JP4091953B2 - Cross-sectional repair structure of existing reinforced concrete structures - Google Patents

Cross-sectional repair structure of existing reinforced concrete structures Download PDF

Info

Publication number
JP4091953B2
JP4091953B2 JP2005333964A JP2005333964A JP4091953B2 JP 4091953 B2 JP4091953 B2 JP 4091953B2 JP 2005333964 A JP2005333964 A JP 2005333964A JP 2005333964 A JP2005333964 A JP 2005333964A JP 4091953 B2 JP4091953 B2 JP 4091953B2
Authority
JP
Japan
Prior art keywords
cross
repair
reinforced concrete
existing reinforced
sacrificial anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005333964A
Other languages
Japanese (ja)
Other versions
JP2007138556A (en
Inventor
實伸 青山
Original Assignee
株式会社クエストエンジニア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クエストエンジニア filed Critical 株式会社クエストエンジニア
Priority to JP2005333964A priority Critical patent/JP4091953B2/en
Publication of JP2007138556A publication Critical patent/JP2007138556A/en
Application granted granted Critical
Publication of JP4091953B2 publication Critical patent/JP4091953B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

本発明は、既設鉄筋コンクリート構造物の欠陥部を断面修復するために用いられる断面修復構造に関するものである。   The present invention relates to a cross-sectional repair structure used for cross-sectional repair of a defective portion of an existing reinforced concrete structure.

近年、既設の鉄筋コンクリート構造物において、空気中の塩分や凍結防止剤などの塩分がコンクリート表面から内部へ浸透して鉄筋を腐食させてしまう塩害が問題となっている。そこで、塩害による鉄筋腐食が発生した既設鉄筋コンクリート構造物に対しては、その鉄筋の更なる腐食を防止するため、塩分(塩化物イオン)濃度が高くなっているコンクリート部分(欠陥部)を除去して、補修材料を用いて修復する断面修復工が一般に施されている。   In recent years, in existing reinforced concrete structures, salt damage such as salt in the air and antifreezing agents penetrates from the concrete surface into the interior and corrodes the reinforcing bars. Therefore, in order to prevent further corrosion of the reinforcing bars for the existing reinforced concrete structures where corrosion of the reinforcing bars due to salt damage occurs, the concrete part (defects) where the salt (chloride ion) concentration is high is removed. In general, a cross-sectional repair work for repairing using a repair material is performed.

この既設の鉄筋コンクリート構造物の断面修復工法については、種々の工法が提案されており、例えば、鉄筋腐食により劣化した欠陥部からコンクリートをはつり取って除去することで、構造物内部に完全に埋設されている鉄筋を露出させてから、その鉄筋の表面に亜硝酸系防錆剤などを塗布した後、コンクリートがはつり取られた欠損凹部に断面修復用の補修材料を充填して修復するものがある。   Various methods have been proposed for repairing the cross-section of this existing reinforced concrete structure.For example, concrete can be completely buried inside the structure by removing and removing the concrete from the defective parts that have deteriorated due to corrosion of the reinforcing bars. After the exposed reinforcing bars are exposed, after applying a nitrite-based anticorrosive agent to the surface of the reinforcing bars, the repaired material for repairing the cross section is filled in the defect recesses where the concrete has been removed. .

ところが、上記断面修復工法によって修復された既設鉄筋コンクリート構造物では、その内部に埋設されている鉄筋が、既設のコンクリート材料と新設の補修材料とに跨った状態で存在することとなり、既設のコンクリート材料及び新設の補修材料の双方に接している鉄筋の表面において電位差が生じ、一方の材料に接する部分がアノード、他方の材料に接する部分がカソードとなって、鉄筋のマクロセル腐食が発生してしまう。   However, in the existing reinforced concrete structure repaired by the above-mentioned cross-section repair method, the rebar embedded in the existing straddle between the existing concrete material and the new repair material, and the existing concrete material In addition, a potential difference is generated on the surface of the reinforcing bar in contact with both the repair material and the new repair material, and the part in contact with one material becomes the anode and the part in contact with the other material becomes the cathode, and the macro cell corrosion of the reinforcing bar occurs.

このような鉄筋のマクロセル腐食を抑制するには、鉄筋の素材である鉄より卑な金属(イオン化傾向の大きな金属)を犠牲陽極として鉄筋に接合し、この犠牲陽極を鉄筋の代わりに腐食させる防食工法が知られており、例えば、下記する特許文献1記載の防蝕法や、特許文献2記載の防食法がなどがある。   In order to suppress such macro-cell corrosion of reinforcing bars, a metal that is more basic than iron, which is the material of reinforcing bars, is used as a sacrificial anode and bonded to the reinforcing bar, and this sacrificial anode is corroded instead of the reinforcing bar. A construction method is known, and examples thereof include a corrosion prevention method described in Patent Document 1 and an anticorrosion method described in Patent Document 2.

また、これらの特許文献1及び2記載の方法によれば、犠牲陽極の不動態化を抑制して長期間使用するため、犠牲陽極を充分なpHを含んだ電解質を含んだモルタルなどで予め包囲したもの、或いは、犠牲陽極を多孔質かつ高いアルカリ性を示すセメント系モルタルで予め被覆したものが用いられている。
特表8−511581号公報 特開2003−129671
In addition, according to the methods described in Patent Documents 1 and 2, since the sacrificial anode is used for a long period of time by suppressing passivation, the sacrificial anode is previously surrounded by a mortar containing an electrolyte containing a sufficient pH. Or a sacrificial anode previously coated with a porous cementitious mortar exhibiting high alkalinity is used.
JP-T 8-51581 JP2003-129671

しかしながら、上記した特許文献1記載の防食法では、高いアルカリ性を示すモルタルで犠牲陽極を包囲して不動態化を抑制したとしても、犠牲陽極が短期間でマクロセル腐食により消耗しきってしまえば、それ以降は犠牲陽極による防食効果を期待することは不可能であるという問題点がある。   However, in the above-described anticorrosion method described in Patent Document 1, even if the sacrificial anode is surrounded by a highly alkaline mortar to suppress passivation, if the sacrificial anode is completely consumed by macrocell corrosion in a short period of time, Thereafter, there is a problem that it is impossible to expect the anticorrosion effect by the sacrificial anode.

また、上記した特許文献2記載の防蝕法にあっては、特許文献1記載の方法と同様に犠牲陽極が短期間にマクロセル腐食により消耗されることが想定されるため、犠牲陽極を取り替え可能としているが、このような犠牲陽極の取り替えに伴う事後的メンテナンスが極めて煩雑であるという問題点がある。   Further, in the above-described corrosion prevention method described in Patent Document 2, it is assumed that the sacrificial anode is consumed by macrocell corrosion in a short period of time as in the method described in Patent Document 1, so that the sacrificial anode can be replaced. However, there is a problem that the subsequent maintenance associated with the replacement of the sacrificial anode is extremely complicated.

そこで、本発明は、上述した問題点を解決するためになされたものであり、既設鉄筋コンクリート構造物の断面修復後、長期間にわたって煩雑なメンテナンス作業を伴わずに鉄筋の腐食を防止できる既設鉄筋コンクリート構造物の断面修復構造を提供することを目的としている。   Therefore, the present invention has been made to solve the above-described problems, and an existing reinforced concrete structure capable of preventing corrosion of a reinforcing bar without complicated maintenance work over a long period of time after a cross-sectional repair of the existing reinforced concrete structure. The object is to provide a cross-sectional repair structure of an object.

この目的を達成するために請求項1記載の既設鉄筋コンクリート構造物の断面修復構造は、既設鉄筋コンクリート構造物の欠陥部における表層コンクリートを鉄筋の少なくとも一部が露出するまで除去して形成されるコンクリート除去部と、そのコンクリート除去部から露出する鉄筋に対して導通可能に取着される犠牲陽極部材と、その犠牲陽極部材を被包するように前記コンクリート除去部に充填されて硬化した補修材料で形成され、その補修材料に既設鉄筋コンクリート構造物の内部へ浸透拡散する性質のある防錆剤が混合されている断面修復部材とを備えており、その断面修復部材と既設鉄筋コンクリート構造物との間における防錆剤の濃度差によって、その防錆剤が前記断面修復部材から既設鉄筋コンクリート構造物の内部へ時間経過とともに浸透拡散されることで、前記犠牲陽極部材の防食効果が衰える時期までに、前記断面修復部材のみならず既設鉄筋コンクリート構造物に内部に防錆剤による防錆雰囲気を形成するものであるIn order to achieve this object, the cross-section repair structure of the existing reinforced concrete structure according to claim 1 is a concrete removal formed by removing the surface concrete in the defective part of the existing reinforced concrete structure until at least a part of the reinforcing bar is exposed. A sacrificial anode member that is attached so as to be conductive with respect to a reinforcing bar exposed from the concrete removing portion, and a repair material that is filled and cured in the concrete removing portion so as to enclose the sacrificial anode member The repair material is provided with a cross-section repairing member mixed with a rust preventive agent having a property of penetrating and diffusing into the existing reinforced concrete structure, and a protective member between the cross-section repairing member and the existing reinforced concrete structure is provided. Due to the concentration difference of the rust agent, the rust preventive agent passes from the cross-section repair member to the inside of the existing reinforced concrete structure over time. Together by being penetrated diffused, by the time the anticorrosion effect of the sacrificial anode member declines and forms a rust atmosphere by rust agent within the cross-section restoration part not only existing reinforced concrete structures.

請求項2記載の既設鉄筋コンクリート構造物の断面修復構造は、既設鉄筋コンクリート構造物の欠陥部における表層コンクリートを鉄筋の少なくとも一部が露出するまで除去して形成されるコンクリート除去部と、そのコンクリート除去部から露出される鉄筋に一端部が接続されて、そのコンクリート除去部の外部に他端部が導出される導線と、前記コンクリート除去部に充填されて硬化した補修材料で形成され、その補修材料に既設鉄筋コンクリート構造物の内部へ浸透拡散する性質のある防錆剤が混合されている断面修復部材と、その断面修復部材の外表面に添設され、前記導線の他端部が接続される犠牲陽極部材とを備えている。   The cross-section repair structure of an existing reinforced concrete structure according to claim 2 is a concrete removal portion formed by removing surface concrete in a defective portion of an existing reinforced concrete structure until at least a part of the reinforcing bar is exposed, and the concrete removal portion thereof One end is connected to the rebar exposed from the lead, and the other end is led to the outside of the concrete removal part, and the repair material filled and cured in the concrete removal part is formed into the repair material. A cross-sectional repair member mixed with a rust preventive agent that penetrates and diffuses into the existing reinforced concrete structure, and a sacrificial anode attached to the outer surface of the cross-section repair member and connected to the other end of the conductor And a member.

この請求項1又は2に記載の既設鉄筋コンクリート構造物の断面修復構造によれば、断面修復部材は、コンクリート除去部に充填される未硬化状態の補修材料が硬化することで形成され、この断面修復部材によってコンクリート除去部だった箇所が復元される。また、断面修復部材(補修材料)に混合されている防錆剤は、断面修復部材と既設鉄筋コンクリート構造物との間における当該防錆剤の濃度差によって、断面修復部材から既設鉄筋コンクリート構造物の内部へ時間経過とともに徐々に浸透拡散される。   According to the cross-sectional repair structure of the existing reinforced concrete structure according to claim 1 or 2, the cross-section repair member is formed by curing the uncured repair material filled in the concrete removal portion, and this cross-section repair The part that was the concrete removal part is restored by the member. In addition, the rust preventive agent mixed in the cross-section repair member (repairing material) is changed from the cross-section repair member to the inside of the existing reinforced concrete structure due to the concentration difference of the rust preventive agent between the cross-section repair member and the existing reinforced concrete structure. It gradually penetrates and diffuses over time.

ここで、この防錆剤が既設鉄筋コンクリート構造物へと浸透拡散する過渡期には、防錆剤による鉄筋の防錆効果が充分に発揮され難い。しかしながら、断面修復部材の内部には、犠牲陽極部材から鉄筋へ直接又は導線を介して防食電流が流れるマクロセル電池回路(防食回路)が形成されているので、犠牲陽極部材を鉄筋に代わって腐食させることができ、防錆剤が浸透拡散する過渡期でも鉄筋の腐食が防止される。   Here, in the transition period in which the rust preventive agent penetrates and diffuses into the existing reinforced concrete structure, it is difficult to sufficiently exert the rust preventive effect of the rebar by the rust preventive agent. However, since the macro cell battery circuit (anticorrosion circuit) in which the anticorrosion current flows directly from the sacrificial anode member to the reinforcing bar or through the conductive wire is formed inside the cross-sectional repair member, the sacrificial anode member is corroded instead of the reinforcing bar. The corrosion of the reinforcing bars can be prevented even during the transition period when the rust inhibitor penetrates and diffuses.

一方、上記した犠牲陽極部材の腐食(異種金属マクロセル腐食)が進行してマクロセル電池回路の防食効果が衰える時期になれば、防錆剤が既設鉄筋コンクリート構造物の内部にまで充分に拡散浸透されるので、断面修復部材のみならず既設鉄筋コンクリート構造物の内部も防錆剤による防錆雰囲気が形成される。よって、これ以降は犠牲陽極部材の防錆作用によらずとも、防錆剤の作用によって鉄筋の腐食が防止される。この結果、断面修復後から長期間にわたって煩雑なメンテナンス作業を伴わずに鉄筋の腐食を防止できることとなる。   On the other hand, when the corrosion of the sacrificial anode member (dissimilar metal macrocell corrosion) progresses and the anticorrosive effect of the macrocell battery circuit declines, the rust inhibitor is sufficiently diffused and penetrated into the existing reinforced concrete structure. Therefore, the rust prevention atmosphere by the rust preventive agent is formed not only in the cross-section repair member but also in the existing reinforced concrete structure. Therefore, thereafter, the corrosion of the reinforcing bars is prevented by the action of the rust preventive agent, regardless of the rust preventive action of the sacrificial anode member. As a result, corrosion of the reinforcing bars can be prevented without complicated maintenance work for a long period after the cross-sectional repair.

請求項3記載の既設鉄筋コンクリート構造物の断面修復構造は、請求項1記載の既設鉄筋コンクリート構造物の断面修復構造において、前記犠牲陽極部材は、導電性を有する接着剤又は溶接ビードを介して、鉄筋外周に導通可能に取着されるものである。   The cross-sectional repair structure for an existing reinforced concrete structure according to claim 3 is the cross-section repair structure for an existing reinforced concrete structure according to claim 1, wherein the sacrificial anode member is a reinforcing bar through a conductive adhesive or weld bead. It is attached to the outer periphery so as to be conductive.

この請求項3記載の既設鉄筋コンクリート構造物の断面修復構造によれば、請求項1記載の既設鉄筋コンクリート構造物の断面修復構造と同様に作用する上、導電性を有する接着剤又は溶接ビードを介して鉄筋外周に犠牲陽極部材を取着して、その犠牲陽極部材と鉄筋とを電気的に導通させるので、犠牲陽極部材及び鉄筋間を導線で別途結線することが不要となり、施工作業が簡素化される。また、補修材料をコンクリート除去部へ充填し断面修復部材を形成する場合に、補修材料の充填に伴う衝撃で犠牲陽極部材と鉄筋とを繋ぐ導線が切断されるような事態も当然回避される。   According to the cross-sectional repair structure of the existing reinforced concrete structure according to claim 3, the cross-section repair structure of the existing reinforced concrete structure according to claim 1 is operated in the same manner, and through an electrically conductive adhesive or weld bead. Since the sacrificial anode member is attached to the outer periphery of the reinforcing bar and the sacrificial anode member and the reinforcing bar are electrically connected to each other, it is not necessary to separately connect the sacrificial anode member and the reinforcing bar with a conductive wire, and the construction work is simplified. The Further, when the repair material is filled into the concrete removal portion to form the cross-sectional repair member, a situation where the conductor connecting the sacrificial anode member and the reinforcing bar is cut by an impact accompanying the repair material filling is naturally avoided.

請求項4記載の既設鉄筋コンクリート構造物の断面修復構造は、請求項2記載の既設鉄筋コンクリート構造物の断面修復構造において、前記犠牲陽極部材は、網状体に形成されており、前記断面修復部材の外表面に展着され且つ埋入されており、その埋入状態において前記網状体の片側面が前記断面修復部材の外表面から露出されているものである。   The cross-sectional repair structure of the existing reinforced concrete structure according to claim 4 is the cross-section repair structure of the existing reinforced concrete structure according to claim 2, wherein the sacrificial anode member is formed in a net-like body, It is spread and embedded on the surface, and in the embedded state, one side surface of the mesh body is exposed from the outer surface of the cross-sectional repair member.

請求項5記載の既設鉄筋コンクリート構造物の断面修復構造は、請求項2記載の既設鉄筋コンクリート構造物の断面修復構造において、前記犠牲陽極部材は、棒状体に形成されており、その棒状体の軸方向が前記断面修復部材の外表面に沿うようにその断面修復部材の外表面に埋入されており、その埋入状態において前記棒状体の外周面の一部が前記断面修復部材の外表面から露出されているものである。   The cross-sectional repair structure for an existing reinforced concrete structure according to claim 5 is the cross-section repair structure for an existing reinforced concrete structure according to claim 2, wherein the sacrificial anode member is formed in a rod-shaped body, and the axial direction of the rod-shaped body Is embedded in the outer surface of the cross-sectional repair member so as to be along the outer surface of the cross-section repair member, and a part of the outer peripheral surface of the rod-shaped body is exposed from the outer surface of the cross-section repair member in the embedded state. It is what has been.

この請求項4又は5に記載の既設鉄筋コンクリート構造物の断面修復構造によれば、請求項2記載の既設鉄筋コンクリート構造物の断面修復構造と同様に作用する上、コンクリート除去部に充填された未硬化状態の補修材料の外表面に犠牲陽極部材を埋入させて添設させれば、補修材料の硬化後は、その補修材料の硬化物からなる断面修復部材によって犠牲陽極部材を直接に固定保持することができる。よって、断面修復部材の外表面に犠牲陽極部材を収容させるための収容凹部を設ける必要もなく、又、断面修復部材の外表面に犠牲陽極部材を別途接着する必要もない。しかも、犠牲陽極部材の形態を棒状体又は網状体とすることで未硬化状態の補修材料の外表面に埋入させ易くもなる。   According to the cross-sectional repair structure of the existing reinforced concrete structure according to claim 4 or 5, it acts in the same manner as the cross-section repair structure of the existing reinforced concrete structure according to claim 2, and the uncured filled in the concrete removal portion If the sacrificial anode member is embedded and attached to the outer surface of the repair material in a state, the sacrificial anode member is directly fixed and held by the cross-sectional repair member made of a cured product of the repair material after the repair material is cured. be able to. Therefore, it is not necessary to provide an accommodation recess for accommodating the sacrificial anode member on the outer surface of the cross-sectional repair member, and it is not necessary to separately bond the sacrificial anode member to the outer surface of the cross-section repair member. In addition, by making the sacrificial anode member into a rod-like body or a net-like body, the sacrificial anode member can be easily embedded in the outer surface of the uncured repair material.

請求項6記載の既設鉄筋コンクリート構造物の断面修復構造は、請求項1から5のいずれかに記載の既設鉄筋コンクリート構造物の断面修復構造において、前記犠牲陽極部材は、鉄筋よりイオン化傾向の大きな金属単体であって、亜鉛又は亜鉛合金で形成されている。 The cross-sectional repair structure for an existing reinforced concrete structure according to claim 6 is the cross-section repair structure for an existing reinforced concrete structure according to any one of claims 1 to 5, wherein the sacrificial anode member is a single metal having a higher ionization tendency than the rebar. And made of zinc or a zinc alloy .

この請求項6記載の既設鉄筋コンクリート構造物の断面修復構造によれば、請求項1から5のいずれかに記載の既設鉄筋コンクリート構造物の断面修復構造と同様に作用する上、犠牲陽極部材は亜鉛又は亜鉛合金で形成されている金属単体である。このため、他の金属を犠牲陽極部材として用いる場合に比べて、犠牲陽極部材自体の腐食膨張が抑制され、この犠牲陽極部材の腐食膨張に伴う断面修復部材や既設鉄筋コンクリート構造物のひび割れの発生が抑制される。 According to the cross-sectional repair structure of the existing reinforced concrete structure according to claim 6, the sacrificial anode member acts in the same manner as the cross-section repair structure of the existing reinforced concrete structure according to any one of claims 1 to 5, and the sacrificial anode member is zinc or It is a single metal formed of zinc alloy . For this reason, compared with the case where other metals are used as the sacrificial anode member, the corrosion expansion of the sacrificial anode member itself is suppressed, and the occurrence of cracks in the cross-section repair member and the existing reinforced concrete structure due to the corrosion expansion of the sacrificial anode member. It is suppressed.

請求項7記載の既設鉄筋コンクリート構造物の断面修復構造は、請求項1から6のいずれかに記載の既設鉄筋コンクリート構造物の断面修復構造において、前記防錆剤は、鉄筋の表面に不動態被膜を形成するイオン成分を有しており、更に、前記補修材料に混合された状態でアルカリ性を示すものである。   The cross-sectional repair structure for an existing reinforced concrete structure according to claim 7 is the cross-section repair structure for an existing reinforced concrete structure according to any one of claims 1 to 6, wherein the rust inhibitor has a passive film on the surface of the rebar. It has an ionic component to be formed, and further exhibits alkalinity when mixed with the repair material.

この請求項7記載の既設鉄筋コンクリート構造物の断面修復構造によれば、請求項1から6のいずれかに記載の既設鉄筋コンクリート構造物の断面修復構造と同様に作用する上、防錆剤に含まれるイオン成分の作用によって鉄筋表面に不動態被膜を形成して鉄筋の腐食を防止できる。しかも、防錆剤が混合された補修材料で形成される断面修復部材をアルカリ性にできるので、犠牲陽極部材の表面に不動態被膜が形成されることを阻み、犠牲陽極部材からの金属イオンの溶出が促進されて、マクロセル電池回路による防食電流の低下又は消滅が抑制される。   According to the cross-sectional repair structure of the existing reinforced concrete structure according to claim 7, the cross-section repair structure of the existing reinforced concrete structure according to any one of claims 1 to 6 acts in the same manner and is included in the rust preventive agent. By the action of the ionic component, a passive film can be formed on the surface of the reinforcing bar to prevent corrosion of the reinforcing bar. Moreover, since the cross-sectional repair member formed of the repair material mixed with the rust preventive agent can be made alkaline, it prevents the formation of a passive film on the surface of the sacrificial anode member, and elution of metal ions from the sacrificial anode member Is promoted, and the decrease or disappearance of the anticorrosion current by the macrocell battery circuit is suppressed.

請求項8記載の既設鉄筋コンクリート構造物の断面修復構造は、請求項1から7のいずれかに記載の既設鉄筋コンクリート構造物の断面修復構造において、前記補修材料は、硬化状態でアルカリ性を示すものである。   The cross-sectional repair structure for an existing reinforced concrete structure according to claim 8 is the cross-section repair structure for an existing reinforced concrete structure according to any one of claims 1 to 7, wherein the repair material exhibits alkalinity in a cured state. .

この請求項8記載の既設鉄筋コンクリート構造物の断面修復構造によれば、請求項1から7のいずれかに記載の既設鉄筋コンクリート構造物の断面修復構造と同様に作用する上、補修材料自体が硬化状態でアルカリ性を示すことから、そのような補修材料の硬化物で形成される断面修復部材もアルカリ性となるのである。   According to the cross-sectional repair structure of the existing reinforced concrete structure according to claim 8, the repair material itself works in the same manner as the cross-section repair structure of the existing reinforced concrete structure according to claim 1, and the repair material itself is in a cured state. Since it exhibits alkalinity, the cross-sectional repair member formed of a cured product of such a repair material is also alkaline.

本発明の既設鉄筋コンクリート構造物の断面修復構造によれば、防錆剤による防錆雰囲気が形成される過渡期には、犠牲陽極部材と鉄筋との間で生じる異種金属マクロセル腐食により形成されるマクロセル電池回路によって鉄筋の防食がなされると共に、そのマクロセル電池回路による犠牲陽極部材の腐食の終息期には、防錆剤による防錆雰囲気が鉄筋コンクリート構造物の内部に形成されて鉄筋の防食がなされるので、従来のように犠牲電極の交換作業などの煩雑なメンテナンス作業を伴わずとも、断面修復後から長期間にわたって鉄筋の腐食を防止できるという効果がある。   According to the cross-sectional repair structure of the existing reinforced concrete structure of the present invention, the macrocell formed by the dissimilar metal macrocell corrosion generated between the sacrificial anode member and the reinforcing bar during the transition period in which the rust-proof atmosphere by the rust preventive agent is formed. The battery circuit protects the reinforcing bars, and at the end of the corrosion of the sacrificial anode member by the macrocell battery circuit, a rust-proof atmosphere is formed inside the reinforced concrete structure by the rust preventive agent to prevent the reinforcing bars. Therefore, there is an effect that corrosion of the reinforcing bars can be prevented for a long time after the repair of the cross section without requiring complicated maintenance work such as replacement work of the sacrificial electrode as in the prior art.

以下、本発明の好ましい実施例について、添付図面を参照して説明する。図1は、本発明の一実施例である断面修復構造1を示す断面図であり、図1(a)は、図1(b)のA−A線における横断面図であり、図1(b)は、図1(a)のB−B線における縦断面図である。この断面修復構造1は、既設の鉄筋コンクリート構造物50の欠陥部を修復するのに適した構造であり、主として、コンクリート除去部2と、犠牲陽極部材3と、断面修復部材4とを備えている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing a cross-sectional repair structure 1 according to an embodiment of the present invention, and FIG. 1 (a) is a cross-sectional view taken along the line AA of FIG. 1 (b). (b) is a longitudinal cross-sectional view in the BB line of Fig.1 (a). This cross-sectional repair structure 1 is a structure suitable for repairing a defective portion of an existing reinforced concrete structure 50, and mainly includes a concrete removal portion 2, a sacrificial anode member 3, and a cross-section repair member 4. .

ここで、既設の鉄筋コンクリート構造物50は、その内部に鉄製の鉄筋52が埋設されたコンクリート製の構造物であり、鉄筋52からコンクリート外表面50aまでが所定厚さの表層コンクリート51によって被覆されている。また、鉄筋52は、図1(a)の左右方向に延びる表層側の鉄筋52(52a)と、図1(b)の上下方向に延びる深層側の鉄筋52(52b)とが交差かつ接触した状態で組まれている。   Here, the existing reinforced concrete structure 50 is a concrete structure in which a steel reinforcing bar 52 is embedded, and the surface of the reinforcing steel 52 from the reinforcing bar 52 to the concrete outer surface 50a is covered with a surface concrete 51 having a predetermined thickness. Yes. Further, in the reinforcing bar 52, the surface side reinforcing bar 52 (52a) extending in the left-right direction in FIG. 1A and the deeper side reinforcing bar 52 (52b) extending in the vertical direction in FIG. It is assembled in a state.

図1に示すように、コンクリート除去部2は、既設鉄筋コンクリート構造物50の欠陥部における表層コンクリート51をはつり取って除去することで、既設鉄筋コンクリート構造物50の外表面50aを部分的に欠損させた部位である。また、このコンクリート除去部2の深さは、表層側の鉄筋52aの外側(図1(b)左側)略半分が露出する程度の大きさとされている。   As shown in FIG. 1, the concrete removing portion 2 partially removes the outer surface 50 a of the existing reinforced concrete structure 50 by removing and removing the surface concrete 51 in the defective portion of the existing reinforced concrete structure 50. It is a part. Further, the depth of the concrete removing portion 2 is set to such a size that approximately half of the outer side (left side in FIG. 1 (b)) of the rebar 52a on the surface layer side is exposed.

なぜなら、鉄筋腐食によるコンクリートのひび割れが表層側の鉄筋52aの略中央部(図1(b)に示す鉄筋52aの左右方向略中央部)で発生することが多いため、そのような不良コンクリートを確実に除去するためである。なお、既設鉄筋コンクリート構造物50の欠陥部とは、例えば、塩化物イオン濃度が高くてコンクリート内部の鉄筋52の腐食が認められる箇所や、鉄筋52の腐食が予測される箇所をいう。   This is because cracks in the concrete due to corrosion of reinforcing bars often occur in the approximate center of the reinforcing bar 52a on the surface layer side (approximately the center in the left-right direction of the reinforcing bar 52a shown in FIG. 1B). It is for removing. In addition, the defect part of the existing reinforced concrete structure 50 means the location where corrosion of the reinforcement 52 inside a concrete is recognized, and the corrosion of the reinforcement 52 is estimated, for example with a high chloride ion concentration.

犠牲陽極部材3は、コンクリート除去部2から露出する鉄筋52aの外周に溶接ビード5を介して接合されることで、鉄筋52aに直接的に取着されている。犠牲陽極部材3は、鉄製の鉄筋52よりイオン化傾向の大きな金属棒単体で形成されており、好ましくは、腐食膨張が少なく且つ安価に入手できる亜鉛、亜鉛合金、アルミニウム又はアルミニウム合金の金属棒が用いられる。   The sacrificial anode member 3 is directly attached to the reinforcing bar 52 a by being joined to the outer periphery of the reinforcing bar 52 a exposed from the concrete removing portion 2 via the weld bead 5. The sacrificial anode member 3 is formed of a single metal rod having a higher ionization tendency than the iron rebar 52, and preferably a zinc, zinc alloy, aluminum, or aluminum alloy metal rod that is less likely to expand and is inexpensively used. It is done.

また、この犠牲陽極部材3は、鉄筋52aの外周に直接接触されることで鉄筋52aと電気的に導通されている。また、この犠牲陽極部材3を鉄筋52aに取着するための溶接ビード5は、ガス溶接やアーク溶接などによって、犠牲陽極部材3と鉄筋52aとの接合部を局部的に加熱溶解しこれに溶加材を融合させてできたものであって、犠牲陽極部材3と鉄筋52aとを接合させて電気的に導通可能とするものでもある。   The sacrificial anode member 3 is electrically connected to the reinforcing bar 52a by directly contacting the outer periphery of the reinforcing bar 52a. Further, the welding bead 5 for attaching the sacrificial anode member 3 to the reinforcing bar 52a is obtained by locally heating and melting the joint between the sacrificial anode member 3 and the reinforcing bar 52a by gas welding or arc welding. It is formed by fusing the materials, and the sacrificial anode member 3 and the reinforcing bar 52a are joined so as to be electrically conductive.

断面修復部材4は、コンクリート除去部2に充填されて硬化した補修材料で形成されており、コンクリート除去部2内で鉄筋52aに取着されている犠牲陽極部材3を被包しつつコンクリート除去部2だった箇所を埋め戻して復元するものである。ここで、断面修復部材4に使用される補修材料は、例えば、セメント系モルタルを主成分としており、それに添加物として既設鉄筋コンクリート構造物50の内部へ浸透拡散する性質のある防錆剤が混合されている。   The cross-section repair member 4 is formed of a repair material that is filled and hardened in the concrete removal portion 2, and encloses the sacrificial anode member 3 that is attached to the reinforcing bar 52 a in the concrete removal portion 2 while encasing the concrete removal portion. The part that was 2 is backfilled and restored. Here, the repair material used for the cross-sectional repair member 4 is mainly composed of cement-based mortar, for example, and is mixed with a rust preventive having a property of penetrating and diffusing into the existing reinforced concrete structure 50 as an additive. ing.

断面修復部材4に混合されている防錆剤は、鉄筋52の表面に不動態被膜を形成するイオン成分を有しており、更に、補修材料に混合された状態でアルカリ性を示すものである。このため、防錆剤に含まれるイオン成分の作用によって鉄筋52表面に不動態被膜を形成して鉄筋52の腐食を防止できる。しかも、防錆剤が混合された補修材料で形成される断面修復部材4をアルカリ性にできるので、犠牲陽極部材3の表面に不動態被膜が形成されることを阻み、犠牲陽極部材3からの金属イオンの溶出が促進されて、マクロセル電池回路による防食電流の低下又は消滅が抑制される。   The rust preventive agent mixed in the cross-section repairing member 4 has an ionic component that forms a passive film on the surface of the reinforcing bar 52, and further exhibits alkalinity when mixed in the repair material. For this reason, a passive film is formed on the surface of the reinforcing bar 52 by the action of the ionic component contained in the rust preventive agent, and corrosion of the reinforcing bar 52 can be prevented. In addition, since the cross-sectional repair member 4 formed of the repair material mixed with the rust preventive agent can be made alkaline, the formation of a passive film on the surface of the sacrificial anode member 3 is prevented, and the metal from the sacrificial anode member 3 is prevented. The elution of ions is promoted, and the decrease or disappearance of the anticorrosion current due to the macrocell battery circuit is suppressed.

ここで、防錆剤としては、補修材料の主成分であるセメント系モルタルに混合されて溶解される水溶性防錆剤が適しており、その中でも、鉄筋52の表面に不動態被膜を形成するイオン成分を有する点、及び、補修材料に添加されることでアルカリ性を高めるアルカリ金属イオン成分を含む点から、亜硝酸塩系の水溶性防錆剤、特に、亜硝酸リチウムを使用することが好適である。なお、防錆剤は、コンクリート除去部2への充填される前の未硬化状態のままの補修材料に予め混合される。   Here, as the rust preventive agent, a water-soluble rust preventive agent which is mixed and dissolved in cement-based mortar which is a main component of the repair material is suitable, and among them, a passive film is formed on the surface of the reinforcing bar 52. From the point of having an ionic component and the point of including an alkali metal ion component that increases alkalinity by being added to the repair material, it is preferable to use a nitrite-based water-soluble rust preventive agent, particularly lithium nitrite. is there. In addition, a rust preventive agent is previously mixed with the repair material with the uncured state before being filled into the concrete removal part 2.

また、上記した断面修復部材4を形成するために補修材料をコンクリート除去部2へ充填する工法としては、既存の種々の方法が適用可能であるが、例えば、未硬化状態の補修材料をコンクリート除去部2へ吹き付ける工法(吹き付け工法)や、コンクリート除去部2の外側にコンクリート型枠を設置して、コンクリート除去部2とコンクリート型枠との間に未硬化状態の補修材料を注入して、コンクリート除去部2へ充填して硬化させる工法(注入工法)を用いることができる。   In addition, various existing methods can be applied as a method of filling the concrete removal portion 2 with the repair material in order to form the above-described cross-sectional repair member 4. For example, the uncured repair material is removed from the concrete. A method of spraying onto the part 2 (spraying method) or a concrete formwork placed outside the concrete removal part 2 and injecting an uncured repair material between the concrete removal part 2 and the concrete formwork, A method (injection method) in which the removal unit 2 is filled and cured can be used.

次に、図2及び図3を参照して、上記実施例の変形例について説明する。図2(a)は、第2実施例の断面修復構造20の正面図であり、図2(b)は、図2(a)のB−B線における断面図である。第2実施例の断面修復構造20は、上記した第1実施例の断面修復構造1に対して、犠牲陽極部材の形態及び配設位置を変更したものである。以下、第1実施例と同一の部分には同一の符号を付して、その説明を省略し、異なる部分のみを説明する。   Next, a modification of the above embodiment will be described with reference to FIGS. Fig.2 (a) is a front view of the cross-section repair structure 20 of 2nd Example, FIG.2 (b) is sectional drawing in the BB line of Fig.2 (a). The cross-sectional repair structure 20 of the second embodiment is obtained by changing the form and arrangement position of the sacrificial anode member with respect to the cross-section repair structure 1 of the first embodiment described above. In the following, the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different parts are described.

図2(a)に示すように、第2実施例の断面修復構造20においては犠牲陽極部材21が断面修復部材4の外表面に展着されて添設されており、この犠牲陽極部材21は正面視略菱形状の透孔を有するエキスパンドメタルなどで網状体に形成されている。また、図2(b)に示すように、犠牲陽極部材21は、断面修復部材4の外表面に展着され且つ埋入されており、断面修復部材4の外表面に埋め込まれた状態で、その断面修復部材4によって直接に固定保持されている。また、犠牲陽極部材21は、断面修復部材4の外表面に埋入された状態で、その片側面が断面修復部材4の外表面から露出されている。   As shown in FIG. 2A, in the cross-sectional repair structure 20 of the second embodiment, a sacrificial anode member 21 is spread and attached to the outer surface of the cross-section repair member 4, and the sacrificial anode member 21 is It is formed in a net-like body with an expanded metal or the like having through-holes that are roughly rhombus in front view. Further, as shown in FIG. 2B, the sacrificial anode member 21 is spread and embedded on the outer surface of the cross-sectional repair member 4, and is embedded in the outer surface of the cross-section repair member 4, It is directly fixed and held by the cross-sectional repair member 4. Further, the sacrificial anode member 21 is embedded in the outer surface of the cross-sectional repair member 4 and one side surface thereof is exposed from the outer surface of the cross-section repair member 4.

このように犠牲陽極部材21を断面修復部材4の外表面に添設するには、コンクリート除去部2に充填された未硬化状態の補修材料の外表面に犠牲陽極部材21を埋入する。具体的には、コンクリート除去部2の形成後、その外側にコンクリート型枠を設置して、そのコンクリート型枠とコンクリート除去部2との対向面間に犠牲陽極部材21を予め設置しておき、その上で、コンクリート除去部2とコンクリート型枠との間に補修材料を注入充填して断面修復部材4を形成するのである。   In order to attach the sacrificial anode member 21 to the outer surface of the cross-sectional repair member 4 in this way, the sacrificial anode member 21 is embedded in the outer surface of the uncured repair material filled in the concrete removing portion 2. Specifically, after the concrete removal portion 2 is formed, a concrete mold is installed outside the concrete removal portion 2, and a sacrificial anode member 21 is installed in advance between the opposing surfaces of the concrete mold and the concrete removal portion 2, Then, a repair material is injected and filled between the concrete removing portion 2 and the concrete mold to form the cross-sectional repair member 4.

また、犠牲陽極部材21には、導線22の片方の端部が接続されており、この導線22のもう片方の端部は鉄筋52aに接続されている。この導線22は、鉄線や銅線などのように導電性金属であって鉄よりイオン化傾向の小さな電線であって、速乾性の導電性接着剤23を用いて鉄筋52aに接着されており、それと同じ速乾性の導電性接着剤(図示せず)を用いて犠牲陽極部材21に巻き付けられた状態で接着されている。   The sacrificial anode member 21 is connected to one end of a conducting wire 22 and the other end of the conducting wire 22 is connected to a reinforcing bar 52a. The conductive wire 22 is a conductive metal such as an iron wire or a copper wire and has a smaller ionization tendency than iron, and is bonded to the reinforcing bar 52a using a quick-drying conductive adhesive 23. The same quick-drying conductive adhesive (not shown) is used to bond the sacrificial anode member 21 in a wound state.

このように導線22を断面修復部材4の外表面まで導出させるには、コンクリート除去部2を形成した後、コンクリート除去部2へ補修材料を充填する前に、コンクリート除去部2から露出される鉄筋52aに導線22の一端部を接続し、更に、その導線22の他端部をコンクリート除去部2の外部まで導出させておき、その状態でコンクリート除去部2へ補修材料を充填して、断面修復部材4を形成するのである。   In order to lead the lead wire 22 to the outer surface of the cross-section repair member 4 in this way, after the concrete removal portion 2 is formed, before the concrete removal portion 2 is filled with the repair material, the reinforcing bars exposed from the concrete removal portion 2 are exposed. One end of the conductor 22 is connected to 52a, and the other end of the conductor 22 is led out to the outside of the concrete removal section 2, and the concrete removal section 2 is filled with a repair material in that state to repair the cross section. The member 4 is formed.

図3は、第3実施例の断面修復構造30の正面図であり、図3(b)は、図3(a)のB−B線における断面図である。第3実施例の断面修復構造30は、第2実施例の断面修復構造20に対して、犠牲陽極部材の形態を網状体から棒状体に変更したものである。以下、第1実施例と同一の部分についてはそれと同一の符号を付して、第2実施例と同一の部分についてはそれと同一の符号を付して、その説明を省略し、異なる部分のみを説明する。   FIG. 3 is a front view of the cross-sectional repair structure 30 of the third embodiment, and FIG. 3B is a cross-sectional view taken along the line BB of FIG. The cross-sectional repair structure 30 of the third embodiment is obtained by changing the form of the sacrificial anode member from a net-like body to a rod-like body with respect to the cross-section repair structure 20 of the second embodiment. Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals, the same parts as those in the second embodiment are denoted by the same reference numerals, and the description thereof is omitted. explain.

図3(a)に示すように、犠牲陽極部材31は正面視略直線状の棒状体に形成されており、図3(b)に示すように、その断面形状が略円形に形成されている。この犠牲陽極部材31は、その軸方向が断面修復部材4の外表面に沿うように、断面修復部材4の外表面に埋入されており、その埋入状態において犠牲陽極部材31の外周面の一部が断面修復部材4の外表面から露出されている。   As shown in FIG. 3A, the sacrificial anode member 31 is formed in a substantially straight rod-like body in front view, and as shown in FIG. 3B, its cross-sectional shape is formed in a substantially circular shape. . The sacrificial anode member 31 is embedded in the outer surface of the cross-section repair member 4 so that the axial direction thereof is along the outer surface of the cross-section repair member 4. A part is exposed from the outer surface of the cross-sectional repair member 4.

以上、実施例に基づき本発明を説明したが、本発明は上記実施例に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で、犠牲陽極部材の形態、補修材料の組成、若しくは、防錆剤の組成、又は、断面修復構造の施工方法などについて種々の改良変形が可能であることは容易に推察できるものである。   As described above, the present invention has been described based on the examples.However, the present invention is not limited to the above examples, and within the scope of the present invention, the form of the sacrificial anode member, the composition of the repair material, Alternatively, it can be easily inferred that various improvements and modifications can be made with respect to the composition of the rust preventive or the construction method of the cross-sectional repair structure.

例えば、第1実施例では、コンクリート除去部2を形成する場合に表層側の鉄筋52aの外側(図1(b)左側)略半分が露出される深さまで表層コンクリート51を除去すると説明したが、かかるコンクリート除去部2の深さは必ずしもこれに限定されるものではなく、鉄筋52の腐食状況によっては、表層側の鉄筋52aの外側(図1(b)左側)表面が僅かに露出される位置、表層側の鉄筋52aの全体が露出される位置、又は、深層側の鉄筋52bの一部が露出される位置まで表層コンクリート51を除去するようにしても良い。   For example, in the first embodiment, when the concrete removing portion 2 is formed, it has been described that the surface concrete 51 is removed to a depth at which substantially half of the outer side of the reinforcing bar 52a on the surface layer side (left side in FIG. 1B) is exposed. The depth of the concrete removing portion 2 is not necessarily limited to this, and depending on the corrosion state of the reinforcing bar 52, a position at which the outer surface (left side in FIG. 1 (b)) of the reinforcing bar 52a on the surface layer side is slightly exposed. The surface concrete 51 may be removed to a position where the entire surface side rebar 52a is exposed or a position where a part of the deep layer rebar 52b is exposed.

また、第1実施例では、1本の犠牲陽極部材3を溶接ビード5を介して鉄筋52aに取着したが、犠牲陽極部材の本数は必ずしもこれに限定されるものではなく、必要に応じて適宜本数を増加させても良い。   In the first embodiment, one sacrificial anode member 3 is attached to the reinforcing bar 52a via the weld bead 5. However, the number of sacrificial anode members is not necessarily limited to this, and as required. The number may be increased as appropriate.

また、第1実施例では、犠牲陽極部材3は溶接ビード5を介して鉄筋52aに取着されたが、かかる犠牲陽極部材を鉄筋に対して取着する手段は、必ずしもこれに限定されるものではなく、例えば、犠牲陽極部材の外周面を鉄筋の外周面に当接させた状態で導電性を有する接着剤で接着するようにしたり、或いは、犠牲陽極部材を表層側の鉄筋の外側表面に接触させた状態で、その犠牲陽極部材をコンクリート除去部の底面に固定用アンカーを用いて固定するようにしても良い。   In the first embodiment, the sacrificial anode member 3 is attached to the reinforcing bar 52a via the weld bead 5, but means for attaching the sacrificial anode member to the reinforcing bar is not necessarily limited to this. Instead, for example, the sacrificial anode member may be bonded with a conductive adhesive with the outer peripheral surface of the sacrificial anode member in contact with the outer peripheral surface of the reinforcing bar, or the sacrificial anode member may be adhered to the outer surface of the reinforcing bar on the surface side. In the state of contact, the sacrificial anode member may be fixed to the bottom surface of the concrete removing portion using a fixing anchor.

また、第2実施例では、犠牲陽極部材21に使用される網状体としてエキスパンドメタルを用いて説明したが、かかる網状体は必ずしもこれに限定されるものでなく、例えば、パンチングメタルや金網などであっても良い。また、導線22は、絶縁性材料で被覆されたものでも、又は、そのような被覆膜のないもののいずれであっても良い。   In the second embodiment, the expanded metal is used as the mesh body used for the sacrificial anode member 21. However, the mesh body is not necessarily limited to this. For example, a punching metal or a metal mesh is used. There may be. Further, the conductive wire 22 may be either one coated with an insulating material or one without such a coating film.

本発明の一実施例である断面修復構造を示す断面図である。It is sectional drawing which shows the cross-section repair structure which is one Example of this invention. (a)は、第2実施例の断面修復構造の正面図であり、(b)は、(a)のB−B線における断面図である。(A) is a front view of the cross-sectional repair structure of 2nd Example, (b) is sectional drawing in the BB line of (a). (a)は、第3実施例の断面修復構造の正面図であり、(b)は、(a)のB−B線における断面図である。(A) is a front view of the cross-sectional repair structure of 3rd Example, (b) is sectional drawing in the BB line of (a).

符号の説明Explanation of symbols

1,20,30 断面修復構造(既設鉄筋コンクリート構造物の断面修復構造)
2 コンクリート除去部
3,21,31 犠牲陽極部材
4 断面修復部材(断面修復部材、補修材料の硬化物)
5 溶接ビード
22 導線
50 既設鉄筋コンクリート構造物
51 表層コンクリート
52 鉄筋
1,20,30 Cross-section repair structure (cross-section repair structure of existing reinforced concrete structures)
2 Concrete removal part 3, 21, 31 Sacrificial anode member 4 Cross section repair member (cross section repair member, cured material of repair material)
5 Weld beads 22 Conductor 50 Existing reinforced concrete structure 51 Surface concrete 52 Rebar

Claims (8)

既設鉄筋コンクリート構造物の欠陥部における表層コンクリートを鉄筋の少なくとも一部が露出するまで除去して形成されるコンクリート除去部と、
そのコンクリート除去部から露出する鉄筋に対して導通可能に取着される犠牲陽極部材と、
その犠牲陽極部材を被包するように前記コンクリート除去部に充填されて硬化した補修材料で形成され、その補修材料に既設鉄筋コンクリート構造物の内部へ浸透拡散する性質のある防錆剤が混合されている断面修復部材とを備えており、
その断面修復部材と既設鉄筋コンクリート構造物との間における防錆剤の濃度差によって、その防錆剤が前記断面修復部材から既設鉄筋コンクリート構造物の内部へ時間経過とともに浸透拡散されることで、前記犠牲陽極部材の防食効果が衰える時期までに、前記断面修復部材のみならず既設鉄筋コンクリート構造物に内部に防錆剤による防錆雰囲気を形成するものであることを特徴とする既設鉄筋コンクリート構造物の断面修復構造。
A concrete removal part formed by removing the surface layer concrete in the defective part of the existing reinforced concrete structure until at least a part of the reinforcing bar is exposed;
A sacrificial anode member attached so as to be conductive with respect to the reinforcing bar exposed from the concrete removing portion;
The sacrificial anode member is formed of a repair material that is filled and hardened in the concrete removal portion so as to encapsulate the sacrificial anode member, and the repair material is mixed with a rust preventive agent that has the property of penetrating and diffusing into the existing reinforced concrete structure. A cross-section repairing member ,
Due to the difference in concentration of the rust preventive agent between the cross-section repair member and the existing reinforced concrete structure, the rust preventive agent is permeated and diffused from the cross-section repair member into the existing reinforced concrete structure with time. By the time when the anti-corrosion effect of the anode member declines, not only the above-mentioned cross-section repair member but also the existing reinforced concrete structure forms a rust-preventive atmosphere with a rust preventive agent inside, and the cross-section repair of the existing reinforced concrete structure Construction.
既設鉄筋コンクリート構造物の欠陥部における表層コンクリートを鉄筋の少なくとも一部が露出するまで除去して形成されるコンクリート除去部と、
そのコンクリート除去部から露出される鉄筋に一端部が接続されて、そのコンクリート除去部の外部に他端部が導出される導線と、
前記コンクリート除去部に充填されて硬化した補修材料で形成され、その補修材料に既設鉄筋コンクリート構造物の内部へ浸透拡散する性質のある防錆剤が混合されている断面修復部材と、
その断面修復部材の外表面に添設され、前記導線の他端部が接続される犠牲陽極部材とを備えていることを特徴とする既設鉄筋コンクリート構造物の断面修復構造。
A concrete removal part formed by removing the surface layer concrete in the defective part of the existing reinforced concrete structure until at least a part of the reinforcing bar is exposed;
One end is connected to the reinforcing bar exposed from the concrete removal portion, and the other end is led to the outside of the concrete removal portion;
A cross-section repair member formed of a repair material filled in the concrete removing portion and cured, and a rust preventive agent having a property of permeating and diffusing into the interior of the existing reinforced concrete structure is mixed in the repair material;
A cross-sectional repair structure for an existing reinforced concrete structure, comprising a sacrificial anode member attached to the outer surface of the cross-section repair member and connected to the other end of the conducting wire.
前記犠牲陽極部材は、導電性を有する接着剤又は溶接ビードを介して、鉄筋外周に導通可能に取着されるものであることを特徴とする請求項1記載の既設鉄筋コンクリート構造物の断面修復構造。   The cross-sectional repair structure of an existing reinforced concrete structure according to claim 1, wherein the sacrificial anode member is attached to the outer periphery of the reinforcing bar through a conductive adhesive or a weld bead. . 前記犠牲陽極部材は、網状体に形成されており、前記断面修復部材の外表面に展着され且つ埋入されており、その埋入状態において前記網状体の片側面が前記断面修復部材の外表面から露出されているものであることを特徴とする請求項2記載の既設鉄筋コンクリート構造物の断面修復構造。   The sacrificial anode member is formed in a mesh body, and is spread and embedded on the outer surface of the cross-sectional repair member. In the embedded state, one side surface of the mesh body is outside the cross-section repair member. The cross-sectional repair structure of an existing reinforced concrete structure according to claim 2, wherein the cross-section repair structure is exposed from the surface. 前記犠牲陽極部材は、棒状体に形成されており、その棒状体の軸方向が前記断面修復部材の外表面に沿うようにその断面修復部材の外表面に埋入されており、その埋入状態において前記棒状体の外周面の一部が前記断面修復部材の外表面から露出されているものであることを特徴とする請求項2記載の既設鉄筋コンクリート構造物の断面修復構造。   The sacrificial anode member is formed in a rod-shaped body, and is embedded in the outer surface of the cross-sectional repair member so that the axial direction of the rod-shaped body is along the outer surface of the cross-section repair member, and the embedded state 3. The cross-sectional repair structure for an existing reinforced concrete structure according to claim 2, wherein a part of the outer peripheral surface of the rod-shaped body is exposed from the outer surface of the cross-section repair member. 前記犠牲陽極部材は、鉄筋よりイオン化傾向の大きな金属単体であって、亜鉛又は亜鉛合金で形成されていることを特徴とする請求項1から5のいずれかに記載の既設鉄筋コンクリート構造物の断面修復構造。 6. The cross-sectional repair of an existing reinforced concrete structure according to claim 1, wherein the sacrificial anode member is a single metal having a higher ionization tendency than a reinforcing bar and is made of zinc or a zinc alloy. Construction. 前記防錆剤は、鉄筋の表面に不動態被膜を形成するイオン成分を有しており、更に、前記補修材料に混合された状態でアルカリ性を示すものであることを特徴とする請求項1から6のいずれかに記載の既設鉄筋コンクリート構造物の断面修復構造。   The rust preventive agent has an ionic component that forms a passive film on the surface of a reinforcing bar, and further exhibits alkalinity when mixed with the repair material. The cross-sectional repair structure of the existing reinforced concrete structure in any one of 6. 前記補修材料は、硬化状態でアルカリ性を示すものであることを特徴とする請求項1から7のいずれかに記載の既設鉄筋コンクリート構造物の断面修復構造。   The cross-sectional repair structure of an existing reinforced concrete structure according to any one of claims 1 to 7, wherein the repair material exhibits alkalinity in a cured state.
JP2005333964A 2005-11-18 2005-11-18 Cross-sectional repair structure of existing reinforced concrete structures Expired - Fee Related JP4091953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005333964A JP4091953B2 (en) 2005-11-18 2005-11-18 Cross-sectional repair structure of existing reinforced concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005333964A JP4091953B2 (en) 2005-11-18 2005-11-18 Cross-sectional repair structure of existing reinforced concrete structures

Publications (2)

Publication Number Publication Date
JP2007138556A JP2007138556A (en) 2007-06-07
JP4091953B2 true JP4091953B2 (en) 2008-05-28

Family

ID=38201760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005333964A Expired - Fee Related JP4091953B2 (en) 2005-11-18 2005-11-18 Cross-sectional repair structure of existing reinforced concrete structures

Country Status (1)

Country Link
JP (1) JP4091953B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949221A (en) * 2010-08-23 2011-01-19 华侨大学 Method for reinforcing slate building roof
JP6280145B2 (en) * 2013-12-16 2018-02-14 Jfeシビル株式会社 Repair and reinforcement structure for reinforced concrete structures
JP6951053B2 (en) * 2015-06-30 2021-10-20 西日本高速道路株式会社 Monitoring method of sacrificial anode method in concrete structure
KR101988247B1 (en) * 2017-11-03 2019-06-12 한국건설기술연구원 Carbon fiber textile reinforcing member with anodic metal line, and repair and reinforcement method of concrete structure using the same

Also Published As

Publication number Publication date
JP2007138556A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
US11519077B2 (en) Galvanic anode and method of corrosion protection
CA2567120C (en) Anode assembly for cathodic protection
US6572760B2 (en) Cathodic protection
AU775457B2 (en) Cathodic protection
JP4091953B2 (en) Cross-sectional repair structure of existing reinforced concrete structures
US10927464B2 (en) Carbon fiber textile reinforcing member with anodic metal line and method of repairing and reinforcing concrete structure using the same
US9834933B2 (en) Post-tension cable protection system, method for installing the system and method for remediation of a defective post-tension reinforcement system
GB2464346A (en) Repair of reinforced concrete structures using sacrificial anodes
US20080155827A1 (en) Method for repairing metal structure
US7731875B2 (en) Sacrificial anodes in concrete patch repair
JP3556631B2 (en) Corrosion protection for concrete reinforcement
JP6393601B2 (en) Simple repair method and simple repair structure of reinforced concrete structure without sacrificial section repair using sacrificial anode material
US7306687B2 (en) Method for repairing steel-reinforced concrete structure
JP4842345B2 (en) Cross-section repair structure of reinforced concrete structure
JP4320040B2 (en) Cross-section repair structure of reinforced concrete structure
JP3658574B2 (en) Cross-section repair panel for preventing deterioration of reinforced concrete structure and method for preventing deterioration of reinforced concrete structure
JP2008292297A (en) Assessment methods for suitability of repair method of construction, method for preparing repair method assessment chart and simplified assessment method for suitability of repair method
JP2003129669A (en) Method for repairing cross section of concrete structure
US20090183998A1 (en) Activating matrix for cathodic protection
JP3521195B2 (en) Method for preventing corrosion of steel material of mortar or concrete member and material for preventing corrosion of steel material used therefor
JP2020094487A (en) Reinforcement structure and reinforcement method of steel bar concrete floor slab
JP4651725B2 (en) Repair method aptitude judgment method
JPH0369436B2 (en)
JP2016169543A (en) Reinforcement structure and reinforcement method of reinforced concrete
Ball et al. Innovative corrosion mitigation solutions for existing concrete structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070710

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070808

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080229

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees