JP4091791B2 - Steam supply method to intermittent steam consumption equipment - Google Patents

Steam supply method to intermittent steam consumption equipment Download PDF

Info

Publication number
JP4091791B2
JP4091791B2 JP2002138849A JP2002138849A JP4091791B2 JP 4091791 B2 JP4091791 B2 JP 4091791B2 JP 2002138849 A JP2002138849 A JP 2002138849A JP 2002138849 A JP2002138849 A JP 2002138849A JP 4091791 B2 JP4091791 B2 JP 4091791B2
Authority
JP
Japan
Prior art keywords
steam
intermittent
main
pressure
consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002138849A
Other languages
Japanese (ja)
Other versions
JP2003328703A (en
Inventor
利光 中村
篤洋 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002138849A priority Critical patent/JP4091791B2/en
Publication of JP2003328703A publication Critical patent/JP2003328703A/en
Application granted granted Critical
Publication of JP4091791B2 publication Critical patent/JP4091791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気発生が間欠的である蒸気(間欠蒸気)を主系統(主蒸気系統)に供給すると共に、蒸気消費量が変動する蒸気間欠消費系統にも供給する蒸気間欠消費設備への蒸気供給方法に関する。
【0002】
【従来の技術】
転炉で溶銑を吹錬中に発生する転炉ガスは高温であることから、この熱を回収する方法が従来より種々提案されている。例えば、転炉炉口上部を覆うフードなどに間欠蒸気発生装置(例えば熱回収装置)を設けて熱を蒸気として蒸気アキュムレータに回収し、この回収した蒸気を主系統の蒸気管を通して蒸気間欠消費装置(例えば、溶鋼真空処理装置)や他の一般工場装置等の蒸気使用装置に供給している。しかし、転炉は間欠運転のため、蒸気は間欠的に発生する間欠蒸気(OG蒸気)であって、連続的に利用することが困難であるため、この蒸気を有効に活用する方法が提案されている。
例えば、特開平3−285008号公報には、転炉操業データから予測計算した間欠蒸気の発生量と、蒸気間欠消費装置の操業データから予測計算した蒸気間欠消費装置の蒸気使用量と、現在の蒸気アキュムレータ内の圧力値とから、以降の蒸気アキュムレータ内の圧力を予測計算し、間欠蒸気発生装置以外の他の蒸気発生装置から蒸気間欠消費装置に直接供給するのに必要な間欠蒸気量を演算計算して、流量調整弁を演算した供給量となるように調節する方法が開示されている。これにより、蒸気アキュムレータからの間欠蒸気の供給量が足りないときに、他の蒸気発生装置から直接供給を開始する際や供給停止を行う際、供給量の変化を緩慢にすると共に、供給量の増減を小さくすることが可能となる。
また、特開平4−50407号公報には、間欠蒸気発生装置から発生する間欠蒸気量の予測値と使用蒸気量の予測値とから、蒸気アキュムレータ内の蒸気保有量を時系列的に予測し、この予測値が蒸気アキュムレータの上限保有量を超えるとき、又は下限保有量を下回るときは、予測した時点から上限保有量を超える量と時間、又は下限保有量を下回る量と時間から調整量をそれぞれ演算して求め、その求められた量だけ予め定常的に蒸気を発生する定常蒸気発生装置からの発生蒸気量を調整する方法が開示されている。これにより、間欠蒸気を有効に蒸気間欠消費装置に使用する際に、蒸気の負荷変動を小さくしてバックアップする定常蒸気発生装置を小型化できる。
【0003】
【発明が解決しようとする課題】
しかしながら、上記した蒸気間欠消費設備への蒸気供給方法には以下の問題がある。
いずれの方法においても予測値を用いるため、転炉吹錬情報の変動等により予測が外れる場合があり、主系統に圧力変動が発生する可能性がある。ここで、主系統の圧力が過昇圧となった場合、主系統の圧力を制御できなくなり、一方、主系統の圧力が低下した場合、蒸気間欠消費装置及び蒸気使用装置へ蒸気を供給できなくなり、安定した操業を行うことができない。このとき、蒸気タービンで圧力変動の吸収を自由に行える場合はよいが、蒸気タービンからの抽気より圧力制御性能(応答速度)が劣る燃料焚きボイラを使用する蒸気系統では圧力変動を吸収できない問題がある。
本発明はかかる事情に鑑みてなされたもので、主系統の圧力変動を制御し安定した操業を行うことができる蒸気間欠消費設備への蒸気供給方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
前記目的に沿う本発明に係る蒸気間欠消費設備への蒸気供給方法は、蒸気本管に設けられた複数の蒸気使用装置を備えた主蒸気系統に、蒸気発生が間欠的である間欠蒸気系統に備えられた蒸気アキュムレータ内の間欠蒸気を制御弁を介して供給すると共に、蒸気本管に設けられた蒸気消費量が変動する蒸気間欠消費装置を備えた蒸気間欠消費系統に蒸気アキュムレータ内の間欠蒸気を供給する蒸気間欠消費設備への蒸気供給方法において、蒸気間欠消費系統と間欠蒸気系統との間には間欠蒸気を直接供給できる蒸気配管が設けられ、複数の蒸気使用装置及び蒸気間欠消費装置が使用する蒸気量を間欠蒸気系統から供給できない場合は、制御弁による蒸気本管への間欠蒸気の供給制御を、蒸気アキュムレータ内の間欠蒸気の残量を基にして求めた蒸気供給量を最大として、予め設定した流量勾配を用いて行う。このように、現時点での間欠蒸気系統の間欠蒸気量を基に、主蒸気系統へ供給する間欠蒸気の供給制御を行うので、従来のように例えば蒸気アキュムレータ内の間欠蒸気量を予測することなく、間欠蒸気系統から主蒸気系統へ間欠蒸気を供給できる。
ここで、本発明に係る蒸気間欠消費設備への蒸気供給方法において、間欠蒸気の蒸気供給量は、以下の式を用いて求められることが好ましい。
Qgen≦−Qrh+(Qrh2+2×K×Vacc)1/2
ここで、Qgenは間欠蒸気系統から主蒸気系統への間欠蒸気の供給流量、Qrhは間欠蒸気系統から蒸気間欠消費系統への間欠蒸気の供給流量、Kは間欠蒸気系統から主蒸気系統へ供給する間欠蒸気の流量勾配、Vaccは蒸気アキュムレータ内の間欠蒸気の残量である。これにより、蒸気間欠消費系統に使用する間欠蒸気量を考慮すると共に、主蒸気系統へ供給可能な間欠蒸気量を容易に把握できる。
【0005】
本発明に係る蒸気間欠消費設備への蒸気供給方法において、主蒸気系統には、主蒸気系統に蒸気を供給できる補充蒸気系統を設けると共に、主蒸気系統と補充蒸気系統との間には逆止弁を設け、蒸気アキュムレータ内の間欠蒸気の圧力値が低下し、主蒸気系統の蒸気の圧力が補充蒸気系統の補充蒸気の圧力より低下した場合、主蒸気系統の蒸気と補充蒸気との差圧により、逆止弁を介して補充蒸気系統から主蒸気系統へ補充蒸気を供給し、また蒸気アキュムレータ内の間欠蒸気の圧力値が上昇し、主蒸気系統の蒸気の圧力が補充蒸気の圧力より高くなった場合、逆止弁により補充蒸気系統から主蒸気系統への補充蒸気の供給を停止することが好ましい。このように、逆止弁により補充蒸気系統から主蒸気系統への補充蒸気の供給を制御するので、主蒸気系統の蒸気の圧力に応じて補充蒸気系統からの補充蒸気の供給及び停止を自動的に行うことができる。
本発明に係る蒸気間欠消費設備への蒸気供給方法において、制御弁は、流量制御と圧力制御との切替えを行うことができ、制御弁により、主蒸気系統の蒸気の圧力が予め設定した所定圧力未満の場合、主蒸気系統へ流れる間欠蒸気の流量を制御し、また主蒸気系統の蒸気の圧力が所定圧力以上の場合、主蒸気系統へ流れる間欠蒸気の圧力を制御することが好ましい。このように、制御弁により間欠蒸気系統から主蒸気系統への間欠蒸気の供給方法を変えるので、蒸気アキュムレータから主蒸気系統へ供給する間欠蒸気を、主蒸気系統の蒸気の圧力が所定圧力未満の場合は流量制御によって最大供給し、過昇圧時のみ圧力を制御して供給できる。
【0006】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここに、図1は本発明の一実施の形態に係る蒸気間欠消費設備への蒸気供給方法を適用する蒸気供給設備の説明図、図2は同蒸気間欠消費設備への蒸気供給方法を適用した供給制御の説明図である。
【0007】
図1に示すように、本発明の一実施の形態に係る蒸気間欠消費設備への蒸気供給方法を適用する蒸気供給設備10は、蒸気発生量が変動するOGボイラ(間欠蒸気発生装置の一例)11を備えた間欠蒸気系統12と、間欠蒸気系統12からの間欠蒸気が供給される複数の蒸気使用装置13が設けられた蒸気本管14を備えた主蒸気系統(主系統とも言う)15と、間欠蒸気系統12から供給される間欠蒸気の圧力が低下した場合、主蒸気系統15へ補充蒸気を供給する燃料焚きボイラ(補充蒸気発生装置の一例)16を備えた補充蒸気系統17とを有する設備である。なお、この蒸気供給設備10の各装置は、制御用コンピュータ等の制御装置(図示しない)によって稼動される。以下、詳しく説明する。
【0008】
間欠蒸気系統12において、OGボイラ11は、回収した転炉ガスの潜熱及び顕熱の熱交換により高温高圧の蒸気を発生させるものであり、その製造される間欠蒸気量は単位時間当り例えば0〜400tの範囲で変動し、平均80〜90t程度である。このOGボイラ11は、転炉(図示しない)の数に応じて1又は2以上設置することが可能であり、OGボイラ11には配管18が接続されている。この配管18の上流側には分岐点Xが設けられ、分岐点Xから分岐した支管19には放散弁20が備えられている。これにより、OGボイラ11が設けられた間欠蒸気系統12の間欠蒸気の圧力が過昇圧となった場合は、放散弁20によって間欠蒸気を排気し、間欠蒸気の圧力を調整することも可能である。
また、配管18の分岐点Xの下流側には分岐点Yが設けられ、分岐点Yから分岐した支管21の下流側端部には、OGボイラ11で製造した蒸気を貯蔵する蒸気アキュムレータ22(例えば、容量が300m3 程度)が、1又は2以上設けられている。なお、この蒸気アキュムレータ22内の圧力(例えば、最大で3.7MPa程度)は圧力計(図示しない)で測定され、この測定圧力が制御装置に入力されている。更に、配管18の分岐点Yの下流側には減圧弁23が設けられ、例えば3.7MPaの蒸気を例えば2.0MPa(この実施の形態においては1.9MPa)程度に減圧している。
【0009】
補充蒸気系統17において、燃料焚きボイラ16は、連続的に高温高圧の蒸気を発生させるものであり、その製造される補充蒸気量は単位時間当り例えば60〜120t程度である。なお、ここでは、燃料焚きボイラ16を2台配置しているが、1台でもよく、また3台以上配置することも可能である。この燃料焚きボイラ16には配管24が接続され、この配管24には分岐点Zが設けられている。この分岐点Zから分岐した支管25の下流側端部には、蒸気タービン発電機26が備えられ、この燃料焚きボイラ16で発生した補充蒸気を単位時間当り例えば20〜120t程度呑込み、電力を例えば3〜24MW程度発生させる。
なお、配管24中の補充蒸気は、蒸気タービン発電機26を稼動させることで、圧力が例えば1.5MPa程度に制御されている。
【0010】
間欠蒸気系統12の配管18の下流側端部には、流量制御と圧力制御との切替えを行う制御弁27が設けられ、この制御弁27を介して主蒸気系統15の蒸気本管14に接続されている。これにより、間欠蒸気は制御弁27を介して蒸気本管14へと供給され、更にこの蒸気本管14から複数の蒸気使用装置13へと供給される。
また、補充蒸気系統17の配管24の下流側端部には逆止弁28が設けられ、この逆止弁28を介して主蒸気系統15の蒸気本管14に接続されている。これにより、間欠蒸気系統12から供給される間欠蒸気の圧力が低下し、主蒸気系統15の蒸気の圧力が補充蒸気の圧力より低下した場合、補充蒸気系統17から主蒸気系統15への補充蒸気の供給が可能となる。一方、間欠蒸気系統12から主蒸気系統15へ間欠蒸気が供給され、主蒸気系統15の蒸気の圧力が補充蒸気の圧力より高い場合、主蒸気系統15から補充蒸気系統17への蒸気の流れ込みを防止できる。このように、簡単な構成で主蒸気系統15への補充蒸気の流れ込みを制御できるので、経済的である。
【0011】
主蒸気系統15の蒸気本管14中の蒸気は、所定圧力、即ち1.6MPa(例えば、200〜300℃程度)に設定され、蒸気供給設備10を安定に操業させるために、例えば1.5〜1.6MPa程度(管理値)の範囲で管理されている。この蒸気本管14には、蒸気消費量が変動する蒸気間欠消費装置の一例である溶鋼真空処理装置(RH脱ガス装置)29を備えた蒸気間欠消費系統30が設けられている。この溶鋼真空処理装置29は、間欠的(例えば、10〜15分程度の間)に単位時間当り例えば20〜80tの蒸気を使用するものであり、稼動しない場合は蒸気の使用量がゼロである。溶鋼真空処理装置29には配管31が接続されている。
【0012】
この配管31の下流側には圧力調整弁32が設けられているので、制御装置によって所定の圧力(例えば、0.7〜0.9MPa)に調整された蒸気が溶鋼真空処理装置29へ供給できる。この配管31に設けられた圧力調整弁32の上流側には、分岐点Pが設けられ、分岐点Pから分岐した支管33の先側には、溶鋼真空処理装置29へ供給するための蒸気を貯蔵する蒸気アキュムレータ34(例えば、容量が50〜100m3 程度)が、1又は2以上設けられている。
この配管31の分岐点Pの上流側端部には、予め設定した所定の速度勾配にて蒸気の供給及び停止を行うことができる制御弁35が設けられ、この制御弁35を介して主蒸気系統15の蒸気本管14に接続されている。これにより、主蒸気系統15から蒸気間欠消費系統30へ蒸気の供給及び停止を行うことが可能となる。
【0013】
また、間欠蒸気系統12の配管18に設けられた分岐点Qと、蒸気間欠消費系統30の配管31に設けれた分岐点Pとの間には、間欠蒸気系統12から蒸気間欠消費系統30へ間欠蒸気を直接供給できる蒸気配管36が設けられている。この蒸気配管36の途中には圧力調整弁37が設けられ、間欠蒸気系統12から供給される間欠蒸気を、蒸気配管36を介して制御装置により所定の圧力で蒸気間欠消費系統30へ供給している。この圧力調整弁37の圧力は、制御弁27の圧力より低い圧力に制御されているので、間欠蒸気系統12から主蒸気系統15へ間欠蒸気を供給できなくなった場合においても、間欠蒸気系統12から蒸気間欠消費系統30へ蒸気を供給できる。従って、間欠蒸気系統12の蒸気アキュムレータ22内に蓄積された間欠蒸気をより多く(差圧分)供給できる。
【0014】
このように、間欠蒸気系統12から蒸気間欠消費系統30へ蒸気配管36を介して間欠蒸気を供給することで、蒸気間欠消費装置29の稼動の有無に係わらず、蒸気本管14の蒸気の圧力を安定操業可能なレベルに制御できるので、蒸気本管14の外乱を防止し、蒸気供給設備10を安定に操業でき作業性が良好となる。なお、前記した間欠蒸気系統12、主蒸気系統15、補助蒸気系統17、蒸気間欠消費系統30を流れる各蒸気の圧力は、配管18、蒸気本管14、配管24、配管31にそれぞれ設けられたセンサーによって感知され、制御装置に送られ、制御されている。
【0015】
次に、本発明の一実施の形態に係る蒸気間欠消費設備への蒸気供給方法について、前記した蒸気供給設備10、図1、図2を参照しながら説明する。
通常、間欠蒸気系統12の蒸気アキュムレータ22内の間欠蒸気の測定圧力が十分に高い場合、即ち、複数の蒸気使用装置13及び溶鋼真空処理装置29が使用する全蒸気量を、蒸気アキュムレータ22から供給できる場合は、測定圧力に基づき、制御装置によって制御弁27及び圧力調整弁37をそれぞれ開状態とし、蒸気本管14と蒸気配管36の両方へ間欠蒸気を供給する(図2中の転炉吹錬中)。
【0016】
ここで、蒸気アキュムレータ22内に貯蔵された間欠蒸気の測定圧力が低くなってきた場合、即ち、複数の蒸気使用装置13及び溶鋼真空処理装置29が使用する全蒸気量を蒸気アキュムレータ22から供給できなくなってきた場合は、例えば、蒸気アキュムレータ22内の間欠蒸気の圧力が1.8MPa程度となる前までに、測定圧力に基づき制御装置によって制御弁27による間欠蒸気の供給制御を行う(図2中の転炉吹錬停止)。なお、このとき、蒸気配管36への間欠蒸気の供給は行われるが、主蒸気系統15の蒸気の圧力が補充蒸気の圧力より低下するので、主蒸気系統15の蒸気と補充蒸気との差圧により、逆止弁28を介して補充蒸気系統17から主蒸気系統15への補充蒸気の供給が行われる。また、蒸気配管36を流れる間欠蒸気の圧力は、蒸気本管14へ供給される間欠蒸気の圧力より低く設定されているので、間欠蒸気の圧力が蒸気配管36を流れる間欠蒸気の設定圧力より高い間は、間欠蒸気系統12から蒸気本管14への間欠蒸気の供給を流量制御し、更に停止した場合でも、間欠蒸気系統12から蒸気間欠消費系統30への間欠蒸気の供給は行われる。
【0017】
ここで、間欠蒸気の供給制御について説明する。
蒸気アキュムレータ22に蓄積された間欠蒸気を、蒸気配管36へ供給流量Qrh(t/h)で供給することで、溶鋼真空処理装置29への安定供給を保証しつつ、蒸気アキュムレータ22内の間欠蒸気の圧力値に応じて、蒸気本管14へ予め設定した流量勾配K(例えば、270t/h2 程度)で増減しながら供給流量Qgen(t/h)で供給するには、以下で求められる蒸気量を確保する必要がある。なお、この蒸気量は、蒸気アキュムレータ22の蓄積蒸気量(間欠蒸気の残量)Vacc(t)を使って計算する。また、蒸気アキュムレータ22の蓄積蒸気量は、蒸気アキュムレータ22内の測定圧力、蒸気のエンタルピー、蒸気アキュムレータ22内の熱水比容積等を用いて求められる。
【0018】
図2に示すように、蒸気アキュムレータ22から蒸気本管14への供給流量Qgenを、勾配Kで0(t/h)にするまでに必要な蒸気量は、三角形Xの面積で示される。また、供給流量Qgenが0(t/h)になるまでに、供給流量Qrh(t/h)で溶鋼真空処理装置29へ供給しなければならない蒸気量は、四角形Yの面積で示される。この四角形Yの面積は、溶鋼真空処理装置29で使用されるQrh4及びQrh5に必要な蒸気量以上の蒸気量であればよい。
これにより、前記した確保する必要がある蒸気量は、三角形X及び四角形Yで囲まれる面積で示される。この関係を(1)式に示す。
Vacc≧(Qgen×Qgen/K)/2+Qrh×Qgen/K・・(1)
【0019】
次に(1)式を、Qgenについて整理した式を(2)式に示す。
Qgen≦−Qrh+(Qrh2 +2×K×Vacc)1/2 ・・・(2)
ここで、Qgenは間欠蒸気系統12の蒸気アキュムレータ22から主蒸気系統15の蒸気本管14への間欠蒸気の供給流量、Qrhは間欠蒸気系統12の蒸気アキュムレータ22から蒸気間欠消費系統30への間欠蒸気の供給流量、Kは間欠蒸気系統12の蒸気アキュムレータ22から主蒸気系統15の蒸気本管14へ供給する間欠蒸気の流量勾配、Vaccは蒸気アキュムレータ22内の間欠蒸気の残量である。
【0020】
(2)式を満足する最大のQgenで間欠蒸気を蒸気本管14へ供給すれば、溶鋼真空処理装置29への間欠蒸気の安定供給を保証しながら、最大限間欠蒸気を活用できる。
ここで、主蒸気系統15の蒸気の圧力が所定圧力(1.6MPa)未満の場合、制御弁27の制御を流量制御に切替え、間欠蒸気の供給量に速度勾配を設け、蒸気アキュムレータ22に蓄積された間欠蒸気を最大限供給できるように流量制御を行う。一方、主蒸気系統15の蒸気の圧力が所定圧力以上の場合、制御弁27の制御を圧力制御に切替え、主蒸気系統15への間欠蒸気の導入量を制限し、蒸気本管14へ流れる間欠蒸気の圧力を1.6MPaに制御する。つまり、制御弁27により、常時は(2)式に基づいて流量制御を行い、蒸気本管14の需要がQgenより小さくなった場合に、圧力制御を行う。
なお、制御弁27の制御は、(2)式の計算結果から得られたQgenの目標値と、実際に流れているQgenの実績値との偏差をみて制御する例えばPID制御によって行い、制御弁27を連続的に稼動させることで行う。
【0021】
ここで、蒸気アキュムレータ22内の間欠蒸気の測定圧力が、蒸気間欠消費系統30へ供給できない圧力値まで減少すれば、間欠蒸気系統12から蒸気間欠消費系統30への間欠蒸気の供給も停止する。このため、間欠蒸気系統12から蒸気本管14への蒸気供給を停止する蒸気アキュムレータ22内の蒸気圧力より低い(例えば、制御弁27が閉状態となる圧力値より0.1〜0.2MPa程度低い)測定圧力で、制御装置によって制御弁35を開状態とし、例えば前記流量勾配Kで蒸気本管14から蒸気間欠消費系統30へ蒸気を供給する。この供給量を、図2中の三角形Zの面積に対応させることで、間欠蒸気系統12から供給できなくなった間欠蒸気の不足分を補うことが可能となる。
これにより、主蒸気系統15の蒸気本管14の圧力外乱が、1つの系統から発生することとなるので、圧力変動を容易に制御できる。
【0022】
一方、再度、転炉の吹錬が開始され、間欠蒸気系統12の蒸気アキュムレータ22内に貯蔵された間欠蒸気量が十分に貯蔵されて、複数の蒸気使用装置13及び溶鋼真空処理装置29が使用する全蒸気量を、蒸気アキュムレータ22から供給できる場合(例えば、蒸気アキュムレータ22内の間欠蒸気の圧力が1.8MPa程度まで増加した場合)は、溶鋼真空処理装置29が停止した状態で、前記した条件と逆の方法を用い、測定圧力に基づき制御装置によって制御弁35を閉状態とし、再度蒸気配管36を介して、間欠蒸気系統12から蒸気間欠消費系統30への間欠蒸気の供給を開始すると共に流量制御を行う。なお、このとき、間欠蒸気系統12の間欠蒸気の圧力が上昇することで、蒸気本管14の蒸気の圧力が補充蒸気の圧力より高くなった場合、逆止弁28によって補助蒸気系統17から蒸気本管14への補助蒸気の供給が停止され、間欠蒸気系統12から蒸気本管14への間欠蒸気の供給が再開される。
これにより、主蒸気系統15の蒸気本管14内の蒸気の圧力は、間欠蒸気の供給の有無に影響されることなく、管理値の範囲内で制御することができる。
【0023】
以上、本発明を、一実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
例えば、前記した実施の形態や変形例の一部又は全部を組合せて本発明の蒸気間欠消費設備への蒸気供給方法を構成する場合にも本発明は適用される。
また、前記実施の形態においては、補充蒸気発生装置として燃料焚きボイラを使用した場合について説明した。しかし、他の補充蒸気発生装置、例えばコークスの冷却時に発生する熱を利用するCDQを備えることも可能である。
【0024】
【発明の効果】
請求項1〜4記載の蒸気間欠消費設備への蒸気供給方法においては、現時点での間欠蒸気系統の間欠蒸気量を基に、主蒸気系統へ供給する間欠蒸気の供給制御を行うので、従来のように例えば蒸気アキュムレータ内の間欠蒸気量を予測することなく、間欠蒸気系統から主蒸気系統へ間欠蒸気を供給できる。従って、例えば急な予定変更による予測外れの影響等を考慮することなく、蒸気本管の蒸気の圧力を安定操業可能なレベルに制御できるので、設備を安定に操業できる。また、蒸気アキュムレータ内の間欠蒸気をより多く供給できるので、例えば間欠蒸気の貯蔵を行う蒸気アキュムレータの容量を変えることなく、蒸気の貯蔵量を増やすことが可能となる。このため、新たな設備投資に要する製造コストを抑制できると共に、蒸気アキュムレータに貯蔵できない間欠蒸気の大気への放散量を従来より減少でき経済的である。
特に、請求項2記載の蒸気間欠消費設備への蒸気供給方法においては、蒸気間欠消費系統に使用する間欠蒸気量を考慮すると共に、主蒸気系統へ供給可能な間欠蒸気量を容易に把握できるので、蒸気間欠消費装置を安定に稼動できる。
【0025】
請求項3記載の蒸気間欠消費設備への蒸気供給方法においては、逆止弁により補充蒸気系統から主蒸気系統への補充蒸気の供給を制御するので、主蒸気系統の蒸気の圧力に応じて補充蒸気系統からの補充蒸気の供給及び停止を自動的に行うことができる。従って、間欠蒸気系統から主蒸気系統への間欠蒸気の供給量に影響されることなく、主蒸気系統の蒸気の圧力を安定操業可能なレベルに制御できるので、設備を安定に操業でき作業性が良好となる。また、間欠蒸気が蒸気アキュムレータから主蒸気系統へ大量供給可能な場合は、間欠蒸気のみを主蒸気系統へ供給できるので、例えば間欠蒸気を大気へ放散することなく使用でき経済的である。
請求項4記載の蒸気間欠消費設備への蒸気供給方法においては、制御弁により蒸気アキュムレータから主蒸気系統への間欠蒸気の供給方法を変えるので、蒸気アキュムレータから主蒸気系統へ供給する間欠蒸気を、主蒸気系統の蒸気の圧力が所定圧力未満の場合は流量制御によって最大供給し、過昇圧時のみ圧力を制御して供給できる。従って、間欠蒸気を大量供給可能な場合には、補充蒸気系統から主蒸気系統への補充蒸気の供給を行うことなく、主蒸気系統へ間欠蒸気を供給できるので、補充蒸気系統を使用する必要がなく経済的である。また、主蒸気系統の蒸気の圧力が過昇圧の場合には、主蒸気系統へ供給する間欠蒸気の圧力を制御して供給するので、更に設備を安定に操業でき作業性が良好となる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る蒸気間欠消費設備への蒸気供給方法を適用する蒸気供給設備の説明図である。
【図2】同蒸気間欠消費設備への蒸気供給方法を適用した供給制御の説明図である。
【符号の説明】
10:蒸気供給設備、11:OGボイラ(間欠蒸気発生装置)、12:間欠蒸気系統、13:蒸気使用装置、14:蒸気本管、15:主蒸気系統、16:燃料焚きボイラ(補充蒸気発生装置)、17:補充蒸気系統、18:配管、19:支管、20:放散弁、21:支管、22:蒸気アキュムレータ、23:減圧弁、24:配管、25:支管、26:蒸気タービン発電機、27:制御弁、28:逆止弁、29:溶鋼真空処理装置(蒸気間欠消費装置)、30:蒸気間欠消費系統、31:配管、32:圧力調整弁、33:支管、34:蒸気アキュムレータ、35:制御弁、36:蒸気配管、37:圧力調整弁
[0001]
BACKGROUND OF THE INVENTION
The present invention supplies steam to an intermittent steam consumption facility that supplies intermittent steam (intermittent steam) to a main system (main steam system) and also supplies to an intermittent steam consumption system in which steam consumption varies. It relates to a supply method.
[0002]
[Prior art]
Since the converter gas generated during hot metal blowing in the converter is high temperature, various methods for recovering this heat have been proposed. For example, an intermittent steam generator (for example, a heat recovery device) is provided in a hood or the like that covers the upper part of the converter furnace mouth, and heat is recovered as steam into a steam accumulator, and the recovered steam is passed through the steam pipe of the main system to intermittent steam consumption (E.g., molten steel vacuum processing equipment) and other general factory equipment and other steam using equipment. However, since the converter is operated intermittently, the steam is intermittent steam (OG steam) that is generated intermittently and is difficult to use continuously. Therefore, a method for effectively utilizing this steam has been proposed. ing.
For example, in Japanese Patent Laid-Open No. 3-285008, the intermittent steam generation amount predicted from the converter operation data, the steam usage amount of the intermittent steam consumption device predicted from the operation data of the intermittent steam consumption device, and the current From the pressure value in the steam accumulator, the subsequent pressure in the steam accumulator is predicted and calculated, and the amount of intermittent steam required to supply the steam intermittent consumption device directly from other steam generators other than the intermittent steam generator is calculated. A method of calculating and adjusting the flow rate adjustment valve so as to be the calculated supply amount is disclosed. As a result, when the supply amount of intermittent steam from the steam accumulator is insufficient, when the supply is started directly from another steam generator or when the supply is stopped, the change in the supply amount is slowed and the supply amount is reduced. The increase / decrease can be reduced.
Further, in JP-A-4-50407, the amount of steam held in the steam accumulator is predicted in time series from the predicted value of the intermittent steam amount generated from the intermittent steam generator and the predicted value of the used steam amount, When this predicted value exceeds the upper limit holding amount of the steam accumulator or falls below the lower limit holding amount, the amount and time exceeding the upper limit holding amount from the predicted time point, or the adjustment amount from the amount and time below the lower limit holding amount, respectively. There is disclosed a method for adjusting the amount of steam generated from a steady steam generator that calculates and calculates steam in a steady manner in advance by the calculated amount. Thereby, when using intermittent steam for an intermittent steam consumption apparatus effectively, the steady steam generator which backs up by reducing the load fluctuation of steam can be reduced in size.
[0003]
[Problems to be solved by the invention]
However, the above steam supply method to the intermittent steam consumption equipment has the following problems.
In any method, since the predicted value is used, the prediction may be lost due to fluctuations in the converter blowing information, and pressure fluctuations may occur in the main system. Here, when the pressure of the main system is over-pressurized, it becomes impossible to control the pressure of the main system, while when the pressure of the main system decreases, it becomes impossible to supply steam to the steam intermittent consumption device and the steam using device, Stable operation cannot be performed. At this time, it is good if the steam turbine can absorb pressure fluctuations freely, but the steam system using a fuel-fired boiler whose pressure control performance (response speed) is inferior to the extraction from the steam turbine cannot absorb the pressure fluctuations. is there.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for supplying steam to an intermittent steam consumption facility capable of controlling the pressure fluctuation of the main system and performing stable operation.
[0004]
[Means for Solving the Problems]
The steam supply method to the steam intermittent consumption equipment according to the present invention that meets the above-mentioned object is an intermittent steam system in which steam generation is intermittent in a main steam system including a plurality of steam using devices provided in a steam main. The intermittent steam in the steam accumulator is supplied to the intermittent steam consumption system provided with the intermittent steam consumption device provided in the steam main and supplying the intermittent steam in the steam accumulator. In the steam supply method to the intermittent steam consumption facility for supplying steam, a steam pipe capable of directly supplying intermittent steam is provided between the intermittent steam consumption system and the intermittent steam system, and a plurality of steam use devices and intermittent steam consumption devices are provided. If the amount of steam to be used cannot be supplied from the intermittent steam system, the intermittent steam supply control to the steam main by the control valve is performed.The maximum amount of steam obtained based onThis is performed using a preset flow rate gradient. Thus, since intermittent supply control of the intermittent steam supplied to the main steam system is performed based on the intermittent steam quantity of the intermittent steam system at the present time, for example, without predicting the intermittent steam quantity in the steam accumulator as in the past. The intermittent steam can be supplied from the intermittent steam system to the main steam system.
Here, in the steam supply method to the steam intermittent consumption facility according to the present invention, the intermittent steamSteam supplyUsing the following formula:AskingIt is preferable that
Qgen ≦ −Qrh + (Qrh2+2 x K x Vacc)1/2
Here, Qgen is the supply flow rate of intermittent steam from the intermittent steam system to the main steam system, Qrh is the supply flow rate of intermittent steam from the intermittent steam system to the intermittent steam consumption system, and K is supplied from the intermittent steam system to the main steam system. The flow rate gradient of intermittent steam, Vacc, is the remaining amount of intermittent steam in the steam accumulator. Thereby, while considering the intermittent steam volume used for an intermittent steam consumption system, the intermittent steam volume which can be supplied to the main steam system can be grasped easily.
[0005]
In the steam supply method to the intermittent steam consumption facility according to the present invention, the main steam system is provided with a supplemental steam system capable of supplying steam to the main steam system, and a check is not provided between the main steam system and the supplemental steam system. When the pressure value of the intermittent steam in the steam accumulator is reduced and the steam pressure in the main steam system is lower than the supplementary steam pressure in the supplementary steam system, a differential pressure between the steam in the main steam system and the supplementary steam is provided. As a result, supplementary steam is supplied from the supplementary steam system to the main steam system via the check valve, the pressure value of the intermittent steam in the steam accumulator rises, and the steam pressure in the main steam system is higher than the pressure of the supplementary steam. In this case, it is preferable to stop the supply of the supplemental steam from the supplemental steam system to the main steam system by the check valve. In this way, the supply of supplementary steam from the supplementary steam system to the main steam system is controlled by the check valve, so that supply and stoppage of supplementary steam from the supplementary steam system are automatically performed according to the steam pressure of the main steam system. Can be done.
In the steam supply method to the intermittent steam consumption facility according to the present invention, the control valve can perform switching between flow rate control and pressure control, and the control valve sets a predetermined pressure at which the steam pressure of the main steam system is preset. If it is less than the range, it is preferable to control the flow rate of the intermittent steam flowing to the main steam system, and to control the pressure of the intermittent steam flowing to the main steam system when the steam pressure of the main steam system is equal to or higher than a predetermined pressure. In this way, the intermittent steam supply method from the intermittent steam system to the main steam system is changed by the control valve, so that the intermittent steam supplied from the steam accumulator to the main steam system is less than the predetermined pressure. In this case, the maximum supply can be performed by the flow rate control, and the pressure can be controlled and supplied only at the time of excessive pressure increase.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is an explanatory diagram of a steam supply facility to which the steam supply method to the intermittent steam consumption facility according to one embodiment of the present invention is applied, and FIG. 2 is an application of the steam supply method to the intermittent steam consumption facility. It is explanatory drawing of supply control.
[0007]
As shown in FIG. 1, a steam supply facility 10 to which a steam supply method to a steam intermittent consumption facility according to an embodiment of the present invention is applied is an OG boiler (an example of an intermittent steam generator) whose steam generation amount varies. A main steam system (also referred to as a main system) 15 provided with a steam main pipe 14 provided with a plurality of steam using devices 13 to which intermittent steam from the intermittent steam system 12 is supplied; And a supplemental steam system 17 having a fuel-fired boiler (an example of a supplemental steam generator) 16 for supplying supplemental steam to the main steam system 15 when the pressure of the intermittent steam supplied from the intermittent steam system 12 decreases. Equipment. Each device of the steam supply facility 10 is operated by a control device (not shown) such as a control computer. This will be described in detail below.
[0008]
In the intermittent steam system 12, the OG boiler 11 generates high-temperature and high-pressure steam by exchanging latent heat and sensible heat of the recovered converter gas, and the amount of intermittent steam produced is, for example, 0 to 0 per unit time. It fluctuates in the range of 400t, and the average is about 80-90t. One or two or more OG boilers 11 can be installed depending on the number of converters (not shown), and a pipe 18 is connected to the OG boiler 11. A branch point X is provided on the upstream side of the pipe 18, and a branch valve 19 branched from the branch point X is provided with a diffusion valve 20. Thereby, when the pressure of the intermittent steam of the intermittent steam system 12 provided with the OG boiler 11 becomes an excessive pressure, the intermittent steam can be exhausted by the diffusion valve 20 and the pressure of the intermittent steam can be adjusted. .
Further, a branch point Y is provided on the downstream side of the branch point X of the pipe 18, and a steam accumulator 22 (stores the steam produced by the OG boiler 11) at the downstream end of the branch pipe 21 branched from the branch point Y. For example, capacity is 300mThree 1) or 2 or more. Note that the pressure in the steam accumulator 22 (for example, about 3.7 MPa at the maximum) is measured by a pressure gauge (not shown), and this measured pressure is input to the control device. Further, a pressure reducing valve 23 is provided on the downstream side of the branch point Y of the pipe 18 to depressurize, for example, 3.7 MPa steam to, for example, about 2.0 MPa (1.9 MPa in this embodiment).
[0009]
In the supplementary steam system 17, the fuel-fired boiler 16 continuously generates high-temperature and high-pressure steam, and the amount of supplementary steam produced is, for example, about 60 to 120 t per unit time. Here, two fuel-fired boilers 16 are disposed, but one may be disposed, or three or more may be disposed. A pipe 24 is connected to the fuel-fired boiler 16, and a branch point Z is provided in the pipe 24. A steam turbine generator 26 is provided at the downstream end of the branch pipe 25 branched from the branch point Z. The replenished steam generated in the fuel-fired boiler 16 is charged for about 20 to 120 t per unit time, for example. For example, about 3 to 24 MW is generated.
The supplementary steam in the pipe 24 is controlled to have a pressure of, for example, about 1.5 MPa by operating the steam turbine generator 26.
[0010]
A control valve 27 for switching between flow rate control and pressure control is provided at the downstream end of the pipe 18 of the intermittent steam system 12, and is connected to the steam main pipe 14 of the main steam system 15 via the control valve 27. Has been. Thereby, the intermittent steam is supplied to the steam main pipe 14 via the control valve 27, and further supplied from the steam main pipe 14 to the plurality of steam using devices 13.
A check valve 28 is provided at the downstream end of the pipe 24 of the supplementary steam system 17, and is connected to the steam main pipe 14 of the main steam system 15 via the check valve 28. Thereby, when the pressure of the intermittent steam supplied from the intermittent steam system 12 decreases and the pressure of the steam of the main steam system 15 decreases below the pressure of the supplemental steam, the supplemental steam from the supplemental steam system 17 to the main steam system 15 is obtained. Can be supplied. On the other hand, when intermittent steam is supplied from the intermittent steam system 12 to the main steam system 15 and the pressure of the steam in the main steam system 15 is higher than the pressure of the supplemental steam, the steam flows from the main steam system 15 to the supplemental steam system 17. Can be prevented. In this way, the flow of supplemental steam to the main steam system 15 can be controlled with a simple configuration, which is economical.
[0011]
The steam in the steam main pipe 14 of the main steam system 15 is set to a predetermined pressure, that is, 1.6 MPa (for example, about 200 to 300 ° C.), and in order to stably operate the steam supply facility 10, for example, 1.5 It is managed in a range of about ~ 1.6 MPa (management value). The steam main pipe 14 is provided with an intermittent steam consumption system 30 including a molten steel vacuum processing apparatus (RH degassing apparatus) 29 which is an example of an intermittent steam consumption apparatus in which the steam consumption varies. This molten steel vacuum processing device 29 uses, for example, 20 to 80 t of steam per unit time intermittently (for example, for about 10 to 15 minutes), and the amount of steam used is zero when not operating. . A pipe 31 is connected to the molten steel vacuum processing device 29.
[0012]
Since the pressure adjusting valve 32 is provided on the downstream side of the pipe 31, steam adjusted to a predetermined pressure (for example, 0.7 to 0.9 MPa) by the control device can be supplied to the molten steel vacuum processing device 29. . A branch point P is provided on the upstream side of the pressure regulating valve 32 provided in the pipe 31, and steam to be supplied to the molten steel vacuum processing device 29 is provided on the front side of the branch pipe 33 branched from the branch point P. Steam accumulator 34 to store (for example, 50-100 m capacity)Three 1) or 2 or more.
A control valve 35 capable of supplying and stopping steam at a predetermined speed gradient set in advance is provided at the upstream end of the branch point P of the pipe 31, and the main steam is passed through the control valve 35. It is connected to the steam main pipe 14 of the system 15. This makes it possible to supply and stop steam from the main steam system 15 to the intermittent steam consumption system 30.
[0013]
Further, between the branch point Q provided in the pipe 18 of the intermittent steam system 12 and the branch point P provided in the pipe 31 of the intermittent steam consumption system 30, the intermittent steam system 12 to the intermittent steam consumption system 30. A steam pipe 36 that can directly supply intermittent steam is provided. A pressure regulating valve 37 is provided in the middle of the steam pipe 36, and intermittent steam supplied from the intermittent steam system 12 is supplied to the steam intermittent consumption system 30 at a predetermined pressure by the control device via the steam pipe 36. Yes. Since the pressure of the pressure regulating valve 37 is controlled to be lower than the pressure of the control valve 27, even when intermittent steam cannot be supplied from the intermittent steam system 12 to the main steam system 15, Steam can be supplied to the intermittent steam consumption system 30. Therefore, more intermittent steam accumulated in the steam accumulator 22 of the intermittent steam system 12 can be supplied (for differential pressure).
[0014]
In this way, by supplying intermittent steam from the intermittent steam system 12 to the intermittent steam consumption system 30 via the steam pipe 36, the steam pressure in the steam main pipe 14 regardless of whether the intermittent steam consumption device 29 is in operation or not. Therefore, the disturbance of the steam main pipe 14 can be prevented, the steam supply facility 10 can be operated stably, and the workability is improved. The pressure of each steam flowing through the intermittent steam system 12, the main steam system 15, the auxiliary steam system 17, and the intermittent steam consumption system 30 is provided in the pipe 18, the steam main pipe 14, the pipe 24, and the pipe 31, respectively. It is sensed by a sensor, sent to a control device, and controlled.
[0015]
Next, a steam supply method to the intermittent steam consumption facility according to an embodiment of the present invention will be described with reference to the steam supply facility 10 and FIGS. 1 and 2.
Usually, when the measurement pressure of intermittent steam in the steam accumulator 22 of the intermittent steam system 12 is sufficiently high, that is, the total steam amount used by the plurality of steam using devices 13 and the molten steel vacuum processing device 29 is supplied from the steam accumulator 22. If possible, based on the measured pressure, the control device 27 opens the control valve 27 and the pressure regulating valve 37 respectively, and supplies intermittent steam to both the steam main pipe 14 and the steam pipe 36 (the converter blowing in FIG. 2). Smelting).
[0016]
Here, when the measurement pressure of the intermittent steam stored in the steam accumulator 22 becomes low, that is, the total steam amount used by the plurality of steam using devices 13 and the molten steel vacuum processing device 29 can be supplied from the steam accumulator 22. In the case where it disappears, for example, before the pressure of the intermittent steam in the steam accumulator 22 reaches about 1.8 MPa, the supply of intermittent steam by the control valve 27 is controlled by the control device based on the measured pressure (in FIG. 2). (Converter Blowing) At this time, intermittent steam is supplied to the steam pipe 36, but the pressure of the steam in the main steam system 15 is lower than the pressure of the supplementary steam, so that the pressure difference between the steam in the main steam system 15 and the supplementary steam. Thus, supplementary steam is supplied from the supplemental steam system 17 to the main steam system 15 via the check valve 28. Further, since the pressure of the intermittent steam flowing through the steam pipe 36 is set lower than the pressure of the intermittent steam supplied to the steam main pipe 14, the pressure of the intermittent steam is higher than the set pressure of the intermittent steam flowing through the steam pipe 36. In the meantime, the supply of intermittent steam from the intermittent steam system 12 to the steam main pipe 14 is controlled, and even when the intermittent steam system 12 is stopped, the intermittent steam is supplied from the intermittent steam system 12 to the intermittent steam consumption system 30.
[0017]
Here, the supply control of intermittent steam will be described.
The intermittent steam accumulated in the steam accumulator 22 is supplied to the steam pipe 36 at a supply flow rate Qrh (t / h), so that the stable supply to the molten steel vacuum processing device 29 is ensured and the intermittent steam in the steam accumulator 22 is provided. The flow rate gradient K preset in the steam main pipe 14 (for example, 270 t / h)2 In order to supply at a supply flow rate Qgen (t / h) while increasing / decreasing by about), it is necessary to secure the amount of steam required below. The amount of steam is calculated using the amount of accumulated steam (remaining amount of intermittent steam) Vacc (t) in the steam accumulator 22. Further, the amount of accumulated steam in the steam accumulator 22 is obtained using the measured pressure in the steam accumulator 22, the enthalpy of steam, the specific hot water volume in the steam accumulator 22, and the like.
[0018]
As shown in FIG. 2, the amount of steam necessary for the supply flow rate Qgen from the steam accumulator 22 to the steam main pipe 14 to be 0 (t / h) with the gradient K is indicated by the area of the triangle X. The amount of steam that must be supplied to the molten steel vacuum processing device 29 at the supply flow rate Qrh (t / h) before the supply flow rate Qgen becomes 0 (t / h) is indicated by the area of the square Y. The area of the quadrilateral Y may be an amount of steam that is equal to or greater than the amount of steam necessary for Qrh4 and Qrh5 used in the molten steel vacuum processing apparatus 29.
Thus, the amount of steam that needs to be secured is indicated by the area surrounded by the triangle X and the quadrangle Y. This relationship is shown in equation (1).
Vacc ≧ (Qgen × Qgen / K) / 2 + Qrh × Qgen / K (1)
[0019]
Next, the formula (1) and the formula arranged for Qgen are shown in the formula (2).
Qgen ≦ −Qrh + (Qrh2 +2 x K x Vacc)1/2     ... (2)
Here, Qgen is the supply flow rate of intermittent steam from the steam accumulator 22 of the intermittent steam system 12 to the steam main pipe 14 of the main steam system 15, and Qrh is intermittent from the steam accumulator 22 of the intermittent steam system 12 to the intermittent steam consumption system 30. The steam supply flow rate, K is the flow rate gradient of intermittent steam supplied from the steam accumulator 22 of the intermittent steam system 12 to the steam main pipe 14 of the main steam system 15, and Vacc is the remaining amount of intermittent steam in the steam accumulator 22.
[0020]
If intermittent steam is supplied to the steam main pipe 14 with the maximum Qgen that satisfies the expression (2), the intermittent steam can be utilized to the maximum while guaranteeing a stable supply of intermittent steam to the molten steel vacuum processing device 29.
Here, when the pressure of the steam of the main steam system 15 is less than a predetermined pressure (1.6 MPa), the control of the control valve 27 is switched to flow control, a speed gradient is provided in the supply amount of intermittent steam, and the steam accumulator 22 accumulates. The flow rate is controlled so that the intermittent steam can be supplied to the maximum. On the other hand, when the steam pressure in the main steam system 15 is equal to or higher than the predetermined pressure, the control of the control valve 27 is switched to pressure control, the amount of intermittent steam introduced into the main steam system 15 is limited, and the intermittent flow that flows into the steam main pipe 14 is performed. The vapor pressure is controlled to 1.6 MPa. That is, the control valve 27 always controls the flow rate based on the formula (2), and performs pressure control when the demand for the steam main pipe 14 becomes smaller than Qgen.
Note that the control valve 27 is controlled by, for example, PID control, which performs control by looking at the deviation between the target value of Qgen obtained from the calculation result of equation (2) and the actual value of Qgen that is actually flowing. 27 is performed by operating continuously.
[0021]
Here, if the measured pressure of the intermittent steam in the steam accumulator 22 decreases to a pressure value that cannot be supplied to the intermittent steam consumption system 30, the supply of intermittent steam from the intermittent steam system 12 to the intermittent steam consumption system 30 is also stopped. For this reason, it is lower than the steam pressure in the steam accumulator 22 that stops the steam supply from the intermittent steam system 12 to the steam main pipe 14 (for example, about 0.1 to 0.2 MPa from the pressure value at which the control valve 27 is closed). The control valve 35 is opened by the control device at a low (measured) pressure, and steam is supplied from the steam main pipe 14 to the intermittent steam consumption system 30 at the flow rate gradient K, for example. By making this supply amount correspond to the area of the triangle Z in FIG. 2, it becomes possible to compensate for the shortage of intermittent steam that can no longer be supplied from the intermittent steam system 12.
Thereby, since the pressure disturbance of the steam main pipe 14 of the main steam system 15 is generated from one system, the pressure fluctuation can be easily controlled.
[0022]
On the other hand, the blowing of the converter is started again, the amount of intermittent steam stored in the steam accumulator 22 of the intermittent steam system 12 is sufficiently stored, and the plurality of steam using devices 13 and the molten steel vacuum processing device 29 are used. When the total amount of steam to be supplied can be supplied from the steam accumulator 22 (for example, when the pressure of the intermittent steam in the steam accumulator 22 is increased to about 1.8 MPa), the molten steel vacuum processing device 29 is stopped, as described above. Using a method opposite to the conditions, the control valve 35 is closed by the control device based on the measured pressure, and supply of intermittent steam from the intermittent steam system 12 to the intermittent steam consumption system 30 is started again via the steam pipe 36. At the same time, flow control is performed. At this time, when the pressure of the intermittent steam in the intermittent steam system 12 rises so that the steam pressure in the steam main pipe 14 becomes higher than the pressure of the supplemental steam, the check valve 28 causes the steam from the auxiliary steam system 17 to flow. The supply of auxiliary steam to the main pipe 14 is stopped, and the supply of intermittent steam from the intermittent steam system 12 to the steam main pipe 14 is resumed.
Thereby, the pressure of the steam in the steam main pipe 14 of the main steam system 15 can be controlled within the range of the management value without being affected by the presence or absence of the supply of intermittent steam.
[0023]
The present invention has been described above with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and is described in the claims. Other embodiments and modifications conceivable within the scope of the above are also included.
For example, the present invention is also applied when the steam supply method to the intermittent steam consumption facility of the present invention is configured by combining some or all of the above-described embodiments and modifications.
Moreover, in the said embodiment, the case where a fuel-fired boiler was used as a supplemental steam generator was demonstrated. However, it is also possible to provide other supplemental steam generators such as a CDQ that utilizes heat generated during the cooling of coke.
[0024]
【The invention's effect】
In the steam supply method to the steam intermittent consumption facility according to claims 1 to 4, since the supply control of the intermittent steam supplied to the main steam system is performed based on the intermittent steam amount of the intermittent steam system at the present time, Thus, for example, intermittent steam can be supplied from the intermittent steam system to the main steam system without predicting the amount of intermittent steam in the steam accumulator. Therefore, for example, the steam pressure in the steam main can be controlled to a level at which stable operation is possible without considering the effect of unforeseen due to a sudden change in schedule, and the facility can be operated stably. In addition, since more intermittent steam in the steam accumulator can be supplied, for example, it is possible to increase the amount of stored steam without changing the capacity of the steam accumulator that stores intermittent steam. For this reason, the manufacturing cost required for new equipment investment can be suppressed, and the amount of intermittent steam that cannot be stored in the steam accumulator can be reduced to the atmosphere, which is economical.
In particular, in the steam supply method to the intermittent steam consumption facility according to claim 2, the intermittent steam amount used for the intermittent steam consumption system is taken into account, and the intermittent steam amount that can be supplied to the main steam system can be easily grasped. The steam intermittent consumption device can be operated stably.
[0025]
In the steam supply method to the intermittent steam consumption equipment according to claim 3, since the supply of supplementary steam from the supplementary steam system to the main steam system is controlled by a check valve, supplementation is performed according to the steam pressure of the main steam system. It is possible to automatically supply and stop supplemental steam from the steam system. Therefore, the steam pressure in the main steam system can be controlled to a level at which stable operation is possible without being affected by the amount of intermittent steam supplied from the intermittent steam system to the main steam system. It becomes good. Further, when a large amount of intermittent steam can be supplied from the steam accumulator to the main steam system, only the intermittent steam can be supplied to the main steam system, and therefore, for example, the intermittent steam can be used without being diffused to the atmosphere, which is economical.
In the steam supply method to the steam intermittent consumption facility according to claim 4, since the intermittent steam supply method from the steam accumulator to the main steam system is changed by the control valve, the intermittent steam supplied from the steam accumulator to the main steam system, When the steam pressure in the main steam system is less than a predetermined pressure, the maximum supply is performed by flow control, and the pressure can be controlled and supplied only at the time of overpressure. Accordingly, when a large amount of intermittent steam can be supplied, intermittent steam can be supplied to the main steam system without supplying supplementary steam from the supplementary steam system to the main steam system. It is economical. Further, when the pressure of the steam in the main steam system is excessively increased, the pressure of the intermittent steam supplied to the main steam system is controlled and supplied, so that the equipment can be operated more stably and the workability is improved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a steam supply facility to which a steam supply method to an intermittent steam consumption facility according to an embodiment of the present invention is applied.
FIG. 2 is an explanatory diagram of supply control to which a steam supply method for the intermittent steam consumption facility is applied.
[Explanation of symbols]
10: Steam supply equipment, 11: OG boiler (intermittent steam generator), 12: intermittent steam system, 13: steam using device, 14: steam main, 15: main steam system, 16: fuel-fired boiler (replenishing steam generation) Equipment), 17: supplementary steam system, 18: piping, 19: branch pipe, 20: diffusion valve, 21: branch pipe, 22: steam accumulator, 23: pressure reducing valve, 24: piping, 25: branch pipe, 26: steam turbine generator 27: control valve, 28: check valve, 29: molten steel vacuum processing device (steam intermittent consumption device), 30: intermittent steam consumption system, 31: piping, 32: pressure regulating valve, 33: branch pipe, 34: steam accumulator , 35: control valve, 36: steam piping, 37: pressure regulating valve

Claims (4)

蒸気本管に設けられた複数の蒸気使用装置を備えた主蒸気系統に、蒸気発生が間欠的である間欠蒸気系統に備えられた蒸気アキュムレータ内の間欠蒸気を制御弁を介して供給すると共に、前記蒸気本管に設けられた蒸気消費量が変動する蒸気間欠消費装置を備えた蒸気間欠消費系統に前記蒸気アキュムレータ内の間欠蒸気を供給する蒸気間欠消費設備への蒸気供給方法において、
前記蒸気間欠消費系統と前記間欠蒸気系統との間には前記間欠蒸気を直接供給できる蒸気配管が設けられ、前記複数の蒸気使用装置及び前記蒸気間欠消費装置が使用する蒸気量を前記間欠蒸気系統から供給できない場合は、前記制御弁による前記蒸気本管への前記間欠蒸気の供給制御を、前記蒸気アキュムレータ内の間欠蒸気の残量を基にして求めた蒸気供給量を最大として、予め設定した流量勾配を用いて行うことを特徴とする蒸気間欠消費設備への蒸気供給方法。
Supplying, via a control valve, intermittent steam in a steam accumulator provided in an intermittent steam system in which steam generation is intermittent to a main steam system provided with a plurality of steam using devices provided in the steam main, In the steam supply method to the steam intermittent consumption facility for supplying the intermittent steam in the steam accumulator to the steam intermittent consumption system provided with the steam intermittent consumption device provided with the steam consumption varying in the steam main,
A steam pipe capable of directly supplying the intermittent steam is provided between the intermittent steam consumption system and the intermittent steam system, and the amount of steam used by the plurality of steam use devices and the intermittent steam consumption device is set in the intermittent steam system. The supply of the intermittent steam to the steam main by the control valve is preset with the steam supply amount obtained based on the remaining amount of intermittent steam in the steam accumulator being set as a maximum . A steam supply method for intermittent steam consumption equipment, characterized by using a flow rate gradient.
請求項1記載の蒸気間欠消費設備への蒸気供給方法において、前記間欠蒸気の前記蒸気供給量は、以下の式を用いて求められることを特徴とする蒸気間欠消費設備への蒸気供給方法。
Qgen≦−Qrh+(Qrh2+2×K×Vacc)1/2
ここで、Qgenは前記間欠蒸気系統から前記主蒸気系統への前記間欠蒸気の供給流量、Qrhは前記間欠蒸気系統から前記蒸気間欠消費系統への前記間欠蒸気の供給流量、Kは前記間欠蒸気系統から前記主蒸気系統へ供給する前記間欠蒸気の前記流量勾配、Vaccは前記蒸気アキュムレータ内の間欠蒸気の残量である。
In the steam supply process to claim 1 the steam intermittently consumption equipment, wherein the steam supply amount of the intermittent steam, the steam supply method to the steam intermittent consuming facility, wherein the determined al are using the following equation.
Qgen ≦ −Qrh + (Qrh 2 + 2 × K × Vacc) 1/2
Here, Qgen is the supply flow rate of the intermittent steam from the intermittent steam system to the main steam system, Qrh is the supply flow rate of the intermittent steam from the intermittent steam system to the intermittent steam consumption system, and K is the intermittent steam system. The flow rate gradient of the intermittent steam supplied to the main steam system, Vacc, is the remaining amount of intermittent steam in the steam accumulator.
請求項1及び2のいずれか1項に記載の蒸気間欠消費設備への蒸気供給方法において、前記主蒸気系統には、前記主蒸気系統に蒸気を供給できる補充蒸気系統を設けると共に、前記主蒸気系統と前記補充蒸気系統との間には逆止弁を設け、前記蒸気アキュムレータ内の前記間欠蒸気の圧力値が低下し、前記主蒸気系統の蒸気の圧力が前記補充蒸気系統の補充蒸気の圧力より低下した場合、前記主蒸気系統の蒸気と前記補充蒸気との差圧により、前記逆止弁を介して前記補充蒸気系統から前記主蒸気系統へ前記補充蒸気を供給し、また前記蒸気アキュムレータ内の間欠蒸気の圧力値が上昇し、前記主蒸気系統の蒸気の圧力が前記補充蒸気の圧力より高くなった場合、前記逆止弁により前記補充蒸気系統から前記主蒸気系統への前記補充蒸気の供給を停止することを特徴とする蒸気間欠消費設備への蒸気供給方法。  3. The steam supply method to the steam intermittent consumption facility according to claim 1, wherein the main steam system is provided with a supplemental steam system capable of supplying steam to the main steam system, and the main steam is provided. A check valve is provided between the system and the supplementary steam system, the pressure value of the intermittent steam in the steam accumulator decreases, and the steam pressure of the main steam system becomes the pressure of the supplementary steam of the supplementary steam system. When the pressure drops further, the supplementary steam is supplied from the supplementary steam system to the main steam system via the check valve due to a differential pressure between the steam of the main steam system and the supplementary steam, and the steam accumulator When the pressure value of the intermittent steam of the main steam system rises and the pressure of the steam of the main steam system becomes higher than the pressure of the supplemental steam, the check valve controls the amount of the supplemental steam from the supplementary steam system to the main steam system. Serving Steam supply method to the steam intermittent consuming facility, characterized in that stop. 請求項1〜3のいずれか1項に記載の蒸気間欠消費設備への蒸気供給方法において、前記制御弁は、流量制御と圧力制御との切替えを行うことができ、該制御弁により、前記主蒸気系統の蒸気の圧力が予め設定した所定圧力未満の場合、前記主蒸気系統へ流れる前記間欠蒸気の流量を制御し、また前記主蒸気系統の蒸気の圧力が前記所定圧力以上の場合、前記主蒸気系統へ流れる前記間欠蒸気の圧力を制御することを特徴とする蒸気間欠消費設備への蒸気供給方法。  The steam supply method to the steam intermittent consumption facility according to any one of claims 1 to 3, wherein the control valve can perform switching between flow rate control and pressure control, and the control valve allows the main valve to be switched. When the steam pressure of the steam system is less than a predetermined pressure set in advance, the flow rate of the intermittent steam flowing to the main steam system is controlled, and when the steam pressure of the main steam system is equal to or higher than the predetermined pressure, the main steam system A steam supply method for intermittent steam consumption equipment, characterized by controlling a pressure of the intermittent steam flowing to a steam system.
JP2002138849A 2002-05-14 2002-05-14 Steam supply method to intermittent steam consumption equipment Expired - Fee Related JP4091791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002138849A JP4091791B2 (en) 2002-05-14 2002-05-14 Steam supply method to intermittent steam consumption equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002138849A JP4091791B2 (en) 2002-05-14 2002-05-14 Steam supply method to intermittent steam consumption equipment

Publications (2)

Publication Number Publication Date
JP2003328703A JP2003328703A (en) 2003-11-19
JP4091791B2 true JP4091791B2 (en) 2008-05-28

Family

ID=29700185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002138849A Expired - Fee Related JP4091791B2 (en) 2002-05-14 2002-05-14 Steam supply method to intermittent steam consumption equipment

Country Status (1)

Country Link
JP (1) JP4091791B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242673A (en) * 2009-04-08 2010-10-28 Toshiba Corp Steam turbine system and method for operating the same
CN109973983A (en) * 2017-12-28 2019-07-05 红塔烟草(集团)有限责任公司 A kind of heat accumulator system and its control method of quick response
CN115977747B (en) * 2022-07-23 2023-08-01 江苏省镔鑫钢铁集团有限公司 Application method of power generation device capable of reducing shutdown of sintering waste heat steam turbine

Also Published As

Publication number Publication date
JP2003328703A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP5786449B2 (en) Heat pump steam generator
US8090545B2 (en) Method and apparatus for determination of the life consumption of individual components in a fossil fuelled power generating installation, in particular in a gas and steam turbine installation
JP5550746B2 (en) Condensate flow control device and control method for power plant
JP6288496B2 (en) Heat source machine operation number control device, heat source system, control method and program
KR101771985B1 (en) Energy supply/demand management guidance device and ironworks energy supply/demand management method
CN104641185B (en) Heat source system and its control method
JP2010007665A (en) Method for primary control of combined gas and steam turbine arrangement
JP4091791B2 (en) Steam supply method to intermittent steam consumption equipment
US20150107536A1 (en) Control system for allocating steam flow through elements
JP6684453B2 (en) Extraction control method and control device for steam turbine generator
JP2016194386A (en) Heat source control system
US20100170243A1 (en) Method and device for utilizing heat transported by a discontinuous flow of exhaust gases
JP2009019842A (en) Water delivery control system and water delivery control method
JP4091795B2 (en) System for introducing intermittently generated steam and method for introducing the system
JP3971646B2 (en) Replenishment steam control method
JP4091796B2 (en) How to introduce intermittent steam
JP5895498B2 (en) Turbine bypass device and turbine bypass control method
JP2004190620A (en) Control method for utility system
JP2008280972A (en) Optimal operation method for steam system
JPH04187803A (en) Auxiliary steam pressure controller
JPH10220961A (en) Operation control method and operation control device for demand variation absorbing type air separating plant
JPH07130388A (en) Fuel cell generation plant
JP6115093B2 (en) Boiler system
KR102327830B1 (en) Damper Opening Ratio Control System Predictable Temperature of Waste Gas
CN116123587A (en) Nuclear power station heat supply method and system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080229

R151 Written notification of patent or utility model registration

Ref document number: 4091791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees