JP4091137B2 - Immunosuppressant - Google Patents

Immunosuppressant Download PDF

Info

Publication number
JP4091137B2
JP4091137B2 JP00652497A JP652497A JP4091137B2 JP 4091137 B2 JP4091137 B2 JP 4091137B2 JP 00652497 A JP00652497 A JP 00652497A JP 652497 A JP652497 A JP 652497A JP 4091137 B2 JP4091137 B2 JP 4091137B2
Authority
JP
Japan
Prior art keywords
heat
treated
hydrolyzate
curdlan
lymphocytes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00652497A
Other languages
Japanese (ja)
Other versions
JPH10194976A (en
Inventor
昌弘 梶川
昌昭 亀野
伸二 室崎
博昭 日下
Original Assignee
キリンフードテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キリンフードテック株式会社 filed Critical キリンフードテック株式会社
Priority to JP00652497A priority Critical patent/JP4091137B2/en
Publication of JPH10194976A publication Critical patent/JPH10194976A/en
Application granted granted Critical
Publication of JP4091137B2 publication Critical patent/JP4091137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、重篤な副作用のない免疫抑制剤に関する。
【0002】
【従来の技術】
生体内の免疫系は、細菌、酵母、カビ、ウイルスなどの微生物による感染や、腫瘍に対する防御に重要な役割を果たしており、その主要な機構は、Tリンパ球およびBリンパ球が、これらの微生物や腫瘍を、抗原受容体を介して認識することにより刺激を受け、抗原特異的に活性化し、これの異物を排除する能力を高めることである。しかし、自己免疫疾患や、臓器移植の拒否反応などの治療、抑制においては、免疫応答を抑制することが必要であり、そのために免疫抑制剤が使用される。
現在、免疫抑制剤としては、抗原非特異性のステロイド剤や核酸合成系に作用する薬剤が多く使用されているが、これらは、重篤な副作用を生ずることがある。また、シクロスポリン等、臓器移植の拒否反応の抑制に使用される免疫抑制剤にも、様々な副作用を伴うものがある。
【0003】
【発明が解決しようとする課題】
本発明は、重篤な副作用なしに優れた免疫抑制作用を示す免疫抑制剤を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明者らは、糖類および免疫に関する研究を進める上で、加熱処理した直鎖のβ−1,3グルカンが、リンパ球抑制作用を示すことを見いだした。
かかる加熱処理β−1,3グルカンは、免疫担当細胞が抗原特異的および抗原非特異的な刺激を受けたときのBおよびTリンパ球の活性化を抑制する作用を有する。すなわち、該加熱処理β−1,3グルカンを脾臓細胞の培養系に添加すると、マイトジェン刺激を加えずに培養したときの生細胞数および細胞代謝活性はそれほど損なわず、Bリンパ球マイトジェン刺激下で培養したときのリンパ球の生細胞数、特に、Bリンパ球の生細胞数の増加および細胞代謝活性の上昇を強度に抑制し、Tリンパ球マイトジェン刺激下で培養したときの細胞代謝活性の上昇を強度に抑制した。
この抑制作用は、リンパ球が活性化されるときにより選択的に働くことから、従来の免疫抑制剤が示した非特異性な作用とは異なることを示しており、また、Bリンパ球の活性化を強度に抑制することから、近年提案された免疫抑制剤のTリンパ球に対する選択的な作用とも異なることを示している。
そのため、公知のステロイド剤に認められる様々な副作用、核酸合成系に作用する薬剤に認められる造血器などの重篤な副作用、また、シクロスポリン、FK506に認められる腎障害、肝障害等の副作用はないと考えられる。
また、該加熱処理β−1,3グルカンはBリンパ球の活性化を強度に抑制するため、Bリンパ球の異常によって引き起こされる悪性リンパ腫、全身性エリテマトーデス、慢性関節リウマチ等の自己免疫疾患またはアレルギー疾患の治療にきわめて有用である。さらにTリンパ球の活性化も抑制するため、臓器移植の拒絶反応の予防にも有用であると考えられる。
【0005】
本発明は、かかる知見に基づいて完成されたものであって、加熱処理されたβ−1,3−グルコシド結合からなる直鎖の糖類を有効成分とする免疫抑制剤を提供するものである。
用いるβ−1,3−グルコシド結合からなる直鎖の糖類としては、カードラン加水分解物が挙げられる。特に、酸加水分解物、とりわけ蟻酸加水分解物や、β−1,3−グルカナーゼのような酵素による加水分解物で、数平均分子量が340から4000の範囲にあるものが好ましい。加熱処理としては、水溶液中で80℃以上での加熱が好ましい。
本発明の免疫賦活剤は、副作用がなく、常用に適しており、免疫抑制用の医薬として好適である。
【0006】
【発明の実施の形態】
本発明において、加熱処理に供されるβ−1,3−グルコシド結合からなる直鎖の糖類としては、グルコース分子が分岐せずに、β−1,3−グルコシド結合により結合したオリゴ糖ないしは多糖であり、代表的な例としては、アルカリゲネス(Alkaligenes)属又はアグロバクテリウム(Agrobacterium)属の細菌が産生する、β−1,3−グルコシド結合を有する多糖類であるカードランの加水分解物が挙げられる。
以下、カードランの加水分解物を例として本発明を説明する。
カードランの加水分解物は、自体公知の多糖類の加水分解法により調製できるが、得られる加水分解物の免疫抑制活性から、蟻酸、酢酸のような有機酸、塩酸、硫酸のような無機酸、特に、蟻酸あるいはβ−1,3−グルカナーゼのような酵素で行うことが好ましく、数平均分子量が、340〜4000の範囲のものが好ましい。
【0007】
本明細書における数平均分子量は、以下の条件で高速液体クロマトグラフィー(HPLC)により測定したものである。
測定装置としては、東ソー(株)製の高速液体クロマトグラフィー装置を使用した。
検出器:RI−8022
ポンプ:CCPM−II
カラムオーブン:CO−8020
脱気装置:SD−8022
オートサンプラー:AS−8020
測定カラムは、TSKゲルのカラム(G−OLIGO−PWまたはG−3000PWXL、7.8φmm×30cm)を用い、流速0.6〜0.7ml/分、温度40℃で測定した。試料の0.02%水溶液を調製し、その200μlを用いた。溶出は純水で行った。
一方、分子量既知のプルラン標準品を同様に測定して較正曲線を作成し、この較正曲線を基に、東ソー(株)のGPC−LALLSプログラムとマイクロソフト(株)の計算プログラム「エクセル」によって分子量分布関数を求め、数平均分子量として換算した。
【0008】
酸加水分解は、例えば、1〜85重量%程度の酸を含有するカードランの0.5〜5.0重量%水溶液を、70〜100℃にて10分〜3時間加熱することにより行うことができる。加水分解反応液を水酸化ナトリウム等のアルカリ剤で中和し、遠心分離して上澄を得、必要に応じて、活性炭処理、透析、溶媒分画、加熱によるホルミル基の除去等の自体公知の方法で精製することにより、所望の加水分解物が得られる。
酵素による加水分解は、例えば、用いる酵素に適したpH、温度で所定時間、カードランの0.5〜3重量%水溶液を酵素処理することにより行うことができる。ついで、酵素を失活させた後、遠心分離して上澄を得、必要に応じて活性炭処理、透析、溶媒分画等の自体公知の方法で精製することにより、所望の加水分解物が得られる。
【0009】
得られた加水分解物は、水溶液の状態で加熱処理に付される。加熱処理は、一般に、80℃以上、好ましくは、90〜120℃にて、通常、10〜30分間加熱することにより行う。加熱手段は、特に限定するものではなく、加熱後、直ちに室温まで冷却する。
【0010】
加熱処理されたカードラン加水分解物は、そのまま本発明の免疫抑制剤として使用できる。また、自体公知の医薬担体または賦形剤と自体公知の方法で合して、免疫抑制用の医薬とすることができる。
用いる、医薬担体または賦形剤は特に限定するものではなく、当該免疫抑制剤の具体的用途に応じて当業者が適宜選択できる。また、免疫抑制剤の形態も特に限定する物ではなく、具体的用途に応じて、種々の固体や液体の形態とすることができる。
本発明の免疫抑制剤は、経口投与、非経口投与いずれでもよく、その投与量は、カードラン加水分解物の固形分量として1日当たり4mg〜40gである。
本発明の免疫抑制剤は、ステロイド剤に認められる様々な副作用、核酸合成系に作用する薬剤に認められる造血器などの重篤な副作用、また、シクロスポリン、FK506に認められる腎障害、肝障害等の副作用はなく、また、本発明はBリンパ球の活性化を強度に抑制するため、Bリンパ球の異常によって引き起こされる悪性リンパ腫、全身性エリテマトーデス、慢性関節リウマチ等の自己免疫疾患またはアレルギー疾患の治療にきわめて有用である。さらにTリンパ球の活性化も抑制するため、臓器移植の拒絶反応の予防にも有用である。
【0011】
【実施例】
つぎに、実施例および試験例を挙げて、本発明をさらに具体的に説明するが、本発明は、これらに限定されるものではない。
実施例1
酵素によるカードラン加水分解物の調製
カードラン4gを0.05M酢酸緩衝液200mlに分散し、ヒイロタケ酵素18ユニット/mlを添加した。これを40℃に昇温し、4時間インキュベートした後沸騰水浴中に15分間保持して酵素を失活させた。ついで、冷却、遠心分離して沈澱部分を除去し、上澄を直径5cmの高さ30cmのカラムに詰めた活性炭に吸着させ、1000mlの水で洗浄後、さらに4%エタノール2000mlで洗浄した。ついで、20%エタノール2000mlで吸着成分を溶出し、これをエバポレーターで濃縮した後、凍結乾燥した。
このものはHPLCで測定したときの数平均分子量が340(プルラン換算値)であった。
このものを、水溶液中で、100℃にて、10分間加熱し、ついで冷却して免疫抑制剤を得た。
【0012】
実施例2
蟻酸によるカードラン加水分解物の調製
カードラン30グラムを85%蟻酸3000ml中に分散し、90℃まで加温して20分間保持した。ついで、容器ごと冷水にさらして室温まで冷却し、エバポレーターで濃縮した後、5N NaOHで中和してpH7とし、遠心分離した。上澄はホルミル基を除去するため沸騰水浴中で120分間加熱したが、このとき、pHが低下したので、2N NaOHを添加して7に戻した。このものをビスキングチューブ中にいれ純水10リットルに対して一夜透析し、透析内液を凍結乾燥した。
このものをHPLCで測定したときの数平均分子量はプルラン換算で約2800であった。
このものを、水溶液中で100℃にて10分間加熱し、ついで冷却して免疫抑制剤を得た。
【0013】
試験例1
実施例1で得た酵素分解カードランおよび実施例2で得た蟻酸分解カードランを用いて、マウス脾臓リンパ球増殖反応に対する酵素分解カードラン熱処理品および蟻酸分解カードラン熱処理品の作用を調べることにより、酵素分解カードラン熱処理品および蟻酸分解カードラン熱処理品のリンパ球代謝活性上昇およびリンパ球増殖の抑制効果を検証した。
マウス(C57BL/6、雌、14週齢)から無菌的に脾臓を摘出し、RPMI1640培地中で脾臓を押しつぶし、200メッシュの篩に通し脾臓細胞浮遊液を得た。脾臓細胞浮遊液の細胞数を自動血球計測装置により測定した後、細胞数を5×106/mlの濃度にRPMI1640培地で調製し、96穴組織培養プレートに1穴あたり100マイクロリットルを播種した。Bリンパ球増殖刺激物質のリポポリサッカライドを200マイクログラム/mlの濃度でRPMI1640培地に溶解した液、Tリンパ球増殖刺激物質のコンカナバリンAを8マイクログラム/mlの濃度でRPMI1640培地に溶解した液、あるいはRPMI1640培地を、それぞれ1穴当たり50マイクロリットル播種した脾臓細胞浮遊液に加えて、Bリンパ球刺激群、Tリンパ球刺激群、無刺激群とした。これらの3群にリン酸緩衝生理食塩水を100℃、10分間加熱して冷却した液(対照)あるいは酵素分解カードランを8mg/mlの濃度でリン酸緩衝生理食塩水に溶解し100℃、10分間加熱して冷却した液、蟻酸分解カードランを8mg/mlの濃度でリン酸緩衝生理食塩水に溶解し100℃、10分間加熱して冷却した液をそれぞれ1穴当たり50マイクロリットル加え、37℃の5%炭酸ガス培養器内で2日間培養し、培養後の生細胞数と細胞代謝活性を調べた。
【0014】
生細胞数の測定は、培養細胞液の細胞数を自動血球計測装置で測定した後に、培養細胞液200マイクロリットルにR−フィコエリトリンで標識したマウスBリンパ球に対する特異抗体の抗マウスCD45R抗体を1マイクログラム、フルオロセインイソチオシアネートで標識したマウスTリンパ球に対する特異抗体の抗マウスT細胞レセプター(アルファ/ベータ)抗体を1マイクログラム、および死細胞を特異的に染色する7−アミノアクチノマイシンDを1マイクログラム加え、5℃で30分間放置した後、RPMI1640培地で洗浄し、フローサイトメーターで総細胞に占めるBリンパ球およびTリンパ球の割合ならびにBリンパ球およびTリンパ球に占める死細胞の割合を測定し、Bリンパ球およびTリンパ球の生細胞数を算出した。
細胞代謝活性は、培養の終わる3時間前に臭化3−(4,5−ジメチル−2−チアゾリル)−2,5−ジフェニル−2Hテトラゾリウムを5mg/mlの濃度でRPMI1640培地に溶解した液を1穴当たり10マイクロリットル加え、培養終了時に20%ドデシル硫酸ナトリウム溶液を1穴当たり50マイクロリットル加え、37℃で1日放置後、マイクロプレートリーダーで培養液の吸光度550nmを測定することにより細胞代謝活性を求めた。
表1にその結果を示す。
【0015】
【表1】

Figure 0004091137
【0016】
表1に示すごとく、無刺激群においては、酵素分解カードラン熱処理品および蟻酸分解カードラン熱処理品はいずれもBリンパ球の生細胞数を軽度にしか減少させず細胞代謝活性にはほとんど影響を及ぼさなかったが、Bリンパ球刺激群においては、酵素分解カードラン熱処理品および蟻酸分解カードラン熱処理品はいずれもBリンパ球の生細胞数を大幅に減少させ細胞代謝活性の上昇を完全に抑制した。Tリンパ球刺激群においては、酵素分解カードラン熱処理品および蟻酸分解カードラン熱処理品はいずれも細胞代謝活性の上昇を強度に抑制した。この様に、酵素分解カードラン熱処理品および蟻酸分解カードラン熱処理品のいずれにも、リンパ球が活性化されるときにより選択的に働き、強度な抑制作用が認められた。
【0017】
試験例2
ラミナリビオース、ラミナリトリオース、ラミナリテトラオース、ラミナリペンタオースおよびラミナリヘキサオース(焼津水産化学)の各試薬を用いて、マウス脾臓リンパ球増殖反応に対する加熱処理ラミナリビオース、加熱処理ラミナリトリオース、加熱処理ラミナリテトラオース、加熱処理ラミナリペンタオース、加熱処理ラミナリヘキサオースの作用を調べることにより、加熱処理ラミナリビオース、加熱処理ラミナリトリオース、加熱処理ラミナリテトラオース、加熱処理ラミナリペンタオース、加熱処理ラミナリヘキサオースのリンパ球代謝活性上昇抑制効果を検証した。
マウス(C57BL/6、雌、18週齢)から無菌的に脾臓を摘出し、RPMI1640培地中で脾臓を押しつぶし、200メッシュの篩に通し脾臓細胞浮遊液を得た。脾臓細胞浮遊液の細胞数を自動血球計測装置により測定した後、細胞数を5×106/mlの濃度にRPMI1640培地で調製し、96穴組織培養プレートに1穴あたり100マイクロリットルを播種した。Bリンパ球増殖刺激物質のリポポリサッカライドを200マイクログラム/mlの濃度でRPMI1640培地に溶解した液、Tリンパ球増殖刺激物質のコンカナバリンAを8マイクログラム/mlの濃度でRPMI1640培地に溶解した液、あるいはRPMI1640培地を、それぞれ1穴当たり50マイクロリットル播種した脾臓細胞浮遊液に加えて、Bリンパ球刺激群、Tリンパ球刺激群、無刺激群とした。これらの3群にリン酸緩衝生理食塩水を121℃、20分間加熱して冷却した液(対照)あるいはラミナリビオース、ラミナリトリオース、ラミナリテトラオース、ラミナリペンタオース、ラミナリヘキサオースを8mg/mlの濃度あるいは1mg/mlの濃度でリン酸緩衝生理食塩水に溶解し121℃、20分間加熱して冷却した液、をそれぞれ1穴当たり50マイクロリットル加え、37℃の5%炭酸ガス培養器内で1日間培養し、培養後の細胞代謝活性を調べた。
【0018】
細胞代謝活性は、培養の終わる3時間前に臭化3−(4,5−ジメチル−2−チアゾリル)−2,5−ジフェニル−2Hテトラゾリウムを5mg/mlの濃度でRPM11640培地に溶解した液を1穴当たり10マイクロリットル加え、培養終了時に20%ドデシル硫酸ナトリウム溶液を1穴当たり50マイクロリットル加え、37℃で2日放置後、マイクロプレートリーダーで培養液の吸光度550nmを測定することにより細胞代謝活性を求めた。
表2にその結果を示す。
【0019】
【表2】
Figure 0004091137
【0020】
表2に示すごとく、無刺激群においては、加熱処理ラミナリビオース、加熱処理ラミナリトリオース、加熱処理ラミナリテトラオース、加熱処理ラミナリペンタオース、加熱処理ラミナリヘキサオースはいずれも細胞代謝活性にはほとんど影響を及ぼさなかったが、Bリンパ球刺激群においては、加熱処理ラミナリビオース、加熱処理ラミナリトリオース、加熱処理ラミナリテトラオース、加熱処理ラミナリペンタオース、加熱処理ラミナリヘキサオースはいずれも2mg/mlおよび0.4mg/mlの濃度において細胞代謝活性の上昇を完全に抑制した。Tリンパ球刺激群においては、加熱処理ラミナリビオース、加熱処理ラミナリトリオース、加熱処理ラミナリテトラオース、加熱処理ラミナリペンタオース、加熱処理ラミナリヘキサオースはいずれも2mg/mlの濃度において細胞代謝活性の上昇を完全に抑制したが、0.4mg/mlの濃度においては、加熱処理ラミナリビオース、加熱処理ラミナリトリオースのみが細胞代謝活性の上昇を部分抑制した。この様に、加熱処理ラミナリビオース、加熱処理ラミナリトリオース、加熱処理ラミナリテトラオース、加熱処理ラミナリペンタオース、加熱処理ラミナリヘキサオースはいずれも、リンパ球が活性化されるときにより選択的に働き、強度な抑制作用を示し、特に、Bリンパ球に対する作用が強く、また、リンパ球抑制活性は加熱処理ラミナリビオースおよび加熱処理ラミナリトリオースが強かった。
【0021】
【発明の効果】
本発明によれば、重篤な副作用のない、優れた免疫抑制剤が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an immunosuppressant without serious side effects.
[0002]
[Prior art]
The in vivo immune system plays an important role in defense against microorganisms such as bacteria, yeast, mold, and viruses, and defense against tumors. The main mechanism is that T lymphocytes and B lymphocytes are these microorganisms. Or stimulating tumors by recognizing them through the antigen receptor and activating them in an antigen-specific manner to enhance their ability to eliminate foreign substances. However, in the treatment and suppression of autoimmune diseases and organ transplant rejection, it is necessary to suppress the immune response, and an immunosuppressant is used for this purpose.
Currently, many non-antigen steroids and drugs that act on nucleic acid synthesis systems are used as immunosuppressive agents, but these may cause serious side effects. In addition, some immunosuppressive agents used to suppress organ transplant rejection, such as cyclosporine, have various side effects.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide an immunosuppressive agent that exhibits an excellent immunosuppressive action without serious side effects.
[0004]
[Means for Solving the Problems]
The inventors of the present invention have found that a heat-treated linear β-1,3 glucan exhibits a lymphocyte inhibitory action in conducting research on saccharides and immunity.
Such heat-treated β-1,3 glucan has an action of suppressing the activation of B and T lymphocytes when immunocompetent cells receive antigen-specific and non-antigen-specific stimuli. That is, when the heat-treated β-1,3 glucan is added to a spleen cell culture system, the number of living cells and cell metabolic activity when cultured without mitogenic stimulation are not significantly impaired, and under B lymphocyte mitogenic stimulation. Increase in the number of viable lymphocytes when cultured, in particular, increase in the number of viable B lymphocytes and increase in cell metabolic activity, and increase in cell metabolic activity when cultured under T lymphocyte mitogen stimulation Was suppressed to strength.
This inhibitory action works more selectively when lymphocytes are activated, indicating that it is different from the nonspecific action exhibited by conventional immunosuppressive agents, and the activity of B lymphocytes. It is shown that it is different from the selective action on T lymphocytes of recently proposed immunosuppressive agents.
Therefore, there are no side effects such as various side effects observed in known steroids, serious side effects such as hematopoiesis observed in drugs acting on the nucleic acid synthesis system, and side effects such as kidney damage and liver damage observed in cyclosporine and FK506. it is conceivable that.
In addition, since the heat-treated β-1,3 glucan strongly suppresses the activation of B lymphocytes, autoimmune diseases such as malignant lymphoma, systemic lupus erythematosus and rheumatoid arthritis caused by abnormal B lymphocytes or allergies Very useful in the treatment of disease. Furthermore, since it also suppresses the activation of T lymphocytes, it is considered useful for preventing organ transplant rejection.
[0005]
This invention is completed based on this knowledge, Comprising: The immunosuppressive agent which uses the linear saccharide | sugar which consists of the heat-processed (beta) -1, 3- glucoside bond as an active ingredient is provided.
Curdlan hydrolyzate is mentioned as a linear saccharide | sugar which consists of (beta) -1,3-glucoside bond to be used. In particular, acid hydrolysates, especially formic acid hydrolysates and hydrolysates by enzymes such as β-1,3-glucanase, having a number average molecular weight in the range of 340 to 4000 are preferred. As the heat treatment, heating at 80 ° C. or higher in an aqueous solution is preferable.
The immunostimulant of the present invention has no side effects, is suitable for regular use, and is suitable as a pharmaceutical for immunosuppression.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, as a linear saccharide comprising a β-1,3-glucoside bond to be subjected to heat treatment, an oligosaccharide or polysaccharide linked by a β-1,3-glucoside bond without branching a glucose molecule As a typical example, a hydrolyzate of curdlan, which is a polysaccharide having a β-1,3-glucoside bond, produced by a bacterium of the genus Alkaligenes or Agrobacterium. Can be mentioned.
Hereinafter, the present invention will be described using a curdlan hydrolyzate as an example.
The hydrolyzate of curdlan can be prepared by a polysaccharide hydrolysis method known per se. However, due to the immunosuppressive activity of the obtained hydrolyzate, organic acids such as formic acid and acetic acid, inorganic acids such as hydrochloric acid and sulfuric acid are used. In particular, it is preferably carried out with an enzyme such as formic acid or β-1,3-glucanase, and those having a number average molecular weight in the range of 340 to 4000 are preferred.
[0007]
The number average molecular weight in this specification is measured by high performance liquid chromatography (HPLC) under the following conditions.
As a measuring device, a high performance liquid chromatography device manufactured by Tosoh Corporation was used.
Detector: RI-8022
Pump: CCPM-II
Column oven: CO-8020
Deaeration device: SD-8022
Autosampler: AS-8020
A TSK gel column (G-OLIGO-PW or G-3000PWXL, 7.8 φmm × 30 cm) was used as a measurement column, and measurement was performed at a flow rate of 0.6 to 0.7 ml / min and a temperature of 40 ° C. A 0.02% aqueous solution of the sample was prepared and 200 μl thereof was used. Elution was performed with pure water.
On the other hand, pullulan standards with a known molecular weight are measured in the same way to create a calibration curve. Based on this calibration curve, the molecular weight distribution is calculated by Tosoh Corporation's GPC-LALLS program and Microsoft Corporation's calculation program "Excel". The function was obtained and converted as the number average molecular weight.
[0008]
For example, the acid hydrolysis is performed by heating a 0.5 to 5.0% by weight aqueous solution of curdlan containing about 1 to 85% by weight of acid at 70 to 100 ° C. for 10 minutes to 3 hours. Can do. The hydrolysis reaction solution is neutralized with an alkali agent such as sodium hydroxide, centrifuged to obtain a supernatant, and known per se such as activated carbon treatment, dialysis, solvent fractionation, removal of formyl group by heating, etc. The desired hydrolyzate is obtained by purifying by the above method.
Hydrolysis with an enzyme can be performed, for example, by subjecting a 0.5 to 3% by weight aqueous solution of curdlan to an enzyme treatment at a pH and temperature suitable for the enzyme used for a predetermined time. Next, after inactivating the enzyme, the supernatant is obtained by centrifugation, and the desired hydrolyzate can be obtained by purifying it by a known method such as activated carbon treatment, dialysis, solvent fractionation, etc., if necessary. It is done.
[0009]
The obtained hydrolyzate is subjected to heat treatment in the form of an aqueous solution. The heat treatment is generally performed by heating at 80 ° C. or higher, preferably 90 to 120 ° C., usually for 10 to 30 minutes. The heating means is not particularly limited, and is immediately cooled to room temperature after heating.
[0010]
The heat-treated curdlan hydrolyzate can be used as it is as an immunosuppressant of the present invention. Moreover, it can combine with a well-known pharmaceutical carrier or excipient | filler by a well-known method, and can be set as the pharmaceutical for immunosuppression.
The pharmaceutical carrier or excipient used is not particularly limited and can be appropriately selected by those skilled in the art depending on the specific use of the immunosuppressive agent. Further, the form of the immunosuppressant is not particularly limited, and various solid and liquid forms can be used depending on the specific application.
The immunosuppressive agent of the present invention may be administered either orally or parenterally, and its dosage is 4 mg to 40 g per day as the solid content of curdlan hydrolyzate.
The immunosuppressive agent of the present invention includes various side effects observed in steroids, serious side effects such as hematopoietic organs observed in drugs acting on nucleic acid synthesis systems, kidney damage and liver damage observed in cyclosporine and FK506, etc. In addition, since the present invention strongly suppresses the activation of B lymphocytes, the present invention is effective in the treatment of autoimmune diseases or allergic diseases such as malignant lymphoma, systemic lupus erythematosus, and rheumatoid arthritis caused by abnormalities of B lymphocytes. Very useful for treatment. Furthermore, since it suppresses the activation of T lymphocytes, it is useful for preventing organ transplant rejection.
[0011]
【Example】
Next, the present invention will be described more specifically with reference to examples and test examples, but the present invention is not limited to these examples.
Example 1
Preparation of curdlan hydrolyzate by enzyme 4 g of curdlan was dispersed in 200 ml of 0.05M acetic acid buffer, and 18 units / ml of agaric enzyme were added. This was heated to 40 ° C., incubated for 4 hours, and then kept in a boiling water bath for 15 minutes to inactivate the enzyme. Subsequently, the precipitate was removed by cooling and centrifuging, and the supernatant was adsorbed on activated carbon packed in a column having a diameter of 5 cm and a height of 30 cm, washed with 1000 ml of water, and further washed with 2000 ml of 4% ethanol. Subsequently, the adsorbed component was eluted with 2000 ml of 20% ethanol, concentrated with an evaporator, and freeze-dried.
This had a number average molecular weight of 340 (as calculated as pullulan) as measured by HPLC.
This was heated in an aqueous solution at 100 ° C. for 10 minutes and then cooled to obtain an immunosuppressive agent.
[0012]
Example 2
Preparation of curdlan hydrolyzate with formic acid 30 grams of curdlan was dispersed in 3000 ml of 85% formic acid, heated to 90 ° C. and held for 20 minutes. Subsequently, the whole container was exposed to cold water, cooled to room temperature, concentrated with an evaporator, neutralized with 5N NaOH to pH 7, and centrifuged. The supernatant was heated in a boiling water bath for 120 minutes in order to remove the formyl group. At this time, since the pH was lowered, 2N NaOH was added to return to 7. This was placed in a Visking tube and dialyzed overnight against 10 liters of pure water, and the dialyzed solution was lyophilized.
The number average molecular weight when this was measured by HPLC was about 2800 in terms of pullulan.
This was heated in an aqueous solution at 100 ° C. for 10 minutes and then cooled to obtain an immunosuppressant.
[0013]
Test example 1
Using the enzyme-degrading curdlan obtained in Example 1 and the formic acid-degrading curdlan obtained in Example 2, the effects of the enzyme-degrading curdlan heat-treated product and the formic acid-degrading curdlan heat-treated product on mouse spleen lymphocyte proliferation reaction are investigated. By the above, the lymphocyte metabolic activity increase and the inhibitory effect on lymphocyte proliferation of the enzyme-degraded curdlan heat-treated product and the formic acid-degraded curdlan heat-treated product were verified.
The spleen was aseptically removed from a mouse (C57BL / 6, female, 14 weeks old), spleen was crushed in RPMI1640 medium, and passed through a 200 mesh sieve to obtain a spleen cell suspension. After the number of cells in the spleen cell suspension was measured with an automatic hemocytometer, the number of cells was adjusted to a concentration of 5 × 10 6 / ml in RPMI 1640 medium, and 100 microliters per well were seeded in a 96-well tissue culture plate. . A solution obtained by dissolving B lymphocyte proliferation stimulating substance lipopolysaccharide in RPMI 1640 medium at a concentration of 200 microgram / ml, and a solution obtained by dissolving T lymphocyte proliferation stimulating substance concanavalin A in RPMI 1640 medium at a concentration of 8 microgram / ml. Alternatively, RPMI1640 medium was added to each spleen cell suspension seeded at 50 microliters per well to form a B lymphocyte stimulation group, a T lymphocyte stimulation group, and an unstimulation group. In these three groups, phosphate buffered saline was heated at 100 ° C. for 10 minutes and cooled (control) or enzyme-degraded curdlan was dissolved in phosphate buffered saline at a concentration of 8 mg / ml at 100 ° C. Add 10 microliters per well of a solution that has been heated and cooled for 10 minutes, a solution of formic acid-degraded curdlan dissolved in phosphate buffered saline at a concentration of 8 mg / ml and heated at 100 ° C. for 10 minutes. The cells were cultured in a 5% carbon dioxide incubator at 37 ° C. for 2 days, and the number of viable cells and cell metabolic activity after the culture were examined.
[0014]
The number of viable cells was determined by measuring the number of cells in the cultured cell solution with an automatic hemocytometer, and then adding 1 anti-mouse CD45R antibody as a specific antibody against mouse B lymphocytes labeled with R-phycoerythrin in 200 microliters of cultured cell solution. 1 microgram of anti-mouse T cell receptor (alpha / beta) antibody, a specific antibody against mouse T lymphocytes labeled with fluorescein isothiocyanate, and 7-aminoactinomycin D that specifically stains dead cells 1 microgram was added and allowed to stand at 5 ° C. for 30 minutes, followed by washing with RPMI 1640 medium, and the ratio of B lymphocytes and T lymphocytes to total cells and the number of dead cells occupying B lymphocytes and T lymphocytes with a flow cytometer. Measure the ratio and calculate the number of live B lymphocytes and T lymphocytes It was.
Cell metabolic activity was determined by dissolving a solution of 3- (4,5-dimethyl-2-thiazolyl) -2,5-diphenyl-2Htetrazolium bromide in RPMI 1640 medium at a concentration of 5 mg / ml 3 hours before the end of the culture. Add 10 microliters per well, add 50 microliters of 20% sodium dodecyl sulfate solution per well at the end of the culture, leave at 37 ° C for 1 day, and then measure the absorbance of the culture with a microplate reader to measure cell metabolism. Activity was sought.
Table 1 shows the results.
[0015]
[Table 1]
Figure 0004091137
[0016]
As shown in Table 1, in the non-stimulated group, both the enzyme-degraded curdlan heat-treated product and the formic acid-degraded curdlan heat-treated product decreased the number of viable B lymphocytes only slightly and had little effect on cell metabolic activity. In the B lymphocyte stimulation group, both the enzyme-degraded curdlan heat-treated product and the formic acid-degraded curdlan heat-treated product significantly reduced the number of viable B lymphocytes and completely suppressed the increase in cell metabolic activity. did. In the T lymphocyte stimulation group, both the enzyme-degraded curdlan heat-treated product and the formic acid-degraded curdlan heat-treated product strongly suppressed the increase in cell metabolic activity. Thus, both the enzyme-degraded curdlan heat-treated product and the formic acid-degraded curdlan heat-treated product acted more selectively when lymphocytes were activated, and a strong inhibitory action was observed.
[0017]
Test example 2
Laminaribiose, laminaritriose, laminaritetraose, laminaripentaose and laminarihexaose (Yaizu Suisan Chemical) are used to heat-treat laminaribiose and heat-treated lamina for mouse spleen lymphocyte proliferation reaction By examining the effects of ritriose, heat-treated laminaritetraose, heat-treated laminaripentaose, heat-treated laminarihexaose, heat-treated laminaribiose, heat-treated laminaritriose, heat-treated laminaritetraose, heat-treated The effects of treatment-treated laminaripentaose and heat-treated laminarihexaose on lymphocyte metabolic activity increase were examined.
The spleen was aseptically removed from a mouse (C57BL / 6, female, 18 weeks old), spleen was crushed in RPMI1640 medium, and passed through a 200 mesh sieve to obtain a spleen cell suspension. After the number of cells in the spleen cell suspension was measured with an automatic hemocytometer, the number of cells was adjusted to a concentration of 5 × 10 6 / ml in RPMI 1640 medium, and 100 microliters per well were seeded in a 96-well tissue culture plate. . A solution obtained by dissolving B lymphocyte proliferation stimulating substance lipopolysaccharide in RPMI 1640 medium at a concentration of 200 microgram / ml, and a solution obtained by dissolving T lymphocyte proliferation stimulating substance concanavalin A in RPMI 1640 medium at a concentration of 8 microgram / ml. Alternatively, RPMI1640 medium was added to each spleen cell suspension seeded at 50 microliters per well to form a B lymphocyte stimulation group, a T lymphocyte stimulation group, and an unstimulation group. In these three groups, phosphate buffered saline was heated at 121 ° C for 20 minutes and cooled (control) or laminaribiose, laminaritriose, laminaritetraose, laminaripentaose, laminarihexaose. 50 microliters per well of a solution that has been dissolved in phosphate buffered saline at a concentration of 8 mg / ml or 1 mg / ml, heated at 121 ° C. for 20 minutes, and cooled, is added to each well, and 5% carbon dioxide at 37 ° C. The cells were cultured in an incubator for 1 day, and the cell metabolic activity after the culture was examined.
[0018]
Cell metabolic activity was determined by dissolving a solution of 3- (4,5-dimethyl-2-thiazolyl) -2,5-diphenyl-2H tetrazolium bromide in RPM11640 medium at a concentration of 5 mg / ml 3 hours before the end of the culture. Add 10 microliters per well, add 50 microliters of 20% sodium dodecyl sulfate solution per well at the end of the culture, leave it at 37 ° C for 2 days, and then measure the absorbance of the culture with a microplate reader to measure cell metabolism. Activity was sought.
Table 2 shows the results.
[0019]
[Table 2]
Figure 0004091137
[0020]
As shown in Table 2, in the unstimulated group, the heat-treated laminaribiose, the heat-treated laminaritriose, the heat-treated laminaritetraose, the heat-treated laminaripentaose, and the heat-treated laminarihexaose are all cell metabolic activities. In the B lymphocyte stimulation group, heat-treated laminaribiose, heat-treated laminaritriose, heat-treated laminaritetraose, heat-treated laminaripentaose, heat-treated laminarihexaose Both completely suppressed the increase in cell metabolic activity at concentrations of 2 mg / ml and 0.4 mg / ml. In the T lymphocyte stimulation group, heat-treated laminaribiose, heat-treated laminaritriose, heat-treated laminaritetraose, heat-treated laminaripentaose and heat-treated laminarihexaose are all cells at a concentration of 2 mg / ml. Although the increase in metabolic activity was completely suppressed, only the heat-treated laminaribiose and heat-treated laminaritriose partially inhibited the increase in cell metabolic activity at a concentration of 0.4 mg / ml. In this way, heat-treated laminaribiose, heat-treated laminaritriose, heat-treated laminaritetraose, heat-treated laminaripentaose, and heat-treated laminarihexaose are all selected when lymphocytes are activated. In particular, it showed a strong suppressive action, particularly strong action on B lymphocytes, and lymphocyte suppressive activity was strong in heat-treated laminaribiose and heat-treated laminaritriose.
[0021]
【The invention's effect】
According to the present invention, an excellent immunosuppressive agent free from serious side effects is provided.

Claims (6)

加熱処理された数平均分子量が340から4000の範囲にあるカードラン加水分解物を有効成分とする免疫抑制剤。An immunosuppressant comprising a curdlan hydrolyzate having a heat-treated number average molecular weight in the range of 340 to 4000 as an active ingredient. 加水分解物が酸加水分解物である請求項1記載の免疫抑制剤。 The immunosuppressive agent according to claim 1, wherein the hydrolyzate is an acid hydrolyzate. 加水分解物が蟻酸による加水分解物である請求項2記載の免疫抑制剤。 The immunosuppressive agent according to claim 2, wherein the hydrolyzate is a hydrolyzate by formic acid . 加水分解物がβ−1,3−グルカナーゼによる加水分解物である請求項記載の免疫抑制剤。Immunosuppressive agent according to claim 1 wherein the hydrolyzate according hydrolyzate beta-1,3-glucanase. 加熱処理が水溶液中で80℃以上の温度である請求項1〜4いずれか1項記載の免疫抑制剤。 The immunosuppressive agent according to any one of claims 1 to 4, wherein the heat treatment is performed at a temperature of 80 ° C or higher in an aqueous solution . 免疫抑制作用がリンパ球抑制作用である請求項1〜5いずれか1項記載の免疫抑制剤。 The immunosuppressive agent according to any one of claims 1 to 5, wherein the immunosuppressive effect is a lymphocyte inhibitory effect .
JP00652497A 1997-01-17 1997-01-17 Immunosuppressant Expired - Lifetime JP4091137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00652497A JP4091137B2 (en) 1997-01-17 1997-01-17 Immunosuppressant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00652497A JP4091137B2 (en) 1997-01-17 1997-01-17 Immunosuppressant

Publications (2)

Publication Number Publication Date
JPH10194976A JPH10194976A (en) 1998-07-28
JP4091137B2 true JP4091137B2 (en) 2008-05-28

Family

ID=11640767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00652497A Expired - Lifetime JP4091137B2 (en) 1997-01-17 1997-01-17 Immunosuppressant

Country Status (1)

Country Link
JP (1) JP4091137B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4238726B2 (en) * 2001-06-01 2009-03-18 味の素株式会社 Drugs for bowel disease
JP5572097B2 (en) 2007-11-26 2014-08-13 ノバルティス アーゲー Conjugated β-1,3-linked glucan
JP5350626B2 (en) * 2007-12-20 2013-11-27 キリンフードテック株式会社 Dendritic cell activation composition
CN112076209A (en) * 2019-06-14 2020-12-15 青岛海洋生物医药研究院股份有限公司 Beta-glucan composition and application thereof

Also Published As

Publication number Publication date
JPH10194976A (en) 1998-07-28

Similar Documents

Publication Publication Date Title
CA2189010C (en) Enzyme treatment of glucans
Nigou et al. Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor
Espevik et al. The involvement of CD14 in stimulation of cytokine production by uronic acid polymers
Ellerbroek et al. O-acetylation of cryptococcal capsular glucuronoxylomannan is essential for interference with neutrophil migration
EP3341081B1 (en) Use of bifidobacterium longum and an exopolysaccharide produced thereby
JPH05503952A (en) Method for producing soluble glucans
US11547719B2 (en) Acetylation of aloe polysaccharides
US6534648B1 (en) Isolated algal lipopolysaccharides and use of same to inhibit endotoxin-initiated sepsis
Hida et al. Effect of Candida albicans cell wall glucan as adjuvant for induction of autoimmune arthritis in mice
JP4091137B2 (en) Immunosuppressant
JP2010230336A (en) Oligosaccharide composition showing antitumor activity
Olafsdottir et al. Rhamnopyranosylgalactofuranan, a new immunologically active polysaccharide from Thamnolia subuliformis
BG107115A (en) Lipopolysaccharides (lps) extracted from escherichia coli
Jelı́nková et al. In vitro and in vivo immunomodulatory effects of microdispersed oxidized cellulose
JP4091136B2 (en) Immunostimulator
CN113861303B (en) Extracellular polysaccharide separated from Lactobacillus delbrueckii and Streptococcus thermophilus fermented yogurt and application thereof
Wright et al. Influence of yeast mannan on release of myeloperoxidase by human neutrophils: determination of structural features of mannan required for formation of myeloperoxidase-mannan-neutrophil complexes
EP0751958B1 (en) Flucose containing proteoglycan or acid glycan and their pharmaceutical use
JP6088624B1 (en) Plant-derived sugar-binding lectin and purification method thereof
US20030082621A1 (en) Fucose containing proteoglycan or acidic glycan and their pharmaceutical use
Ziska et al. Isolation and characterization of a lectin from garden cress (Lepidium sativum)
US8008275B2 (en) Fucose containing proteoglycan or acidic glycan and their pharmaceutical use
US20240000927A1 (en) Immunomodulatory agent
JPH04187640A (en) Immunological function promoting agent for oral and transcutaneous administration and immunological function promoting agent for animal for oral and transcutaneous administration
US6444654B1 (en) Isolated asgal lipopolysaccharides and use of same to inhibit innate immune response

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term