JP4091397B2 - Work vehicle - Google Patents

Work vehicle Download PDF

Info

Publication number
JP4091397B2
JP4091397B2 JP2002297992A JP2002297992A JP4091397B2 JP 4091397 B2 JP4091397 B2 JP 4091397B2 JP 2002297992 A JP2002297992 A JP 2002297992A JP 2002297992 A JP2002297992 A JP 2002297992A JP 4091397 B2 JP4091397 B2 JP 4091397B2
Authority
JP
Japan
Prior art keywords
steering operation
swash plate
fine adjustment
traveling
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002297992A
Other languages
Japanese (ja)
Other versions
JP2004130950A (en
JP2004130950A5 (en
Inventor
泰治 水倉
俊徳 藤本
康貴 疋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanma Agricultural Equipment Co Ltd
Original Assignee
Yanma Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanma Agricultural Equipment Co Ltd filed Critical Yanma Agricultural Equipment Co Ltd
Priority to JP2002297992A priority Critical patent/JP4091397B2/en
Publication of JP2004130950A publication Critical patent/JP2004130950A/en
Publication of JP2004130950A5 publication Critical patent/JP2004130950A5/ja
Application granted granted Critical
Publication of JP4091397B2 publication Critical patent/JP4091397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Fluid Gearings (AREA)
  • Gear-Shifting Mechanisms (AREA)
  • Guiding Agricultural Machines (AREA)
  • Harvester Elements (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)
  • Flexible Shafts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、作業車に関する。
【0002】
【従来の技術】
従来、作業車の一形態として、左右側走行部にそれぞれ走行用油圧モータを連動連結して、各走行用油圧モータに可変流量制御ポンプを連通連結し、両可変流量制御ポンプにワイヤ等の連動連結機構を介して操向操作具を連動連結して、同操向操作具により旋回操作を可能としたものがある。
【0003】
そして、上記した作業車は、操向操作具の操向操作域を検出する操向操作域検出手段と、各走行部の駆動軸の回転数を検出する回転数検出手段と、これらの検出手段を入力側に接続した制御手段と、同制御手段の出力側に接続すると共に、いずれか一方の可変流量制御ポンプに設けた斜板作動アームの姿勢を微調整操作する微調整操作手段とを具備している。
【0004】
このようにして、操向操作域検出手段により、操向操作具が中立位置にあることを検出した場合に、回転数検出手段により各走行部の駆動軸の回転数を検出し、両駆動軸の回転数に一定以上の差異がある場合には、微調整操作手段により一方の可変流量制御ポンプに設けた斜板作動アームの姿勢を微調整操作両駆動軸の回転数が一定未満の差異となるようにしている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開平11−129928号公報
【0006】
【発明が解決しようとする課題】
ところが、上記した作業車では、経時的に連動連結機構としてのワイヤ等にガタが発生して、操向操作具を中立状態に操作しているにもかかわらず直進走行が良好に確保できないという事態が発生する虞がある。
【0007】
そのような場合には、連動連結機構としてのワイヤ等の調整やメンテナンスを逐一行わなければならないという煩雑さがある。
【0008】
【課題を解決するための手段】
そこで、本発明では、左右側走行部にそれぞれ走行用油圧モータを連動連結して、各走行用油圧モータに可変流量制御ポンプを連通連結し、両可変流量制御ポンプに操向操作具を連動連結して、同操向操作具により旋回操作を可能とした作業車において、操向操作具の操向操作域を検出する操向操作域検出手段と、各走行部の駆動軸の回転数を検出する回転数検出手段と、これらの検出手段を入力側に接続した制御手段と、同制御手段の出力側に接続すると共に、可変流量制御ポンプに設けた斜板作動アームの姿勢を微調整操作する微調整操作手段とを具備すると共に、同微調整操作手段は、各可変流量制御ポンプに設けた斜板作動アームにプッシュプルワイヤを介して操向操作具を連動連結し、同プッシュプルワイヤは、両端部をアウタワイヤ受け片により支持したアウタワイヤ中に、インナワイヤを摺動自在に挿通して、同インナワイヤの一端を斜板作動アームに連動連結すると共に、同インナワイヤの他端を操向操作具に連動連結し、プッシュプルワイヤのアウタワイヤを支持しているアウタワイヤ受け片には、微調整用アクチュエータを連動連結して、同微調整用アクチュエータにより上記アウタワイヤ受け片をインナワイヤの摺動方向に位置調整して、斜板作動アームの姿勢を微調整するように構成して、操向操作域検出手段が直進操作域を越えた操向操作域を検出しているにもかかわらず、回転数検出手段が検出する両駆動軸の回転数差が所定のしきい値よりも小さい場合には、操向操作方向に応じて微調整操作手段を作動させることにより、回転数検出手段が検出する両駆動軸の回転数差が所定のしきい値よりも大きくなるようにフィードバック制御を行って、斜板作動アームの姿勢を微調整し、その後は、斜板作動アームの姿勢が新たに調整済データとして制御手段に記憶されるようにしたことを特徴とする作業車を提供するものである。
【0009】
また、本発明は、前記制御手段の入力側に、変速レバーの操作位置を検出する操作位置検出手段を接続し、変速レバーの前進側回動操作範囲と後進側回動操作範囲をそれぞれ複数のゾーンに区分けして、各ゾーン毎に、あらかじめ設定された微調整量にて前記したアウタワイヤ受け片が微調整されるようにしたことにも特徴を有する。
【0010】
【発明の実施の形態】
以下に、本発明の実施の形態について説明する。
【0011】
すなわち、本発明に係る作業車は、基本的構造として、左右側走行部にそれぞれ走行用油圧モータを連動連結して、各走行用油圧モータに可変流量制御ポンプを連通連結し、両可変流量制御ポンプに操向操作具を連動連結して、同操向操作具により旋回操作を可能としている。
【0012】
そして、特徴的構造として、操向操作具の操向操作域を検出する操向操作域検出手段と、各走行部の駆動軸の回転数を検出する回転数検出手段と、これらの検出手段を入力側に接続した制御手段と、同制御手段の出力側に接続すると共に、可変流量制御ポンプに設けた斜板作動アームの姿勢を微調整操作する微調整操作手段とを具備して、操向操作域検出手段が直進操作域を越えた操向操作域を検出しているにもかかわらず、回転数検出手段が検出する両駆動軸の回転数差が所定のしきい値よりも小さい場合には、操向操作方向に応じて微調整操作手段を作動させることにより、回転数検出手段が検出する両駆動軸の回転数差が所定のしきい値よりも大きくなるようにフィードバック制御を行って、斜板作動アームの姿勢を微調整するようにしている。
【0013】
しかも、各可変流量制御ポンプに設けた斜板作動アームにプッシュプルワイヤを介して操向操作具を連動連結し、同プッシュプルワイヤは、両端部をアウタワイヤ受け片により支持したアウタワイヤ中に、インナワイヤを摺動自在に挿通して、同インナワイヤの一端を斜板作動アームに連動連結すると共に、同インナワイヤの他端を操向操作具に連動連結し、プッシュプルワイヤのアウタワイヤを支持しているアウタワイヤ受け片には、微調整用アクチュエータを連動連結して、同微調整用アクチュエータにより上記アウタワイヤ受け片をインナワイヤの摺動方向に位置調整して、斜板作動アームの姿勢を微調整する微調整操作手段を構成している。
【0014】
【実施例】
以下に、本発明の実施例を、図面を参照しながら説明する。
【0015】
図1は、本発明に係る作業車としての汎用形のコンバイン1を示しており、コンバイン1は、車体フレーム2の下部に左右一対のクローラ式の左右走行部3L,3R を配設し、車体フレーム2の前端に刈取部4を昇降自在に配設し、車体フレーム2の右側前部に運転部5を配設し、同運転部5の直下方位置に原動機部6を配設すると共に、運転部5の直後方位置に貯留部7を配設し、同貯留部7の左側方位置に脱穀部8と選別部9とをそれぞれ上下に配設し、同脱穀部8と選別部9との直後方位置に排藁処理部10を配設し、刈取部4と脱穀部8との間に搬送部11を配設している。
【0016】
そして、刈取部4により圃場の作物を刈取り、刈り取った作物を搬送部11により脱穀部8へ搬送し、脱穀部8において作物を脱穀し、脱穀した穀粒を選別部9により選別して、精粒は、貯留部7に貯留し、一方、作物稈は、排藁処理部10により細断して外部へ放出するようにしている。
【0017】
運転部5は、座席12の前方にステアリングコラム13を間隔を開けて立設し、同ステアリングコラム13の上部に操向操作具14としてのステアリングホイルを回動自在に配設する一方、ステアリングコラム13の左側方位置に変速レバー15を前後傾動自在に配設している。
【0018】
原動機部6は、図2に示すように、前記座席12の下方に主としてエンジン16を配置しており、同エンジン16に一対のHST17L,17Rを介してミッション部18を連動連結し、同ミッション部18に左右走行部3L,3Rに設けた駆動輪21L,21Rを連動連結している。29は伝動機構である。
【0019】
そして、図2及び図3に示すように、一方のHST17Lは、左走行部用の可変流量制御ポンプ19Lと走行用油圧モータ20Lとから静油圧式無段変速装置を構成しており、また、他方のHST17Rは、右走行部用の可変流量制御ポンプ19Rと走行用油圧モータ20Rとから静油圧式無段変速装置を構成している。
【0020】
また、ミッション部18は、図3に示すように、ミッションケース22に前記走行用油圧モータ20L,20Rを連設すると共に、同ミッションケース22内に左走行部用の走行用油圧モータ20Lに連動連結した左走行部用伝達機構23Lと、右走行部用の走行用油圧モータ20Rに連動連結した右走行部用伝達機構23Rとを設け、各走行部用伝達機構23L,23Rの下流側部に駆動軸24L,24Rを設け、同駆動軸24L,24Rに前記駆動輪21L,21Rを連動連結している。25L,25Rはモータ出力軸、26は第1中間軸、27は第2中間軸、28L,28Rは第3中間軸である。
【0021】
また、可変流量制御ポンプ19L,19Rには、図2及び図3に示すように、連動機構30を介して前記操向操作具14を連動連結しており、同連動機構30は、操向操作機構31と一対のプッシュプルワイヤ32L,32Rとを具備している。
【0022】
すなわち、操向操作機構31は、図2及び図3に示すように、ステアリングコラム13の下部に設けた操向操作機構ケース33内に配設しており、同操向操作機構ケース33の上部にステアリング支軸34を回動自在に立設し、同ステアリング支軸34の上端部に操向操作具14を取り付ける一方、ステアリング支軸34の下端部にピニオンギヤ35を取り付けると共に、同ピニオンギヤ35を操向操作機構ケース33内に配置している。
【0023】
そして、操向操作機構ケース33内において、変速軸36を横架し、同変速軸36の左端部に前記変速レバー15を連動連結し、また、変速軸36に平行させてスライド軸37を横架し、同スライド軸37の中途部に、スライド作用体38の基部38a をスライド軸37に沿わせて摺動自在に取り付け、同スライド作用体38の基部38aにラック39を連設し、同ラック39に前記ピニオンギヤ35を噛合させている。
【0024】
また、変速軸36とスライド軸37の左右側部には、左右スライド体40L,40Rをそれぞれ両軸36,37に架設状態にて両軸36,37に沿わせて摺動自在に取り付けており、同左右スライド体40L,40Rは、変速軸36の回動に伴って回動することがないように、変速軸36に回動自在に遊嵌している。
【0025】
変速軸36には、左右スライド体40L,40Rの外側方に位置させた左右回動アーム体41L,41Rを変速軸36に沿わせて摺動自在、かつ、変速軸36に連動して回動すべく取り付けており、同左右回動アーム体41L,41Rは、スプリング42L,42Rによって左右スライド体40L,40R側へ向けてそれぞれ弾性付勢されている。
【0026】
左右スライド体40L,40Rの後部には、側面視略コ字状の左右ガイド体43L,43Rの略中央部を回動自在に枢着し、左右ガイド体43L,43Rの外側部にリンク52L,52Rを介して前記左右回動アーム体41L,41Rを連結している。
【0027】
そして、左右ガイド体43L,43Rには、それぞれ左右回転子44L,44Rを左右ガイド体43L,43Rに沿わせて回転移動自在に取り付けており、左右回転子44L,44Rは、左右斜板操作アーム45L,45Rの外側端部に回転自在に取り付けられ、同左右斜板操作アーム45L,45Rは、操向操作機構ケース33の後壁に中途部を支軸46L,46Rを介して回動自在に支持されている。
【0028】
また、左右斜板操作アーム45L,45Rの内側端部には、それぞれ前記した一対のプッシュプルワイヤ32L,32Rの基端部を連結し、各プッシュプルワイヤ32L,32R先端部に左右の可変流量制御ポンプ19L,19Rに斜板回動支軸47L,47Rを介して取り付けた斜板作動アーム48L,48Rの先端部を連結している。
【0029】
ここで、プッシュプルワイヤ32L,32Rは、両端部をアウタワイヤ受け片49L,49L,49R,49Rにより支持したアウタワイヤ50L,50R中に、インナワイヤ51L,51Rを摺動自在に挿通して、同インナワイヤ51L,51Rの先端部を斜板作動アーム48L,48Rに連動連結すると共に、同インナワイヤ51L,51Rの基端部を左右斜板操作アーム45L,45Rの内側端部に連動連結している。
【0030】
次に、上記のように構成した連動機構30の動作説明を、図4〜図7を参照しながら行う。
【0031】
(1)操向操作具14と変速レバー15とが中立位置にある場合には、図4に示すように、左右ガイド体43L,43Rと左右斜板操作アーム45L,45Rとは、水平状態となっている。
【0032】
(2)かかる状態から、変速レバー1 5を前進側変速位置に変速操作した場合には、変速軸36が前方へ回動すると共に、左右回動アーム体41L,41R が前方へ回動し、図5に示すように、左右ガイド体43L,43R の外側が上方へ移動し、それに伴って、左右斜板操作アーム45L,45R は、図5に示す傾斜状態となる。
【0033】
この場合には、左右斜板操作アーム45L,45R に連結したプッシュプルワイヤ32L,32Rによって、斜板作動アーム48L,48Rを介して左右の斜板回動支軸47L,47R が前進側に略同一角度だけ回動するため、左右走行部3L,3R が略同一の走行速度で前進することとなり、従って、機体は直進する。
【0034】
(3)さらに、上記状態から、操向操作具14を左(右)旋回操作した場合には、スライド作用体38が左(右)側方へ移動すると共に、左スライド体40L(右スライド体40R)だけがスプリング42L(42R)の付勢力に抗して左(右)側方へ移動し、図6に示すように、左ガイド体43L(右ガイド体43R)だけが傾斜状態を維持したまま左(右)側方へ移動し、それに伴って、左斜板操作アーム45L(右斜板操作アーム45R)だけが、図6に示すような略水平状態となる。
【0035】
この場合には、左斜板操作アーム45L(右斜板操作アーム45R)に連結した左(右)側のプッシュプルワイヤ32L(32R)によって、左(右)側の斜板回動支軸47L(47R)が略中立状態に戻されるため、左走行部3L(右走行部3R)の走行速度が右走行部3R(左走行部3L)の走行速度に比べて僅かに遅くなり、従って、機体は緩やかに左旋回する。
【0036】
(4)さらに、上記状態から、操向操作具14を左旋回方向へ回動操作した場合には、図7に示すように、左ガイド体43L(右ガイド体43R)だけがさらに左(右)側方へ移動し、それに伴って、左斜板操作アーム45L(右斜板操作アーム45R)が、図7に示すように、右斜板操作アーム45R(左斜板操作アーム45L)とは逆方向へ傾斜した状態となる。
【0037】
この場合には、左斜板操作アーム45L(右斜板操作アーム45R)に連結した左(右)側のプッシュプルワイヤ32L(32R)によって、左(右)側の斜板回動支軸47L(47R)が後進側に回動するため、左走行部3L(右走行部3R)の走行速度が右走行部3R(左走行部3L)の走行速度に比べて著しく遅くなり、従って、機体は左(右)側へ急旋回する。
【0038】
以上のようにして、操向操作具14によって、操向操作が行えるようにしている。
【0039】
さらには、本実施例では、図2及び図3に示すように、変速レバー15の操作位置を検出すべく変速レバー15の下端部近傍に配置したポテンショメータ等の操作位置検出手段54と、各走行部3L,3Rの駆動軸24L,24Rの回転数を検出すべくミッションケース22に取り付けた回転数検出手段55L,55Rと、これらの検出手段54,55L,55Rを入力側に接続した制御手段56と、同制御手段56の出力側に接続すると共に、いずれか一方(本実施例では右側)の可変流量制御ポンプ19Rに設けた斜板作動アーム48Rを微調整操作する微調整操作手段57とを具備して、直進操作時には、変速レバー15の変速操作位置に応じて微調整操作手段57を作動させることにより、両駆動軸24L,24Rの回転数差が所定のしきい値よりも小さくなるようにフィードバック制御を行って、右側の斜板作動アーム48Rの姿勢を微調整するようにしている。53は、操向操作機構ケース33に取り付けた操作位置検出手段ステーである。
【0040】
そして、フィードバック制御により右側の斜板作動アーム48Rの姿勢を微調整する微調整モード設定手段としての微調整モード設定スイッチ58と、操向操作具14の操向操作域、すなわち、直進操作域、、同直進操作域を越えた左旋回操作域ないしは右旋回操作域を検出する操向操作域検出手段59とを制御手段56の入力側に接続している。
【0041】
ここで、微調整操作手段57は、車体フレーム2にリニアステッピングモータ等の微調整用リニアアクチュエータ60を上下方向に軸線を向けたアクチュエータ支軸61を介して回動自在に取り付け、同微調整用リニアアクチュエータ60の進退ロッド62の先端部に、枢支・連結ピン63を介して右側のアウタワイヤ50Rの先端部を支持しているアウタワイヤ受け片49Rの一側端部を枢支・連結する一方、同アウタワイヤ受け片49Rの他側端部を、枢支・連結ピン64を介して右側の可変流量制御ポンプ19Rに突設した枢支・連結片65に枢支・連結している。
【0042】
また、操作位置検出手段54は、変速レバー15の前進側回動操作範囲と後進側回動操作範囲をそれぞれ複数のゾーン、すなわち、本実施例では、図8に示すように、それぞれ第1〜第3前進側ゾーンZ1,Z2,Z3と第1〜第3後進側ゾーンZ4,Z5,Z6に区分けして、各ゾーンZ1〜Z6毎に、あらかじめ設定された微調整量にて前記したアウタワイヤ受け片49Rが微調整されるようにしている。aは、左側の走行部3Lの駆動軸24Lの回転数変化特性直線、bは、右側の走行部3Rの駆動軸24Rの回転数変化特性直線である。
【0043】
しかも、本実施例では、変速レバー15の把持部等に副変速スイッチ66を設け、同副変速スイッチ66を、図2及び図3に示すように、制御手段56の入力側に接続して、同副変速スイッチ66によりミッション部18を高・低速二段に変速することができるようにしている。
【0044】
そして、かかる副変速スイッチ66により切り替えられる高速段と低速段毎に、あらかじめ設定された微調整量にて前記したアウタワイヤ受け片49Rが微調整されるようにしている。
【0045】
次に、本実施例にかかる直進制御を、図8に示す左右の駆動軸24L,24Rの回転数変化特性直線のグラフと、図9に示すフローチャートとを参照しながら説明する。
【0046】
(1)図9に示すように、変速レバー15の操作位置を操作位置検出手段54が検出する(S80)。
【0047】
(2)図9に示すように、微調整モード設定スイッチ58により微調整モードが設定され(S81)、かつ、操向操作域検出手段59が操向操作具14の直進操作域を検出した場合には(S82Yes)、両駆動軸24L,24Rの回転数を回転数検出手段55L,55Rが検出する(S83)。
【0048】
(3)図9に示すように、回転数検出手段55L,55Rにより検出された両駆動軸24L,24Rの回転数を制御手段56に入力し、同制御手段56が両駆動軸24L,24Rの回転数の差が所定のしきい値よりも大きいと判断した場合には(S84Yes)、同制御手段56が両駆動軸24L,24Rの回転数の差が所定のしきい値よりも小さくなるように、右側のアウタワイヤ受け片49Rの位置を微調整用リニアアクチュエータ6 0により微調整するフィードバック制御を行う(S85)。
【0049】
(4)図9に示すように、両駆動軸24L,24Rの回転数の差が所定のしきい値よりも小さくなったところで(S84No)、アウタワイヤ受け片49Rの位置と変速レバー15の操作位置とを調整済データとして制御手段56に記憶させる(S86)。
【0050】
(5)図9に示すように、微調整モード設定スイッチ58により微調整モードが設定されない場合(S81No)、ないしは微調整モードが設定された場合でも操向操作域検出手段59が操向操作具14の直進操作域を検出しなかった場合には(S82No)、制御手段56が記憶している調整済データを参照して(S87)、アウタワイヤ受け片49Rの位置を設定する(S88)。
【0051】
この際、図8に示すように、左側の走行部3Lの駆動軸24Lの回転数と右側の走行部3Rの駆動軸24Rの回転数とに差異が生じている場合には、制御手段56が回転数検出手段55L,55Rの検出結果に基づいて、微調整操作手段57の微調整用リニアアクチュエータ60に信号を出力して、同微調整用リニアアクチュエータ60の進退ロッド62を進退作動させて、同進退ロッド62と右側の可変流量制御ポンプ19 Rに支持されているアウタワイヤ受け片49Rを、所定の微小幅だけインナワイヤ51Rの摺動方向に位置調整(移動)させることにより、アウタワイヤ50Rの曲がり具合を微妙に調整して、同アウタワイヤ50R中に挿通しているインナワイヤ51Rを微小幅だけ摺動させ、同インナワイヤ51Rの先端部に連結した斜板作動アーム48Rを微小幅だけ回動させる。
【0052】
その結果、右の可変流量制御ポンプ19Rの斜板(図示せず)が微小範囲で回動変位して、同可変流量制御ポンプ19Rの圧油の吐出量が微小に変化し、同可変流量制御ポンプ19Rに連通連設した走行用油圧モータ20Rの回転数が微小に変化して、同走行用油圧モータ20Rに連動連結した駆動軸24Rの回転数が微小に変化する。
【0053】
そして、かかる状態の駆動軸24L,24Rの回転数を回転数検出手段55L,55Rが検出すると共に、同検出結果を制御手段56に入力して、両駆動軸24L,24Rの回転数の検出結果が整合するまで、すなわち、両駆動軸24L,24Rの回転数の検出値の差があらかじめ設定したしきい値よりも小さくなるまでフィードバック制御を行うことにより、車体の直進性を良好に確保することができるようにしている。
【0054】
しかも、本実施例では、プッシュプルワイヤ32Rのアウタワイヤ50Rの先端部を支持しているアウタワイヤ受け片49Rを、微調整用リニアアクチュエータ60により位置調整することにより、斜板作動アーム48Rの姿勢を微調整することができて、両走行部3L,3Rの駆動軸24L,24Rの回転数を精度良く整合させることができ、その結果、車体の直進安定性を向上させることができる。
【0055】
さらには、従来のロックアップ機構とは異なり、簡単な構造で車体を直進させることができるため、組立性・メンテナンス性を向上させることができると共に、車体の小型化・軽量化を図ることもできる。
【0056】
また、本実施例では、旋回走行状態から直進走行状態に復帰した場合にも、調整済データに基づいて直進走行が再開されるため、車体の旋回走行から直進走行への移行がスムーズになされて、オペレータに恐怖感や違和感を与えることがなく、操向操作性と安全性とを向上させることができる。
【0057】
このようにして、微調整モード設定スイッチ58により微調整モードを設定した場合には、操向操作域検出手段59が操向操作具14の直進操作域を検出すると、自動的に回転数検出手段55L,55Rが検出する両走行部3L,3Rの駆動軸24L,24Rの回転数差を所定のしきい値よりも小さくするフィードバック制御がなされて、車体の直進性を良好に確保することができる。
【0058】
この際、回転数検出手段55L,55Rが検出する両駆動軸24L,24Rの回転数差が所定のしきい値よりも小さくなったところでアウタワイヤ受け片49Rの位置と変速レバー15の操作位置とが調整済データとして制御手段56に記憶される。
【0059】
そして、微調整モード設定スイッチ58により微調整モードを設定しなかった場合、ないしは微調整モードを設定した場合でも操向操作域検出手段5 9が操向操作具14の直進操作域を検出しなかった場合には、制御手段56が記憶している調整済データに基づいてアウタワイヤ受け片49Rの位置を設定するようにしているため、車体の直進性を良好に確保することができる。
【0060】
しかも、再度、微調整モード設定スイッチ58により微調整モードを設定した場合には、アウタワイヤ受け片49Rの位置と変速レバー15の操作位置とが新たに調整済データとして制御手段56に記憶されるため、新規の調整済データを随時更新することができて、最適な調整済データに基づいて車体の直進性を良好に確保することができる。
【0061】
上記のような構成において、本発明の要旨は、操向操作域検出手段59が直進操作域を越えた操向操作域を検出しているにもかかわらず、回転数検出手段55L,55Rが検出する両駆動軸24L,24Rの回転数差が所定のしきい値よりも小さい場合には、操向操作方向に応じて微調整操作手段57を作動させることにより、回転数検出手段55L,55Rが検出する両駆動軸24L,24Rの回転数差が所定のしきい値よりも大きくなるようにフィードバック制御を行って、右側の斜板作動アーム48Rの姿勢を微調整するようにしたことにある。
【0062】
すなわち、前記したように本実施例では直進制御がなされるように構成しているが、経時的にワイヤのガタ等により、操向操作具14を中立状態に操作しているにもかかわらず直進走行が行えないという事態が発生した場合には、例えば、車体が右方向に旋回しようとすると、オペレータは、操向操作具14を左方向に旋回操作して、車体の直進性を保持しようとするが、かかる操作により右側の斜板作動アーム48Rの姿勢が微調整されて、直進性が補正される制御(直進性の補正制御)がなされるようにしている。
【0063】
次に、本実施例にかかる直進性の補正制御を、図10に示すフローチャートを参照しながら説明する。
【0064】
(1)操向操作域検出手段59が操向操作具14の操作域を検出する(S90)。
【0065】
(2)操向操作域検出手段59が操向操作具14の直進操作域を検出すると(S90直進)、アウタワイヤ受け片49Rの位置と変速レバー15の操作位置とを調整済データとして制御手段56に記憶させる(S91)。
【0066】
(3)操向操作域検出手段59が操向操作具14の左旋回操作域を検出すると(S90左旋回)、回転数検出手段55L,55Rにより検出された両駆動軸24L,24Rの回転数を制御手段56に入力し、同制御手段56が両駆動軸24L,24Rの回転数の差が所定のしきい値よりも小さいと判断した場合には(S92Yes)、同制御手段56が両駆動軸24L,24Rの回転数の差が所定のしきい値よりも大きくなるように、右側のアウタワイヤ受け片49Rの位置を微調整用リニアアクチュエータ60により増速側に微調整するフィードバック制御を行う(S93)。
【0067】
(4)操向操作域検出手段59が操向操作具14の左旋回操作域を検出すると共に(S90左旋回)、回転数検出手段55L,55Rにより検出された両駆動軸24L,24Rの回転数を制御手段56に入力し、同制御手段56が両駆動軸24L,24Rの回転数の差が所定のしきい値よりも小さいと判断しなかった場合には(S92No)、アウタワイヤ受け片49Rの位置と変速レバー15の操作位置とを調整済データとして制御手段56に記憶させる(S91)。
【0068】
(5)操向操作域検出手段59が操向操作具14の右旋回操作域を検出すると(S90右旋回)、回転数検出手段55L,55Rにより検出された両駆動軸24L,24Rの回転数を制御手段56に入力し、同制御手段56が両駆動軸24L,24Rの回転数の差が所定のしきい値よりも小さいと判断した場合には(S94Yes)、同制御手段56が両駆動軸24L,24Rの回転数の差が所定のしきい値よりも大きくなるように、右側のアウタワイヤ受け片49Rの位置を微調整用リニアアクチュエータ60により減速側に微調整するフィードバック制御を行う(S95)。
【0069】
(6)操向操作域検出手段59が操向操作具14の右旋回操作域を検出すると共に(S90右旋回)、回転数検出手段55L,55Rにより検出された両駆動軸24L,24Rの回転数を制御手段56に入力し、同制御手段56が両駆動軸24L,24Rの回転数の差が所定のしきい値よりも小さいと判断しなかった場合には(S94No)、アウタワイヤ受け片49Rの位置と変速レバー15の操作位置とを調整済データとして制御手段56に記憶させる(S96)。
【0070】
このようにして、経時的にワイヤのガタ等により、操向操作具14を中立状態に操作しているにもかかわらず直進走行が行えない場合が生じた場合にも、車体の直進性を保持しようとするオペレータによる旋回操作により、右側の斜板作動アーム48Rの姿勢が微調整されて、直進性が補正される制御(直進性の補正制御)がなされるようにしているため、その後は、右側の斜板作動アーム48Rの姿勢が新たに調整済データとして制御手段56に記憶されるため、新規の調整済データを随時更新することができて、最適な調整済データに基づいて車体の直進性を良好に確保することができる。その結果、安全性を向上させることができる。
【0071】
【発明の効果】
(1)請求項1記載の本発明では、左右側走行部にそれぞれ走行用油圧モータを連動連結して、各走行用油圧モータに可変流量制御ポンプを連通連結し、両可変流量制御ポンプに操向操作具を連動連結して、同操向操作具により旋回操作を可能とした作業車において、操向操作具の操向操作域を検出する操向操作域検出手段と、各走行部の駆動軸の回転数を検出する回転数検出手段と、これらの検出手段を入力側に接続した制御手段と、同制御手段の出力側に接続すると共に、可変流量制御ポンプに設けた斜板作動アームの姿勢を微調整操作する微調整操作手段とを具備すると共に、同微調整操作手段は、各可変流量制御ポンプに設けた斜板作動アームにプッシュプルワイヤを介して操向操作具を連動連結し、同プッシュプルワイヤは、両端部をアウタワイヤ受け片により支持したアウタワイヤ中に、インナワイヤを摺動自在に挿通して、同インナワイヤの一端を斜板作動アームに連動連結すると共に、同インナワイヤの他端を操向操作具に連動連結し、プッシュプルワイヤの アウタワイヤを支持しているアウタワイヤ受け片には、微調整用アクチュエータを連動連結して、同微調整用アクチュエータにより上記アウタワイヤ受け片をインナワイヤの摺動方向に位置調整して、斜板作動アームの姿勢を微調整するように構成して、操向操作域検出手段が直進操作域を越えた操向操作域を検出しているにもかかわらず、回転数検出手段が検出する両駆動軸の回転数差が所定のしきい値よりも小さい場合には、操向操作方向に応じて微調整操作手段を作動させることにより、回転数検出手段が検出する両駆動軸の回転数差が所定のしきい値よりも大きくなるようにフィードバック制御を行って、斜板作動アームの姿勢を微調整し、その後は、斜板作動アームの姿勢が新たに調整済データとして制御手段に記憶されるようにしている。
【0072】
このようにして、経時的に連動連結機構としてのワイヤ等にガタが発生して、操向操作具を中立状態に操作しているにもかかわらず直進走行が行えないという事態が発生した場合には、車体の直進性を保持しようとするオペレータは、車体が旋回しようとする方向とは反対側に旋回操作を行うが、この際、斜板作動アームの姿勢が微調整されて、直進性が補正される制御(直進性の補正制御)がなされるようにしているため、車体の直進性が修復されて、直進性を良好に確保することができる。その結果、安全性を向上させることができる。
【0073】
そして、一旦、車体の直進性が修復された後は、斜板作動アームの姿勢を新たに調整済データとして制御手段に記憶させることにより、新規の調整済データを随時更新することができて、最適な調整済データに基づいて車体の直進性を良好に確保することができる。
【0074】
また、連動連結機構としてのワイヤ等の調整やメンテナンスを逐一行う必要性がなく、安全性を良好に確保することができる。
【0075】
しかも、斜板作動アームをプッシュプルワイヤを介して作動させると共に、プッシュプルワイヤのアウタワイヤ受け片を微調整用アクチュエータにより位置調整することにより、斜板作動アームの姿勢を微調整することができて、両走行部の駆動軸の回転数を精度良く整合させることができる。
【0076】
その結果、車体の直進安定性を向上させることができる。
【0077】
さらには、従来のロックアップ機構とは異なり、簡単な構造で車体を直進させることができるため、組立性・メンテナンス性を向上させることができると共に、車体の小型化・軽量化さらには製造コスト低減を図ることができる。
【0078】
(2)請求項2記載の本発明では、前記制御手段の入力側に、変速レバーの操作位置を検出する操作位置検出手段を接続し、変速レバーの前進側回動操作範囲と後進側回動操作範囲をそれぞれ複数のゾーンに区分けして、各ゾーン毎に、あらかじめ設定された微調整量にて前記したアウタワイヤ受け片が微調整されるようにしている。
従って、この点からも、車体の直進安定性を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る作業車としてのコンバインの側面図。
【図2】同コンバインの平面説明図。
【図3】連動機構の説明図。
【図4】中立操作時の連動機構の作動説明図。
【図5】前進操作時の連動機構の作動説明図。
【図6】左旋回操作時の連動機構の作動説明図。
【図7】左急旋回操作時の連動機構の作動説明図。
【図8】左右の駆動軸の回転数変化特性直線を示すグラフ。
【図9】直進制御フローチャート。
【図10】直進性の補正制御フローチャート。
【符号の説明】
1 コンバイン
2 車体フレーム
3L 左走行部
3R 右走行部
4 刈取部
5 運転部
6 原動機部
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a work vehicle.
[0002]
[Prior art]
  Conventionally, as one form of work vehicle, a traveling hydraulic motor is linked to each of the left and right traveling parts, a variable flow control pump is connected to each traveling hydraulic motor, and a wire or the like is linked to both variable flow control pumps. There is one in which a steering operation tool is interlocked and connected through a connecting mechanism, and a turning operation can be performed by the steering operation tool.
[0003]
  Then, the work vehicle described above includes a steering operation area detection unit that detects a steering operation area of the steering operation tool, a rotation number detection unit that detects the rotation number of the drive shaft of each traveling unit, and these detection units. A control means connected to the input side, and a fine adjustment operation means for finely adjusting the attitude of the swash plate operating arm provided in either one of the variable flow rate control pumps. is doing.
[0004]
  In this way, when the steering operation area detecting means detects that the steering operation tool is in the neutral position, the rotational speed detecting means detects the rotational speed of the drive shaft of each traveling unit, and both drive shafts are detected. If there is a difference of more than a certain level, the position of the swash plate operating arm provided on one of the variable flow rate control pumps is adjusted by the fine adjustment operation means. (For example, refer to Patent Document 1).
[0005]
[Patent Document 1]
  Japanese Patent Laid-Open No. 11-129928
[0006]
[Problems to be solved by the invention]
  However, in the above-described work vehicle, a situation in which backlash occurs in a wire or the like as an interlocking coupling mechanism over time, and it is not possible to secure a straight traveling well even though the steering operation tool is operated in a neutral state. May occur.
[0007]
  In such a case, there is a complexity that adjustment and maintenance of the wire as the interlocking connection mechanism must be performed one by one.
[0008]
[Means for Solving the Problems]
  Therefore, in the present invention, the traveling hydraulic motors are linked and connected to the left and right traveling units, the variable flow rate control pumps are connected to each running hydraulic motor, and the steering operation tool is linked to both variable flow rate control pumps. Then, in a work vehicle that can be turned by the same steering operation tool, the steering operation area detection means for detecting the steering operation area of the steering operation tool and the rotational speed of the drive shaft of each traveling unit are detected. The rotation speed detecting means, the control means connecting these detection means to the input side, and the output side of the control means are connected, and the attitude of the swash plate operating arm provided in the variable flow rate control pump is finely adjusted. With fine adjustment operation meansIn addition, the fine adjustment operation means interlocks the steering operation tool via a push-pull wire to a swash plate operating arm provided in each variable flow rate control pump, and both ends of the push-pull wire are outer wire receiving pieces. The inner wire is slidably inserted into the outer wire supported by the swash plate, one end of the inner wire is interlocked with the swash plate operating arm, and the other end of the inner wire is interlocked with the steering operation tool. The outer wire receiving piece supporting the outer wire is coupled to a fine adjustment actuator, and the position of the outer wire receiving piece is adjusted in the sliding direction of the inner wire by the fine adjustment actuator to Configure to fine-tune the posture,Even though the steering operation range detection means detects a steering operation range that exceeds the straight drive operation range, the rotational speed difference between the two drive shafts detected by the rotational speed detection means is smaller than a predetermined threshold value. In this case, feedback control is performed so that the difference between the rotational speeds of the two drive shafts detected by the rotational speed detecting means is larger than a predetermined threshold value by operating the fine adjustment operating means according to the steering operation direction. To fine-tune the posture of the swash plate operating armThereafter, the attitude of the swash plate operating arm is newly stored in the control means as adjusted data.The present invention is to provide a work vehicle characterized by the above.
[0009]
  The present invention also provides:An operation position detecting means for detecting the operation position of the shift lever is connected to the input side of the control means, and the forward rotation operation range and the reverse rotation operation range of the shift lever are divided into a plurality of zones, The outer wire receiving piece is finely adjusted for each zone by a preset fine adjustment amount.It also has a feature.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
  Embodiments of the present invention will be described below.
[0011]
  That is, the working vehicle according to the present invention has a basic structure in which a traveling hydraulic motor is linked to each of the left and right traveling units, and a variable flow control pump is connected to each traveling hydraulic motor. A steering operation tool is linked and connected to the pump so that the turning operation tool can be turned.
[0012]
  And, as a characteristic structure, a steering operation area detection means for detecting the steering operation area of the steering operation tool, a rotation speed detection means for detecting the rotation speed of the drive shaft of each traveling unit, and these detection means Control means connected to the input side and fine adjustment operation means connected to the output side of the control means and finely adjusting the swash plate operating arm provided in the variable flow rate control pump. Even when the operation range detection means detects a steering operation range that exceeds the straight drive operation range, the difference between the rotation speeds of the two drive shafts detected by the rotation speed detection means is smaller than a predetermined threshold value. The feedback control is performed so that the difference between the rotational speeds of the two drive shafts detected by the rotational speed detecting means is greater than a predetermined threshold value by operating the fine adjustment operating means according to the steering operation direction. To fine-tune the posture of the swash plate operating arm To have.
[0013]
  In addition, a steering operation tool is interlocked and connected to the swash plate operating arm provided in each variable flow rate control pump via a push-pull wire, and the push-pull wire is connected to the inner wire supported by the outer wire receiving piece at both ends. The inner wire is slidably inserted, and one end of the inner wire is linked to the swash plate operating arm, and the other end of the inner wire is linked to the steering operation tool to support the outer wire of the push-pull wire. Fine adjustment operation to finely adjust the posture of the swash plate operating arm by interlockingly connecting the fine adjustment actuator to the receiving piece, and adjusting the position of the outer wire receiving piece in the sliding direction of the inner wire by the fine adjustment actuator. Means.
[0014]
【Example】
  Embodiments of the present invention will be described below with reference to the drawings.
[0015]
  FIG. 1 shows a general-purpose combine 1 as a work vehicle according to the present invention. The combine 1 is provided with a pair of left and right crawler-type left and right traveling sections 3L and 3R at a lower portion of a body frame 2, and a vehicle body. The mowing unit 4 is disposed at the front end of the frame 2 so as to be movable up and down, the operation unit 5 is disposed at the front right side of the vehicle body frame 2, the motor unit 6 is disposed at a position directly below the operation unit 5, The storage part 7 is arrange | positioned in the position right behind the operation part 5, the threshing part 8 and the selection part 9 are arrange | positioned up and down in the left side position of the storage part 7, respectively, and the threshing part 8 and the selection part 9 A squeezing processing unit 10 is disposed at a position immediately after, and a transport unit 11 is disposed between the cutting unit 4 and the threshing unit 8.
[0016]
  Then, the crops in the field are cut by the harvesting unit 4, the harvested crops are transported to the threshing unit 8 by the transport unit 11, the crops are threshed in the threshing unit 8, and the threshed grains are sorted by the sorting unit 9, The grains are stored in the storage unit 7, while the crop straw is shredded by the waste disposal unit 10 and released to the outside.
[0017]
  The driving unit 5 stands with a steering column 13 in front of the seat 12 with an interval therebetween, and a steering wheel as a steering operation tool 14 is rotatably disposed above the steering column 13. A shift lever 15 is disposed at a left side position of 13 so as to tilt forward and backward.
[0018]
  As shown in FIG. 2, the prime mover unit 6 has an engine 16 mainly disposed below the seat 12, and a transmission unit 18 is linked to the engine 16 via a pair of HSTs 17L and 17R. The drive wheels 21L and 21R provided on the left and right traveling portions 3L and 3R are interlocked to 18. Reference numeral 29 denotes a transmission mechanism.
[0019]
  As shown in FIGS. 2 and 3, one HST 17L constitutes a hydrostatic continuously variable transmission from the variable flow rate control pump 19L for the left traveling unit and the traveling hydraulic motor 20L. The other HST 17R forms a hydrostatic continuously variable transmission by a variable flow rate control pump 19R for the right traveling unit and a traveling hydraulic motor 20R.
[0020]
  As shown in FIG. 3, the mission unit 18 is provided with the traveling hydraulic motors 20 </ b> L and 20 </ b> R connected to the mission case 22 and linked to the traveling hydraulic motor 20 </ b> L for the left traveling unit in the mission case 22. The left traveling unit transmission mechanism 23L and the right traveling unit transmission mechanism 23R linked to the traveling hydraulic motor 20R for the right traveling unit are provided, and downstream of the traveling unit transmission mechanisms 23L and 23R. Drive shafts 24L and 24R are provided, and the drive wheels 21L and 21R are linked and connected to the drive shafts 24L and 24R. 25L and 25R are motor output shafts, 26 is a first intermediate shaft, 27 is a second intermediate shaft, and 28L and 28R are third intermediate shafts.
[0021]
  Further, as shown in FIGS. 2 and 3, the steering operation tool 14 is linked to the variable flow rate control pumps 19L and 19R via the interlocking mechanism 30, and the interlocking mechanism 30 is controlled by the steering operation. A mechanism 31 and a pair of push-pull wires 32L and 32R are provided.
[0022]
  That is, as shown in FIGS. 2 and 3, the steering operation mechanism 31 is disposed in the steering operation mechanism case 33 provided at the lower part of the steering column 13, and the upper part of the steering operation mechanism case 33. A steering support shaft 34 is erected so as to be rotatable, and the steering operation tool 14 is attached to the upper end portion of the steering support shaft 34, while the pinion gear 35 is attached to the lower end portion of the steering support shaft 34 and the pinion gear 35 is attached to the steering support shaft 34. The steering operation mechanism case 33 is arranged.
[0023]
  Then, in the steering operation mechanism case 33, the transmission shaft 36 is horizontally mounted, the transmission lever 15 is interlocked and connected to the left end portion of the transmission shaft 36, and the slide shaft 37 is horizontally disposed parallel to the transmission shaft 36. The base 38a of the slide acting body 38 is slidably attached along the slide shaft 37 in the middle of the slide shaft 37, and a rack 39 is connected to the base 38a of the slide acting body 38. The pinion gear 35 is meshed with the rack 39.
[0024]
  In addition, left and right slide bodies 40L and 40R are slidably attached to both the shafts 36 and 37 on the left and right sides of the transmission shaft 36 and the slide shaft 37, respectively, in a state of being erected on both the shafts 36 and 37. The left and right slide bodies 40L and 40R are loosely fitted to the transmission shaft 36 so as not to rotate with the rotation of the transmission shaft 36.
[0025]
  The transmission shaft 36 is slidable along the transmission shaft 36 with left and right rotation arm bodies 41L and 41R positioned on the outer sides of the left and right slide bodies 40L and 40R, and is rotated in conjunction with the transmission shaft 36. The left and right turning arm bodies 41L and 41R are elastically biased toward the left and right slide bodies 40L and 40R by springs 42L and 42R, respectively.
[0026]
  At the rear part of the left and right slide bodies 40L, 40R, a substantially central portion of the left and right guide bodies 43L, 43R having a substantially U-shape in side view is pivotally attached, and a link 52L is attached to the outer side of the left and right guide bodies 43L, 43R. The left and right pivoting arm bodies 41L and 41R are connected via 52R.
[0027]
  The left and right rotors 44L and 44R are attached to the left and right guide bodies 43L and 43R, respectively, so as to be rotatable and movable along the left and right guide bodies 43L and 43R. The left and right swash plate operating arms 45L and 45R are pivotally attached to the rear wall of the steering operation mechanism case 33 via the support shafts 46L and 46R. It is supported.
[0028]
  In addition, the inner ends of the left and right swash plate operating arms 45L and 45R are connected to the base ends of the pair of push-pull wires 32L and 32R, respectively, and the left and right variable flow rates are connected to the distal ends of the push-pull wires 32L and 32R. The front ends of swash plate operating arms 48L and 48R attached to the control pumps 19L and 19R via swash plate rotation support shafts 47L and 47R are connected.
[0029]
  Here, the push-pull wires 32L, 32R are slidably inserted into the outer wires 50L, 50R whose both ends are supported by the outer wire receiving pieces 49L, 49L, 49R, 49R, and the inner wires 51L are inserted. , 51R are interlocked with the swash plate operating arms 48L, 48R, and the base ends of the inner wires 51L, 51R are interlocked with the inner ends of the left and right swash plate operating arms 45L, 45R.
[0030]
  Next, the operation of the interlocking mechanism 30 configured as described above will be described with reference to FIGS.
[0031]
  (1) When the steering operation tool 14 and the transmission lever 15 are in the neutral position, as shown in FIG. 4, the left and right guide bodies 43L and 43R and the left and right swash plate operation arms 45L and 45R are in a horizontal state. It has become.
[0032]
  (2) When the speed change lever 15 is shifted to the forward shift position from this state, the speed change shaft 36 turns forward and the left and right turning arm bodies 41L and 41R turn forward. As shown in FIG. 5, the outer sides of the left and right guide bodies 43L, 43R move upward, and accordingly, the left and right swash plate operating arms 45L, 45R are in the inclined state shown in FIG.
[0033]
  In this case, the left and right swash plate rotation support shafts 47L and 47R are substantially moved forward by the push-pull wires 32L and 32R connected to the left and right swash plate operating arms 45L and 45R via the swash plate operating arms 48L and 48R. Since the left and right traveling portions 3L and 3R are moved forward at substantially the same traveling speed because they are rotated by the same angle, the aircraft moves straight.
[0034]
  (3) Further, when the steering operation tool 14 is turned left (right) from the above state, the slide action body 38 moves to the left (right) side and the left slide body 40L (right slide body). 40R) moves to the left (right) side against the biasing force of the spring 42L (42R), and as shown in FIG. 6, only the left guide body 43L (right guide body 43R) maintains the inclined state. The left swash plate operating arm 45L (right swash plate operating arm 45R) is moved to a substantially horizontal state as shown in FIG.
[0035]
  In this case, the left (right) swash plate rotation support shaft 47L is connected to the left (right) push-pull wire 32L (32R) connected to the left swash plate operation arm 45L (right swash plate operation arm 45R). Since (47R) is returned to the substantially neutral state, the traveling speed of the left traveling part 3L (right traveling part 3R) is slightly slower than the traveling speed of the right traveling part 3R (left traveling part 3L). Slowly turns left.
[0036]
  (4) Further, from the above state, when the steering operation tool 14 is rotated in the left turning direction, only the left guide body 43L (right guide body 43R) is further left (right) as shown in FIG. ) When moving sideways, the left swash plate operating arm 45L (right swash plate operating arm 45R) is moved to the right swash plate operating arm 45R (left swash plate operating arm 45L) as shown in FIG. It will be in the state inclined in the reverse direction.
[0037]
  In this case, the left (right) swash plate rotation support shaft 47L is connected to the left (right) push-pull wire 32L (32R) connected to the left swash plate operation arm 45L (right swash plate operation arm 45R). Since (47R) rotates backward, the traveling speed of the left traveling unit 3L (right traveling unit 3R) is significantly slower than the traveling speed of the right traveling unit 3R (left traveling unit 3L). Make a sharp turn to the left (right).
[0038]
  As described above, the steering operation can be performed by the steering operation tool 14.
[0039]
  Furthermore, in this embodiment, as shown in FIGS. 2 and 3, the operation position detecting means 54 such as a potentiometer disposed near the lower end of the speed change lever 15 to detect the operation position of the speed change lever 15, and each travel Rotation speed detection means 55L, 55R attached to the transmission case 22 to detect the rotation speeds of the drive shafts 24L, 24R of the sections 3L, 3R, and control means 56 which connects these detection means 54, 55L, 55R to the input side. And a fine adjustment operation means 57 for finely adjusting the swash plate operating arm 48R provided on either one (right side in this embodiment) of the variable flow rate control pump 19R. In addition, during the straight-ahead operation, the fine adjustment operation means 57 is operated according to the shift operation position of the shift lever 15 so that the rotational speed difference between the drive shafts 24L and 24R is predetermined. It performs feedback control becomes smaller than the threshold value, so that fine adjustment of the position of the right swash plate actuating arm 48R. Reference numeral 53 denotes an operation position detection means stay attached to the steering operation mechanism case 33.
[0040]
  Then, a fine adjustment mode setting switch 58 as fine adjustment mode setting means for finely adjusting the posture of the right swash plate operating arm 48R by feedback control, and a steering operation area of the steering operation tool 14, that is, a straight traveling operation area, A steering operation area detecting means 59 for detecting a left turning operation area or a right turning operation area exceeding the straight traveling operation area is connected to the input side of the control means 56.
[0041]
  Here, the fine adjustment operating means 57 is attached to the vehicle body frame 2 by a fine adjustment linear actuator 60 such as a linear stepping motor via an actuator support shaft 61 whose axis is directed in the vertical direction. One end of the outer wire receiving piece 49R supporting the tip of the right outer wire 50R is pivotally supported / connected to the tip of the advance / retreat rod 62 of the linear actuator 60 via the pivot / connecting pin 63, The other end portion of the outer wire receiving piece 49R is pivoted and connected to a pivot / connection piece 65 projecting from the right variable flow rate control pump 19R via a pivot / connection pin 64.
[0042]
  Further, the operation position detecting means 54 includes a forward rotation operation range and a reverse rotation operation range of the transmission lever 15 in a plurality of zones, that is, in the present embodiment, as shown in FIG. The outer wire receiver is divided into the third forward zones Z1, Z2, and Z3 and the first to third reverse zones Z4, Z5, and Z6, and each of the zones Z1 to Z6 is set with a fine adjustment amount set in advance. The piece 49R is finely adjusted. a is a rotational speed change characteristic line of the drive shaft 24L of the left traveling unit 3L, and b is a rotational speed change characteristic line of the drive shaft 24R of the right traveling unit 3R.
[0043]
  In addition, in this embodiment, the auxiliary transmission switch 66 is provided in the gripping portion of the transmission lever 15 and the auxiliary transmission switch 66 is connected to the input side of the control means 56 as shown in FIGS. The sub-shift switch 66 allows the transmission unit 18 to be shifted in two stages, high and low.
[0044]
  The outer wire receiving piece 49R is finely adjusted by a fine adjustment amount set in advance for each of the high speed stage and the low speed stage switched by the auxiliary transmission switch 66.
[0045]
  Next, the straight-ahead control according to the present embodiment will be described with reference to the graph of the rotational speed change characteristic line of the left and right drive shafts 24L and 24R shown in FIG. 8 and the flowchart shown in FIG.
[0046]
  (1) As shown in FIG. 9, the operation position detecting means 54 detects the operation position of the transmission lever 15 (S80).
[0047]
  (2) As shown in FIG. 9, when the fine adjustment mode is set by the fine adjustment mode setting switch 58 (S81), and the steering operation area detecting means 59 detects the straight operation area of the steering operation tool 14. (S82 Yes), the rotational speed detection means 55L and 55R detect the rotational speeds of the drive shafts 24L and 24R (S83).
[0048]
  (3) As shown in FIG. 9, the rotational speeds of the drive shafts 24L and 24R detected by the rotational speed detection means 55L and 55R are input to the control means 56, which controls the drive shafts 24L and 24R. When it is determined that the difference in the rotational speed is larger than the predetermined threshold (Yes in S84), the control unit 56 makes the difference in rotational speed between the drive shafts 24L and 24R smaller than the predetermined threshold. Next, feedback control is performed to finely adjust the position of the right outer wire receiving piece 49R by the fine adjustment linear actuator 60 (S85).
[0049]
  (4) As shown in FIG. 9, when the difference between the rotational speeds of the drive shafts 24L and 24R becomes smaller than a predetermined threshold (No in S84), the position of the outer wire receiving piece 49R and the operating position of the transmission lever 15 Are stored in the control means 56 as adjusted data (S86).
[0050]
  (5) As shown in FIG. 9, when the fine adjustment mode is not set by the fine adjustment mode setting switch 58 (No in S81), or even when the fine adjustment mode is set, the steering operation area detecting means 59 operates the steering operation tool. If the straight operation range of 14 is not detected (No in S82), the adjusted data stored in the control means 56 is referred to (S87), and the position of the outer wire receiving piece 49R is set (S88).
[0051]
  At this time, as shown in FIG. 8, if there is a difference between the rotational speed of the drive shaft 24L of the left traveling section 3L and the rotational speed of the drive shaft 24R of the right traveling section 3R, the control means 56 Based on the detection results of the rotational speed detection means 55L and 55R, a signal is output to the fine adjustment linear actuator 60 of the fine adjustment operation means 57, and the advance / retreat rod 62 of the fine adjustment linear actuator 60 is moved forward and backward. The outer wire 50R is bent by adjusting the position of the outer wire receiving piece 49R supported by the advance / retreat rod 62 and the right variable flow rate control pump 19R in the sliding direction of the inner wire 51R by a predetermined minute width. Is slightly adjusted so that the inner wire 51R inserted through the outer wire 50R is slid by a minute width, and is connected to the tip of the inner wire 51R. Pivoting the swashplate working arm 48R by a small width.
[0052]
  As a result, the swash plate (not shown) of the right variable flow rate control pump 19R is rotationally displaced within a minute range, and the discharge amount of the pressure oil of the variable flow rate control pump 19R changes minutely. The rotational speed of the traveling hydraulic motor 20R communicating with the pump 19R changes minutely, and the rotational speed of the drive shaft 24R linked to the traveling hydraulic motor 20R changes minutely.
[0053]
  The rotational speed detection means 55L and 55R detect the rotational speeds of the drive shafts 24L and 24R in such a state, and the detection results are input to the control means 56 to detect the rotational speeds of the drive shafts 24L and 24R. Feedback control is performed until the values match, that is, until the difference between the detected values of the rotational speeds of the drive shafts 24L and 24R becomes smaller than a preset threshold value, thereby ensuring good straightness of the vehicle body. To be able to.
[0054]
  In addition, in this embodiment, the position of the outer wire receiving piece 49R supporting the distal end portion of the outer wire 50R of the push-pull wire 32R is adjusted by the fine adjustment linear actuator 60, so that the posture of the swash plate operating arm 48R is finely adjusted. Thus, the rotational speeds of the drive shafts 24L, 24R of both the traveling portions 3L, 3R can be aligned with high accuracy, and as a result, the straight-running stability of the vehicle body can be improved.
[0055]
  Furthermore, unlike the conventional lockup mechanism, the vehicle body can be moved straight with a simple structure, so that the assembly and maintenance can be improved, and the vehicle body can be reduced in size and weight. .
[0056]
  Further, in this embodiment, even when the turning traveling state returns to the straight traveling state, the straight traveling is resumed based on the adjusted data, so the transition from the turning traveling of the vehicle body to the straight traveling is made smoothly. Therefore, it is possible to improve the steering operability and safety without giving the operator a feeling of fear or discomfort.
[0057]
  In this way, when the fine adjustment mode is set by the fine adjustment mode setting switch 58, when the steering operation area detection means 59 detects the straight operation area of the steering operation tool 14, the rotation speed detection means automatically. Feedback control is performed to reduce the rotational speed difference between the drive shafts 24L and 24R of the traveling parts 3L and 3R detected by the 55L and 55R to be smaller than a predetermined threshold value, so that the straightness of the vehicle body can be ensured satisfactorily. .
[0058]
  At this time, the position of the outer wire receiving piece 49R and the operating position of the transmission lever 15 are determined when the difference in rotational speed between the drive shafts 24L and 24R detected by the rotational speed detection means 55L and 55R becomes smaller than a predetermined threshold value. It is stored in the control means 56 as adjusted data.
[0059]
  When the fine adjustment mode is not set by the fine adjustment mode setting switch 58, or even when the fine adjustment mode is set, the steering operation area detection means 59 does not detect the straight operation area of the steering operation tool 14. In this case, since the position of the outer wire receiving piece 49R is set based on the adjusted data stored in the control means 56, the straight traveling performance of the vehicle body can be ensured satisfactorily.
[0060]
  In addition, when the fine adjustment mode is set again by the fine adjustment mode setting switch 58, the position of the outer wire receiving piece 49R and the operation position of the transmission lever 15 are newly stored in the control means 56 as adjusted data. The new adjusted data can be updated as needed, and the straightness of the vehicle body can be ensured satisfactorily based on the optimal adjusted data.
[0061]
  In the configuration as described above, the gist of the present invention is that the rotation speed detection means 55L and 55R detect the steering operation area detection means 59 even though the steering operation area exceeds the straight operation area. When the rotational speed difference between the drive shafts 24L and 24R is smaller than a predetermined threshold value, the rotational speed detecting means 55L and 55R are operated by operating the fine adjustment operating means 57 according to the steering operation direction. The feedback control is performed so that the difference between the detected rotational speeds of the drive shafts 24L and 24R is larger than a predetermined threshold value, and the posture of the right swash plate operating arm 48R is finely adjusted.
[0062]
  In other words, as described above, the present embodiment is configured so that the straight-ahead control is performed, but the straight-ahead control is performed despite the fact that the steering operation tool 14 is operated to the neutral state by the play of the wire over time. When a situation occurs in which traveling is not possible, for example, when the vehicle body tries to turn in the right direction, the operator turns the steering operation tool 14 in the left direction to maintain the straightness of the vehicle body. However, such an operation finely adjusts the posture of the right swash plate operating arm 48R to perform control for correcting straightness (straightness correction control).
[0063]
  Next, the straightness correction control according to this embodiment will be described with reference to the flowchart shown in FIG.
[0064]
  (1) The steering operation area detection means 59 detects the operation area of the steering operation tool 14 (S90).
[0065]
  (2) When the steering operation area detection means 59 detects the straight operation area of the steering operation tool 14 (S90 rectilinear advance), the control means 56 uses the position of the outer wire receiving piece 49R and the operation position of the transmission lever 15 as adjusted data. (S91).
[0066]
  (3) When the steering operation area detection means 59 detects the left turning operation area of the steering operation tool 14 (S90 left turning), the rotational speeds of the drive shafts 24L and 24R detected by the rotational speed detection means 55L and 55R. Is input to the control means 56, and when the control means 56 determines that the difference in rotational speed between the drive shafts 24L and 24R is smaller than a predetermined threshold (Yes in S92), the control means 56 drives both the drives. Feedback control is performed in which the position of the right outer wire receiving piece 49R is finely adjusted to the acceleration side by the fine adjustment linear actuator 60 so that the difference between the rotational speeds of the shafts 24L and 24R becomes larger than a predetermined threshold value ( S93).
[0067]
  (4) The steering operation area detection means 59 detects the left turning operation area of the steering operation tool 14 (S90 left turning), and the rotations of the drive shafts 24L and 24R detected by the rotation speed detection means 55L and 55R. When the number is input to the control unit 56 and the control unit 56 does not determine that the difference in the rotational speed between the drive shafts 24L and 24R is smaller than a predetermined threshold (No in S92), the outer wire receiving piece 49R. And the operation position of the shift lever 15 are stored in the control means 56 as adjusted data (S91).
[0068]
  (5) When the steering operation area detection means 59 detects the right turning operation area of the steering operation tool 14 (S90 right turning), the drive shafts 24L and 24R detected by the rotation speed detection means 55L and 55R are detected. When the rotational speed is input to the control means 56 and the control means 56 determines that the difference between the rotational speeds of the drive shafts 24L and 24R is smaller than a predetermined threshold value (S94 Yes), the control means 56 Feedback control is performed in which the position of the right outer wire receiving piece 49R is finely adjusted to the deceleration side by the fine adjustment linear actuator 60 so that the difference between the rotational speeds of the drive shafts 24L and 24R is larger than a predetermined threshold value. (S95).
[0069]
  (6) The steering operation area detecting means 59 detects the right turning operation area of the steering operation tool 14 (S90 right turning), and both drive shafts 24L and 24R detected by the rotation speed detecting means 55L and 55R. Is input to the control means 56, and when the control means 56 does not determine that the difference between the rotation speeds of the drive shafts 24L and 24R is smaller than a predetermined threshold (No in S94), the outer wire receiving The position of the piece 49R and the operation position of the speed change lever 15 are stored in the control means 56 as adjusted data (S96).
[0070]
  In this way, even when the steering operation tool 14 is operated in a neutral state over time due to looseness of the wire or the like, even when the straight traveling cannot be performed, the straight traveling performance of the vehicle body is maintained. Since the attitude of the right swash plate operating arm 48R is finely adjusted by the turning operation by the operator to be performed and the straightness is corrected (straightness correction control), thereafter, Since the posture of the right swash plate operating arm 48R is newly stored in the control means 56 as adjusted data, the new adjusted data can be updated at any time, and the vehicle travels straight based on the optimal adjusted data. Good properties can be secured. As a result, safety can be improved.
[0071]
【The invention's effect】
  (1) In the first aspect of the present invention, a traveling hydraulic motor is linked to each of the left and right traveling units, and a variable flow rate control pump is connected to each of the traveling hydraulic motors. Steering operation area detection means for detecting the steering operation area of the steering operation tool and a drive of each traveling unit in a work vehicle that is coupled to the steering operation tool and can be turned by the steering operation tool. A rotation speed detection means for detecting the rotation speed of the shaft, a control means in which these detection means are connected to the input side, and an output side of the control means, and a swash plate operating arm provided in the variable flow rate control pump Fine adjustment operation means for finely adjusting the postureIn addition, the fine adjustment operation means interlocks the steering operation tool via a push-pull wire to a swash plate operating arm provided in each variable flow rate control pump, and both ends of the push-pull wire are outer wire receiving pieces. The inner wire is slidably inserted into the outer wire supported by the swash plate, and one end of the inner wire is linked to the swash plate operating arm, and the other end of the inner wire is linked to the steering operation tool. of The outer wire receiving piece supporting the outer wire is linked to a fine adjustment actuator, and the position of the outer wire receiving piece is adjusted in the sliding direction of the inner wire by the fine adjustment actuator, so that the posture of the swash plate operating arm is adjusted. Is configured to fine tune theEven though the steering operation range detection means detects a steering operation range that exceeds the straight drive operation range, the rotational speed difference between the two drive shafts detected by the rotational speed detection means is smaller than a predetermined threshold value. In this case, feedback control is performed so that the difference between the rotational speeds of the two drive shafts detected by the rotational speed detecting means is larger than a predetermined threshold value by operating the fine adjustment operating means according to the steering operation direction. To fine-tune the posture of the swash plate operating armThereafter, the attitude of the swash plate operating arm is newly stored in the control means as adjusted data.I am doing so.
[0072]
  In this way, when a backlash occurs in the wire or the like as the interlocking connection mechanism over time, and a situation in which straight traveling cannot be performed even though the steering operation tool is operated in a neutral state occurs. The operator who wants to maintain the straightness of the vehicle body performs the turning operation in the opposite direction to the direction in which the vehicle body tries to turn. Since the control to be corrected (correction control for rectilinearity) is performed, the rectilinearity of the vehicle body is repaired, and favorable rectilinearity can be ensured. As a result, safety can be improved.
[0073]
  Once the straightness of the vehicle body is repaired, new adjusted data can be updated at any time by storing the attitude of the swash plate operating arm in the control means as newly adjusted data. Based on the optimal adjusted data, the straightness of the vehicle body can be secured satisfactorily.
[0074]
  Further, there is no need to perform adjustment and maintenance of the wire or the like as the interlocking connection mechanism one by one, and the safety can be ensured satisfactorily.
[0075]
  MoreoverIn addition to operating the swash plate operating arm via the push-pull wire, the position of the outer wire receiving piece of the push-pull wire can be adjusted by the fine adjustment actuator, so that the attitude of the swash plate operating arm can be finely adjusted. The rotational speeds of the drive shafts of both travel parts can be matched with high accuracy.
[0076]
  As a result, the straight running stability of the vehicle body can be improved.
[0077]
  Furthermore, unlike the conventional lock-up mechanism, the vehicle body can be moved straight with a simple structure, so that the assembly and maintenance can be improved, and the vehicle body can be made smaller and lighter, and the manufacturing cost can be reduced. Can be achieved.
[0078]
  (2) In the present invention described in claim 2,An operation position detecting means for detecting the operation position of the shift lever is connected to the input side of the control means, and the forward rotation operation range and the reverse rotation operation range of the shift lever are divided into a plurality of zones, For each zone, the outer wire receiving piece is finely adjusted by a preset fine adjustment amount.ing.
  Therefore, also from this point, the straight running stability of the vehicle body can be improved.
[Brief description of the drawings]
FIG. 1 is a side view of a combine as a work vehicle according to the present invention.
FIG. 2 is an explanatory plan view of the combine.
FIG. 3 is an explanatory diagram of an interlocking mechanism.
FIG. 4 is an operation explanatory diagram of the interlocking mechanism during a neutral operation.
FIG. 5 is an operation explanatory diagram of the interlocking mechanism during forward operation.
FIG. 6 is an operation explanatory diagram of the interlocking mechanism during a left turn operation.
FIG. 7 is an operation explanatory diagram of the interlocking mechanism during a sudden left turn operation.
FIG. 8 is a graph showing a rotation speed change characteristic line of left and right drive shafts.
FIG. 9 is a straight-ahead control flowchart.
FIG. 10 is a straight-ahead correction control flowchart;
[Explanation of symbols]
1 Combine
2 Body frame
3L left running part
3R right running part
4 mowing parts
5 Driving Department
6 Motor Department

Claims (2)

左右側走行部にそれぞれ走行用油圧モータを連動連結して、各走行用油圧モータに可変流量制御ポンプを連通連結し、両可変流量制御ポンプに操向操作具を連動連結して、同操向操作具により旋回操作を可能とした作業車において、
操向操作具の操向操作域を検出する操向操作域検出手段と、各走行部の駆動軸の回転数を検出する回転数検出手段と、これらの検出手段を入力側に接続した制御手段と、同制御手段の出力側に接続すると共に、可変流量制御ポンプに設けた斜板作動アームの姿勢を微調整操作する微調整操作手段とを具備すると共に、
同微調整操作手段は、各可変流量制御ポンプに設けた斜板作動アームにプッシュプルワイヤを介して操向操作具を連動連結し、同プッシュプルワイヤは、両端部をアウタワイヤ受け片により支持したアウタワイヤ中に、インナワイヤを摺動自在に挿通して、同インナワイヤの一端を斜板作動アームに連動連結すると共に、同インナワイヤの他端を操向操作具に連動連結し、プッシュプルワイヤのアウタワイヤを支持しているアウタワイヤ受け片には、微調整用アクチュエータを連動連結して、同微調整用アクチュエータにより上記アウタワイヤ受け片をインナワイヤの摺動方向に位置調整して、斜板作動アームの姿勢を微調整するように構成して、
操向操作域検出手段が直進操作域を越えた操向操作域を検出しているにもかかわらず、回転数検出手段が検出する両駆動軸の回転数差が所定のしきい値よりも小さい場合には、操向操作方向に応じて微調整操作手段を作動させることにより、回転数検出手段が検出する両駆動軸の回転数差が所定のしきい値よりも大きくなるようにフィードバック制御を行って、斜板作動アームの姿勢を微調整し、その後は、斜板作動アームの姿勢が新たに調整済データとして制御手段に記憶されるようにしたことを特徴とする作業車。
A traveling hydraulic motor is linked to each left and right traveling section, a variable flow control pump is connected to each traveling hydraulic motor, and a steering operation tool is linked to both variable flow control pumps. In a work vehicle that can be turned with an operating tool,
Steering operation area detecting means for detecting the steering operation area of the steering operation tool, rotational speed detecting means for detecting the rotational speed of the drive shaft of each traveling unit, and control means for connecting these detecting means to the input side And a fine adjustment operation means for finely adjusting the posture of the swash plate operating arm provided in the variable flow rate control pump, while being connected to the output side of the control means ,
The fine-adjustment operation means interlocks the steering operation tool via a push-pull wire to a swash plate operating arm provided in each variable flow rate control pump, and both ends of the push-pull wire are supported by outer wire receiving pieces. The inner wire is slidably inserted into the outer wire, and one end of the inner wire is linked to the swash plate operating arm, and the other end of the inner wire is linked to the steering operation tool. A fine adjustment actuator is linked to the supported outer wire receiving piece, and the position of the outer wire receiving piece is adjusted in the sliding direction of the inner wire by the fine adjustment actuator to finely adjust the posture of the swash plate operating arm. Configure to adjust,
Even though the steering operation range detection means detects a steering operation range that exceeds the straight drive operation range, the rotational speed difference between the two drive shafts detected by the rotational speed detection means is smaller than a predetermined threshold value. In this case, feedback control is performed so that the difference between the rotational speeds of the two drive shafts detected by the rotational speed detecting means is larger than a predetermined threshold value by operating the fine adjustment operating means according to the steering operation direction. And then finely adjusting the attitude of the swash plate operating arm , and thereafter, the attitude of the swash plate operating arm is newly stored in the control means as adjusted data .
前記制御手段の入力側に、変速レバーの操作位置を検出する操作位置検出手段を接続し、変速レバーの前進側回動操作範囲と後進側回動操作範囲をそれぞれ複数のゾーンに区分けして、各ゾーン毎に、あらかじめ設定された微調整量にて前記したアウタワイヤ受け片が微調整されるようにしたことを特徴とする請求項1記載の作業車。 An operation position detecting means for detecting the operation position of the shift lever is connected to the input side of the control means, and the forward rotation operation range and the reverse rotation operation range of the shift lever are divided into a plurality of zones, 2. The work vehicle according to claim 1, wherein the outer wire receiving piece is finely adjusted by a preset fine adjustment amount for each zone .
JP2002297992A 2002-10-10 2002-10-10 Work vehicle Expired - Fee Related JP4091397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002297992A JP4091397B2 (en) 2002-10-10 2002-10-10 Work vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002297992A JP4091397B2 (en) 2002-10-10 2002-10-10 Work vehicle

Publications (3)

Publication Number Publication Date
JP2004130950A JP2004130950A (en) 2004-04-30
JP2004130950A5 JP2004130950A5 (en) 2005-10-06
JP4091397B2 true JP4091397B2 (en) 2008-05-28

Family

ID=32287551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297992A Expired - Fee Related JP4091397B2 (en) 2002-10-10 2002-10-10 Work vehicle

Country Status (1)

Country Link
JP (1) JP4091397B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5340682B2 (en) * 2008-09-16 2013-11-13 ヤンマー株式会社 Combine

Also Published As

Publication number Publication date
JP2004130950A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
JP4142208B2 (en) Mobile farm machine
US5822961A (en) Quick adjustment for straight ahead travel for a wheel-steered lawn mower
US7353651B2 (en) De-stroking dual hydrostatic pump
US6591936B2 (en) Driving apparatus for speed changing and steering of a vehicle
JP4091397B2 (en) Work vehicle
JP4094890B2 (en) Work vehicle
JP4094889B2 (en) Work vehicle
JP4065359B2 (en) Mobile farm machine
JP5852708B2 (en) Combine
JP3174952B2 (en) Moving agricultural machine
JP3816651B2 (en) Steering operation part structure of work vehicle
JP3681871B2 (en) Mobile farm machine
JP3986080B2 (en) Traveling vehicle
JP5313957B2 (en) Harvester traveling transmission device
JP3141133B2 (en) Combine
JP3816645B2 (en) Mobile farm machine
JP2001138943A (en) Crawler traveling vehicle
JP2008239030A (en) Traveling vehicle
JP4346499B2 (en) Work vehicle
JP3429252B2 (en) Combine
JP3429253B2 (en) Moving agricultural machine
JP3988891B2 (en) Traveling vehicle
JP5612384B2 (en) Combine
JP3868438B2 (en) Operation device for traveling crawler in combine
JP3174951B2 (en) Moving agricultural machine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080228

R151 Written notification of patent or utility model registration

Ref document number: 4091397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150307

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees