JP4091260B2 - Piezoelectric element, piezoelectric driving body and electronic device using the same - Google Patents

Piezoelectric element, piezoelectric driving body and electronic device using the same Download PDF

Info

Publication number
JP4091260B2
JP4091260B2 JP2001054057A JP2001054057A JP4091260B2 JP 4091260 B2 JP4091260 B2 JP 4091260B2 JP 2001054057 A JP2001054057 A JP 2001054057A JP 2001054057 A JP2001054057 A JP 2001054057A JP 4091260 B2 JP4091260 B2 JP 4091260B2
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric element
layers
driving body
arrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001054057A
Other languages
Japanese (ja)
Other versions
JP2002261341A (en
Inventor
嘉幸 渡部
康之 猪又
弘志 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2001054057A priority Critical patent/JP4091260B2/en
Publication of JP2002261341A publication Critical patent/JP2002261341A/en
Application granted granted Critical
Publication of JP4091260B2 publication Critical patent/JP4091260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧電素子,それを利用した圧電駆動体及び電子機器に関するものである。
【0002】
【背景技術】
圧電駆動体は、簡易な電気音響変換器やアクチュエータとして広く利用されている。特に最近は、携帯電話や携帯情報端末などへの応用が期待されている。圧電駆動体は、基本的には、図4(A)に断面を示すようなユニモルフ構造と、同図(B)に断面を示すようなバイモルフ構造がある。まず、ユニモルフ構造の圧電駆動体は、圧電素子900をシム板910に貼り合わせた構成となっている。圧電素子900は、圧電性セラミックス{ジルコン酸チタン酸鉛(略してPZT),チタン酸バリウム,ジルコン酸鉛,チタン酸鉛などを主成分とするセラミックス}などによる圧電層902の表面に電極904,906を形成した積層構造となっている。圧電層902に対しては、電極904,906を利用して電圧を印加し、所定の分極が施される。一方、シム板910は、金属などによって構成されている。圧電素子900は、例えば接着剤によってシム板910に接合される。
【0003】
このようにして得られた圧電素子900の電極904と電極906(あるいはシム板910)との間に、別言すれば圧電層902の表裏面に駆動信号が印加される。なお、シム板910側は通常コモン端子に接続されている。すると、圧電素子900は、矢印FAで示す方向に伸縮する。ところが、シム板910があるために全体が湾曲するようになり、結果として矢印FBで示す方向に駆動されるようになる。
【0004】
一方、図4(B)に示すバイモルフ構造の圧電駆動体は、同図(A)のシム板910の裏面側に圧電素子920を設けた構造となっている。圧電素子920は、圧電層922の表面に電極924,926を形成した積層構造となっている。圧電層922に対しては、電極924,926を利用して電圧を印加し、所定の分極が施される。なお、電極926は、電極906と同電位であり、アースされている。
【0005】
このバイモフル構造の場合、圧電素子900と圧電素子920は、圧電層902,922の分極方向が逆方向となっているため、矢印FA,FCで示す伸縮が互いに逆となる。すなわち、圧電素子900が矢印FA方向に伸びたときは圧電素子920が矢印FC方向に縮み、逆に、圧電素子900が矢印FA方向に縮んだときは圧電素子920が矢印FC方向に伸びる。すなわち、シム板910の一方の面が縮んだときは他方の面が伸びる関係となり、全体として矢印FB方向に駆動されるようになる。
【0006】
【発明が解決しようとする課題】
ところで、携帯電話に圧電駆動体をスピーカとして使用する場合などを考えると、駆動電圧は低いほうが好都合である。駆動体の変位の大きさは音の大きさに依存するため、駆動エネルギを増大させればよいということになる。本発明に関してユニモルフ,バイモルフなどの振動体の駆動エネルギに関する式を導いたところ、圧電材料の圧電横効果定数をd31,横方向のコンプライアンスをS31,圧電素子の直径をD,印加電圧をVとしたときの駆動エネルギEは、数1式で表される。
【0007】
【数1】

Figure 0004091260
【0008】
よって、材料の変更を除外すると、直径Dを大きくすること、印加電圧Vを大きくすることで駆動エネルギEが増大し音も大きくなる。ここでn/tの項目が今回の形状で新たに付加されたパラメータである。tはセラミックスの厚み,nはその積層枚数を意味する。よってより薄いセラミックシートを積層することで駆動エネルギEが増大する。
【0009】
このような観点からは、圧電素子を積層構造とするのが好ましく、圧電層の積層数が多いほど低い駆動電圧で大きな駆動力を得ることができるが、あまり厚いセラミックスのシートを多層化すると、全体の厚みが増し、発音体の屈曲振動が自己の持つ剛性により抑制される結果になる。従って、これらの点、かつ、電子機器に対する薄型化,軽量化の観点も考慮しつつ、圧電層の積層数を増大しようとすると、一つの圧電層の厚さを薄くせざるを得ない。しかし、圧電層の1層当たりの厚さをあまり薄くしてしまうと、今度は強度が低下し、十分な強度を得ることができなくなってしまう。また、焼成時に圧電素子の反りや割れなどが生ずるようになり、量産性に劣るという不都合もある。
【0010】
本発明は、以上の点に着目したもので、十分な駆動力を得ることができるとともに、強度も十分で、薄型化,軽量化の要求にも応え得る量産性に優れた圧電素子を得るとともに、それを利用した圧電駆動体及び電子機器を提供することを、その目的とするものである。
【0011】
【課題を解決するための手段】
前記目的を達成するため、本発明は、セラミックスによって形成された圧電層と電極層を、交互に複数積層して同時焼成した圧電素子における前記圧電層の厚みをWL,前記セラミックスの結晶の平均粒径をWPとしたとき、5≦WL/WP≦10としたことを特徴とする。本発明の前記及び他の目的,特徴,利点は、以下の詳細な説明及び添付図面から明瞭になろう。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。図2(A)には、本実施形態の圧電駆動体の断面が示されている。同図に示すように、本実施形態では、圧電素子が積層構造となっている。ユニモルフ構造であって全体がディスク状の圧電駆動体は、圧電素子10をシム板20に貼り合わせた構成となっている。圧電素子10は、PZTなどによる圧電層12A〜12Cと、電極層14A〜14Dを交互に積層した構造となっている。これら圧電層12A〜12Cと電極層14A〜14Dは、所定数の積層の後、全体が同時に焼成され、その後接着剤によってシム板20の略中央に接着される。
【0013】
そして更に、圧電層12A〜12Cに対しては、電極層14A〜14Dを利用して分極用の電圧を印加し、所定の分極が施される。分極は、隣接する圧電層間で互いに逆となる方向に施される。例えば、圧電層12Aと圧電層12Cが矢印F1方向に分極されるとすると、圧電層12Bは矢印F1と逆の矢印F2方向に分極されるという具合である。例えば、電極層14A,14Cはマイナス,電極層14B,14Dはプラスという具合に電圧を印加すると、前記矢印F1及び矢印F2方向に分極が行われる。一方、シム板20は、金属などによって構成されている。圧電素子10は、例えば接着剤によってシム板20に接合される。シム板20の周囲は、適宜の手段で固定支持される。
【0014】
次に、以上のような構成の圧電駆動体の基本的な動作を説明する。音声信号などの駆動電圧は、例えば電極層14B,14Dに印加され、電極層14A,14Cはアースされる。すると、圧電層12A〜12Cは、電圧方向と分極方向が一致するため、矢印FA方向に同時に伸縮する。ところが、シム板20があるために全体が湾曲するようになり、結果として矢印FBで示す方向に駆動されるようになる。この場合において、圧電層の厚さを上述した背景技術と比較すると、本実施形態のほうが薄く、かつ積層構造となっているため、低い駆動電圧で駆動可能となる。
【0015】
ここで、圧電層12A〜12Cの積層部分を拡大すると、図1に示すようになる。同図に示すように、圧電層12A〜12Cは、PZTの結晶粒16が積み重なった構造となっている。ここで、圧電層12A〜12Cの厚みに対する結晶粒16の粒径が大きく、電極間に数個程度しか存在しないと、駆動電圧の印加に対する強度が低下してしまう。従って、電極間には、ある程度の個数の結晶粒16が存在することが好ましい。
【0016】
図3は、圧電層12A〜12Cの各層の厚みWLと、結晶粒16の平均粒径WPとの比(WL/WP)と、絶縁破壊不良率(%)との関係を、圧電層12A〜12Cの厚さをパラメータとして示したものである。なお、結晶粒16の平均粒径WPは、例えば、焼成体を破断して破断面を研磨後、ケミカルもしくは熱的なエッチングを施し、SEM(走査型電子顕微鏡)などで観察した際に結晶粒が観察できる状況にする。その後、直径法,インターセプト法などの手法(社団法人窯業協会版「セラミックスのキャラクタリゼーション技術」昭和62年出版,発行者:大場立夫,P7参照)で得ることができる。
【0017】
図3に示すように、WL/WPが1〜4,すなわち電極間に存在する結晶粒が1〜4個のときは、絶縁破壊不良率が非常に高い。これに対し、WL/WPが5以上,すなわち電極間に存在する結晶粒が5個以上で、絶縁破壊不良率が低下し、WL/WPが6,すなわち電極間に存在する結晶粒が6個以上のときは、絶縁破壊不良率はほとんどゼロとなっている。このような条件で圧電層を積層することで、低い駆動電圧でも十分な駆動力を得ることができるとともに、強度も十分で、薄型化,軽量化の要求にも応えることができる。
【0018】
本発明には数多くの実施形態があり、以上の開示に基づいて多様に改変することが可能である。
(1)前記実施形態に示した材料や形状・寸法は一例であり、同一の作用を奏するように適宜変更可能である。
【0019】
(2)前記実施形態は、本発明をユニモルフ構造の圧電駆動体に適用したものであるが、バイモルフ構造の圧電駆動体にも同様に適用可能である。図2(B)には、バイモルフ型の圧電駆動体の一例が示されており、シム板20の一方の面に圧電素子10が設けられており、他方の面に圧電素子30が設けられている。圧電素子30は、圧電層32A〜32Cと電極層34A〜34Dを交互に積層した構造となっており、接着剤によってシム板20に接合されている。圧電層32A〜32Cの分極方向は、圧電層12A〜12Cと逆の方向となっている。
【0020】
一方、音声信号などの駆動電圧は、電極層14B,14D,34B,34Dに印加され、他の電極層14A,14C,34A,34Cはアースされている。このため、圧電素子10の矢印FA方向の伸縮と圧電素子30の矢印FC方向の伸縮は互いに逆方向となる。すなわち、圧電素子10が矢印FA方向に伸びたときは圧電素子30は矢印FC方向に縮む。逆に、圧電素子10が矢印FA方向に縮んだときは圧電素子30は矢印FC方向に伸びる。このため、全体として、矢印FB方向に振動するようになる。
【0021】
(3)本発明の好適な応用例としては、携帯電話,携帯情報端末(PDA),ボイスレコーダ,PC(パソコン)などの各種電子機器のスピーカがある。他にアクチュエータなど、各種の用途に適用してよい。
【0022】
【発明の効果】
以上説明したように、本発明によれば、圧電素子を積層構造とするとともに、圧電層の厚みをWL,圧電層を形成するセラミックスの結晶の平均粒径をWPとしたとき、5≦WL/WP≦10となるようにしたので、圧電層の不良発生が低減されるようになり、低い駆動電圧でも十分な駆動力を得ることができるとともに、強度も十分で、薄型化,軽量化の要求にも応えることができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施形態の主要部を示す拡大図である。
【図2】本発明の実施形態にかかる圧電駆動体の積層構造を示す主要断面図である。
【図3】前記実施形態における層間厚み/結晶粒径と絶縁破壊不良率との関係を示すグラフである。
【図4】従来の圧電駆動体の構造を示す主要断面図である。
【符号の説明】
10…圧電素子
12A〜12C…圧電層
14A〜14D…電極層
16…結晶粒
20…シム板
30…圧電素子
32A〜32C…圧電層
34A〜34D…電極層
WL…圧電層の厚み
WP…結晶の平均粒径[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric element, a piezoelectric driving body using the piezoelectric element, and an electronic device.
[0002]
[Background]
Piezoelectric drivers are widely used as simple electroacoustic transducers and actuators. Recently, application to mobile phones and portable information terminals is expected. The piezoelectric driver basically has a unimorph structure whose cross section is shown in FIG. 4A and a bimorph structure whose cross section is shown in FIG. First, a unimorph-structured piezoelectric driver has a structure in which a piezoelectric element 900 is bonded to a shim plate 910. The piezoelectric element 900 has electrodes 904 on the surface of a piezoelectric layer 902 made of piezoelectric ceramics {ceramics mainly composed of lead zirconate titanate (abbreviated as PZT), barium titanate, lead zirconate, lead titanate, etc.). A laminated structure in which 906 is formed is obtained. A voltage is applied to the piezoelectric layer 902 using the electrodes 904 and 906, and a predetermined polarization is applied. On the other hand, the shim plate 910 is made of metal or the like. The piezoelectric element 900 is bonded to the shim plate 910 with an adhesive, for example.
[0003]
In other words, a drive signal is applied to the front and back surfaces of the piezoelectric layer 902 between the electrode 904 and the electrode 906 (or shim plate 910) of the piezoelectric element 900 thus obtained. The shim plate 910 side is usually connected to a common terminal. Then, the piezoelectric element 900 expands and contracts in the direction indicated by the arrow FA. However, due to the presence of the shim plate 910, the whole is curved, and as a result, it is driven in the direction indicated by the arrow FB.
[0004]
4B has a structure in which a piezoelectric element 920 is provided on the back side of the shim plate 910 in FIG. The piezoelectric element 920 has a laminated structure in which electrodes 924 and 926 are formed on the surface of the piezoelectric layer 922. A voltage is applied to the piezoelectric layer 922 by using the electrodes 924 and 926 to perform predetermined polarization. Note that the electrode 926 has the same potential as the electrode 906 and is grounded.
[0005]
In the case of this bimorphic structure, the piezoelectric elements 900 and 920 have the polarization directions of the piezoelectric layers 902 and 922 reversed, so that the expansion and contraction indicated by the arrows FA and FC are opposite to each other. That is, when the piezoelectric element 900 extends in the direction of the arrow FA, the piezoelectric element 920 contracts in the direction of the arrow FC. Conversely, when the piezoelectric element 900 contracts in the direction of the arrow FA, the piezoelectric element 920 extends in the direction of the arrow FC. That is, when one surface of the shim plate 910 is contracted, the other surface is extended, and the shim plate 910 is driven in the direction of the arrow FB as a whole.
[0006]
[Problems to be solved by the invention]
By the way, considering the case where a piezoelectric driving body is used as a speaker in a cellular phone, it is advantageous that the driving voltage is low. Since the magnitude of the displacement of the driving body depends on the loudness of the sound, the driving energy may be increased. In the present invention, when the equation relating to the driving energy of the vibrating body such as unimorph or bimorph is derived, the piezoelectric lateral effect constant of the piezoelectric material is d 31 , the lateral compliance is S 31 , the diameter of the piezoelectric element is D, and the applied voltage is V The driving energy E is expressed by the following equation (1).
[0007]
[Expression 1]
Figure 0004091260
[0008]
Therefore, if the change of the material is excluded, the drive energy E increases and the sound increases by increasing the diameter D and increasing the applied voltage V. Here, the item of n / t is a parameter newly added in the current shape. t is the thickness of the ceramics, and n is the number of laminated layers. Therefore, driving energy E increases by laminating thinner ceramic sheets.
[0009]
From such a viewpoint, it is preferable that the piezoelectric element has a laminated structure, and as the number of laminated piezoelectric layers increases, a large driving force can be obtained with a low driving voltage. As a result, the overall thickness increases, and the bending vibration of the sounding body is suppressed by its own rigidity. Therefore, if one attempts to increase the number of stacked piezoelectric layers in consideration of these points and the viewpoints of reducing the thickness and weight of electronic devices, the thickness of one piezoelectric layer must be reduced. However, if the thickness per layer of the piezoelectric layer is made too thin, the strength is lowered this time, and sufficient strength cannot be obtained. In addition, the piezoelectric element is warped or cracked during firing, which is disadvantageous in that it is inferior in mass productivity.
[0010]
The present invention focuses on the above points, and obtains a piezoelectric element that can obtain a sufficient driving force, has sufficient strength, and can meet demands for thinning and weight reduction. It is an object of the present invention to provide a piezoelectric driving body and an electronic device using the same.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a piezoelectric element in which a plurality of piezoelectric layers and electrode layers made of ceramics are alternately laminated and fired simultaneously, and the thickness of the piezoelectric layer is WL, the average grain size of the ceramic crystals when the diameter is WP, characterized in that the 5 ≦ WL / WP ≦ 1 0 . The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. FIG. 2A shows a cross section of the piezoelectric driving body of the present embodiment. As shown in the figure, in the present embodiment, the piezoelectric element has a laminated structure. The piezoelectric drive body having a unimorph structure and an overall disk shape has a structure in which the piezoelectric element 10 is bonded to the shim plate 20. The piezoelectric element 10 has a structure in which piezoelectric layers 12A to 12C made of PZT or the like and electrode layers 14A to 14D are alternately stacked. The piezoelectric layers 12A to 12C and the electrode layers 14A to 14D are fired at the same time after a predetermined number of layers are laminated, and then bonded to the approximate center of the shim plate 20 with an adhesive.
[0013]
Furthermore, a predetermined voltage is applied to the piezoelectric layers 12A to 12C by applying a voltage for polarization using the electrode layers 14A to 14D. Polarization is applied in opposite directions between adjacent piezoelectric layers. For example, if the piezoelectric layer 12A and the piezoelectric layer 12C are polarized in the direction of the arrow F1, the piezoelectric layer 12B is polarized in the direction of the arrow F2 opposite to the arrow F1. For example, when a voltage is applied such that the electrode layers 14A and 14C are negative, the electrode layers 14B and 14D are positive, polarization is performed in the directions of the arrows F1 and F2. On the other hand, the shim plate 20 is made of metal or the like. The piezoelectric element 10 is joined to the shim plate 20 by an adhesive, for example. The periphery of the shim plate 20 is fixed and supported by appropriate means.
[0014]
Next, the basic operation of the piezoelectric driving body configured as described above will be described. A driving voltage such as an audio signal is applied to, for example, the electrode layers 14B and 14D, and the electrode layers 14A and 14C are grounded. Then, the piezoelectric layers 12A to 12C simultaneously expand and contract in the direction of the arrow FA because the voltage direction and the polarization direction coincide. However, since the shim plate 20 is present, the entire plate is curved, and as a result, it is driven in the direction indicated by the arrow FB. In this case, when the thickness of the piezoelectric layer is compared with the background art described above, the present embodiment is thinner and has a laminated structure, so that it can be driven with a lower driving voltage.
[0015]
Here, when the lamination | stacking part of piezoelectric layer 12A-12C is expanded, it will become as shown in FIG. As shown in the figure, the piezoelectric layers 12A to 12C have a structure in which PZT crystal grains 16 are stacked. Here, if the crystal grain 16 has a large grain size with respect to the thickness of the piezoelectric layers 12A to 12C and there are only a few grains between the electrodes, the strength against the application of the driving voltage is lowered. Therefore, it is preferable that a certain number of crystal grains 16 exist between the electrodes.
[0016]
FIG. 3 shows the relationship between the thickness WL of each of the piezoelectric layers 12A to 12C, the ratio (WL / WP) of the average grain size WP of the crystal grains 16, and the dielectric breakdown failure rate (%). The thickness of 12C is shown as a parameter. The average grain size WP of the crystal grains 16 is, for example, when the fired body is broken and the fractured surface is polished, subjected to chemical or thermal etching, and observed with an SEM (scanning electron microscope) or the like. To make the situation observable. Thereafter, it can be obtained by a method such as a diameter method or an intercept method (Ceramic Characterization Technology “Ceramic Characterization Technology” published in 1987, publisher: Tachio Ohba, P7).
[0017]
As shown in FIG. 3, when WL / WP is 1 to 4, that is, when 1 to 4 crystal grains exist between the electrodes, the dielectric breakdown defect rate is very high. On the other hand, if the WL / WP is 5 or more, that is, 5 or more crystal grains exist between the electrodes, the dielectric breakdown defect rate decreases, and the WL / WP is 6, that is, 6 crystal grains exist between the electrodes. At such times, the breakdown failure rate is almost zero. By laminating the piezoelectric layers under such conditions, a sufficient driving force can be obtained even with a low driving voltage, and the strength is sufficient, and it is possible to meet demands for a reduction in thickness and weight.
[0018]
The present invention has many embodiments, and various modifications can be made based on the above disclosure.
(1) The materials, shapes, and dimensions shown in the above embodiment are examples, and can be appropriately changed so as to achieve the same effect.
[0019]
(2) In the above-described embodiment, the present invention is applied to a unimorph-structured piezoelectric driving body, but is similarly applicable to a bimorph-structured piezoelectric driving body. FIG. 2B shows an example of a bimorph type piezoelectric driving body, in which the piezoelectric element 10 is provided on one surface of the shim plate 20 and the piezoelectric element 30 is provided on the other surface. Yes. The piezoelectric element 30 has a structure in which piezoelectric layers 32A to 32C and electrode layers 34A to 34D are alternately stacked, and is bonded to the shim plate 20 with an adhesive. The polarization directions of the piezoelectric layers 32A to 32C are opposite to those of the piezoelectric layers 12A to 12C.
[0020]
On the other hand, a driving voltage such as an audio signal is applied to the electrode layers 14B, 14D, 34B, and 34D, and the other electrode layers 14A, 14C, 34A, and 34C are grounded. For this reason, the expansion / contraction of the piezoelectric element 10 in the direction of the arrow FA and the expansion / contraction of the piezoelectric element 30 in the direction of the arrow FC are opposite to each other. That is, when the piezoelectric element 10 extends in the arrow FA direction, the piezoelectric element 30 contracts in the arrow FC direction. Conversely, when the piezoelectric element 10 contracts in the direction of the arrow FA, the piezoelectric element 30 extends in the direction of the arrow FC. For this reason, as a whole, it vibrates in the direction of the arrow FB.
[0021]
(3) As a preferred application example of the present invention, there is a speaker of various electronic devices such as a mobile phone, a personal digital assistant (PDA), a voice recorder, and a PC (personal computer). In addition, you may apply to various uses, such as an actuator.
[0022]
【The invention's effect】
As described above, according to the present invention, when the piezoelectric element has a laminated structure, the thickness of the piezoelectric layer is WL, and the average grain size of ceramic crystals forming the piezoelectric layer is WP, 5 ≦ WL / Since WP ≦ 10 , the occurrence of defects in the piezoelectric layer can be reduced, sufficient driving force can be obtained even at a low driving voltage, and the strength is sufficient, and there is a demand for reduction in thickness and weight. The effect that it can respond also is acquired.
[Brief description of the drawings]
FIG. 1 is an enlarged view showing a main part of an embodiment of the present invention.
FIG. 2 is a main cross-sectional view showing a laminated structure of a piezoelectric driving body according to an embodiment of the present invention.
FIG. 3 is a graph showing the relationship between interlayer thickness / crystal grain size and dielectric breakdown failure rate in the embodiment.
FIG. 4 is a main cross-sectional view showing the structure of a conventional piezoelectric driver.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Piezoelectric element 12A-12C ... Piezoelectric layer 14A-14D ... Electrode layer 16 ... Crystal grain 20 ... Shim plate 30 ... Piezoelectric element 32A-32C ... Piezoelectric layer 34A-34D ... Electrode layer WL ... Piezoelectric layer thickness WP ... Crystal Average particle size

Claims (4)

セラミックスによって形成された圧電層と電極層を、交互に複数積層して同時焼成した圧電素子であって、
前記圧電層の厚みをWL,前記セラミックスの結晶の平均粒径をWPとしたとき、5≦WL/WP≦10としたことを特徴とする圧電素子。
A piezoelectric element in which a plurality of piezoelectric layers and electrode layers formed of ceramics are alternately laminated and fired simultaneously,
5. A piezoelectric element characterized in that when the thickness of the piezoelectric layer is WL and the average grain size of the ceramic crystal is WP, 5 ≦ WL / WP ≦ 10.
前記セラミックスとしてPZTを使用したことを特徴とする請求項1記載の圧電素子。 2. The piezoelectric element according to claim 1, wherein PZT is used as the ceramic . 請求項1又は2記載の圧電素子をシム板の少なくとも一方の面に貼り合せたことを特徴とする圧電駆動体。A piezoelectric driving body comprising the piezoelectric element according to claim 1 bonded to at least one surface of a shim plate. 請求項3記載の圧電駆動体を使用したことを特徴とする電子機器。An electronic apparatus using the piezoelectric driving body according to claim 3.
JP2001054057A 2001-02-28 2001-02-28 Piezoelectric element, piezoelectric driving body and electronic device using the same Expired - Lifetime JP4091260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001054057A JP4091260B2 (en) 2001-02-28 2001-02-28 Piezoelectric element, piezoelectric driving body and electronic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001054057A JP4091260B2 (en) 2001-02-28 2001-02-28 Piezoelectric element, piezoelectric driving body and electronic device using the same

Publications (2)

Publication Number Publication Date
JP2002261341A JP2002261341A (en) 2002-09-13
JP4091260B2 true JP4091260B2 (en) 2008-05-28

Family

ID=18914443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001054057A Expired - Lifetime JP4091260B2 (en) 2001-02-28 2001-02-28 Piezoelectric element, piezoelectric driving body and electronic device using the same

Country Status (1)

Country Link
JP (1) JP4091260B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60326822D1 (en) 2002-02-08 2009-05-07 Ngk Insulators Ltd MULTILAYER PIEZOELECTRIC ELEMENT AND MANUFACTURING METHOD THEREFOR
JP4777605B2 (en) * 2003-05-21 2011-09-21 日本碍子株式会社 Multi-layer piezoelectric / electrostrictive element
JP4667036B2 (en) * 2004-12-27 2011-04-06 Necトーキン株式会社 Multilayer piezoelectric vibrator, manufacturing method thereof, and piezoelectric actuator
JP2008124342A (en) * 2006-11-14 2008-05-29 Seiko Epson Corp Actuator, liquid ejection head, and liquid ejector
JP4673418B2 (en) * 2009-04-10 2011-04-20 株式会社ダイシン Vibrating transfer device

Also Published As

Publication number Publication date
JP2002261341A (en) 2002-09-13

Similar Documents

Publication Publication Date Title
JP4295238B2 (en) Piezoelectric sound generator
US5471721A (en) Method for making monolithic prestressed ceramic devices
JP3501860B2 (en) Piezoelectric / electrostrictive film type element and manufacturing method thereof
JP3162584B2 (en) Piezoelectric / electrostrictive film element and method of manufacturing the same
US7808162B2 (en) Stacked piezoelectric element and vibration wave driving apparatus
JP6367693B2 (en) Piezoelectric element, piezoelectric vibration device, acoustic generator, acoustic generator, and electronic device
US20020101133A1 (en) Piezoelectric/electrostrictive device and method of manufacturing same
WO2012001954A1 (en) Oscillation device and electronic component
JP4511407B2 (en) Piezoelectric sound generator
JP5883202B1 (en) Piezoelectric element, and sound generator, sound generator, and electronic device including the same
JP7457790B2 (en) Multilayer piezoelectric element and electroacoustic transducer
JPWO2008023686A1 (en) Piezoelectric actuator elements for ultrasonic motors
JP4245096B2 (en) Multilayer piezoelectric element, piezoelectric actuator using the same, and ultrasonic motor
JP4091260B2 (en) Piezoelectric element, piezoelectric driving body and electronic device using the same
JP4015820B2 (en) Wiring board and manufacturing method thereof
JP7071172B2 (en) Laminated piezoelectric elements, piezoelectric vibration devices, and electronic devices
KR101653826B1 (en) Ultrasonic motor and method for manufacturing the ultrasonic motor
JP3370178B2 (en) Multilayer piezoelectric element and method of manufacturing the same
JP2000307164A (en) Thin-plate piezoelectric element, piezoelectric acoustic element formed using the same, piezoelectric vibrator, piezoelectric actuator, piezoelectric transformer, and cold-cathode fluorescent lamp provided therewith
JP4666578B2 (en) Ultrasonic vibration element and ultrasonic actuator using the same
JPS60245286A (en) Piezoelectric dispacement element
JP2002261342A (en) Piezoelectric element, piezoelectric driving body using the piezoelectric element and electronic device
JP7055950B2 (en) Vibration generators and electronic devices
JPWO2016067667A1 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
JP2006141082A (en) Small piezoelectric element, and small drive device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4091260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term