of the fixed electrode concave-convex facing surface 7a formed in the concave-convex shape of the fixed electrode 7.1The gap (g) between the electrodes can be further reduced, and the electrostatic torque (Tq) can be further increased.
Therefore, it is possible to provide the optical scanning device 0 having a simple structure, a larger deflection angle for optical scanning, a lower driving voltage, a higher yield, and a lower cost.
[0015]
8 and 9 are a sectional view and an exploded perspective view of an optical scanning device according to another embodiment, in which the torsional rotation shaft is rotated by an electrostatic force to change the reflection direction of incident light and perform optical scanning. The optical scanning device 0 includes a mirror of the reflection means 1 that regularly reflects incident light, the reflection means holding substrate 2 that holds the mirror of the reflection means 1, and both ends of the reflection means holding substrate 2 that are rotatable. The torsional rotation shaft 3 composed of two beam members provided on the same straight line that supports the reflection member 1 and the reflection means holding substrate 2 that holds the mirror of the reflection means 1 supported by the torsional rotation shaft 3. The comb-shaped opposing surface 4a of the comb-shaped shape of the movable electrode concave-convex shaped opposing surface 4a formed in the concave-convex shape of the movable electrode 4 on the side surface.1And the comb-tooth-shaped facing surface 4a of the comb-tooth shape1The first substrate 5 is formed and supported via the torsional rotation shaft 3, the second substrate 6 and the third substrate 9 stacked on the first substrate 5 are joined to form a comb tooth. The comb-shaped opposing surface 4a of the shape1And the fixed electrode 7 'facing each other, the structure is simple, the deflection angle for performing optical scanning is further larger, the driving voltage is further lowered, the yield is high, and the cost is low.
The torsional rotation shaft 3 is formed on both side surfaces of the reflection means holding substrate 2 that holds the mirror of the reflection means 1 by processing the first substrate 5 by etching.
The third substrate 6 aligned and overlapped from the direction of the arrow (B) as shown in the drawing and the second substrate 6 aligned and overlapped from the direction of the arrow (A) as shown in the drawing. The substrate 9 is directly bonded or anodic bonded, and the first substrate 5 is overlapped and bonded to the surface of the second substrate 6 and the third substrate 9 at a low cost. Formed silicon oxide (SiO2) Of the fixed electrode concavo-convex shape facing surface 7a formed in the concavo-convex shape of the fixed electrode 7 'made of a conductive thin film formed on the insulating film 8).1However, the comb-shaped facing surface 4a is comb-shaped.1And are formed opposite each other.
Comb-shaped opposed surface 4a having a comb-teeth shape1And the comb-shaped opposing surface 7a of the comb-shaped shape of the fixed electrode concave-convex facing surface 7a formed in the concave-convex shape of the fixed electrode 7 '.1Is connected to the drive voltage applying means 10 as shown in the figure, and when the drive voltage is applied by the drive voltage applying means 10, the torsional rotation shaft 3 is rotated by an electrostatic force to change the reflection direction of incident light. Thus, optical scanning is performed.
[0016]
In the optical scanning device 0, the deflection angle (θ) of the reflection means holding substrate 2 that holds the mirror of the reflection means 1 in a resonance state is given by the equation (θ) = (Tq / I) · K. It is done.
Where (Tq) is an electrostatic torque acting on the reflecting means holding substrate 2 that holds the mirror of the reflecting means 1, and (I) is an inertia moment of the reflecting means holding substrate 2 that holds the mirror of the reflecting means 1, (K) is a constant determined by the torsional rotation shaft 3.
The electrostatic torque (Tq) is (Tq) ∝S · (V / g)2It is given by the following formula.
However, (S) is the comb-shaped opposed surface 4a of the comb-shaped shape of the movable electrode uneven-shaped opposing surface 4a formed in the uneven shape of the movable electrode 4.1And the comb-shaped opposing surface 7a of the comb-shaped shape of the fixed electrode concave-convex facing surface 7a formed in the concave-convex shape of the fixed electrode 7 '.1(V) is the voltage applied by the drive voltage applying means 10, and (g) is the comb-teeth shape of the movable electrode concavo-convex facing surface 4a formed in the concavo-convex shape of the movable electrode 4. Comb-shaped opposed surface 4a1And the comb-shaped opposing surface 7a of the comb-shaped shape of the fixed electrode concave-convex facing surface 7a formed in the concave-convex shape of the fixed electrode 7 '.1The distance between the electrodes.
Since the optical scanning device 0 is formed by bonding the second substrate 6 and the third substrate 9 which are aligned and overlapped with the first substrate 5, the first substrate 5 is formed. By further reducing the plate thickness of 5, the comb-shaped opposed surface 4a having a comb-shaped shape1And the comb-shaped opposed surface 7a of the comb-tooth shape1It is possible to further process the gap (g) between the electrodes.
Further, in order to join the second substrate 6 and the third substrate 9 to the first substrate 5, the comb-shaped facing surface 4 a having a comb shape is used.1The comb-tooth-shaped facing surface 7a of the comb-tooth shape facing the surface1The facing area (S) can be further increased, so (Tq) ∝S · (V / g)2In the above formula, the facing area (S) is larger, and the comb-shaped opposing surface 4a of the comb-like shape of the movable electrode concave-convex shaped opposing surface 4a formed in the concave-convex shape of the movable electrode 4 is obtained.1And the comb-shaped opposing surface 7a of the comb-shaped shape of the fixed electrode concave-convex facing surface 7a formed in the concave-convex shape of the fixed electrode 7 '.1The electrode gap (g) between them is further reduced, and the electrostatic torque (Tq) can be further increased.
Accordingly, it is possible to provide the optical scanning device 0 having a simple structure, a larger deflection angle for optical scanning, a lower driving voltage, a higher yield, and a lower cost.
[0017]
10 and 11, an image forming apparatus 100 that forms an image by performing optical writing in an electrophotographic process is held so as to be rotatable in the direction of an arrow (C) shown in the figure, and an image carrier 101 that carries a formed image. On the drum-shaped photosensitive member of the image carrier 101 and the drum-shaped photosensitive member uniformly charged by the charging unit 105, the latent image forming unit 102 including the optical scanning device 0 performs optical writing to form a latent image. The latent image formed by the optical scanning device 0 of the latent image forming means 102 is visualized by the developing means 103 to form a toner image, and the toner image formed by the developing means 103 is transferred to the transferring means. After the toner image transferred to the transfer sheet (P) on the transfer sheet 104 and transferred onto the transfer sheet (P) is fixed by the fixing means 106, the transfer sheet (P) is transferred to the transfer sheet (P). Paper output It is housed in discharged to Lee 107.
On the other hand, the drum-shaped photoconductor of the image carrier 101 after the toner image is transferred to the transfer sheet (P) by the transfer unit 104 is cleaned by the cleaning unit 108 to form an image in the next process. It comes to be prepared.
The latent image forming unit 102 including the optical scanning device 0 includes a plurality of the optical scanning devices 0 arranged in the main scanning direction, and writing is performed by the plurality of optical scanning devices 0 with respect to the writing width. (See FIG. 11).
The light source 102a is a semiconductor laser and emits light based on an image signal from an image signal generation device (not shown).
The light beam (R) from the light source 102a is applied to the optical scanning device 0 via the first lens system 102b, and the optical scanning device 0 transmits the incident light beam through the mirror of the reflecting means 1 according to image information. (R) is imaged on the surface of the image bearing member 101 on the drum-shaped photoconductor through the second lens system 102c.
Therefore, the structure is simple, the deflection angle for performing optical scanning is large, the driving voltage is low, the yield is high, and the cost is low. It is possible to provide the image forming apparatus 100 that forms an image by performing optical writing in an electrophotographic process that can cope with high speed.
[0018]
In FIG. 12, the barcode reader or scanner of the reading device 200 that performs reading by performing optical scanning is changed by changing the reflection direction of the incident light beam (R) to be read by the optical scanning device 0 performing optical scanning. The reading surface (O) is irradiated, and the optical information on the surface to be read (O) by the optical scanning of the optical scanning device 0 is received by the light receiving element 201 for reading.
In the optical scanning device 0, the incident beam (R) from the light source 202 is irradiated onto the optical scanning device 0, reflected by the mirror of the reflecting means 1 of the optical scanning device 0, and the projection lens 203 and the diaphragm 204. Is projected onto the surface to be read (O).
Therefore, it is possible to provide the reading device 200 including the optical scanning device 0 having a simple structure, a large deflection angle for performing optical scanning, a low driving voltage, a high yield, and a low cost. It was.
[0019]
【The invention's effect】
  Since the present invention is configured as described above, according to the first aspect of the present invention, the reflecting means holding substrate holding the reflecting means for specularly reflecting incident light is rotated at both ends so that it can be rotated by a twisting rotation shaft. Formed on the side surface of the reflection means holding substrate supported via the torsional rotation shaft, and formed by joining the second substrate superimposed on the first substrate to be supported The fixed electrode faces the movable electrodeThe fixed electrode is made of a conductive thin film formed on an insulating film formed on the surface of the first substrate and the second substrate which are overlapped and bonded together.I did soThe insulation state between the movable electrode and the fixed electrode is reliably ensured,An optical scanning device having a simple structure, a large deflection angle for optical scanning, a low driving voltage, a high yield, and a low cost can be provided.
  According to the second aspect of the present invention, the reflection means holding substrate for holding the reflection means for regularly reflecting incident light is supported at both ends so as to be rotatable by the torsional rotation shaft composed of two beams provided on the same straight line. A fixed electrode formed by joining a second substrate superimposed on a first substrate to be formed and supported on a side surface of a reflecting means holding substrate supported via a torsional rotation shaft. Since the movable electrode faces the movable electrode, it is possible to provide an optical scanning device having a simple structure, a larger deflection angle for performing optical scanning, a lower driving voltage, a higher yield, and a lower cost. became.
  Claim3According to this invention, the reflecting means holding substrate that holds the reflecting means for regular reflection of incident light is supported on both ends so that the reflecting means holding substrate can be rotated by the torsion rotating shaft, and the reflecting means supported by the torsion rotating shaft. A fixed electrode formed by bonding a second substrate overlaid on a first substrate to be formed and supported on the side surface of the holding substrate is opposed to the movable electrode, and the fixed electrode is overlapped and bonded. Silicon oxide (SiO2) formed on the surfaces of the first substrate and the second substrate2), It is made of a conductive thin film formed on the insulating film formed, so that the insulation state between the movable electrode and the fixed electrode is ensured at a low price, the structure is simple, and the light scanning is performed. An optical scanning device having a large angle, a low driving voltage, a high yield, and a low cost can be provided.
[0020]
  Claim4According to this invention, the reflecting means holding substrate that holds the reflecting means for regular reflection of incident light is supported on both ends so that the reflecting means holding substrate can be rotated by the torsion rotating shaft, and the reflecting means supported by the torsion rotating shaft. A fixed electrode formed by bonding a second substrate overlaid on a first substrate that supports the movable electrode formed on the side surface of the holding substrate is opposed to the movable electrode, and the silicon substrate of the first substrate and the first substrate Since the silicon substrates of the two substrates are bonded by direct bonding, bonding is performed in units of wafers of the first substrate and the second substrate, the bonding cost is reduced, the structure is simple, and optical scanning is performed. An optical scanning apparatus having a large deflection angle, a low driving voltage, a high yield, and a low cost can be provided.
  Claim5According to this invention, the reflecting means holding substrate that holds the reflecting means for regular reflection of incident light is supported on both ends so that the reflecting means holding substrate can be rotated by the torsion rotating shaft, and the reflecting means supported by the torsion rotating shaft. A fixed electrode formed by bonding a second substrate overlaid on a first substrate that supports the movable electrode formed on the side surface of the holding substrate is opposed to the movable electrode, and the silicon substrate of the first substrate and the first substrate Since the glass plate of the second substrate is bonded by anodic bonding, the bonding strength between the first substrate and the second substrate is large, the yield is improved, the structure is simple, and the deflection angle for optical scanning is increased. An optical scanning device that is large, has a low driving voltage, has a high yield, and is low in cost can be provided.
[0021]
  Claim 6According to this invention, the reflecting means holding substrate that holds the reflecting means for regular reflection of incident light is supported on both ends so that the reflecting means holding substrate can be rotated by the torsion rotating shaft, and the reflecting means supported by the torsion rotating shaft. A fixed electrode formed by bonding a second substrate overlaid on a first substrate to be formed and supported on the side surface of the holding substrate is opposed to the movable electrode, and the movable electrode is opposed to the fixed electrode. Since the surface is made up of the concave and convex movable electrode concavity and convexity, the opposed area of the movable electrode is large, the electrode gap between the fixed electrodes is small, the electrostatic torque is large, the structure is simple, and optical scanning is performed. An optical scanning device having a larger deflection angle, a lower driving voltage, a higher yield, and a lower cost can be provided.
  Claim7According to this invention, the reflecting means holding substrate that holds the reflecting means for regular reflection of incident light is supported on both ends so that the reflecting means holding substrate can be rotated by the torsion rotating shaft, and the reflecting means supported by the torsion rotating shaft. A fixed electrode formed by bonding a second substrate overlaid on a first substrate to be formed and supported on the side surface of the holding substrate is opposed to the movable electrode, and the movable electrode is opposed to the fixed electrode. Since the surface is made up of the comb-shaped opposed surface of the concave and convex movable electrode concave and convex shape, the opposed area of the movable electrode is larger, the electrode gap between the fixed electrodes is further reduced, and the electrostatic torque is further increased. An optical scanning device having a simple structure, a larger deflection angle for optical scanning, a lower driving voltage, a higher yield, and a lower cost can be provided.
[0022]
  Claim8According to this invention, the reflecting means holding substrate that holds the reflecting means for regular reflection of incident light is supported on both ends so that the reflecting means holding substrate can be rotated by the torsion rotating shaft, and the reflecting means supported by the torsion rotating shaft. A fixed electrode formed by joining a second substrate overlaid on a first substrate to be supported by forming a movable electrode formed on the side surface of the holding substrate is opposed to the movable electrode, and the fixed electrode is opposed to the movable electrode. Since the surface is made up of concave and convex fixed electrode concave and convex surfaces, the opposed area of the fixed electrodes is large, the electrode gap between the movable electrodes is small, the electrostatic torque is large, the structure is simple, and optical scanning is performed. An optical scanning device having a larger deflection angle, a lower driving voltage, a higher yield, and a lower cost can be provided.
  Claim9According to this invention, the reflecting means holding substrate that holds the reflecting means for regular reflection of incident light is supported on both ends so that the reflecting means holding substrate can be rotated by the torsion rotating shaft, and the reflecting means supported by the torsion rotating shaft. A fixed electrode formed by joining a second substrate overlaid on a first substrate to be supported by forming a movable electrode formed on the side surface of the holding substrate is opposed to the movable electrode, and the fixed electrode is opposed to the movable electrode. Since the surface is made up of the concave and convex fixed electrode concave and convex opposing surfaces of the comb-shaped opposing surface, the opposing area of the fixed electrodes is larger, the electrode gap between the movable electrodes is further reduced, and the electrostatic torque is further increased. An optical scanning device having a simple structure, a larger deflection angle for optical scanning, a lower driving voltage, a higher yield, and a lower cost can be provided.
  Claim10According to this invention, the reflecting means holding substrate that holds the reflecting means for regular reflection of incident light is supported on both ends so that the reflecting means holding substrate can be rotated by the torsion rotating shaft, and the reflecting means supported by the torsion rotating shaft. Silicon of the first substrate of the optical scanning device facing the movable electrode, the fixed electrode formed by joining the second substrate superimposed on the first substrate that supports the movable electrode formed on the side surface of the holding substrate Silicon on the second substrate to the substrateBoardSince it is manufactured by direct bonding that is heated in vacuum and heated after being released to the atmosphere, bonding is performed in wafer units, the bonding cost is reduced, the structure is simple, the deflection angle for optical scanning is large, and the drive voltage is high. It is possible to provide a method of manufacturing an optical scanning device that is low, has a higher yield, and is low in cost.
[0023]
  Claim11According to this invention, the reflecting means holding substrate that holds the reflecting means for regular reflection of incident light is supported on both ends so that the reflecting means holding substrate can be rotated by the torsion rotating shaft, and the reflecting means supported by the torsion rotating shaft. Silicon of the first substrate of the optical scanning device facing the movable electrode, the fixed electrode formed by joining the second substrate superimposed on the first substrate that supports the movable electrode formed on the side surface of the holding substrate Second made of glass plate on the substrateBoardSince it is manufactured by anodic bonding in which a bonding load is applied in vacuum, a bonding voltage is applied, and the bonding temperature is heated, the bonding strength is large and the yield can be improved, the structure is simple, and optical scanning is performed. It has become possible to provide a method of manufacturing an optical scanning device that has a large deflection angle, low driving voltage, high yield, and low cost.
  Claim12According to the invention, the latent image is formed by performing optical writing on the image carrier that is rotatably held and carries the formed image.9The toner image formed by the developing unit that visualizes the latent image formed by the optical scanning device of the latent image forming unit including the optical scanning device according to any one of the above and forms a toner image is transferred by the transfer unit. Since it is transferred to the transfer body, it has an optical scanning device that has a simple structure, a large deflection angle for optical scanning, a low driving voltage, a high yield, and a low cost. Compared to scanners, it is possible to provide an image forming apparatus that forms an image by performing optical writing in an electrophotographic process that has a small number of parts, a small size, low manufacturing cost, high accuracy, and high speed. became.
  Claim13According to the invention, the surface to be read is optically scanned.9Since the light receiving device receives the reflected light obtained by optically scanning the surface to be read by the optical scanning device according to any one of the above, the structure is simple, and the deflection angle for performing optical scanning is large. An optical scanning device that has a low driving voltage, high yield, and low cost, has a small number of components, is small in size, has low manufacturing costs, is highly accurate, and can perform high-speed scanning and can perform scanning. It became possible to provide.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram for explaining an optical scanning device according to an embodiment of the present invention.
FIG. 2 is a development view for explaining a main part of an optical scanning device according to an embodiment of the present invention.
FIG. 3 is an explanatory diagram for explaining a method of manufacturing an optical scanning device according to another embodiment of the present invention.
FIG. 4 is an explanatory diagram for explaining an optical scanning device according to another embodiment of the present invention.
FIG. 5 is a development view for explaining a main part of an optical scanning device according to another embodiment of the present invention.
FIG. 6 is an explanatory diagram for explaining an optical scanning device according to another embodiment of the present invention.
FIG. 7 is a development view for explaining a main part of an optical scanning device according to another embodiment of the present invention.
FIG. 8 is an explanatory diagram for explaining an optical scanning device according to another embodiment of the present invention.
FIG. 9 is a development view for explaining a main part of an optical scanning device according to another embodiment of the present invention.
FIG. 10 is an explanatory diagram illustrating an image forming apparatus including an optical scanning device according to an embodiment of the present invention.
FIG. 11 is an explanatory diagram illustrating a main part of an image forming apparatus including an optical scanning device according to an embodiment of the present invention.
FIG. 12 is an explanatory diagram for explaining a reading device including an optical scanning device according to an embodiment of the present invention.
FIG. 13 is an explanatory diagram illustrating a conventional optical scanning device.
FIG. 14 is a perspective view illustrating a conventional optical scanning device.
[Explanation of symbols]
0 Optical scanning device
1 Reflection means
2 Reflecting means holding substrate
3 Torsion rotation axis
4 Movable electrode, 4a Movable electrode uneven surface,
4a1  Comb-shaped facing surface
5 First substrate, 5a Silicon substrate
6 second substrate, 6a silicon substrate,
6b glass plate
7 fixed electrode, 7a fixed electrode uneven surface,
7a1  Comb-shaped facing surface
7 'fixed electrode,
8 Insulating film
9 Third substrate, 9a Silicon substrate,
9b glass plate
10 Driving voltage application means
20 Anodic bonding equipment
21 Observation window
22 weights
23 Power supply
24 heater, 24a temperature control device
25 Vacuum pump
100 Image forming apparatus
101 Image carrier
102 latent image forming means, 102a light source,
102b the first lens system,
102c second lens system
103 Developing means
104 Transfer means
105 Charging means
106 Fixing means
107 Output tray
108 Cleaning means
200 Reader
201 Light receiving element
202 Light source
203 Projection lens
204 aperture
300 Optical scanning device
301 mirror
302 mirror substrate
303 Torsional pivot
304 Movable electrode
305 substrate
306 Fixed electrode

Claims (13)

静電力でねじり回動軸を回動して入射光の反射方向を変えて光走査を行なう光走査装置において、
入射光を正反射する反射手段と、
上記反射手段を保持する反射手段保持基板と、
上記反射手段保持基板を回動可能に両端部を支持する2本の梁部材からなるねじり回動軸と、
上記ねじり回動軸に支持された上記反射手段保持基板の側面の可動電極と、
上記可動電極を上記ねじり回動軸を介して形成して支持する第1の基板と、
上記第1の基板と上記第1の基板に重ねて接合した第2の基板との側面で、上記可動電極と対向する面に形成される固定電極と、を備え、
上記固定電極は、上記第1の基板と第2の基板の表面に形成された絶縁膜上に形成された導電性薄膜からなることを特徴とする光走査装置。
In an optical scanning device that performs optical scanning by rotating the torsional rotation shaft with electrostatic force and changing the reflection direction of incident light,
Reflection means for regularly reflecting incident light;
A reflection means holding substrate for holding the reflection means;
A torsional rotation shaft composed of two beam members that rotatably support the reflection means holding substrate;
A movable electrode on a side surface of the reflection means holding substrate supported by the torsional rotation shaft;
A first substrate for forming and supporting the movable electrode via the torsional rotation shaft;
A fixed electrode formed on a side surface of the first substrate and the second substrate that is overlapped and bonded to the first substrate, the surface facing the movable electrode,
The optical scanning device, wherein the fixed electrode comprises a conductive thin film formed on an insulating film formed on the surfaces of the first substrate and the second substrate.
請求項1に記載の光走査装置において、
上記ねじり回動軸は、上記反射手段保持基板を回動可能に両端部を支持する同一直線上に設けた2本の梁からなることを特徴とする光走査装置。
The optical scanning device according to claim 1,
The torsional rotation shaft is composed of two beams provided on the same straight line that supports both ends of the reflection means holding substrate so as to be rotatable.
請求項1に記載の光走査装置において、
上記絶縁膜は、酸化珪素により形成されていることを特徴とする光走査装置。
The optical scanning device according to claim 1,
The optical scanning device, wherein the insulating film is formed of silicon oxide.
請求項1乃至の何れか一項に記載の光走査装置において、
上記第1の基板のシリコン基板と上記第2の基板のシリコン基板を直接接合により接合したことを特徴とする光走査装置。
In the optical scanning device according to any one of claims 1 to 3 ,
An optical scanning device characterized in that the silicon substrate of the first substrate and the silicon substrate of the second substrate are bonded by direct bonding.
請求項1乃至の何れか一項に記載の光走査装置において、
上記第1の基板のシリコン基板と上記第2の基板のガラス板を陽極接合により接合したことを特徴とする光走査装置。
In the optical scanning device according to any one of claims 1 to 3 ,
An optical scanning device characterized in that the silicon substrate of the first substrate and the glass plate of the second substrate are joined by anodic bonding.
請求項1乃至の何れか一項に記載の光走査装置において、
上記可動電極は、上記固定電極に対向する対向面が凹凸形状の可動電極凹凸形状対向面からなることを特徴とする光走査装置。
In the optical scanning device according to any one of claims 1 to 5 ,
2. The optical scanning device according to claim 1, wherein the movable electrode has a concavo-convex movable electrode concavo-convex shape facing surface facing the fixed electrode.
請求項に記載の光走査装置において、
上記可動電極凹凸形状対向面は、櫛歯形状対向面からなることを特徴とする光走査装置。
The optical scanning device according to claim 6 .
2. The optical scanning device according to claim 1, wherein the movable electrode concavo-convex opposing surface comprises a comb-shaped opposing surface.
請求項1乃至の何れか一項に記載の光走査装置において、
上記固定電極は、上記可動電極に対向する対向面が凹凸形状の固定電極凹凸形状対向面からなることを特徴とする光走査装置。
In the optical scanning device according to any one of claims 1 to 7 ,
The optical scanning device according to claim 1, wherein the fixed electrode has a concavo-convex fixed electrode concavo-convex opposing surface on a surface facing the movable electrode.
請求項に記載の光走査装置において、
上記固定電極凹凸形状対向面は、櫛歯形状対向面からなることを特徴とする光走査装置。
The optical scanning device according to claim 8 .
2. The optical scanning device according to claim 1, wherein the fixed electrode concavo-convex opposing surface comprises a comb-shaped opposing surface.
静電力でねじり回動軸を回動して入射光の反射方向を変えて光走査を行なう請求項1乃至の何れか一項に記載の光走査装置の製造方法において、
第1の基板のシリコン基板に、第2の基板のシリコン基板を真空中で重ね、大気に解放後に加熱する直接接合で製造することを特徴とする光走査装置の製造方法。
The method of manufacturing an optical scanning device according to any one of claims 1 to 9 , wherein the optical scanning is performed by rotating the torsional rotation shaft with an electrostatic force to change the reflection direction of incident light.
A method of manufacturing an optical scanning device, comprising: stacking a silicon substrate of a second substrate on a silicon substrate of a first substrate in a vacuum and heating the substrate after releasing it to the atmosphere;
静電力でねじり回動軸を回動して入射光の反射方向を変えて光走査を行なう請求項1乃至の何れか一項に記載の光走査装置の製造方法において、
シリコン基板からなる第1の基板とガラス板からなる第2の基板を真空中で、接合荷重を加え、接合電圧を印加し、接合温度に加熱する陽極接合で製造することを特徴とする光走査装置の製造方法。
The method of manufacturing an optical scanning device according to any one of claims 1 to 9 , wherein the optical scanning is performed by rotating the torsional rotation shaft with an electrostatic force to change the reflection direction of incident light.
A first substrate and a second substrate made of a glass plate made of a silicon substrate in a vacuum, a bonding load is applied, the junction voltage is applied, light scanning, characterized in that to produce the anode bonding is heated to the bonding temperature Device manufacturing method.
電子写真プロセスで光書き込みを行なって画像を形成する画像形成装置において、
回動可能に保持されて形成画像を担持する画像担持体と、上記画像担持体上を光書き込みを行なって潜像を形成する請求項1乃至の何れか一項に記載の光走査装置からなる潜像形成手段と、上記潜像形成手段の上記光走査装置によって形成された潜像を顕像化してトナー画像を形成する現像手段と、上記現像手段で形成されたトナー画像を被転写体に転写する転写手段とからなることを特徴とする画像形成装置。
In an image forming apparatus that forms an image by performing optical writing in an electrophotographic process,
An image carrier that is rotatably held and carries a formed image, and an optical scanning device according to any one of claims 1 to 9 that forms a latent image by performing optical writing on the image carrier. A latent image forming unit, a developing unit that visualizes the latent image formed by the optical scanning device of the latent image forming unit to form a toner image, and a toner image formed by the developing unit. An image forming apparatus comprising: a transfer unit that transfers the image to the image forming apparatus.
光走査を行なって読み取りを行なう読取装置において、被読み取り面を光走査する請求項1乃至の何れか一項に記載の光走査装置と、上記光走査装置が被読み取り面を光走査した反射光を受光する受光素子とからなることを特徴とする読取装置。An optical scanning device according to any one of claims 1 to 9, wherein a scanning surface is optically scanned in a reading device that performs scanning by optical scanning, and reflection in which the optical scanning device optically scans the surface to be read. A reading device comprising a light receiving element for receiving light.
JP2001311975A 2001-10-09 2001-10-09 Optical scanning device, method of manufacturing optical scanning device, image forming apparatus including optical scanning device, and reader including optical scanning device Expired - Fee Related JP4093450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001311975A JP4093450B2 (en) 2001-10-09 2001-10-09 Optical scanning device, method of manufacturing optical scanning device, image forming apparatus including optical scanning device, and reader including optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001311975A JP4093450B2 (en) 2001-10-09 2001-10-09 Optical scanning device, method of manufacturing optical scanning device, image forming apparatus including optical scanning device, and reader including optical scanning device

Publications (2)

Publication Number Publication Date
JP2003121776A JP2003121776A (en) 2003-04-23
JP4093450B2 true JP4093450B2 (en) 2008-06-04

Family

ID=19130702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001311975A Expired - Fee Related JP4093450B2 (en) 2001-10-09 2001-10-09 Optical scanning device, method of manufacturing optical scanning device, image forming apparatus including optical scanning device, and reader including optical scanning device

Country Status (1)

Country Link
JP (1) JP4093450B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8553306B2 (en) 2007-03-15 2013-10-08 Ricoh Company, Ltd. Optical deflector and optical device

Also Published As

Publication number Publication date
JP2003121776A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
JP3203276B2 (en) Light beam steering method and apparatus
JP3203277B2 (en) Resonant mirror and its manufacturing method
US8395834B2 (en) Deflecting mirror for deflecting and scanning light beam
EP3009395B1 (en) Light deflector, two-dimensional image display apparatus, optical scanner, and image forming apparatus
US8553305B2 (en) Light deflecting element, light deflector, and image forming device
JP2007322466A (en) Optical deflector and optical equipment using the same
JP2005128147A (en) Optical deflector and optical apparatus using the same
JP2003172897A (en) Optical scanner and its manufacturing method, optical writing device, image forming apparatus, vibratory mirror chip and its manufacturing method, and optical scanning module
JP6614276B2 (en) Piezoelectric light deflector, optical scanning device, image forming device, and image projection device
WO2009005157A1 (en) Oscillator device and method of manufacturing the same
JP2011017916A (en) Light deflector, optical scanner, image forming apparatus, and image projector
JP4172627B2 (en) Vibration mirror, optical writing device, and image forming apparatus
JP2011095290A (en) Optical deflection element, optical deflector and image forming apparatus
JP2008070863A (en) Vibrating mirror, light writing device, and image forming apparatus
JP4983266B2 (en) Optical device, optical scanner, and image forming apparatus
JP2010204142A (en) Optical deflector, optical scanner and image forming apparatus
JP4093450B2 (en) Optical scanning device, method of manufacturing optical scanning device, image forming apparatus including optical scanning device, and reader including optical scanning device
JP2004243721A (en) Image forming apparatus
JP2009031642A (en) Rocking body device, light deflector and image forming apparatus using it
JP2003241134A (en) Optical scanner, its manufacturing method, image forming device having the scanner, and reader
JP5716992B2 (en) Optical deflection apparatus, optical scanning apparatus, image forming apparatus, and image projection apparatus
JP2009031643A (en) Rocking body device, light deflector and image forming apparatus using it
JP2008145542A (en) Optical device, optical scanner and image forming apparatus
JP2011191422A (en) Optical deflector, optical scanner, image forming device, and image projector
JP2008145545A (en) Optical device, optical scanner and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071023

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080229

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees