JP4091323B2 - Additive manufacturing equipment - Google Patents

Additive manufacturing equipment Download PDF

Info

Publication number
JP4091323B2
JP4091323B2 JP2002077803A JP2002077803A JP4091323B2 JP 4091323 B2 JP4091323 B2 JP 4091323B2 JP 2002077803 A JP2002077803 A JP 2002077803A JP 2002077803 A JP2002077803 A JP 2002077803A JP 4091323 B2 JP4091323 B2 JP 4091323B2
Authority
JP
Japan
Prior art keywords
powder
modeling
additive manufacturing
discharge port
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002077803A
Other languages
Japanese (ja)
Other versions
JP2003266548A (en
Inventor
浩 植杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakakin Co Ltd
Original Assignee
Nakakin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakakin Co Ltd filed Critical Nakakin Co Ltd
Priority to JP2002077803A priority Critical patent/JP4091323B2/en
Publication of JP2003266548A publication Critical patent/JP2003266548A/en
Application granted granted Critical
Publication of JP4091323B2 publication Critical patent/JP4091323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

【0001】
【発明の属する技術分野】
本発明は、砂、金属粉、合成樹脂粉末等よりなる薄い粉体層をレーザービームの熱によって結着硬化させ、その硬化層を積層一体化して3次元造形物を作製する積層造形装置に関する。
【0002】
【従来の技術】
近年、自動車、航空機、建造物、家電、玩具、日用雑貨等の各種工業分野における製品や部品の設計・デザイン構成をCAD、CAM、CAE等のコンピュター上で行う手法が広く普及している。そして、このようなコンピュター上で設計された三次元モデルを具象化した実体モデルを製作する最新の手段として、積層造形法が登場している。
【0003】
この積層造形法は、コンピュター上で設計モデルを厚さ数十〜数百μm単位の多数層に平行スライスした時の各断面パターンのデータを作成し、このデータを積層造形装置のコントローラーに入力し、造形材料に各層の断面パターンに沿ってレーザービームを照射することにより、前記スライスした多数層を最下層から順次一層ずつ積層形成してゆき、最終的に設計モデルに対応した実体モデルを形成するものであり、非常に複雑な形状のものでも連続する部位があれば一体物として形成できるという利点がある。
【0004】
しかして、このような積層造形法は、レーザービームを用いた光学的手段でパターン形成を行うために光造形法とも称されるが、使用する造形材料によって溶液造形方式と粉体造形方式とに大別される。前者の溶液造形方式は、紫外線硬化型樹脂等の光硬化性樹脂の溶液を造形材料とし、レーザー光にて該樹脂成分を光反応によって硬化させて樹脂造形物とするものである。一方、後者の粉体造形方式は、造形材料として砂、金属粉、樹脂粉末等の固形粉末を用い、レーザービームの熱により、粉体粒子自体を焼結させるか、混入されたバインダー成分を介して融着させ、もって粒子同士が結着硬化した造形物とするものであり、形態確認用の実体モデルのみならず、鋳造用の鋳型や樹脂成形用の金型等として実際の製品製造に用いる成形型枠の製作手段としても期待されている。
【0005】
粉体造形方式に用いる積層造形装置は、図8に示すように、上下に開放した矩形箱型の造形枠1内に、昇降台2上に載置されたべースプレート3が周囲のパッキング3aを介して密接状態で且つ昇降可能に配置しており、この造形枠1の開口部上を水平往復移動するリコーター4が設けられると共に、該造形枠1の上方に、炭酸ガスレーザーの如きレーザ発振器5から出射されるレーザービームLの照射方向を制御するXYスキャナー6が配置している。そして、リコーター4は、造形枠1の開口部全幅に対応する長さで上方へ開放する溝枠形をなし、下端にスリット状開口部4aを有しており、造形枠1上から外れたストローク両端の近傍位置で上方に配置した材料供給装置7より粉体Sの供給を受け、その粉体を移動過程でスリット状開口部4aから流出するようになっている。
【0006】
造形は、べースプレート3の造形基準面を前記平行スライスした一層分の厚みに相当する分だけ造形枠1の開口上縁より低い位置に設定し、リコーター4の水平移動によって粉体Sをべースプレート3上に載せ、この粉体層の表面にレーザービームLを前記多数層に平行スライスした第1層(最下層)の断面パターンに沿って照射し、該第1層に相当する二次元パターンの結着硬化層P1 を形成し、次いで昇降台2を前記一層分の厚みだけ下降させ、新たに粉体Sを該一層分に相当する厚みで載せ、同様にレーザービームLを照射して第2層に対応する結着硬化層P2 を形成し、以降同様にして順次一層分ずつ昇降台2を下降させて粉体Sの供給とレーザービームLの照射を繰り返すことにより、最終的に前記平行スライスした全ての層に対応する結着硬化層P1 ,P2 …が積層一体化した積層造形物Mを形成する。
【0007】
かくして積層造形が終了すれば、ベースプレート3をその底面が造形枠1の下縁よりも若干下位になる位置まで下降させ、フォークリフト等によって該ベースプレート3を造形枠1と一体に造形装置本体から取り外し、図9に示すように、所定の作業場に設けた粉体落とし槽8のネット8a上に運び、角材の如き適当な受け材9を介して該ネット8a上に載置する。この運搬の間、造形枠1はパッキン3aの弾接によってベースプレート3に保持されている。しかして、ベースプレート3をネット8a上に載置後、造形枠1を上方へ持ち上げて該ベースプレート3離脱させ、残留する未硬化粉体Sを排除して積層造形物Mを取り出す。なお、8bはネット8aを支持する簀の子状の受けフレームである。しかして、得られた積層造形物Mは、そのままでは粒子相互の結着力が弱いため、通常、ガスバーナーで表面を炙ったり、加熱炉内でのポストキュアを行ったりして強度を高め、更に要すれば研磨や孔開け、不要部の切除等の後加工を施して所期の用途に供される。
【0008】
【発明が解決しようとする課題】
ところが、前記のように造形終了段階での積層造形物Mは粒子相互の結着力が弱いことから、従来の積層造形装置においては、造形終了後のベースプレート3を造形枠1ごと前記粉体落とし槽8上に載置し、造形枠1を上方へ持ち上げて離脱させた際、一挙になだれ落ちる未硬化粉体Sの圧力と研磨力により、積層造形物Mの細い部分の折損、薄肉部分の破損、表面の磨耗による寸法精度及び表面性の悪化等を生じ易いという問題があった。しかして、このような問題は、造形材料がレジン含有型砂のように混入されたバインダー成分を介して融着させる粉体である場合に特に顕著であり、また積層造形物Mが構造的に複雑で精緻なものであるほど影響が大きいため、積層造形法の利点を充分に活かせない要因になっていた。
【0009】
因みに、図7は自動車エンジンの4気筒アルミニウム合金製シリンダヘッドの鋳造用砂型に用いられる中子の一例を示す。この中子Cは、三つ葉状になった各孔部Hに別体の二股棒状の中子(図示省略)を一部挿嵌させた状態で、上下の主型間に組み込まれるものであるが、燃料ガス及び空気の各シリンダへの分配と混合を行うシリンダヘッド内の流路及び空間構成に対応して、非常に複雑な形状・構造になっている。従って、このような中子Cの試作及び製作には、造形材料として砂型製作用のレジンコーテッドサンド(砂粒子を熱硬化性樹脂で被覆した型砂)を用いる積層造形法が好適であるが、図示の如く非常に細くなった部分や薄肉の部分が多く存在する形態であることから、積層造形法では造形物の取り出しの際に未硬化粉体の前記なだれ落ちによる影響を受け易く、歩留り及び寸法精度の低下を招くという難点があった。
【0010】
本発明は、上述の情況に鑑み、積層造形装置として、造形後に積層造形物を取り出す際の未硬化粉体のなだれ落ちによる悪影響を排除でき、もって損傷がなく寸法精度及び表面性に優れた積層造形物を確実に得ることを可能にするものを提供することを目的としている。
【0011】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、図面の参照符号を付して示せば、上下に開放した箱型の造形枠1内に配置するベースプレート3上に、粉体Sを散布して薄い粉体層を形成する工程と、該粉体層にレーザービームLを照射して所要の2次元パターンの硬化層を形成する工程と、造形枠1に対してベースプレート3を前記粉体層の厚み分だけ下降させる工程とを繰り返すことより、造形枠1内のベースプレート3上に前記硬化層が積層した造形物Mを作製する積層造形装置において、前記造形枠1の周壁10の下部寄りの複数箇所に、開閉蓋12,22,32付きの粉体排出口11,21,31と、各開閉蓋12,22,32を閉止状態で固定するロック手段13,23,33とが設けられていることを特徴とする構成を採用したものである。
【0012】
上記構成によれば、ベースプレート3を造形枠1ごと粉体落とし槽8上に載置して造形終了後の造形物Mを取り出す際、造形枠1を上方へ持ち上げて離脱させる前に造形枠1の粉体排出口11,21,31の開閉蓋12,22,32を開放すれば、造形物Mの周囲の未硬化粉体Sを該粉体排出口11,21,31から徐々に流出させて予め減少させておくことができるから、造形枠1を持ち上げた時に未硬化粉体Sが一挙になだれ落ちるのを回避できる。従って、取り出される造形物Mは、未硬化粉体Sのなだれ落ちによる部分的な折損や破損、磨耗がなく、寸法精度及び表面性に優れたものとなる。
【0013】
請求項2の発明は、上記請求項1の積層造形装置において、前記粉体排出口11,21の開閉蓋12,22は、該排出口11閉鎖時の内面が造形枠1の周壁10内面と面一になるように構成されてなるものとしている。この構成では、造形枠1の内側の粉体排出口11,21が存在する高さ領域での水平面積と、同排出口11,21が存在しない高さ領域での水平面積とが略一致するから、積層造形における各段階で形成する粉体層の表面は常に全体が均一に水平面に沿うものとなる。
【0014】
請求項3の発明は、上記請求項1又は2の積層造形装置において、前記粉体排出口11,31の開閉蓋12,32がスライド式開閉であり、そのスライド位置によって粉体排出口11,31の開口度を調整可能であるものとしている。この場合、造形終了後の造形物Mの取り出しにおいて、造形枠1を上方へ離脱させる前に造形枠1の開閉蓋12,32を開いて粉体排出口11,21から未硬化粉体Sを流出させる際、該未硬化粉体Sの流動性に応じて粉体排出口11,21の開口度を調整したり、初期には開口度を小さくして過度な流出を抑え、造形枠1内の粉体残存量の減少に伴って開口度を大きくして排出を促すことができる。
【0015】
請求項4の発明は、上記請求項1又は2の積層造形装置において、前記粉体排出口21の開閉蓋22が蝶番式開閉であるものとしている。この構成では、開閉蓋22の取付構造が極めて簡素になる。
【0018】
【発明の実施の形態】
以下、本発明に係る積層造形装置について、図示実施例に基づいて具体的に説明する。なお、本積層造形装置において既述した図8及び図9で示す従来の積層造形装置と共通する部分には、同一符号を付してその説明を省略する。
【0019】
図1は、第一実施例の積層造形装置に用いる造形枠1とベースプレート3を示す。この造形枠1は、アルミ合金製であり、従来の積層造形装置のものと同様に上下に開放した矩形箱型をなすが、その周壁10の前面及び後面の左右下部の計4ヵ所に横長矩形の粉体排出口11が開設されており、これら粉体排出口11を横スライド式の開閉蓋12によって開閉できるようになっている。一方、ベースプレート3は、従来の積層造形装置のものと同様であり、周側面を取り巻くパッキン3aを備えており、このパッキン3aを介して造形枠1の内周面に対して密接する形状及び大きさに設定されている。
【0020】
造形枠1の四周の各外面側上下部には、断面略U字形に曲成したアルミ合金製枠材の左右方向に沿う補強リブ14,15が設けてある。そして、該造形枠1の前面及び後面における下部補強リブ15には、左右の各粉体排出口11の下縁に沿う下部摺動ガイド16bが一体形成されると共に、各粉体排出口11の上縁に沿って固着されたアルミ合金製小片により、前記の下部摺動ガイド16bと対をなす上部摺動ガイド16aが設けられており、これら摺動ガイド16a,16bと粉体排出口11の上下縁外面との間に、開閉蓋12を摺動自在に挿嵌させる溝が構成されている。なお、補強リブ14,15と上部摺動ガイド16aのアルミ合金製小片は、造形枠1の内面側に凹凸を生じない形のリベット止め又はねじ止めによって当該造形枠1に固着されている。
【0021】
開閉蓋12は、図2及び図3(A)(B)に示すように、略横長矩形板状であり、厚肉部12aと、該厚肉部12aから上下両側及び左右一端側に張出した突縁部12bと、厚肉部12aの左右他端側からL字形に曲折した把手部12cとからなり、突縁部12bの上縁側の左右方向中間部にロック用切欠部12dが形成されている。この開閉蓋12の閉止姿勢では、把手部12cが造形枠1のコーナー側になる向きとして、厚肉部12aが粉体排出口11に適嵌すると共に、突縁部12bの上下両縁側が摺動ガイド16a,16bの内側に挿嵌し、且つ該突縁部12bの左右一端側への張出部分が粉体排出口11の垂直端縁の外面側に重合し、もって当該粉体排出口11を完全に閉鎖すると共に、厚肉部12aの内面が造形枠1の内面と面一になるように設定されている。
【0022】
また、図2及び図3(B)に示すように、上部摺動ガイド16aには閉止状態における開閉蓋12のロック用切欠部12dに対応する位置にロックねじ13が螺着されている。しかして、開閉蓋12は、このロックねじ13を締め付けて先端部をロック用切欠部12dへ嵌入させることにより、閉止状態で移動不能にロックされる一方、当該ロックねじ13を緩めて先端部をロック用切欠部12dから離脱させることにより、図3(A)の仮想線で示すように外側へ引き出して粉体排出口11を開放できるようになっている。
【0023】
なお、造形枠1の上部補強リブ14は、積層造形装置への取り付け時の位置決め支承部としても機能する。すなわち、該上部補強リブ14は位置決め用の傾斜上面14aと水平方向に沿う底面14bとを有しており、造形枠1を積層造形装置に取り付ける際、図8に示すように、左右の操作レバー17,17の支持スプリング17a,17aで左右の上部補強リブ14,14の各底面14bを支え、該操作レバー17,17を介した持ち上げ操作により、上部補強リブ14の傾斜上面14aを造形装置本体側の支持枠18の位置決め傾斜片18aに押接すると共に、両操作レバー17,17を該支持枠18の受け片18b上に載置して、当該造形枠1を位置決め状態で固定する。
【0024】
一方、ベースプレート3は、下降位置にある当該昇降台2上に、その上面に突設された位置決め突起2aに嵌合させる形で位置決め載置し、該昇降台2の上昇によって前記の位置決め固定された造形枠1内に案内される。19は昇降台2の昇降軸部2bを包囲する蛇腹状の防塵カバーである。
【0025】
このような造形枠1を用いた積層造形装置による造形操作は、従来と全く同様であり、コンピュター上で設計モデルを厚さ数十〜数百μm単位の多数層に平行スライスした時の各断面パターンのデータを作成し、このデータの入力によって自動的に、粉体層の形成とレーザービームLの照射による所要パターンの結着硬化層の形成とを繰り返し、最終的に設計モデルに対応した実体モデルである積層造形物を得る。
【0026】
なお、この造形操作は既述の通りであるが、ベースプレート3の傾きや表面凹凸等による造形への悪影響を排除するために、造形の前操作として一般的にベースプレート3上に造形基準面を設定する。これは、まず該ベースプレート3の上面を造形枠1の開口上縁より若干低い位置に設定し、リコーター4の1ストロークの移動によって該ベースプレート3上に粉体層を形成したのち、この粉体層の全体を当該ベースプレート3に内臓する電熱ヒーターで加熱して結着硬化させることにより、造形基準面とする造形ベース層を形成するのである。そして、この造形ベース層と形成する造形物との分離のために、該造形ベース層上に更に薄い粉体層を形成し、この未硬化の粉体層上に既述のように積層造形を行う。無論、積層造形に際しては、造形枠1は各開閉蓋12を閉止状態でロックして粉体排出口11…を閉鎖しておく。
【0027】
また、積層造形において各材料供給装置7からリコーター4へ供給される粉体Sの量は、該リコーター4の1ストロークの移動で形成する粉体層の一層分に対応するが、粉体層形成中に何らかの要因で途切れを生じては造形不能に陥るから、これを回避するために必要量よりも幾分多めに設定される。そして、この余剰分は、リコーター4のストローク両端で下方側に設けられている粉体回収槽20,20へ排出されるようになっている。なお、リコーター4及び粉体回収槽20の上方開口部には、粉体の粗粒や凝集塊の入り込みを排除するためのネット4b,20aが張られている。
【0028】
積層造形が終了すれば、既述のように、ベースプレート3をその底面が造形枠1の下縁よりも若干下位になる位置まで下降させ、フォークリフト等によって該ベースプレート3と造形枠1を一体に造形装置本体から取り外して所定の作業場に運び、図4に示すように、粉体落とし槽8のネット8a上に角材の如き適当な受け材9を介して載置する。なお、図4では、造形枠1の粉体排出口11を示すために、既述の図9で示す従来の場合とは造形枠1の向きを90度変えている。また、図4における積層造形物Mの断面は、既述の図7で示す中子Cを造形対象した場合のイ−イ線における幅方向断面を表しており、この場合の粉体Sはレジンコーテッドサンドになる。
【0029】
積層造形物Mの取り出しにおいては、まず造形枠1の開閉蓋12…をロック解除して開き、各粉体排出口11を開放する。これにより、造形枠1内の未硬化粉体Sは、図4に示すように粉体排出口11…から徐々に流出し、次第に残量を減じてゆく。しかして、粉体排出口11…からの未硬化粉体Sの流出がある程度まで減少するか、流出が停止した段階で、造形枠1を上方へ持ち上げてベースプレート3から離脱させ、ベースプレート3の面上や積層造形物Mの間に残る未硬化粉体Sを刷毛、エアーノズル、吸引ホース等を利用して排除し、積層造形物Mを取り出す。
【0030】
このように積層造形物Mの取り出しにおいて、粉体排出口11…を利用して予め造形枠1内の未硬化粉体Sを流出させて減らしておくことにより、造形枠1をベースプレート3から離脱させた際に未硬化粉体Sが一挙になだれ落ちるのを回避できる。そして、粉体排出口11…からの未硬化粉体Sの流出は徐々に進行し、従来における未硬化粉体Sの一挙のなだれ落ちに伴うような圧力や研磨力は作用しないから、造形対象が前記中子Cのように非常に複雑な形状・構造で細くなった部分や薄肉の部分を多く有して、且つ造形材料としてレジンコーテッドサンドのように混入されたバインダー成分を介して融着させる粉体を用いたものであっても、その細い部分の折損、薄肉部分の破損、表面の磨耗が防止され、寸法精度及び表面性に優れた積層造形物Mを高歩留りで得ることができる。
【0031】
かくして未硬化粉体Sを除去して取り出された積層造形物Mは、通常、ガスバーナーで炙る等の適当な手段で表面を熱して表層部の硬度を高めた上で、ポストキュアとして加熱炉中で所定時間の加熱を行って完全硬化させ、更に要すれば孔明け、切削、研磨、塗装等の後加工を施して積層造形品とする。
【0032】
上記第一実施例では造形枠1の粉体排出口11の開閉蓋12が横スライド式でロックねじ13によってロックするものであるが、本発明の積層造形装置における該開閉蓋の形状及び開閉方式とロック手段は例示以外の種々の構成を採用可能である。
【0033】
例えば、図5(A)(B)に示す第二実施例では、開閉蓋22は、上方回動によって開放する蝶番方式であり、矩形の厚肉部22aの周囲に突縁部22bが設けられ、その上方に固着した枢支金具23の水平ピン23aを突縁部22bの上部側で抱持しており、閉止状態で厚肉部22aが矩形の粉体排出口21に適嵌して、その内面が造形枠1の周壁10内面と面一になるように設定され、その側方に取付ピン23aを介して造形枠1に垂直面内回動自在に枢着した回動ロック片23を、当該開閉蓋22に植設したボルト型の摘み22cに係止させることより、当該開閉蓋22を閉止状態でロックするようになっている。
【0034】
また、図6に示す第三実施例では、開閉蓋32は、円形の粉体排出口31の外面側に被さる円板状をなし、上部の枢支ピン32aを介して造形枠1に取り付けられており、該枢支ピン32aを中心として回転スライドさせることによって粉体排出口31を開放すると共に、前記第二実施例の場合と同様に、その側方に取付ピン33aを介して造形枠1に垂直面内回動自在に枢着した回動ロック片33を、当該開閉蓋32に植設したボルト型の摘み32bに係止させることより、当該開閉蓋32を閉止状態でロックするようになっている。
【0035】
しかして、前記第一及び第二実施例における開閉蓋12,22のように、11閉鎖時の内面が造形枠1の周壁10内面と面一になる構成では、造形枠1の内側の粉体排出口11,21が存在する高さ領域での水平面積と、同排出口11,21が存在しない高さ領域での水平面積とが略一致し、積層造形における各段階で形成する粉体層の表面は常に全体が均一に水平面に沿う形になるから、造形領域が造形枠1の近傍に達する場合でも、高い造形精度が得られるという利点がある。これに対し、第三実施例の開閉蓋32のように、その内面が閉鎖時の造形枠1の周壁10外面に沿う構造であれば、造形枠1の内側は排出口31の位置で周壁10の厚み分だけ凹んだ形になるから、この凹みへの粉体Sの入り込みにより、ベースプレート3が排出口31の位置に達した以降の各段階で形成する粉体層の表面が排出口31のある周壁10近傍で窪むことになるから、造形領域が造形枠1の近傍に達する場合には支障を生じる。
【0036】
一方、開閉蓋を前記第一及び第三実施例における開閉蓋12,32のようにスライド式開閉とすれば、そのスライド位置によって粉体排出口11,31の開口度を調整可能できるから、造形終了後の造形物Mの取り出しにおいて、未硬化粉体Sの流動性に応じて粉体排出口11,21の開口度を調整したり、初期には開口度を小さくして過度な流出を抑え、造形枠1内の粉体残存量の減少に伴って開口度を大きくして排出を促すことができるという利点がある。
【0037】
また、本発明において造形枠1に設ける粉体排出口は、前記実施例のように周壁10の四周の各側面毎の計4箇所に設けたり、対向側面や対角線方向の計2箇所に設ける等、複数箇所に設けることにより、未硬化粉体Sを偏りのない形で排出することができる。なお、粉体排出口の形成位置は、造形枠1内に残留する未硬化粉体Sの量をできるだけ少なくする上で、造形枠1の下部寄り、つまり造形後に積層造形装置本体からベースプレート3を造形枠1と一体に取り出す際の下降させた当該ベースプレート3の上面近傍に設定することが望ましい。
【0038】
【発明の効果】
請求項1の発明によれば、造形材料として粉体を用いる積層造形装置として、記造形枠の周壁の下部寄りに開閉蓋付きの粉体排出口が設けられていることから、造形後の積層造形物の取り出しに当たり、予め該粉体排出口から未硬化粉体を流出させて造形枠内の未硬化粉体の残量を減らすことにより、造形枠をベースプレートから離脱させる際の未硬化粉体の一挙のなだれ落ちを回避でき、もって造形対象が非常に複雑で精緻な形状・構造のものであっても、損傷がなく寸法精度及び表面性に優れた積層造形物を確実に高歩留りで作製できるものが提供される。また、前記粉体排出口は複数箇所に設けられるため、その配置によって未硬化粉体を偏りのない形で排出することが可能になると共に、前記開閉蓋を閉止状態で固定するロック手段を有することから、造形中の開閉蓋の不用意な開放によって粉体の流出を生じる懸念がない。
【0039】
請求項2の発明によれば、上記の積層造形装置において、前記粉体排出口の開閉蓋の閉止状態での内面が造形枠の周壁内面と面一になることから、積層造形における各段階で形成する粉体層の表面全体が常に均一に水平面に沿うものとなり、もって造形領域が造形枠近傍に達する場合でも高い造形精度を確保できる。
【0040】
請求項3の発明によれば、上記の積層造形装置において、前記粉体排出口の開閉蓋がスライド式開閉であることから、造形終了後の造形物Mの取り出しに際し、未硬化粉体の流動性に応じて粉体排出口の開口度を調整したり、初期には開口度を小さくして過度な流出を抑え、造形枠内の粉体残存量の減少に伴って開口度を大きくして排出を促すことができる。
【0041】
請求項4の発明によれば、上記の積層造形装置において、前記粉体排出口の開閉蓋が蝶番式開閉であることから、該開閉蓋の取付構造が極めて簡素になる。
【図面の簡単な説明】
【図1】 本発明の第一実施例に係る積層造形装置に用いる造形枠及びベースプレートを示す斜視図である。
【図2】 同造形枠の粉体排出口に取り付ける開閉蓋の斜視図である。
【図3】 同造形枠の粉体排出口近傍を示し、(A)図は横断平面図、(B)図は(A)図中のB−B線の断面矢視図である。
【図4】 同造形枠を用いた造形後の積層造形物の取り出しの前段階を示す縦断面図である。
【図5】 本発明の第二実施例に係る積層造形装置に用いる造形枠の粉体排出口近傍を示し、(A)図は正面図、(B)図は(A)図中のB−B線の断面矢視図である。
【図6】 本発明の第三実施例に係る積層造形装置に用いる造形枠の粉体排出口近傍を示す正面図である。
【図7】 造形対象の一例である自動車エンジンの4気筒シリンダヘッド鋳造用の中子を示す斜視図である。
【図8】 本発明及び従来の積層造形装置による造形状態を示す縦断正面図である。
【図9】 従来の積層造形装置による造形後の積層造形物の取り出し操作を示す縦断正面図である。
【符号の説明】
1 造形枠1
2 昇降台
3 ベースプレート
4 リコーター
5 レーザー発振器
6 XYスキャナー
7 粉体供給装置
8 粉体落とし槽
10 周壁
11 粉体排出口
12 開閉蓋
13 ロックねじ(ロック手段)
21 粉体排出口
22 開閉蓋
23 ロック片(ロック手段)
31 粉体排出口
32 開閉蓋
33 ロック片(ロック手段)
M 積層造形物
S 粉体
L レーザービーム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an additive manufacturing apparatus for binding and curing a thin powder layer made of sand, metal powder, synthetic resin powder or the like by heat of a laser beam, and stacking and integrating the cured layers to produce a three-dimensional structure.
[0002]
[Prior art]
In recent years, techniques for designing and designing products and parts in various industrial fields such as automobiles, airplanes, buildings, home appliances, toys, and daily goods on computers such as CAD, CAM, and CAE have become widespread. And the additive manufacturing method has appeared as the latest means for producing a real model that is a concrete representation of a three-dimensional model designed on such a computer.
[0003]
This additive manufacturing method creates cross-sectional pattern data when a design model is parallel sliced into multiple layers of tens to hundreds of micrometers in thickness on a computer, and this data is input to the controller of the additive manufacturing apparatus. By irradiating the modeling material with a laser beam along the cross-sectional pattern of each layer, the sliced multiple layers are sequentially stacked one by one from the bottom layer, and finally a solid model corresponding to the design model is formed There is an advantage that even a very complicated shape can be formed as a single piece if there is a continuous portion.
[0004]
Such a layered modeling method is also called an optical modeling method in order to form a pattern with an optical means using a laser beam. However, depending on the modeling material used, a solution modeling method and a powder modeling method are used. Broadly divided. In the former solution modeling method, a solution of a photocurable resin such as an ultraviolet curable resin is used as a modeling material, and the resin component is cured by a photoreaction with a laser beam to obtain a resin model. On the other hand, in the latter powder molding method, solid powder such as sand, metal powder, resin powder, etc. is used as a modeling material, and the powder particles themselves are sintered by the heat of a laser beam, or through mixed binder components. This is used for actual product manufacturing as a solid model for confirming the shape as well as a casting mold or a resin molding mold. It is also expected as a means for producing molds.
[0005]
As shown in FIG. 8, the additive manufacturing apparatus used in the powder modeling method includes a base plate 3 placed on a lifting platform 2 in a rectangular box-shaped modeling frame 1 opened up and down via a surrounding packing 3 a. The recoater 4 is provided so as to be able to move up and down in close contact with each other. The recoater 4 horizontally reciprocates on the opening of the modeling frame 1. A laser oscillator 5 such as a carbon dioxide laser is provided above the modeling frame 1. An XY scanner 6 for controlling the irradiation direction of the emitted laser beam L is arranged. The recoater 4 has a groove frame shape that opens upward with a length corresponding to the full width of the opening of the modeling frame 1, has a slit-shaped opening 4 a at the lower end, and is a stroke that is off the modeling frame 1. The powder S is supplied from the material supply device 7 disposed above in the vicinity of both ends, and the powder flows out from the slit-like opening 4a in the course of movement.
[0006]
For modeling, the modeling reference surface of the base plate 3 is set at a position lower than the upper edge of the opening of the modeling frame 1 by an amount corresponding to the thickness of the layer sliced in parallel, and the powder S is moved to the base plate by the horizontal movement of the recoater 4. 3, the surface of the powder layer is irradiated with a laser beam L along the cross-sectional pattern of the first layer (lowermost layer) sliced in parallel with the multiple layers, and a two-dimensional pattern corresponding to the first layer is formed. Binder hardening layer P1Then, the lifting platform 2 is lowered by the thickness corresponding to the one layer, and the powder S is newly placed with a thickness corresponding to the one layer, and the laser beam L is irradiated in the same manner to form a connection corresponding to the second layer. Hardened layer P2After that, the elevator 2 is sequentially lowered one layer at a time in the same manner, and the supply of the powder S and the irradiation of the laser beam L are repeated, so that the binding finally corresponding to all the parallel sliced layers is performed. Hardened layer P1, P2... form a layered object M that is layered and integrated.
[0007]
Thus, when the layered modeling is completed, the base plate 3 is lowered to a position where the bottom surface is slightly lower than the lower edge of the modeling frame 1, and the base plate 3 is removed from the modeling apparatus main body integrally with the modeling frame 1 by a forklift or the like. As shown in FIG. 9, it carries on the net | network 8a of the powder dropping tank 8 provided in the predetermined | prescribed work place, and mounts on this net | network 8a via the suitable receiving materials 9, such as a square. During this transportation, the modeling frame 1 is held on the base plate 3 by the elastic contact of the packing 3a. Then, after placing the base plate 3 on the net 8a, the modeling frame 1 is lifted upward to be detached from the base plate 3, the remaining uncured powder S is removed, and the layered object M is taken out. Reference numeral 8b denotes a hook-shaped receiving frame that supports the net 8a. Therefore, since the obtained layered object M has a weak binding force between particles as it is, the strength is usually increased by scratching the surface with a gas burner or post-curing in a heating furnace. If necessary, post-processing such as polishing, drilling, cutting away unnecessary parts, etc. is performed for the intended use.
[0008]
[Problems to be solved by the invention]
However, as described above, the layered object M at the end of modeling has a weak binding force between particles. Therefore, in the conventional layered apparatus, the base plate 3 after the completion of modeling together with the modeling frame 1 is the powder dropping tank. 8 When the modeling frame 1 is lifted upward and removed, the thin part of the layered product M is broken or the thin part is broken by the pressure and polishing force of the uncured powder S that droops at once. There has been a problem that dimensional accuracy and surface properties are likely to deteriorate due to surface wear. Such a problem is particularly noticeable when the modeling material is a powder to be fused via a binder component mixed in like resin-containing sand, and the layered product M is structurally complex. The more detailed and detailed, the greater the influence, which has been a factor that makes it impossible to fully utilize the advantages of the additive manufacturing method.
[0009]
Incidentally, FIG. 7 shows an example of a core used in a sand mold for casting of a cylinder head made of a four-cylinder aluminum alloy of an automobile engine. The core C is incorporated between the upper and lower main molds in a state where a separate bifurcated bar-shaped core (not shown) is partially inserted into each hole H having a three-leaf shape. The cylinder head has a very complicated shape and structure corresponding to the flow path and space configuration in the cylinder head that distributes and mixes fuel gas and air to each cylinder. Therefore, for the trial production and production of such a core C, a layered modeling method using a sand-coated resin-coated sand (mold sand in which sand particles are coated with a thermosetting resin) is suitable as a modeling material. As shown in the figure, the layered manufacturing method is easily affected by the avalanche of uncured powder when taking out the modeled object, and the yield and dimensions are very small. There was a problem that the accuracy was reduced.
[0010]
In view of the above circumstances, the present invention can eliminate the adverse effects caused by the avalanche of uncured powder when taking out a layered product after modeling as a layered modeling device, and has no dimensional accuracy and excellent surface properties without damage. It aims at providing what makes it possible to obtain a molded object reliably.
[0011]
[Means for Solving the Problems]
  In order to achieve the above object, the invention of claim 1, if attached with reference numerals in the drawings, spreads powder S on a base plate 3 arranged in a box-shaped molding frame 1 opened up and down. Forming a thin powder layer, irradiating the powder layer with a laser beam L to form a hardened layer having a required two-dimensional pattern, and forming the base plate 3 on the modeling frame 1 with the powder. In the additive manufacturing apparatus for producing a molded article M in which the hardened layer is laminated on the base plate 3 in the modeling frame 1 by repeating the step of lowering by the thickness of the layer, the peripheral wall 10 of the modeling frame 1Multiple locations near the bottom ofAnd powder discharge ports 11, 21, 31 with open / close lids 12, 22, 32.And locking means 13, 23, 33 for fixing the open / close lids 12, 22, 32 in a closed state,A configuration characterized in that is provided.
[0012]
According to the above configuration, when the base plate 3 is placed on the powder dropping tank 8 together with the modeling frame 1 and the modeling object M after the modeling is taken out, the modeling frame 1 is lifted before the modeling frame 1 is lifted upward. If the open / close lids 12, 22, 32 of the powder discharge ports 11, 21, 31 are opened, the uncured powder S around the molded article M is gradually discharged from the powder discharge ports 11, 21, 31. Therefore, the uncured powder S can be prevented from dripping at once when the modeling frame 1 is lifted. Therefore, the molded article M to be taken out is free from partial breakage, breakage, and wear due to the avalanche of the uncured powder S, and has excellent dimensional accuracy and surface properties.
[0013]
According to a second aspect of the present invention, in the additive manufacturing apparatus according to the first aspect, the open / close lids 12 and 22 of the powder discharge ports 11 and 21 have an inner surface when the discharge port 11 is closed and an inner surface of the peripheral wall 10 of the modeling frame 1. It is assumed to be configured to be flush with each other. In this configuration, the horizontal area in the height region where the powder discharge ports 11 and 21 inside the modeling frame 1 are present substantially coincides with the horizontal area in the height region where the discharge ports 11 and 21 are not present. Therefore, the entire surface of the powder layer formed at each stage in the layered manufacturing is always uniformly along the horizontal plane.
[0014]
According to a third aspect of the present invention, in the additive manufacturing apparatus according to the first or second aspect, the open / close lids 12 and 32 of the powder discharge ports 11 and 31 are slidable, and the powder discharge port 11 or It is assumed that the opening degree of 31 can be adjusted. In this case, when the modeling object M is taken out after the modeling, the open / close lids 12 and 32 of the modeling frame 1 are opened and the uncured powder S is removed from the powder discharge ports 11 and 21 before the modeling frame 1 is released upward. When flowing out, the opening degree of the powder discharge ports 11 and 21 is adjusted according to the fluidity of the uncured powder S, or the opening degree is initially reduced to suppress excessive outflow, and the inside of the molding frame 1 As the remaining amount of powder decreases, the degree of opening can be increased to facilitate discharge.
[0015]
According to a fourth aspect of the present invention, in the additive manufacturing apparatus according to the first or second aspect, the open / close lid 22 of the powder discharge port 21 is a hinge-type open / close. With this configuration, the mounting structure of the opening / closing lid 22 is extremely simplified.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the additive manufacturing apparatus according to the present invention will be described in detail based on the illustrated embodiments. In addition, the same code | symbol is attached | subjected to the part which is common in the conventional additive manufacturing apparatus shown in FIG.8 and FIG.9 already described in this additive manufacturing apparatus, and the description is abbreviate | omitted.
[0019]
FIG. 1 shows a modeling frame 1 and a base plate 3 used in the additive manufacturing apparatus of the first embodiment. The modeling frame 1 is made of an aluminum alloy and has a rectangular box shape that is open up and down, similar to that of a conventional additive manufacturing apparatus, but has a horizontally long rectangular shape at four locations on the front and rear sides of the peripheral wall 10. Powder discharge ports 11 are opened, and these powder discharge ports 11 can be opened and closed by a lateral slide type opening / closing lid 12. On the other hand, the base plate 3 is the same as that of the conventional additive manufacturing apparatus, and includes a packing 3a surrounding the peripheral side surface. The shape and size of the base plate 3 are in close contact with the inner peripheral surface of the modeling frame 1 through the packing 3a. Is set.
[0020]
Reinforcing ribs 14 and 15 are provided along the left and right directions of the aluminum alloy frame member bent in a substantially U-shaped cross section on the upper and lower portions on the outer surface side of the four circumferences of the modeling frame 1. The lower reinforcing ribs 15 on the front and rear surfaces of the modeling frame 1 are integrally formed with lower sliding guides 16 b along the lower edges of the left and right powder discharge ports 11, and the powder discharge ports 11. An upper sliding guide 16a that is paired with the lower sliding guide 16b is provided by an aluminum alloy piece fixed along the upper edge, and the sliding guides 16a and 16b and the powder discharge port 11 A groove for slidably inserting the opening / closing lid 12 is formed between the outer surfaces of the upper and lower edges. The aluminum alloy pieces of the reinforcing ribs 14 and 15 and the upper sliding guide 16a are fixed to the modeling frame 1 by riveting or screwing in a shape that does not cause unevenness on the inner surface side of the modeling frame 1.
[0021]
As shown in FIGS. 2 and 3A and 3B, the opening / closing lid 12 has a substantially horizontally long rectangular plate shape, and protrudes from the thick portion 12a and both the upper and lower sides and the left and right ends from the thick portion 12a. The protruding portion 12b and a handle portion 12c bent in an L shape from the left and right other end sides of the thick portion 12a are formed, and a locking notch 12d is formed at the intermediate portion on the upper edge side of the protruding portion 12b. Yes. In the closed posture of the opening / closing lid 12, the thick portion 12a is fitted into the powder discharge port 11 so that the handle portion 12c faces the corner of the modeling frame 1, and the upper and lower edges of the projecting edge portion 12b are slid. Inserted into the inner sides of the moving guides 16a and 16b, and the projecting portions of the projecting edge portion 12b to the left and right end sides are superposed on the outer surface side of the vertical edge of the powder discharge port 11, so that the powder discharge port 11 is completely closed, and the inner surface of the thick portion 12 a is set to be flush with the inner surface of the modeling frame 1.
[0022]
As shown in FIGS. 2 and 3B, a lock screw 13 is screwed to the upper sliding guide 16a at a position corresponding to the locking notch 12d of the opening / closing lid 12 in the closed state. Thus, the opening / closing lid 12 is locked so as to be immovable in the closed state by tightening the lock screw 13 and fitting the tip portion into the lock cutout portion 12d, while loosening the lock screw 13 and moving the tip portion. By detaching from the locking notch 12d, the powder discharge port 11 can be opened by being drawn outward as indicated by the phantom line in FIG.
[0023]
Note that the upper reinforcing rib 14 of the modeling frame 1 also functions as a positioning support portion when attached to the additive manufacturing apparatus. That is, the upper reinforcing rib 14 has an inclined upper surface 14a for positioning and a bottom surface 14b along the horizontal direction. When the modeling frame 1 is attached to the additive manufacturing apparatus, as shown in FIG. 17 and 17 support springs 17a and 17a support the bottom surfaces 14b of the left and right upper reinforcing ribs 14 and 14, respectively, and the upper surface of the inclined upper surface 14a of the upper reinforcing rib 14 is formed by a lifting operation via the operating levers 17 and 17. While pressing against the positioning inclined piece 18a of the support frame 18 on the side, both the operating levers 17 and 17 are placed on the receiving piece 18b of the support frame 18 to fix the modeling frame 1 in the positioned state.
[0024]
On the other hand, the base plate 3 is positioned and placed on the lifting platform 2 in the lowered position so as to be fitted to the positioning projections 2a projecting from the upper surface of the base plate 3, and the positioning and fixing are performed by raising the lifting platform 2. Guided into the modeling frame 1. Reference numeral 19 denotes a bellows-shaped dustproof cover that surrounds the lifting shaft 2b of the lifting platform 2.
[0025]
The modeling operation by the additive manufacturing apparatus using such a modeling frame 1 is exactly the same as the conventional one, and each cross section when the design model is sliced in parallel into multiple layers of several tens to several hundreds of micrometers on a computer. Create pattern data, and automatically input the data and repeat the formation of the powder layer and the formation of the binder hardened layer of the required pattern by irradiation with the laser beam L, and finally the entity corresponding to the design model The modeled layered object is obtained.
[0026]
Although this modeling operation is as described above, a modeling reference surface is generally set on the base plate 3 as a pre-modeling operation in order to eliminate adverse effects on modeling due to the inclination of the base plate 3 and surface irregularities. To do. First, the upper surface of the base plate 3 is set at a position slightly lower than the upper edge of the opening of the modeling frame 1, and the powder layer is formed on the base plate 3 by moving the recoater 4 by one stroke. The whole is heated with an electric heater built in the base plate 3 to be cured by binding, thereby forming a modeling base layer as a modeling reference surface. Then, in order to separate the modeling base layer from the modeled object to be formed, a thinner powder layer is formed on the modeling base layer, and the layered modeling is performed on the uncured powder layer as described above. Do. Of course, in the layered modeling, the modeling frame 1 locks the open / close lids 12 in the closed state to close the powder discharge ports 11.
[0027]
In addition, the amount of the powder S supplied from each material supply device 7 to the recoater 4 in the layered manufacturing corresponds to one layer of the powder layer formed by the movement of the recoater 4 by one stroke. If there is an interruption for some reason, it will be impossible to form, so it is set somewhat larger than necessary to avoid this. And this surplus is discharged | emitted to the powder collection tanks 20 and 20 provided in the downward side at the stroke both ends of the recoater 4. FIG. In addition, nets 4b and 20a for excluding the entry of coarse particles and agglomerates of powder are stretched at the upper openings of the recoater 4 and the powder recovery tank 20.
[0028]
When the additive manufacturing is completed, the base plate 3 is lowered to a position where the bottom surface is slightly lower than the lower edge of the modeling frame 1 as described above, and the base plate 3 and the modeling frame 1 are integrally molded by a forklift or the like. It is removed from the apparatus main body and carried to a predetermined work place, and is placed on a net 8a of the powder dropping tank 8 via an appropriate receiving material 9 such as a square material as shown in FIG. In FIG. 4, in order to show the powder discharge port 11 of the modeling frame 1, the orientation of the modeling frame 1 is changed by 90 degrees from the conventional case shown in FIG. Moreover, the cross section of the layered object M in FIG. 4 represents the cross section in the width direction along the line II when the core C shown in FIG. 7 is the object of modeling, and the powder S in this case is a resin. Become a coated sand.
[0029]
In taking out the layered object M, first, the open / close lid 12 of the modeling frame 1 is unlocked and opened, and each powder discharge port 11 is opened. As a result, the uncured powder S in the modeling frame 1 gradually flows out from the powder discharge ports 11 as shown in FIG. 4 and gradually reduces the remaining amount. Accordingly, when the outflow of the uncured powder S from the powder discharge ports 11 is reduced to a certain extent or when the outflow is stopped, the modeling frame 1 is lifted upward to be detached from the base plate 3, and the surface of the base plate 3. The uncured powder S remaining above or between the layered objects M is removed using a brush, an air nozzle, a suction hose, etc., and the layered object M is taken out.
[0030]
In this way, when the layered object M is taken out, the molding frame 1 is detached from the base plate 3 by using the powder discharge ports 11. It is possible to avoid the uncured powder S from drooling at once. Then, the flow of the uncured powder S from the powder discharge ports 11... Progresses gradually, and the pressure and polishing force associated with the conventional avalanche of the uncured powder S do not act. Has many thin parts and thin parts with extremely complicated shapes and structures, such as the core C, and is fused via a binder component mixed as resin-coated sand as a modeling material. Even if the powder to be used is used, it is possible to prevent the thin portion from being broken, the thin portion from being broken, and the surface from being worn, and the layered product M having excellent dimensional accuracy and surface property can be obtained with a high yield. .
[0031]
Thus, the layered product M taken out by removing the uncured powder S is usually heated by a suitable means such as a gas burner to increase the hardness of the surface layer portion and then heated as a post-cure. It is heated for a predetermined time to be completely cured, and if necessary, post-processing such as drilling, cutting, polishing, painting, etc. is performed to obtain a layered product.
[0032]
In the first embodiment, the open / close lid 12 of the powder discharge port 11 of the modeling frame 1 is a lateral slide type and is locked by the lock screw 13. The shape and open / close method of the open / close lid in the additive manufacturing apparatus of the present invention. The lock means can employ various configurations other than those illustrated.
[0033]
For example, in the second embodiment shown in FIGS. 5 (A) and 5 (B), the opening / closing lid 22 is a hinge system that is opened by turning upward, and a protruding edge portion 22b is provided around a rectangular thick portion 22a. The horizontal pin 23a of the pivotal support 23 fixed above is held on the upper side of the projecting edge portion 22b, and the thick portion 22a is properly fitted to the rectangular powder discharge port 21 in the closed state, A rotation lock piece 23 which is set so that its inner surface is flush with the inner surface of the peripheral wall 10 of the modeling frame 1 and is pivotally attached to the modeling frame 1 via a mounting pin 23a so as to be rotatable in the vertical plane. The opening / closing lid 22 is locked in a closed state by being engaged with a bolt-shaped knob 22c planted in the opening / closing lid 22.
[0034]
In the third embodiment shown in FIG. 6, the open / close lid 32 has a disk shape covering the outer surface side of the circular powder discharge port 31, and is attached to the modeling frame 1 via the upper pivot pin 32a. The powder discharge port 31 is opened by rotating and sliding about the pivot pin 32a, and the molding frame 1 is attached to the side thereof via the mounting pin 33a as in the case of the second embodiment. The rotation lock piece 33 pivotally attached to the vertical plane is engaged with a bolt-shaped knob 32b planted on the opening / closing lid 32 so that the opening / closing lid 32 is locked in the closed state. It has become.
[0035]
Thus, in the configuration in which the inner surface at the time of closing 11 is flush with the inner surface of the peripheral wall 10 of the modeling frame 1 like the open / close lids 12 and 22 in the first and second embodiments, the powder on the inner side of the modeling frame 1 The horizontal area in the height region where the discharge ports 11 and 21 exist and the horizontal area in the height region where the discharge ports 11 and 21 do not substantially match, and the powder layer formed at each stage in the additive manufacturing Since the entire surface is always along the horizontal plane, there is an advantage that high modeling accuracy can be obtained even when the modeling region reaches the vicinity of the modeling frame 1. On the other hand, as in the case of the opening / closing lid 32 of the third embodiment, if the inner surface is a structure along the outer surface of the peripheral wall 10 of the modeling frame 1 when closed, the inner side of the modeling frame 1 is the peripheral wall 10 at the position of the discharge port 31. Therefore, the surface of the powder layer formed at each stage after the base plate 3 reaches the position of the discharge port 31 by the penetration of the powder S into the recess is the shape of the discharge port 31. Since it will be depressed in the vicinity of a certain peripheral wall 10, a problem occurs when the modeling region reaches the vicinity of the modeling frame 1.
[0036]
On the other hand, if the open / close lid is slidable like the open / close lids 12 and 32 in the first and third embodiments, the degree of opening of the powder discharge ports 11 and 31 can be adjusted by the slide position. When taking out the molded article M after completion, the opening degree of the powder discharge ports 11 and 21 is adjusted according to the fluidity of the uncured powder S, or the opening degree is initially reduced to prevent excessive outflow. There is an advantage that the opening degree can be increased and the discharge can be promoted as the residual amount of the powder in the modeling frame 1 decreases.
[0037]
  In the present invention, the powder outlet provided in the modeling frame 1 is,in frontThe uncured powder S is biased by being provided at a plurality of locations, such as provided at a total of 4 locations for each side surface of the four circumferences of the peripheral wall 10 as in the embodiment, or at a total of 2 locations on the opposite side surface or diagonal direction. It can be discharged without any form. The powder discharge port is formed at the position where the uncured powder S remaining in the modeling frame 1 is reduced as much as possible. It is desirable to set it in the vicinity of the upper surface of the base plate 3 that has been lowered when taken out integrally with the modeling frame 1.
[0038]
【The invention's effect】
  According to the invention of claim 1, as a layered modeling apparatus using powder as a modeling material, the peripheral wall of the modeling frameNear the bottom ofSince a powder discharge port with an openable / closable lid is provided, uncured powder in the modeling frame is made to flow out from the powder discharge port in advance when taking out the layered object after modeling. By reducing the remaining amount, it is possible to avoid drooling of uncured powder at the time of removing the modeling frame from the base plate, and even if the modeling target is very complicated and precise shape / structure, There is provided an object capable of reliably producing a layered object that is not damaged and has excellent dimensional accuracy and surface property at a high yield.In addition, since the powder discharge port is provided at a plurality of locations, it is possible to discharge the uncured powder in an unbalanced manner by the arrangement, and there is a lock means for fixing the open / close lid in a closed state. For this reason, there is no concern of powder outflow due to inadvertent opening of the open / close lid during modeling.
[0039]
According to the invention of claim 2, in the additive manufacturing apparatus, the inner surface of the powder discharge port in the closed state of the opening / closing lid is flush with the inner surface of the peripheral wall of the forming frame. The entire surface of the powder layer to be formed is always along the horizontal plane, so that high modeling accuracy can be ensured even when the modeling region reaches the vicinity of the modeling frame.
[0040]
According to the invention of claim 3, in the additive manufacturing apparatus described above, since the opening / closing lid of the powder discharge port is a slide-type opening / closing, the flow of the uncured powder when the modeling object M is taken out after the modeling is completed. Adjust the degree of opening of the powder outlet according to the characteristics, or reduce the degree of opening at the initial stage to suppress excessive outflow, and increase the degree of opening as the amount of powder remaining in the molding frame decreases. It can promote discharge.
[0041]
According to the invention of claim 4, in the additive manufacturing apparatus described above, since the opening / closing lid of the powder discharge port is a hinged opening / closing, the mounting structure of the opening / closing lid is extremely simple.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a modeling frame and a base plate used in an additive manufacturing apparatus according to a first embodiment of the present invention.
FIG. 2 is a perspective view of an open / close lid attached to a powder discharge port of the modeling frame.
FIGS. 3A and 3B show the vicinity of the powder discharge port of the modeling frame, where FIG. 3A is a cross-sectional plan view, and FIG. 3B is a cross-sectional view taken along line BB in FIG.
FIG. 4 is a longitudinal sectional view showing a pre-stage of taking out a layered object after modeling using the modeling frame.
FIGS. 5A and 5B show the vicinity of a powder discharge port of a modeling frame used in an additive manufacturing apparatus according to a second embodiment of the present invention, FIG. 5A is a front view, and FIG. 5B is a B- in FIG. It is a cross-sectional arrow view of B line.
FIG. 6 is a front view showing the vicinity of a powder discharge port of a modeling frame used in the additive manufacturing apparatus according to the third embodiment of the present invention.
FIG. 7 is a perspective view showing a core for casting a four-cylinder cylinder head of an automobile engine that is an example of a modeling object.
FIG. 8 is a longitudinal sectional front view showing a modeling state by the present invention and a conventional additive manufacturing apparatus.
FIG. 9 is a longitudinal front view showing an operation for taking out a layered product after modeling by a conventional layered modeling apparatus.
[Explanation of symbols]
1 Modeling frame 1
2 Lift platform
3 Base plate
4 Recoater
5 Laser oscillator
6 XY scanner
7 Powder feeder
8 Powder dropping tank
10 wall
11 Powder outlet
12 Opening and closing lid
13 Lock screw (locking means)
21 Powder outlet
22 Open / close lid
23 Lock piece (locking means)
31 Powder outlet
32 Opening and closing lid
33 Lock piece (locking means)
M Laminated object
S powder
L Laser beam

Claims (4)

上下に開放した箱型の造形枠内に配置するベースプレート上に薄い粉体層を形成する工程と、該粉体層にレーザービームを照射して所要の2次元パターンの硬化層を形成する工程と、造形枠に対してベースプレートを前記粉体層の厚み分だけ下降させる工程とを繰り返すことより、造形枠内のベースプレート上に前記硬化層が積層した造形物を作製する積層造形装置において、
前記造形枠の周壁の下部寄りの複数箇所に、開閉蓋付きの粉体排出口と、各開閉蓋を閉止状態で固定するロック手段とが設けられていることを特徴とする積層造形装置。
Forming a thin powder layer on a base plate placed in a box-shaped modeling frame opened up and down, and forming a cured layer having a required two-dimensional pattern by irradiating the powder layer with a laser beam; In the additive manufacturing apparatus for producing a molded article in which the cured layer is laminated on the base plate in the modeling frame by repeating the step of lowering the base plate by the thickness of the powder layer with respect to the modeling frame,
An additive manufacturing apparatus characterized in that a powder discharge port with an open / close lid and a lock means for fixing each open / close lid in a closed state are provided at a plurality of locations near the lower portion of the peripheral wall of the modeling frame.
前記粉体排出口の開閉蓋は、該排出口閉鎖時の内面が造形枠の周壁内面と面一になるように構成されてなる請求項1記載の積層造形装置。  2. The additive manufacturing apparatus according to claim 1, wherein the open / close lid of the powder discharge port is configured such that an inner surface when the discharge port is closed is flush with an inner surface of a peripheral wall of the modeling frame. 前記粉体排出口の開閉蓋がスライド式開閉であり、そのスライド位置によって粉体排出口の開口度を調整可能である請求項1又は2に記載の積層造形装置。  3. The additive manufacturing apparatus according to claim 1, wherein an opening / closing lid of the powder discharge port is a slide-type opening / closing, and an opening degree of the powder discharge port can be adjusted by a slide position thereof. 前記粉体排出口の開閉蓋が蝶番式開閉である請求項1又は2に記載の積層造形装置。  The additive manufacturing apparatus according to claim 1 or 2, wherein an opening / closing lid of the powder discharge port is a hinged opening / closing.
JP2002077803A 2002-03-20 2002-03-20 Additive manufacturing equipment Expired - Fee Related JP4091323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002077803A JP4091323B2 (en) 2002-03-20 2002-03-20 Additive manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002077803A JP4091323B2 (en) 2002-03-20 2002-03-20 Additive manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2003266548A JP2003266548A (en) 2003-09-24
JP4091323B2 true JP4091323B2 (en) 2008-05-28

Family

ID=29205839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002077803A Expired - Fee Related JP4091323B2 (en) 2002-03-20 2002-03-20 Additive manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4091323B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012106141B4 (en) * 2012-07-09 2018-04-26 Exone Gmbh METHOD AND DEVICE FOR UNPACKING A COMPONENT
FR3026034B1 (en) * 2014-09-18 2019-05-31 Safran Aircraft Engines PROCESS FOR PRODUCING A HOLLOW PIECE BY SELECTIVE FUSION OF POWDER
JP2017109373A (en) * 2015-12-16 2017-06-22 ナブテスコ株式会社 Three-dimensional molding apparatus
EP3366460B1 (en) * 2017-02-23 2020-07-08 Loramendi, S.COOP. Method and system for unpacking objects
CN111618247A (en) * 2020-04-22 2020-09-04 安徽帮德电气有限公司 Aluminum box processing and forming die

Also Published As

Publication number Publication date
JP2003266548A (en) 2003-09-24

Similar Documents

Publication Publication Date Title
US9555582B2 (en) Method and assembly for additive manufacturing
Diegel et al. A practical guide to design for additive manufacturing
US5189781A (en) Rapid tool manufacturing
US6574523B1 (en) Selective control of mechanical properties in stereolithographic build style configuration
KR100257135B1 (en) Thermal stereolithography
US20210245430A1 (en) Three Dimensional Printing Apparatus And A Method
US20040084814A1 (en) Powder removal system for three-dimensional object fabricator
JP2017532218A (en) 3D printer, 3D printer device and generation modeling process
JP4091323B2 (en) Additive manufacturing equipment
Pham et al. Design for stereolithography
JP3803223B2 (en) Stereolithography method and apparatus for three-dimensional object shaping using recoating parameters for layers
JP6597084B2 (en) Nozzle and additive manufacturing apparatus, nozzle operation method and additive manufacturing method
Wang et al. Rapid tooling guidelines for sand casting
JP2005125787A (en) System and method for producing three-dimensional object
JP2018149805A (en) Flat composite having lay-up feature for forming into 3d shape
US20040064211A1 (en) Process and system for designing molds and dies
McMains Rapid prototyping of solid three-dimensional parts
Pontes Designing for additive manufacturing
Ang et al. Study of trapped material in rapid prototyping parts
JPH0582530U (en) Stereolithography device
JPH09141386A (en) Lamination molding method for sand casting mold and production of casting by using the same
Choong Additive manufacturing for digital transformation
KR102348367B1 (en) Precision-Workable 3D Printing Complex System
JP6557563B2 (en) 3D modeling equipment
JP2014000701A (en) Three-dimensional molding device, and three-dimensional molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080228

R150 Certificate of patent or registration of utility model

Ref document number: 4091323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees