JP4089803B2 - Electrostatic relay - Google Patents

Electrostatic relay Download PDF

Info

Publication number
JP4089803B2
JP4089803B2 JP00462399A JP462399A JP4089803B2 JP 4089803 B2 JP4089803 B2 JP 4089803B2 JP 00462399 A JP00462399 A JP 00462399A JP 462399 A JP462399 A JP 462399A JP 4089803 B2 JP4089803 B2 JP 4089803B2
Authority
JP
Japan
Prior art keywords
movable
contact
relay
electrostatic
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00462399A
Other languages
Japanese (ja)
Other versions
JPH11260233A (en
Inventor
幸彦 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP00462399A priority Critical patent/JP4089803B2/en
Publication of JPH11260233A publication Critical patent/JPH11260233A/en
Application granted granted Critical
Publication of JP4089803B2 publication Critical patent/JP4089803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/14Contacts characterised by the manner in which co-operating contacts engage by abutting
    • H01H1/20Bridging contacts

Landscapes

  • Micromachines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、静電引力を利用する静電アクチュエーターを、駆動源として用いた静電リレーに関する。
【0002】
【従来の技術】
静電リレーは、従来の電磁石を利用した電磁式リレーと異なり、静電引力を駆動力として接点の開閉を行うリレーであり、電磁力を発生するためのコイルが不要で機械部品が少なく、小型化が可能であること、及び本質的にコンデンサーである静電アクチュエーターを駆動源として用いるため、低消費電力であるという特徴があり、実用化に向けて研究が進められている。
【0003】
このような、静電リレーとしては、例えば特開平2−100224号公報にあるように、単結晶Siを選択エッチングによりトーションバー弾性体とそれに接続されたシーソー状構造体とを形成し、その構造体に静電アクチュエーターの可動電極とリレーの可動接点とを形成して、それぞれに対向する位置に固定電極と固定接点とを設けた電気絶縁性基板上にスペーサーを介して配置したものがある。
【0004】
この静電リレーは、動作時に固定電極と可動電極間に電圧を印加することにより、トーションバー弾性体のねじれによって、電圧が印加された側のシーソー状構造体が回転運動を行い可動接点を固定接点に接触させるものである。
【0005】
【発明が解決しようとする課題】
このような、従来の静電リレーでは、可動接点と固定接点の組からなるリレー接点を開く時と閉じる時に、以下に記すような問題点があった。
【0006】
まず、リレー接点を閉じる場合、従来の静電リレーでは目的の接点側のシーソー状構造体に配置してある静電アクチュエーターの可動電極と基板側固定電極の間に電圧を印加し、その両電極間に働く静電引力により、トーションバー弾性体を回転支点にして、シーソー状構造体をシーソー運動させ、可動接点を固定接点に接触させることにより接点を閉じる。
【0007】
このように、従来の静電リレーは、可動電極が可動接点と一体となって動作するシーソー状構造体に形成されるため、可動接点が固定接点に接触し、シーソー状構造体の回転運動が停止した時点で、固定電極と可動電極との間に厚みの大きな梁状のエアギャップが生じる。
【0008】
ところが静電引力は電極間隔の逆自乗に比例する。従って、静電アクチュエーターは吸引動作時でもこの大きなエアギャップのため静電引力が小さくなってしまう。このため接点に十分な圧力がかからないため接点抵抗を十分小さくすることができず、実用性が低下する。
【0009】
更に、接点抵抗が高いと、接点が接点電流を流したときのジュール熱のために過熱し、接点溶着現象を起こしやすい。高い接点抵抗を下げるために動作電圧を高くして、接点圧力を増大することは静電リレーの実用性を著しく妨げることになった。
【0010】
次にリレー接点を開く場合の問題点がある。
【0011】
すなわち、リレー接点を開く場合は可動接点と固定接点を引き離さねばならないのであるが、この場合は静電アクチュエーターの固定、可動電極間を電気的に短絡し、電極間の静電引力をゼロにする。これにより、シーソー状構造体を回転可能に支持しているトーションバー弾性体の復元力が働き、可動接点が持ち上げられ、固定接点との接触が断たれる。
【0012】
このように、従来の静電リレーでは、リレー接点を開く場合、ねじれ弾性体としてのトーションバー弾性体の復元力のみがその引き離し力であり、大きな接点電流を流し接点が溶着した場合、接点を強制的に引き離す力が不足してしまう。
【0013】
このような事態を避けるためには、トーションバー弾性体の復元力を強くすればよいが、その場合、リレー接点を閉じるために必要な力も増大するため、静電リレーに印加する電圧を増加させねばならず、静電リレーの実用性が著しく低下してしまう。
【0014】
そこで、リレー接点を開く力を増大させる方法として、静電リレーのシーソー状構造体の、閉じている接点と反対側の静電アクチュエーター(以後、反対極と称する)の固定、可動電極間に電圧を印加して静電引力を発生させ、接点を閉じている構造体側を持ち上げる力を発生させることが考えられる。
【0015】
ところが反対極の静電アクチュエーターの可動電極は、持ち上げられているため、固定電極との間隔が開いている。
【0016】
シーソー状構造体を回転させる力はてこの力になるため、回転中心軸からの距離とその位置での引力との積になるが、回転中心軸から離れた位置ほど固定電極と可動電極の間隔が開き、そこで働く静電引力は電極間隔の逆自乗に比例するため、結果的に反対極の静電アクチュエーターの引力は著しく小さくなってしまい、接点を引き離す力に十分寄与することができない。このため、結局反対極に印加する電圧を大きくする以外に、リレー接点の引き離し力を強めることは困難であった。
【0017】
以上のように、従来の静電リレーでは、接点を閉じたときの接点抵抗が高く、接点溶着現象を起こしやすい。更に接点を引き離す力が弱いため、いったん接点が溶着してしまうとそのまま接点溶着故障を起こしてしまう。このため、十分な接点電流を確保することが難しく、信頼性が低く、実用性が乏しい。この問題を解決するためには、静電リレーを駆動する電圧を大きくするしかなく、その高い動作電圧は静電リレーの実用性を著しく阻害していた。
【0018】
本発明は、上記の点に鑑み、低電圧駆動、低接点抵抗、高接点容量の実用性の高い静電リレーを提供することを目的とする。
【0019】
本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。
【0020】
【課題を解決するための手段】
上記目的を達成するために、本発明の静電リレーは、
基板と、
前記基板上に前記基板との空隙を持って保持された両持ち梁状のねじれ弾性部と、
前記基板と対向するように前記ねじれ弾性部に交差して支持され前記ねじれ弾性部から両側に延長し、各側において枠形形状を成している、前記ねじれ弾性部のねじれ弾性変形により回転自在な可動構造部と、
前記可動構造部の各枠形形状の内部に位置するように前記可動構造部の回転支点の両側にそれぞれ前記ねじれ弾性部と平行な軸を有し各枠形形状の内部において前記ねじれ弾性部側、又は前記ねじれ弾性部と反対側、の端部に位置する弾性連絡部を介して、前記弾性連絡部の弾性変形により前記可動構造部と独立して回転自在となるように前記可動構造部に連結された可動電極部と、
前記可動電極部で構成されるか前記可動電極部に設けられた可動電極と、
前記可動電極に対向するように前記基板上にそれぞれ配置された固定電極と、
前記可動構造部の少なくとも一方の側で、前記可動構造部の前記ねじれ弾性部とは反対側の端部に配置された少なくとも1個の可動接点と、
前記可動接点に接触可能に対向するように前記基板上に配置された固定接点とを備えた構成としている。
【0021】
前記静電リレーにおいて、前記可動電極部の可動端部が、前記可動構造部の前記回転支点側に配置されているとよい。
【0022】
前記可動電極部の可動端部が、前記可動構造部の前記可動接点側に配置されているとよい。
前記弾性連絡部の弾性率が前記両持ち梁状のねじれ弾性部の弾性率よりも小さいとよい。
【0023】
前記可動電極と前記固定電極との間に誘電体層が介在しているとよい。
【0024】
【発明の実施の形態】
以下、本発明に係る静電リレーの実施の形態を図面に従って説明する。
【0025】
図1乃至図7は本発明に係る静電リレーの第1の実施の形態であって、図1は平面図、図2乃至図7は動作説明のための正断面図である。これらの図において、静電リレーは、絶縁性基板1と、基板1上に立設、固定されたアンカー構造体2と、アンカー構造体2で基板1から空隙を持って保持された両持ち梁状のねじれ弾性部3と、ねじれ弾性部3による弾性支持によって回転(回動)自在なリレー構造体7を具備している。この構成により、リレー構造体7は、ねじれ弾性部3を回転支点Pとして回転自在に保持されるとともに、ねじれ弾性部3に交差して前記回転支点Pの両側に延長したシーソー状構造体をなしているから、シーソー運動可能となっている。
【0026】
前記絶縁性基板1は少なくとも表面が絶縁処理されているもので、例えば表面にSiO絶縁層を設けた単結晶Si基板等である。アンカー構造体2、両持ち梁状のねじれ弾性部3、リレー構造体7の3者は多結晶Si等により一体に形成されている。
【0027】
リレー構造体7はシーソー運動を行う所要の剛性の可動構造部(リレー構造体の本体部)10を有し、左側に弾性連絡部としての両持ち梁状のねじれ弾性部11L及び該ねじれ弾性部11Lを介して可動構造部10につながった可動電極支持部12L(可動電極を設ける可動電極部である)が形成され、可動構造部10の回転支点Pについて対称的に右側の両持ち梁状のねじれ弾性部11R及び可動電極支持部12R(可動電極を設ける可動電極部である)が形成されている。そして、これらの両持ち梁状のねじれ弾性部11L,11Rにより可動電極支持部12L,12Rが回転(回動)自在に支持される。ここでは、両持ち梁状のねじれ弾性部11L,11Rが可動構造部10の回転支点P寄り位置に形成され、可動電極支持部12L,12Rの可動端部が可動構造部10の回転支点Pから離れた位置となっている。可動電極支持部12L,12Rは両持ち梁状のねじれ弾性部11L,11Rの位置がそれぞれ回転支点L,Rとなっている。また、両持ち梁状のねじれ弾性部11L,11Rのねじれ弾性率を、両持ち梁状のねじれ弾性部3より小さく、すなわち可動電極支持部12L,12Rが、可動構造部10と比較してより小さい力で回転可能なように設定しておく。
【0028】
前記可動電極支持部12L,12Rの基板1に対向する側には可動電極13L,13Rがそれぞれ形成され、基板1上にはそれぞれの可動電極に対向する位置に固定電極4L,4Rが固定配置され、図2の如くそれら固定電極表面を被覆するように絶縁層(誘電体層)5L,5Rが設けられている。
【0029】
リレー構造体7の本体部をなす可動構造部10の両端部には可動接点支持部14L,14Rが一体に形成され、該可動接点支持部14L,14Rの基板に対向する面に可動接点15L,15Rが形成配置され、基板1上にはそれぞれの可動接点に対向する位置に固定接点6L,6Rが固定配置される。
【0030】
絶縁性基板1上に固定された固定電極4L,4Rと可動電極支持部12L,12Rに固定された可動電極13L,13Rとは両者間に印加された電圧により静電引力を発生する静電アクチュエーターを構成する部分であり、固定電極4L,4Rと可動電極13L,13Rとは図示しない配線により外部電源に接続される。
【0031】
第1の実施の形態で示した静電リレーの動作原理を説明する。まず、最初に、リレー接点を閉じる動作から説明する。
【0032】
図2は非動作状態(電圧を印加しない状態)での各電極及び各接点の位置を示し、固定接点6L,6R、可動接点15L,15R間は開いている。右側静電アクチュエーターを構成する固定電極4Rと可動電極13R間に電圧を印加すれば、両電極間には静電引力が発生し、可動電極支持部12Rが回転支点Rを中心として両持ち梁状のねじれ弾性部11Rのねじれ弾性により回転し、図3のように可動電極支持部12Rが基板1側に対し接触位置まで変移する(可動電極13Rが固定電極4Rを被覆した絶縁層5Rに当たるまで変移する。)。静電アクチュエーターの固定電極と可動電極間に働く静電引力は、距離の自乗に逆比例する。従って、図3からも明らかなように、くさび形状のエアギャップを持つ形で間隔を狭められた固定電極4Rと可動電極13Rの間には著しく大きな静電引力が発生し、このくさび形状のエアギャップを狭める大きな引力が発生し、図4に示すように、リレー構造体7の本体部をなす可動構造部10自体を回転支点Pを回転中心として右側に回転させ、可動接点15Rと固定接点6Rを接触させ、リレー接点を閉じる。
【0033】
リレー接点が閉じた状態では図4に示すように、可動電極13Rと固定電極4Rとの間のくさび形状のエアギャップはより間隔を狭められるため、強い接点圧力が得られる。
【0034】
このように、本発明に係る第1の実施の形態の静電リレーでは、まず、弱い力で回転動作する可動電極支持部12Rが、静電アクチュエーターへの電圧印加当初の、静電アクチュエーター電極間隔が大きく、静電引力が小さい段階で動作し、電極間隔を狭める。狭まった電極間隔により、静電アクチュエーター電極間に著しく強い力が発生し、その力でリレー構造体7の本体部、つまり可動電極支持部の外側の枠状部分である可動構造部10を回転支点Pを中心として回転させ、リレー接点を閉じ、接点間により強い圧力を印加することができる。
【0035】
このため、従来の静電リレーと比較して同じ動作電圧で用いる場合、接点抵抗を低くすることが可能である。さらに接点を閉じる段階でより強い引力が得られるため、リレー構造体7を支持する両持ち梁状のねじれ弾性部3の弾性率をより大きくすることが可能であり、接点の固着が発生した場合の引き剥がしが容易となる。
【0036】
すなわち、従来の静電リレーと比較して、同一電圧で動作させる場合、接点固着の故障が少なく、より大きな接点電流を流すことが可能となる。また、逆に、従来の静電リレーと同一の接点容量の場合、より低い動作電圧で駆動することが可能となる。
【0037】
次に、リレー接点を開く動作を説明する。
【0038】
図5は、図4のリレー接点オンの動作後、右側静電アクチュエーターの電極同士を短絡(同電位)とし、右側静電引力をゼロとした状態を示す。この状態で、接点6R,15Rを引き剥がす力は、リレー構造体7の本体部をなす可動構造部10を弾性支持している両持ち梁状ねじれ弾性体3の弾性率による復元力のみとなる。
【0039】
ここで、もし、接点6R,15R間の固着力が、この復元力より大きければ、静電リレーの接点は開かず、接点固着故障となる。
【0040】
従来の静電リレーでは、このような場合、左側静電アクチュエーターの電極間に電圧を加え、リレー構造体を左側にシーソー動作させることで右側接点を引き剥がす力を発生させる方法が考えられる。
【0041】
ところが、その場合、図5から明らかなように、左側静電アクチュエーターの可動電極13Lは右側に可動構造部10が傾き、図2の非動作時と比較して大きく固定電極4Lから離れているため、十分な静電引力を発生できず、結果的に右側接点6R,15Rの固着を引き剥がすのに十分な力を発生することができない。
【0042】
しかし、本発明の第1の実施の形態では、図5の状態で、左側静電アクチュエーターの可動電極13Lと固定電極4L間に電圧を印加すれば、図6に示すように、弱い力で回転動作可能な可動電極支持部12Lが回転支点Lを中心として回転し、可動電極支持部12Lが基板1側に対し接触位置まで変移する(可動電極13Lが固定電極4Lを被覆した絶縁層5Lに当たるまで変移する。)。
【0043】
静電アクチュエーターの固定電極と可動電極間に働く静電引力は、距離の自乗に逆比例するため、くさび形状のエアギャップの形で間隔を狭められた可動電極13Lと固定電極4Lの間には著しく大きな静電引力が発生し、このくさび形状のエアギャップを狭める大きな引力が発生する。
【0044】
この大きい静電引力は、リレー構造体7の本体部をなす可動構造部10を強い力で左側に回転させ、固着していた右側の可動接点15Rと固定接点6Rを図7のように十分に強い力で引き剥がすことが可能となる。
【0045】
この第1の実施の形態によれば、次の通りの効果を得ることができる。
【0046】
(1) 可動構造部10の回転支点Pの両側に設けられた可動電極支持部12L,12Rが弾性連絡部としての両持ち梁状のねじれ弾性部11L,11Rで回転自在に可動構造部10に接続する構造であり、左右いずれかの固定電極、可動電極間に電圧を印加して左右いずれかの静電アクチュエーターを作動させた場合、まず可動電極支持部が基板側に近接する方向に動いて固定、可動電極間の距離を縮める働きをするから、低電圧駆動であっても十分な接点圧力でリレー接点をオンにすることができる。
【0047】
(2) また、リレー接点をオフとするとき、例え接点が溶着現象を起こした場合も、溶着側接点と反対側の静電アクチュエーターに電圧を印加すれば、従来の静電リレーと比較して大きな引き剥がし力を発生することが可能であり、接点溶着故障を避けることが可能となる。
【0048】
(3) 固定電極4L,4Rを絶縁層5L,5Rで覆っており、固定電極4L,4R、可動電極13L,13Rが直接接触する短絡事故を確実に防止できる。なお、固定電極4L,4R、可動電極13L,13R間に絶縁層5L,5Rが介在しても、絶縁層5L,5Rは空気に比べて誘電率の高い誘電体であり、絶縁層5L,5Rの存在による静電引力の低下は考えなくてよい(無視できる。)。
【0049】
(4) これらの結果、低電圧駆動、低接点抵抗、高接点容量の実用性の高い静電リレーを実現可能である。
【0050】
図8乃至図14は本発明に係る静電リレーの第2の実施の形態であって、図8は平面図、図9乃至図14は動作説明のための正断面図である。これらの図において、リレー構造体7Aには、左側に弾性連絡部としての両持ち梁状のねじれ弾性部21L及び該ねじれ弾性部21Lを介して可動構造部10A(リレー構造体7Aの本体部)につながった可動電極支持部22Lが形成され、リレー構造体7Aの本体部である可動構造部10Aの回転支点Pについて対称的に右側の両持ち梁状のねじれ弾性部21R及び可動電極支持部22Rが形成されている。そして、これらの両持ち梁状のねじれ弾性部21L,21Rにより可動電極支持部22L,22Rが回転自在に支持される。但し、第1の実施の形態とは異なり両持ち梁状のねじれ弾性部21L,21Rが可動構造部10Aの両端寄り位置に形成され、可動電極支持部22L,22Rの可動端部が回転支点P側位置となっている。可動電極支持部22L,22Rは両持ち梁状のねじれ弾性部21L,21Rの位置がそれぞれ回転支点L,Rとなっている。また、両持ち梁状のねじれ弾性部21L,21Rのねじれ弾性率を、両持ち梁状のねじれ弾性部3と同等以下、すなわち可動電極支持部22L,22Rが、可動構造部10Aと比較して同等以下の力で回転可能なように設定しておく。
【0051】
前記可動電極支持部22L,22Rの基板1に対向する側には可動電極23L,23Rがそれぞれ形成され、基板1上にはそれぞれの可動電極に対向する位置に固定電極4L,4Rが固定配置され、それら固定電極表面を被覆するように絶縁層(誘電体層)5L,5Rが設けられている。可動構造部10A両端部の可動接点支持部14L,14Rの基板に対向する面に可動接点15L,15Rが形成配置され、基板1上にはそれぞれの可動接点に対向する位置に固定接点6L,6Rが固定配置される。その他の構成部分は前述した第1の実施の形態と同様であり、同一又は相当部分に同一符号を付して説明を省略する。
【0052】
第2の実施の形態で示した静電リレーの動作原理を説明する。まず、最初に、リレー接点を閉じる動作から説明する。
【0053】
図9は非動作状態(電圧を印加しない状態)での各電極及び各接点の位置を示し、固定接点6L,6R、可動接点15L,15R間は開いている。右側静電アクチュエーターを構成する固定電極4Rと可動電極23R間に電圧を印加すれば、両電極間には静電引力が発生し、可動電極支持部22Rが回転支点Rを中心として両持ち梁状のねじれ弾性部21Rのねじれ弾性により回転し、図10のように可動電極支持部22Rが基板1側に対し接触位置まで変移する(可動電極23Rが固定電極4Rを被覆した絶縁層5Rに当たるまで変移する。)。静電アクチュエーターの固定電極と可動電極間に働く静電引力は、距離の自乗に逆比例する。従って、図10からも明らかなように、くさび形状のエアギャップを持つ形で間隔を狭められた固定電極4Rと可動電極23Rの間には著しく大きな静電引力が発生し、このくさび形状のエアギャップを狭める大きな引力が発生し、図11に示すように、リレー構造体7Aの本体部をなす可動構造部10A自体を回転支点Pを回転中心として右側に回転させ、可動接点15Rと固定接点6Rを接触させ、リレー接点を閉じる。
【0054】
リレー接点が閉じた状態では図11に示すように、可動電極23Rと固定電極4Rとの間のくさび形状のエアギャップはより間隔を狭められるため、強い接点圧力が得られる。
【0055】
このように、本発明に係る第2の実施の形態の静電リレーでは、まず、弱い力で回転動作する可動電極支持部22Rが、静電アクチュエーターへの電圧印加当初の、静電アクチュエーター電極間隔が大きく、静電引力が小さい段階で動作し、電極間隔を狭める。狭まった電極間隔により、静電アクチュエーター電極間に著しく強い力が発生し、その力でリレー構造体7Aの本体部、つまり可動電極支持部の外側の枠状部分である可動構造部10Aを回転支点Pを中心として回転させ、リレー接点を閉じ、接点間により強い圧力を印加することができる。
【0056】
更に、本発明の第2の実施の形態の静電リレーと第1の実施の形態の静電リレーの動作を比較すれば、第2の実施の形態の静電リレーでは、可動電極支持部22Rがリレー構造体7Aの端部側を回転支点Rとするため、図10から図11の状態に移行する時点で、第1の実施の形態における図3から図4の状態に移行するときと比較して、リレー構造体7Aの本体部の可動構造部10Aを回転させる力を加える点が、可動構造部10A自体の回転支点Pから離れた位置にある可動電極支持部22Rの回転支点Rにかかるため、てこの原理により、より強い回転力で可動構造部10Aを回転させることができる。
【0057】
このため、第1の実施の形態の静電リレーと比較して、同じ動作電圧で用いる場合、リレー構造体7Aの本体部である可動構造部10Aを支持する両持ち梁状のねじれ弾性部3の弾性率をより大きくすることが可能であり、接点の固着が発生した場合の引き剥がしが容易となる。
【0058】
すなわち、従来の静電リレーと比較して、同一電圧で動作させる場合、接点固着の故障が第1の実施の形態の静電リレーで改善された以上に少なく、さらに大きな接点電流を流すことが可能となる。また、逆に、従来の静電リレーと同一接点容量の場合、更に低い動作電圧で駆動することが可能となる。
【0059】
また、図4と図11を比較すれば明らかなように、リレー接点を閉じた状態で、可動電極と固定電極間に形成されるくさび形状のエアギャップが第1の実施の形態と比較して第2の実施の形態の場合の方がさらに小さく、より強い静電引力を発生することが可能であり、固定接点と可動接点との接触圧力を高め、接点抵抗を小さくすることが可能になる。
【0060】
従って、第2の実施の形態では、接点を閉じたときの接点抵抗がより低いため、同一の接点電流を流した場合、接点部のジュール発熱が小さく、接点部の発熱温度上昇による接点溶着の発生を更に抑えることが可能となる。
【0061】
なお、可動電極支持部22L,22Rを可動構造部10Aに対して回転自在に連結する両持ち梁状のねじれ弾性部21L,21Rのねじれ弾性と両持ち梁状のねじれ弾性部3のねじれ弾性を同等にし、可動電極支持部22L,22Rと可動構造部10Aの回転駆動に要する力を同等にすれば、図10と図11の過程が同時に起こるが、その場合もリレー接点(固定接点6L,6Rと可動接点15L,15R)を接触させる力は最終的に同等になる。
【0062】
次に、接点を開く動作を説明する。
【0063】
図12は、図11のリレー接点オンの動作後、右側静電アクチュエーターの電極同士を短絡(同電位)とし、右側静電引力をゼロとした状態を示す。この状態で、接点6R,15Rを引き剥がす力は、リレー構造体7Aの本体部をなす可動構造部10Aを弾性支持している両持ち梁状ねじれ弾性体3の弾性率による復元力のみとなる。
【0064】
ここで、もし、接点6R,15R間の固着力が、この復元力より大きければ、静電リレーの接点は開かず、接点固着故障となる。
【0065】
この第2の実施の形態でも、このような場合、左側静電アクチュエーターの電極間に電圧を加え、リレー構造体7Aの本体部をなす可動構造部10Aを左側にシーソー動作させることで右側接点を引き剥がす力を発生させる。
【0066】
この時の動作を図12及び図13に示す。図12より明らかなように、本実施の形態の静電リレーでは、静電リレー左側の可動電極支持部22Lの可動端部22Laが可動構造部10Aの回転支点P側にあるため、可動構造部10Aが右側に傾いているにもかかわらず、可動端部22Laとそれに対向する固定電極4Lとの距離d′が静止状態である図9の場合の距離dとほとんど変わらない。
【0067】
可動電極支持部22Lを回転させる力は、回転支点Lに対するてこの力であり、可動端部22Laの固定電極との距離d′が静止状態図9と大きく変わらないため(つまり、最大の回転力を発生する可動端部22La寄りの可動電極23L端部と固定電極間の距離も静止状態図9と大きく変わらないため)、電極間への電圧印加により容易に可動電極支持部22Lが回転し、図13の状態に移行する。なお、可動電極支持部22Lの可動端部22Laと可動電極23Lの端部とをなるべく近接させて形成することで、回転力を効率的に発生可能である。
【0068】
従って、図5、図6に示した第1の実施の形態の場合のように可動電極支持部22L,22Rを回転自在に支持する両持ち梁状のねじれ弾性部21L,21Rの弾性率を弱く設定せずとも、通常の動作電圧を印加することで確実に可動電極支持部22Lが回転し、可動電極23Lと固定電極4Lの間隔を狭めることができる。
【0069】
図13のように、くさび形状のエアギャップの形で間隔を狭められた可動電極23Lと固定電極4Lの間には著しく大きな静電引力が発生し、このくさび形状のエアギャップを狭める大きな力が発生する。
【0070】
このように、第2の実施の形態の静電リレーでは、例え、右側リレー接点が固着する状態が発生しても、左側電極間に通常の動作電圧を印加すれば、可動電極支持部22Lが確実に回転し、静電アクチュエーターへの電圧印加当初の、静電アクチュエーター電極間隔が大きく、静電引力が小さい段階で動作して電極間隔を狭める。狭まった電極間隔により、静電アクチュエーター電極間に著しく強い力が発生し、その力で可動構造部10Aを回転し、右側リレー接点、つまり固定接点6Rと可動接点15Rとを図14の如く開く。
【0071】
更に本実施の形態の静電リレーでは、可動電極支持部22Lがリレー構造体7Aの本体部をなす可動構造部10Aの端部側を支点として回転運動するため、図13から図14に移行する時点で、第1の実施の形態における図7に移行するときと比較して、可動構造部10Aを回転駆動する力を加える点が、可動構造部10Aの回転支点Pから離れた位置にある可動電極支持部22Lの支点Lにかかるため、てこの原理により、より強い回転力で可動構造部10Aを回転させることができる。従って、本実施の形態の構造を取れば、第1の実施の形態と比較して、より強い力で固着した接点を引き剥がす力を発生することが可能である。
【0072】
以上のように、本発明に係る第2の実施の形態の静電リレーは、例え接点が溶着現象を起こした場合も、溶着側接点と反対側の静電アクチュエーターに電圧を印加すれば、従来の静電リレーと比較して、第1の実施の形態を用いた場合より更に大きな引き剥がし力を発生することが可能であり、接点溶着故障をいっそう確実に避けることが可能となる。なお、その他の作用効果は、前述した第1の実施の形態と同様である。
【0073】
なお、上記実施の形態では、リレー構造体に対し、一対の可動電極支持部及び可動電極を設けた例を説明したが、本発明はこれに限らず、例えばリレー構造体の形状に応じて複数対の可動電極部(つまり可動電極支持部及び可動電極)を設けてもよく、また、機能的に同等であれば、目的に応じて左右対称構造以外の構成とすることも可能である。
【0074】
また、上記実施の形態では、可動電極をリレー構造体の基板面側に形成した例を説明したが、同電極位置はこれに限らず、実質的に固定電極と可動電極間に静電引力を発生させ得ればよく、例えばリレー構造体が高誘電率の絶縁体や高抵抗体であれば、可動電極位置をリレー構造体の基板面側の反対面に配置してもよく、また、前記リレー構造体を導電性部材で構成すれば、その構造体自体を可動電極とすることも可能である(この場合、可動電極支持部が不要で、可動電極部自体が可動電極を構成する。)。
【0075】
また、固定、可動接点の組から成るリレー接点の配置に関しても、上記実施の形態では、リレー構造体両端にリレー接点を持ち、相補的動作を行うリレー回路を構成可能な構造を示したが、単接点でよい場合は、片側だけにリレー接点を設けても良い。また、リレー構造体に複数の接点を形成し、複数回路同時開閉が可能なように構成しても良い。
【0076】
さらに、リレー構造体の本体部である可動構造部と可動電極部とを接続している弾性連絡部として各実施の形態では両持ち梁状のねじれ弾性部を用いたが、同等の機能を果たすものであれば、ねじれ弾性部以外の構造を用いることも可能である。
【0077】
【実施例】
次に本発明を実施例により具体的に説明する。
【0078】
図15及び図16は本実施例で形成した静電リレーの平面図及び正断面図であり、第2の実施の形態と同様の構造を持つ。本実施例では、まず、図17(A)のように熱酸化法により厚さ約1μmのSiO絶縁層1aを形成した単結晶Si板1を基板とし、厚さ500nm程度のAuをスパッタ法により基板全面に形成し、次にフォトエッチングを用い、静電アクチュエーターの固定電極4L,4Rとリレーの固定接点6L,6Rをそれぞれパターニングした。次に反応性スパッタ法により、基板全面に約100nmのSiN絶縁層を形成し、同じくフォトエッチング法により静電アクチュエーターの固定電極4L,4R上を残して同絶縁層を選択除去し、絶縁層5L,5Rとした。
【0079】
次に、図17(B)のように減圧CVD法を用い、基板全面に犠牲層31となるSiO膜を約3μm程度堆積した。次に可動接点15L,15Rが形成される位置のSiO膜をRIE法により約500nm掘り下げる。更に基板全面に約500nmのAu膜を約20nmのSiN反応防止層とともに形成し、所定の形状にフォトエッチングでパターニングして静電アクチュエーターの可動電極23L,23R及びリレーの可動接点15L,15Rを形成した。さらにこの後、犠牲層31のSiO膜のアンカー構造体2に相当する部分32をフォトエッチングを用いて選択除去する。
【0080】
最後に減圧CVD法を用い、図17(C)のように基板全面に多結晶Si膜33を約4μm形成し、以下に述べるリレー構造体7Aの形状にRIE法によりパターニングした。その後、犠牲層31のSiO膜をHFにより選択エッチングし、図15及び図16に示したリレー構造体7Aをリリースして形成した。
【0081】
リレー構造体7Aは、図15のようにアンカー構造体2からの長さaが約140μm、幅約6μm程度の両持ち梁状のねじれ弾性部3a,3b、両持ち梁状のねじれ弾性部3a,3bから左右に片側長bが約220μmとなるように張り出したリレー構造体7Aの本体部としての可動構造部(フレーム部)10A、両持ち梁状のねじれ弾性部3a,3bから左右に約200μm張り出した位置に形成される長さcが約80μm、幅約3μmの両持ち梁状のねじれ弾性部21La,21Lb及び21Ra,21Rb、該弾性部に接続される長さdが約150μm、幅eが約200μmの静電アクチュエーター可動電極支持部22L,22R、及び長さ約50μmの可動接点支持部14L,14Rから構成され、これらを含むリレー構造体7A全体が、両持ち梁状のねじれ弾性部3a,3bのねじれ弾性により回転自在であると同時に、可動電極支持部22L,22Rが両持ち梁状のねじれ弾性部21La,21Lb及び21Ra,21Rbのねじれ弾性によりそれぞれ回転可能な構造となっている。
【0082】
本静電リレーは、左右いずれかの静電アクチュエーター間に約20V弱の動作電圧を印加することにより、リレー接点が閉じ、この時の接点抵抗は約0.2Ωで、接点電流100mA流しても接点の溶着は全く発生しなかった。また、接点電流200mAを流した場合、接点の溶着現象が認められたが、溶着側リレー接点と反対側の静電アクチュエーターへの動作電圧印加により容易に復帰させることが出来た。
【0083】
このように、本実施例の静電リレーは、小信号用リレーとして、十分実用可能な特性が得られ、例えば図17の製造過程での犠牲層31となるSiO膜の膜厚を小さくすることや、静電アクチュエーター電極面積の拡大、等の形状寸法変更により更に低電圧動作とすることも可能である。
【0084】
比較例として、同様の基本構造、寸法で、回転可能な可動電極支持部を持たず、リレー構造体の本体部に固定された可動電極を持つ従来構造を作成し、評価した結果、同じく動作電圧は約20V弱ではあるが、接点抵抗は5〜10Ω以上の高い値を示し、1Ω以下の接点抵抗に下げるためには40V以上の動作電圧が必要であった。更に接点電流を数mA流したところ、接点が溶着し、オフ動作が不可能になった。また、この時、溶着接点と反対側の静電アクチュエーターに20Vの動作電圧を印加しても、接点を開くことが出来なかった。
【0085】
以上からも明らかなように、本発明の静電リレー構造を用いれば、従来不可能であった、低電圧駆動、低接点抵抗、高接点容量で信頼性が極めて高い、実用性の高い静電リレーが容易に構成可能である。
【0086】
なお、本実施例では、薄膜形成技術を用いてリレー構造体を形成した例を示したが、本発明の静電リレーの構成方法はこれに限るものではなく、例えばリレー構造体として単結晶Si基板に可動接点と可動電極を形成した後、異方性エッチング等の技術を用いて所定の構造に形成後、同じく固定接点と固定電極を形成した絶縁基板上にスペーサーを介して張り付けても良い。
【0087】
このような場合でも、従来の構造と比較して、容易に大接点容量、低電圧駆動で信頼性が極めて高い静電リレーを得ることが可能である。
【0088】
また、リレー構造体として、表面に絶縁加工をした金属薄板を用いることも可能である。このような方法で形成された静電リレーは、薄膜形成技術を用いた静電リレーと比較して、より大きな接点電流を流す用途に適用可能である。
【0089】
以上本発明の実施の形態及び実施例について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。
【0090】
【発明の効果】
以上説明したように、本発明によれば、従来の静電リレーが問題として抱えていた、接点電極の溶着に弱く、十分な接点電流を確保することが難しく、信頼性が低く実用性に乏しいと言った問題を解決し、接点抵抗が低く、接点電流容量が大きく、動作電圧が低い、接点溶着故障が少ない信頼性の高い静電リレーを実現することが可能である。
【0091】
これらのリレー特性の著しい改善により、本発明の静電リレーは従来の静電リレーと比較して、極めて実用性が高いリレーを構成することが可能である。
【図面の簡単な説明】
【図1】本発明に係る静電リレーの第1の実施の形態を示す平面図である。
【図2】図1のII−II正断面図である。
【図3】第1の実施の形態において接点オン動作途中の状態を示す正断面図である。
【図4】第1の実施の形態において接点オン動作完了状態を示す正断面図である。
【図5】第1の実施の形態において接点オン動作後に静電アクチュエーターの印加電圧をゼロにした状態の正断面図である。
【図6】 第1の実施の形態において接点オフ動作途中の状態を示す正断面図である。
【図7】第1の実施の形態において接点オフ動作完了状態を示す正断面図である。
【図8】本発明に係る静電リレーの第2の実施の形態を示す平面図である。
【図9】図8のIX−IX正断面図である。
【図10】第2の実施の形態において接点オン動作途中の状態を示す正断面図である。
【図11】第2の実施の形態において接点オン動作完了状態を示す正断面図である。
【図12】第2の実施の形態において接点オン動作後に静電アクチュエーターの印加電圧をゼロにした状態の正断面図である。
【図13】 第2の実施の形態において接点オフ動作途中の状態を示す正断面図である。
【図14】第2の実施の形態において接点オフ動作完了状態を示す正断面図である。
【図15】本発明の実施例を示す平面図である。
【図16】図15のXVI−XVI正断面図である。
【図17】本発明の実施例に係る静電リレーの製造過程を示す説明図である。
【符号の説明】
1 基板
2 アンカー構造体
3,11L,11R,21L,21R 両持ち梁状のねじれ弾性部
4L,4R 固定電極
5L,5R 絶縁層
6L,6R 固定接点
7,7A リレー構造体
10,10A 可動構造部
12L,12R,22L,22R 可動電極支持部
13L,13R,23L,23R 可動電極
14L,14R 可動接点支持部
15L,15R 可動接点
31 犠牲層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrostatic relay using an electrostatic actuator that uses electrostatic attraction as a drive source.
[0002]
[Prior art]
Unlike conventional electromagnetic relays that use electromagnets, electrostatic relays open and close contacts using electrostatic attraction as a driving force. There is no need for a coil to generate electromagnetic force, and there are few mechanical parts, making it compact. Therefore, the use of an electrostatic actuator, which is essentially a capacitor, as a drive source has the feature of low power consumption, and research is being conducted toward practical use.
[0003]
As such an electrostatic relay, for example, as disclosed in JP-A-2-100224, single crystal Si is selectively etched to form a torsion bar elastic body and a seesaw-like structure connected thereto, and the structure There is one in which a movable electrode of an electrostatic actuator and a movable contact of a relay are formed on the body, and are arranged via a spacer on an electrically insulating substrate provided with a fixed electrode and a fixed contact at positions facing each other.
[0004]
In this electrostatic relay, when a voltage is applied between the fixed electrode and the movable electrode during operation, the seesaw-like structure on the side to which the voltage is applied rotates and the movable contact is fixed by the torsion of the elastic body of the torsion bar. It is made to contact a contact.
[0005]
[Problems to be solved by the invention]
Such conventional electrostatic relays have the following problems when opening and closing a relay contact comprising a set of a movable contact and a fixed contact.
[0006]
First, when closing the relay contact, in a conventional electrostatic relay, a voltage is applied between the movable electrode of the electrostatic actuator and the substrate-side fixed electrode arranged in the seesaw-like structure on the target contact side. With the electrostatic attraction acting between them, the torsion bar elastic body is used as a rotation fulcrum, the seesaw-like structure is moved to seesaw, and the movable contact is brought into contact with the fixed contact to close the contact.
[0007]
Thus, since the conventional electrostatic relay is formed in a seesaw-like structure in which the movable electrode operates integrally with the movable contact, the movable contact contacts the fixed contact, and the seesaw-like structure rotates. When stopped, a thick beam-like air gap is formed between the fixed electrode and the movable electrode.
[0008]
However, the electrostatic attractive force is proportional to the inverse square of the electrode spacing. Therefore, even during the suction operation, the electrostatic actuator has a small electrostatic attraction due to this large air gap. For this reason, since sufficient pressure is not applied to a contact, contact resistance cannot be made small enough and practicality falls.
[0009]
Further, when the contact resistance is high, the contact is overheated due to Joule heat when a contact current flows, and a contact welding phenomenon is likely to occur. Increasing the contact pressure by increasing the operating voltage in order to reduce the high contact resistance significantly hindered the practicality of electrostatic relays.
[0010]
Next, there is a problem when opening the relay contact.
[0011]
That is, when opening the relay contact, the movable contact and the fixed contact must be separated. In this case, the electrostatic actuator is fixed, the movable electrode is electrically short-circuited, and the electrostatic attractive force between the electrodes is made zero. . Thereby, the restoring force of the elastic body of the torsion bar that rotatably supports the seesaw-like structure works, the movable contact is lifted, and the contact with the fixed contact is cut off.
[0012]
As described above, in the conventional electrostatic relay, when the relay contact is opened, only the restoring force of the torsion bar elastic body as a torsion elastic body is the separation force, and when the contact is welded by flowing a large contact current, the contact is The force to pull apart is insufficient.
[0013]
In order to avoid such a situation, the restoring force of the torsion bar elastic body may be increased. In this case, the force required to close the relay contact also increases, so the voltage applied to the electrostatic relay is increased. In other words, the practicality of the electrostatic relay is significantly reduced.
[0014]
Therefore, as a method of increasing the force to open the relay contact, the electrostatic relay seesaw-like structure is fixed to the electrostatic actuator (hereinafter referred to as the opposite electrode) opposite to the closed contact, and the voltage between the movable electrodes. It is conceivable that an electrostatic attraction force is generated by applying a force to raise the structure side that closes the contact.
[0015]
However, since the movable electrode of the electrostatic actuator having the opposite polarity is lifted, the distance from the fixed electrode is increased.
[0016]
Since the force to rotate the seesaw-like structure is a lever force, it is the product of the distance from the rotation center axis and the attractive force at that position, but the distance between the fixed electrode and the movable electrode is further away from the rotation center axis. Since the electrostatic attractive force acting there is proportional to the inverse square of the electrode interval, the attractive force of the electrostatic actuator of the opposite polarity is remarkably reduced as a result, and cannot sufficiently contribute to the force for separating the contacts. For this reason, it was difficult to increase the separation force of the relay contact other than increasing the voltage applied to the opposite electrode.
[0017]
As described above, the conventional electrostatic relay has a high contact resistance when the contact is closed, and easily causes a contact welding phenomenon. Further, since the force for separating the contact is weak, once the contact is welded, a contact welding failure is caused as it is. For this reason, it is difficult to ensure a sufficient contact current, the reliability is low, and the practicality is poor. The only way to solve this problem is to increase the voltage for driving the electrostatic relay, and the high operating voltage significantly hinders the practicality of the electrostatic relay.
[0018]
In view of the above points, an object of the present invention is to provide a highly practical electrostatic relay with low voltage drive, low contact resistance, and high contact capacity.
[0019]
Other objects and novel features of the present invention will be clarified in embodiments described later.
[0020]
[Means for Solving the Problems]
  In order to achieve the above object, the electrostatic relay of the present invention comprises:
  A substrate,
  A torsion elastic portion in the form of a doubly supported beam held on the substrate with a gap with the substrate;
  It is supported by crossing the torsion elastic part so as to face the substrate.Extending from the torsional elastic part to both sides, forming a frame shape on each side,A movable structure rotatable by torsional elastic deformation of the torsional elastic part; and
  To be located inside each frame shape of the movable structureOn both sides of the rotation fulcrum of the movable structure,RespectivelyIt has an axis parallel to the torsion elastic part and is located at the end of the torsion elastic part side or the opposite side of the torsion elastic part inside each frame shape.Via the elastic connecting part, it can rotate independently of the movable structure part by elastic deformation of the elastic connecting part.Connected to the movable structure so thatMovable electrode part,
  A movable electrode composed of the movable electrode portion or provided on the movable electrode portion; and
  Fixed electrodes respectively disposed on the substrate so as to face the movable electrode;
  At least one of the movable structuresOn the side, the end of the movable structure portion opposite to the torsional elastic portionAt least one movable contact arranged in
  And a fixed contact disposed on the substrate so as to be opposed to the movable contact.
[0021]
In the electrostatic relay, it is preferable that the movable end portion of the movable electrode portion is disposed on the rotation fulcrum side of the movable structure portion.
[0022]
  The movable end portion of the movable electrode portion may be disposed on the movable contact side of the movable structure portion.
  It is preferable that an elastic modulus of the elastic connecting portion is smaller than an elastic modulus of the doubly-supported torsion elastic portion.
[0023]
  The movable electrode and the fixed electrodeWithA dielectric layer is preferably interposed between them.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of an electrostatic relay according to the present invention will be described with reference to the drawings.
[0025]
FIGS. 1 to 7 show a first embodiment of an electrostatic relay according to the present invention. FIG. 1 is a plan view, and FIGS. 2 to 7 are front sectional views for explaining operations. In these drawings, the electrostatic relay includes an insulating substrate 1, an anchor structure 2 standing and fixed on the substrate 1, and a doubly supported beam held by the anchor structure 2 with a gap from the substrate 1. And a relay structure 7 that can be rotated (turned) by elastic support by the torsion elastic part 3. With this configuration, the relay structure 7 has a seesaw-like structure that is rotatably held with the torsional elastic portion 3 as a rotation fulcrum P and that extends to both sides of the rotation fulcrum P across the torsional elastic portion 3. Therefore, seesaw exercise is possible.
[0026]
The insulating substrate 1 has at least a surface subjected to insulation treatment, for example, the surface is made of SiO.2A single crystal Si substrate provided with an insulating layer. The anchor structure 2, the torsion-elastic torsion elastic part 3, and the relay structure 7 are integrally formed of polycrystalline Si or the like.
[0027]
The relay structure 7 has a movable structure portion (main body portion of the relay structure) 10 having a required rigidity for performing seesaw motion, and a torsion elastic portion 11L in the form of a doubly supported beam as an elastic communication portion on the left side and the torsion elastic portion. A movable electrode support portion 12L (which is a movable electrode portion on which a movable electrode is provided) connected to the movable structure portion 10 through 11L is formed. A torsion elastic portion 11R and a movable electrode support portion 12R (which is a movable electrode portion provided with a movable electrode) are formed. The movable electrode support portions 12L and 12R are rotatably supported (rotated) by these doubly supported torsion elastic portions 11L and 11R. Here, the torsion elastic portions 11L and 11R in the form of doubly supported beams are formed at positions near the rotation fulcrum P of the movable structure 10, and the movable end portions of the movable electrode support portions 12L and 12R are separated from the rotation fulcrum P of the movable structure 10. It is in a remote position. In the movable electrode support portions 12L and 12R, the positions of the doubly-supported torsion elastic portions 11L and 11R are rotation fulcrums L and R, respectively. Further, the torsional elastic modulus of the torsional elastic portions 11L and 11R in the form of a cantilever is smaller than that of the torsional elastic part 3 in the form of a cantilever, that is, the movable electrode support portions 12L and 12R are more compared to the movable structure portion 10. Set it so that it can rotate with a small force.
[0028]
Movable electrodes 13L and 13R are formed on the movable electrode support portions 12L and 12R on the side facing the substrate 1, and fixed electrodes 4L and 4R are fixedly disposed on the substrate 1 at positions facing the movable electrodes. As shown in FIG. 2, insulating layers (dielectric layers) 5L and 5R are provided so as to cover the surfaces of the fixed electrodes.
[0029]
Movable contact support portions 14L and 14R are integrally formed at both ends of the movable structure portion 10 constituting the main body of the relay structure 7, and the movable contact points 15L and 14R are formed on the surfaces of the movable contact support portions 14L and 14R facing the substrate. 15R is formed and arranged, and fixed contacts 6L and 6R are fixedly arranged on the substrate 1 at positions facing the respective movable contacts.
[0030]
An electrostatic actuator that generates electrostatic attraction by a voltage applied between the fixed electrodes 4L and 4R fixed on the insulating substrate 1 and the movable electrodes 13L and 13R fixed to the movable electrode support portions 12L and 12R. The fixed electrodes 4L, 4R and the movable electrodes 13L, 13R are connected to an external power source by wiring (not shown).
[0031]
The principle of operation of the electrostatic relay shown in the first embodiment will be described. First, the operation of closing the relay contact will be described.
[0032]
FIG. 2 shows the position of each electrode and each contact in a non-operating state (state where no voltage is applied), and the fixed contacts 6L and 6R and the movable contacts 15L and 15R are open. When a voltage is applied between the fixed electrode 4R and the movable electrode 13R constituting the right electrostatic actuator, an electrostatic attractive force is generated between the two electrodes, and the movable electrode support portion 12R has a double-supported beam shape with the rotation fulcrum R as the center. 3, and the movable electrode support portion 12 </ b> R changes to the contact position with respect to the substrate 1 side as shown in FIG. 3 (change until the movable electrode 13 </ b> R hits the insulating layer 5 </ b> R covering the fixed electrode 4 </ b> R). To do.) The electrostatic attractive force acting between the fixed electrode and the movable electrode of the electrostatic actuator is inversely proportional to the square of the distance. Therefore, as is apparent from FIG. 3, a significantly large electrostatic attraction is generated between the fixed electrode 4R and the movable electrode 13R, which are narrowed in a shape having a wedge-shaped air gap, and this wedge-shaped air is generated. A large attractive force is generated to narrow the gap, and as shown in FIG. 4, the movable structure 10 itself that forms the main body of the relay structure 7 is rotated to the right with the rotation fulcrum P as the center of rotation. To close the relay contact.
[0033]
In the state where the relay contact is closed, as shown in FIG. 4, the wedge-shaped air gap between the movable electrode 13R and the fixed electrode 4R can be further narrowed, so that a strong contact pressure can be obtained.
[0034]
As described above, in the electrostatic relay according to the first embodiment of the present invention, first, the movable electrode support portion 12 </ b> R that rotates with a weak force has an electrostatic actuator electrode interval at the beginning of voltage application to the electrostatic actuator. Operates at a stage where the electrostatic attraction is small and the electrode spacing is narrowed. Due to the narrow electrode spacing, a remarkably strong force is generated between the electrostatic actuator electrodes, and with this force, the main body portion of the relay structure 7, that is, the movable structure portion 10 which is the frame-shaped portion outside the movable electrode support portion is rotated. By rotating around P, the relay contacts can be closed and a stronger pressure can be applied between the contacts.
[0035]
For this reason, when using it with the same operating voltage compared with the conventional electrostatic relay, it is possible to make contact resistance low. Furthermore, since a stronger attractive force can be obtained at the stage of closing the contact, it is possible to increase the elastic modulus of the torsional elastic portion 3 that supports the relay structure 7 and the contact sticking occurs. Can be easily peeled off.
[0036]
That is, when operating at the same voltage as compared with a conventional electrostatic relay, there is less failure of contact fixation and a larger contact current can be passed. Conversely, when the contact capacity is the same as that of a conventional electrostatic relay, it is possible to drive with a lower operating voltage.
[0037]
Next, an operation for opening the relay contact will be described.
[0038]
FIG. 5 shows a state where the electrodes of the right electrostatic actuator are short-circuited (the same potential) and the right electrostatic attractive force is zero after the relay contact ON operation of FIG. In this state, the force for peeling off the contacts 6R and 15R is only a restoring force due to the elastic modulus of the doubly supported torsion elastic body 3 that elastically supports the movable structure 10 forming the main body of the relay structure 7. .
[0039]
Here, if the fixing force between the contacts 6R and 15R is larger than the restoring force, the contact of the electrostatic relay does not open, resulting in a contact fixing failure.
[0040]
In the conventional electrostatic relay, in such a case, a method is considered in which a voltage is applied between the electrodes of the left electrostatic actuator to generate a force to peel off the right contact by causing the relay structure to perform a seesaw operation on the left side.
[0041]
However, in this case, as is clear from FIG. 5, the movable electrode 13L of the left electrostatic actuator has the movable structure 10 tilted to the right and is far away from the fixed electrode 4L as compared with the non-operating state of FIG. A sufficient electrostatic attractive force cannot be generated, and as a result, a sufficient force cannot be generated for peeling off the right contacts 6R and 15R.
[0042]
However, in the first embodiment of the present invention, if a voltage is applied between the movable electrode 13L and the fixed electrode 4L of the left electrostatic actuator in the state of FIG. 5, the rotation is performed with a weak force as shown in FIG. The movable movable electrode support portion 12L rotates around the rotation fulcrum L, and the movable electrode support portion 12L shifts to the contact position with respect to the substrate 1 side (until the movable electrode 13L hits the insulating layer 5L covering the fixed electrode 4L). To change.)
[0043]
Since the electrostatic attractive force acting between the fixed electrode and the movable electrode of the electrostatic actuator is inversely proportional to the square of the distance, there is a gap between the movable electrode 13L and the fixed electrode 4L which are narrowed in the form of a wedge-shaped air gap. A remarkably large electrostatic attractive force is generated, and a large attractive force that narrows the wedge-shaped air gap is generated.
[0044]
This large electrostatic attraction force causes the movable structure 10 that forms the main body of the relay structure 7 to rotate to the left with a strong force, and the right movable contact 15R and the fixed contact 6R that have been fixed are sufficiently connected as shown in FIG. It can be peeled off with a strong force.
[0045]
According to the first embodiment, the following effects can be obtained.
[0046]
(1) The movable electrode support portions 12L and 12R provided on both sides of the rotation fulcrum P of the movable structure portion 10 are rotatably supported by the torsion elastic portions 11L and 11R in the form of doubly supported beams as elastic connection portions. When the electrostatic actuator is operated by applying a voltage between either the left or right fixed electrode and the movable electrode to operate the left or right electrostatic actuator, the movable electrode support first moves in the direction closer to the substrate side. Since it works to reduce the distance between the fixed and movable electrodes, the relay contact can be turned on with sufficient contact pressure even with low-voltage drive.
[0047]
(2) Also, when the relay contact is turned off, even if the contact causes a welding phenomenon, if a voltage is applied to the electrostatic actuator on the side opposite to the welding side contact, compared to the conventional electrostatic relay A large peeling force can be generated, and a contact welding failure can be avoided.
[0048]
(3) Since the fixed electrodes 4L and 4R are covered with the insulating layers 5L and 5R, it is possible to reliably prevent a short circuit accident in which the fixed electrodes 4L and 4R and the movable electrodes 13L and 13R are in direct contact. Even if the insulating layers 5L and 5R are interposed between the fixed electrodes 4L and 4R and the movable electrodes 13L and 13R, the insulating layers 5L and 5R are dielectrics having a dielectric constant higher than that of air, and the insulating layers 5L and 5R. It is not necessary to consider the decrease in electrostatic attraction due to the presence of (can be ignored).
[0049]
(4) As a result, it is possible to realize a highly practical electrostatic relay with low voltage drive, low contact resistance, and high contact capacity.
[0050]
8 to 14 show a second embodiment of the electrostatic relay according to the present invention. FIG. 8 is a plan view, and FIGS. 9 to 14 are front sectional views for explaining the operation. In these figures, the relay structure 7A includes a torsional elastic portion 21L in the form of a doubly supported beam as an elastic connecting portion on the left side and a movable structure portion 10A (main body portion of the relay structure 7A) via the torsional elastic portion 21L. The movable electrode support portion 22L connected to the right and left sides of the movable structure portion 10A, which is the main body portion of the relay structure 7A, is symmetrically provided with a torsional elastic portion 21R and a movable electrode support portion 22R. Is formed. The movable electrode support portions 22L and 22R are rotatably supported by the doubly-supported torsion elastic portions 21L and 21R. However, unlike the first embodiment, the torsion elastic portions 21L and 21R in the form of doubly supported beams are formed at positions near both ends of the movable structure portion 10A, and the movable end portions of the movable electrode support portions 22L and 22R are the rotation fulcrums P. It is a side position. In the movable electrode support portions 22L and 22R, the positions of the doubly-supported torsion elastic portions 21L and 21R are rotation fulcrums L and R, respectively. In addition, the torsional elastic modulus of the torsional elastic portions 21L and 21R in the form of a cantilever is equal to or less than that of the torsional elastic part 3 in the form of a cantilever, that is, the movable electrode support portions 22L and 22R are compared with the movable structure 10A. Set it so that it can rotate with the same or less force.
[0051]
Movable electrodes 23L and 23R are respectively formed on the movable electrode support portions 22L and 22R on the side facing the substrate 1, and fixed electrodes 4L and 4R are fixedly disposed on the substrate 1 at positions facing the respective movable electrodes. The insulating layers (dielectric layers) 5L and 5R are provided so as to cover the surfaces of the fixed electrodes. Movable contacts 15L and 15R are formed and disposed on the surfaces of the movable contact support portions 14L and 14R facing the substrate at both ends of the movable structure 10A, and fixed contacts 6L and 6R are disposed on the substrate 1 at positions facing the respective movable contacts. Is fixedly arranged. Other components are the same as those in the first embodiment described above, and the same or corresponding parts are denoted by the same reference numerals and description thereof is omitted.
[0052]
The operating principle of the electrostatic relay shown in the second embodiment will be described. First, the operation of closing the relay contact will be described.
[0053]
FIG. 9 shows the positions of the electrodes and the contacts in a non-operating state (a state where no voltage is applied), and the fixed contacts 6L and 6R and the movable contacts 15L and 15R are open. When a voltage is applied between the fixed electrode 4R and the movable electrode 23R constituting the right electrostatic actuator, an electrostatic attractive force is generated between the two electrodes, and the movable electrode support portion 22R has a double-supported beam shape around the rotation fulcrum R. 10 is rotated by the torsional elasticity of the torsional elastic portion 21R, and the movable electrode supporting portion 22R is shifted to the contact position with respect to the substrate 1 side as shown in FIG. To do.) The electrostatic attractive force acting between the fixed electrode and the movable electrode of the electrostatic actuator is inversely proportional to the square of the distance. Therefore, as apparent from FIG. 10, a remarkably large electrostatic attraction force is generated between the fixed electrode 4R and the movable electrode 23R, which are narrowed in a shape having a wedge-shaped air gap, and this wedge-shaped air is generated. A large attractive force is generated to narrow the gap, and as shown in FIG. 11, the movable structure 10A itself that forms the main body of the relay structure 7A is rotated to the right with the rotation fulcrum P as the rotation center, and the movable contact 15R and the fixed contact 6R. To close the relay contact.
[0054]
In the state where the relay contact is closed, as shown in FIG. 11, the wedge-shaped air gap between the movable electrode 23R and the fixed electrode 4R can be further narrowed, so that a strong contact pressure can be obtained.
[0055]
As described above, in the electrostatic relay according to the second embodiment of the present invention, first, the movable electrode support portion 22R that rotates with a weak force has a gap between the electrostatic actuator electrodes at the beginning of voltage application to the electrostatic actuator. Operates at a stage where the electrostatic attraction is small and the electrode spacing is narrowed. Due to the narrow electrode interval, a remarkably strong force is generated between the electrostatic actuator electrodes, and the force causes the main body portion of the relay structure 7A, that is, the movable structure portion 10A, which is the frame-shaped portion outside the movable electrode support portion, to rotate. By rotating around P, the relay contacts can be closed and a stronger pressure can be applied between the contacts.
[0056]
Furthermore, when the operations of the electrostatic relay of the second embodiment of the present invention and the electrostatic relay of the first embodiment are compared, in the electrostatic relay of the second embodiment, the movable electrode support portion 22R. Since the end side of the relay structure 7A is the rotation fulcrum R, when the transition from the state of FIG. 10 to the state of FIG. 11 is made, compared with the case of the transition from the state of FIG. 3 to FIG. Then, the point to apply the force for rotating the movable structure portion 10A of the main body portion of the relay structure 7A is applied to the rotation fulcrum R of the movable electrode support portion 22R at a position away from the rotation fulcrum P of the movable structure portion 10A itself. Therefore, according to the lever principle, the movable structure 10A can be rotated with a stronger rotational force.
[0057]
For this reason, compared with the electrostatic relay of the first embodiment, when used at the same operating voltage, the doubly supported torsion elastic portion 3 that supports the movable structure portion 10A that is the main body portion of the relay structure 7A. It is possible to increase the elastic modulus of the material, and it becomes easy to peel off when contact sticking occurs.
[0058]
That is, when operating at the same voltage as compared with the conventional electrostatic relay, the contact sticking failure is less than that improved by the electrostatic relay of the first embodiment, and a larger contact current can flow. It becomes possible. Conversely, in the case of the same contact capacity as that of a conventional electrostatic relay, it is possible to drive at a lower operating voltage.
[0059]
Further, as is apparent from a comparison between FIG. 4 and FIG. 11, the wedge-shaped air gap formed between the movable electrode and the fixed electrode with the relay contact closed is compared with the first embodiment. In the case of the second embodiment, it is even smaller, and it is possible to generate a stronger electrostatic attraction, and it is possible to increase the contact pressure between the fixed contact and the movable contact and reduce the contact resistance. .
[0060]
Therefore, in the second embodiment, since the contact resistance when the contact is closed is lower, when the same contact current is passed, the Joule heat generation at the contact portion is small, and the contact welding due to the heat generation temperature rise at the contact portion is small. Occurrence can be further suppressed.
[0061]
It should be noted that the torsional elasticity of the cantilever-like torsion elastic portions 21L and 21R that rotatably couple the movable electrode support portions 22L and 22R to the movable structure portion 10A and the torsional elasticity of the doubly-supported torsion elastic portion 3 are shown. If the force required for rotational driving of the movable electrode support portions 22L and 22R and the movable structure portion 10A is made equal, the processes of FIGS. 10 and 11 occur simultaneously. In this case as well, relay contacts (fixed contacts 6L and 6R) And the movable contacts 15L and 15R) are finally equalized.
[0062]
Next, the operation for opening the contacts will be described.
[0063]
FIG. 12 shows a state where the electrodes of the right electrostatic actuator are short-circuited (same potential) and the right electrostatic attractive force is zero after the relay contact ON operation of FIG. In this state, the force that peels off the contacts 6R and 15R is only the restoring force due to the elastic modulus of the doubly supported torsion elastic body 3 that elastically supports the movable structure 10A that forms the main body of the relay structure 7A. .
[0064]
Here, if the fixing force between the contacts 6R and 15R is larger than the restoring force, the contact of the electrostatic relay does not open, resulting in a contact fixing failure.
[0065]
Also in this second embodiment, in such a case, a voltage is applied between the electrodes of the left electrostatic actuator, and the movable contact portion 10A constituting the main body portion of the relay structure 7A is operated to see the right side by moving the seesaw to the left side. Generates a peeling force.
[0066]
The operation at this time is shown in FIGS. As is clear from FIG. 12, in the electrostatic relay of the present embodiment, the movable end 22La of the movable electrode support 22L on the left side of the electrostatic relay is on the rotation fulcrum P side of the movable structure 10A. Although 10A is inclined to the right, the distance d 'between the movable end 22La and the fixed electrode 4L facing it is almost the same as the distance d in the case of FIG.
[0067]
The force for rotating the movable electrode support portion 22L is a lever force with respect to the rotation fulcrum L, and the distance d ′ between the movable end portion 22La and the fixed electrode is not significantly different from that in the stationary state FIG. 9 (that is, the maximum rotational force). The distance between the end of the movable electrode 23L near the movable end 22La and the fixed electrode is not significantly different from that in the stationary state in FIG. 9), and the movable electrode support 22L easily rotates by applying a voltage between the electrodes, The state shifts to the state of FIG. Note that the rotational force can be efficiently generated by forming the movable end 22La of the movable electrode support 22L and the end of the movable electrode 23L as close as possible.
[0068]
Therefore, as in the case of the first embodiment shown in FIGS. 5 and 6, the elastic modulus of the torsion elastic portions 21L and 21R in the form of doubly supported beams that rotatably support the movable electrode support portions 22L and 22R is weakened. Even without setting, by applying a normal operating voltage, the movable electrode support 22L can reliably rotate, and the distance between the movable electrode 23L and the fixed electrode 4L can be reduced.
[0069]
As shown in FIG. 13, a remarkably large electrostatic attractive force is generated between the movable electrode 23L and the fixed electrode 4L that are narrowed in the form of a wedge-shaped air gap, and a large force that narrows the wedge-shaped air gap is generated. appear.
[0070]
As described above, in the electrostatic relay according to the second embodiment, even if the right relay contact is fixed, if the normal operating voltage is applied between the left electrodes, the movable electrode support 22L is It rotates reliably and operates at a stage where the electrostatic actuator electrode interval is large and the electrostatic attractive force is small at the beginning of voltage application to the electrostatic actuator to narrow the electrode interval. Due to the narrow electrode interval, a remarkably strong force is generated between the electrostatic actuator electrodes, and the movable structure 10A is rotated by the force, and the right relay contact, that is, the fixed contact 6R and the movable contact 15R are opened as shown in FIG.
[0071]
Furthermore, in the electrostatic relay according to the present embodiment, the movable electrode support portion 22L rotates with the end portion side of the movable structure portion 10A forming the main body portion of the relay structure 7A serving as a fulcrum, so the process proceeds from FIG. 13 to FIG. At this point, compared with the case of shifting to FIG. 7 in the first embodiment, the movable point where the force for rotationally driving the movable structure 10A is located away from the rotation fulcrum P of the movable structure 10A. Since it is applied to the fulcrum L of the electrode support portion 22L, the movable structure portion 10A can be rotated with a stronger rotational force by the lever principle. Therefore, if the structure of the present embodiment is taken, it is possible to generate a force for tearing off the contact point fixed with a stronger force than in the first embodiment.
[0072]
As described above, the electrostatic relay according to the second embodiment of the present invention can be realized by applying a voltage to the electrostatic actuator on the side opposite to the welding side contact even if the contact causes a welding phenomenon. Compared to the electrostatic relay, it is possible to generate a larger peeling force than when the first embodiment is used, and it is possible to more reliably avoid contact welding failure. Other functions and effects are the same as those of the first embodiment described above.
[0073]
In the above-described embodiment, an example in which a pair of movable electrode support portions and movable electrodes are provided for the relay structure has been described. A pair of movable electrode portions (that is, a movable electrode support portion and a movable electrode) may be provided, and as long as they are functionally equivalent, a configuration other than a bilaterally symmetric structure may be used depending on the purpose.
[0074]
In the above embodiment, an example in which the movable electrode is formed on the substrate surface side of the relay structure has been described. However, the position of the electrode is not limited to this, and an electrostatic attractive force is substantially generated between the fixed electrode and the movable electrode. For example, if the relay structure is a high dielectric constant insulator or a high resistance body, the position of the movable electrode may be disposed on the opposite surface of the relay structure on the substrate surface side. If the relay structure is composed of a conductive member, the structure itself can be used as a movable electrode (in this case, the movable electrode support part is unnecessary and the movable electrode part itself constitutes the movable electrode). .
[0075]
In addition, regarding the arrangement of relay contacts consisting of a set of fixed and movable contacts, in the above embodiment, a relay circuit having a relay contact at both ends of the relay structure and capable of configuring a relay circuit that performs a complementary operation is shown. When a single contact is sufficient, a relay contact may be provided only on one side. Further, a plurality of contacts may be formed on the relay structure so that a plurality of circuits can be simultaneously opened and closed.
[0076]
Furthermore, in each of the embodiments, a torsion elastic portion in the form of a cantilever is used as an elastic communication portion that connects the movable structure portion, which is the main body portion of the relay structure, and the movable electrode portion. Any structure other than the torsional elastic part can be used.
[0077]
【Example】
Next, the present invention will be specifically described with reference to examples.
[0078]
15 and 16 are a plan view and a front sectional view of the electrostatic relay formed in this example, and have the same structure as that of the second embodiment. In the present embodiment, first, as shown in FIG.2The single crystal Si plate 1 on which the insulating layer 1a is formed is used as a substrate, Au having a thickness of about 500 nm is formed on the entire surface of the substrate by sputtering, and then photoetching is used to fix the fixed electrodes 4L and 4R of the electrostatic actuator and the relays. The fixed contacts 6L and 6R were patterned. Next, an SiN insulating layer having a thickness of about 100 nm is formed on the entire surface of the substrate by reactive sputtering, and the insulating layer is selectively removed by leaving the same on the fixed electrodes 4L and 4R of the electrostatic actuator by the photoetching method. , 5R.
[0079]
Next, as shown in FIG. 17B, a low-pressure CVD method is used to form SiO that becomes the sacrificial layer 31 on the entire surface of the substrate.2A film was deposited about 3 μm. Next, SiO at the position where the movable contacts 15L and 15R are formed.2The film is dug down about 500 nm by the RIE method. Further, an Au film of about 500 nm is formed on the entire surface of the substrate together with a SiN reaction prevention layer of about 20 nm, and patterned into a predetermined shape by photoetching to form the movable electrodes 23L and 23R of the electrostatic actuator and the movable contacts 15L and 15R of the relay. did. Thereafter, the SiO of the sacrificial layer 31 is further reduced.2The portion 32 corresponding to the anchor structure 2 of the film is selectively removed using photoetching.
[0080]
Finally, a low-pressure CVD method was used to form a polycrystalline Si film 33 of about 4 μm on the entire surface of the substrate as shown in FIG. 17C, and the shape of the relay structure 7A described below was patterned by the RIE method. Thereafter, SiO of the sacrificial layer 312The film was selectively etched with HF, and the relay structure 7A shown in FIGS. 15 and 16 was released to form.
[0081]
As shown in FIG. 15, the relay structure 7A has a cantilever-like torsion elastic portions 3a, 3b having a length a from the anchor structure 2 of about 140 μm and a width of about 6 μm, and a doubly-supported torsion elastic portion 3a. , 3b, a movable structure portion (frame portion) 10A as a main body portion of the relay structure 7A projecting so that the length b on one side is about 220 μm, and the left and right sides of the torsion elastic portions 3a, 3b in the form of doubly supported beams. The torsional elastic portions 21La, 21Lb and 21Ra, 21Rb having a length c of about 80 μm and a width of about 3 μm formed at a protruding position of 200 μm, a length d connected to the elastic portion of about 150 μm, a width e is composed of electrostatic actuator movable electrode support portions 22L and 22R having a length of about 200 μm, and movable contact support portions 14L and 14R having a length of about 50 μm. The movable electrode support portions 22L and 22R are rotated by the torsional elasticity of the cantilevered torsion elastic portions 21La, 21Lb and 21Ra and 21Rb, respectively, while rotating freely by the torsional elasticity of the cantilevered elastic portions 3a and 3b. It has a possible structure.
[0082]
This electrostatic relay closes the relay contact by applying an operating voltage of about 20V between the left and right electrostatic actuators. At this time, the contact resistance is about 0.2Ω and the contact current flows at 100 mA. No contact welding occurred. Further, when a contact current of 200 mA was applied, a contact welding phenomenon was observed, but it could be easily restored by applying an operating voltage to the electrostatic actuator on the side opposite to the welding side relay contact.
[0083]
As described above, the electrostatic relay of this embodiment has sufficiently practical characteristics as a small signal relay, for example, SiO which becomes the sacrificial layer 31 in the manufacturing process of FIG.2It is also possible to operate at a lower voltage by changing the shape dimension such as reducing the film thickness or increasing the electrostatic actuator electrode area.
[0084]
As a comparative example, a conventional structure having the same basic structure and dimensions, having no movable movable electrode support portion and having a movable electrode fixed to the main body of the relay structure was created and evaluated. However, the contact resistance showed a high value of 5 to 10Ω or more, and an operating voltage of 40V or more was required to reduce the contact resistance to 1Ω or less. Further, when a contact current of several mA was applied, the contacts were welded, and the off operation became impossible. At this time, even when an operating voltage of 20 V was applied to the electrostatic actuator on the side opposite to the welding contact, the contact could not be opened.
[0085]
As is clear from the above, if the electrostatic relay structure of the present invention is used, it has been impossible to achieve in the past with low voltage drive, low contact resistance, high contact capacity, extremely high reliability, high practical electrostatic capacity. The relay can be easily configured.
[0086]
In this embodiment, the example in which the relay structure is formed by using the thin film forming technique is shown. However, the configuration method of the electrostatic relay of the present invention is not limited to this, and for example, a single crystal Si as a relay structure. After the movable contact and the movable electrode are formed on the substrate, it is formed into a predetermined structure by using a technique such as anisotropic etching, and then pasted on the insulating substrate on which the fixed contact and the fixed electrode are similarly formed via a spacer. .
[0087]
Even in such a case, it is possible to easily obtain an electrostatic relay having a large contact capacity, low voltage drive, and extremely high reliability as compared with the conventional structure.
[0088]
Moreover, it is also possible to use the metal thin plate which carried out the insulation process on the surface as a relay structure. The electrostatic relay formed by such a method can be applied to an application in which a larger contact current flows than an electrostatic relay using a thin film formation technique.
[0089]
Although the embodiments and examples of the present invention have been described above, it is obvious to those skilled in the art that the present invention is not limited thereto and various modifications and changes can be made within the scope of the claims. I will.
[0090]
【The invention's effect】
As described above, according to the present invention, the conventional electrostatic relay has a problem in that it is weak against contact electrode welding, it is difficult to ensure a sufficient contact current, and the reliability is low and the practicality is low. It is possible to realize a highly reliable electrostatic relay with low contact resistance, large contact current capacity, low operating voltage, and few contact welding failures.
[0091]
Due to the remarkable improvement of these relay characteristics, the electrostatic relay of the present invention can constitute a highly practical relay as compared with the conventional electrostatic relay.
[Brief description of the drawings]
FIG. 1 is a plan view showing a first embodiment of an electrostatic relay according to the present invention.
2 is a front sectional view taken along the line II-II in FIG.
FIG. 3 is a front sectional view showing a state in the middle of a contact-on operation in the first embodiment.
FIG. 4 is a front sectional view showing a contact-on operation completion state in the first embodiment.
FIG. 5 is a front sectional view showing a state in which the applied voltage of the electrostatic actuator is set to zero after the contact-on operation in the first embodiment.
FIG. 6 is a front sectional view showing a state in the middle of the contact-off operation in the first embodiment.
FIG. 7 is a front sectional view showing a contact-off operation completion state in the first embodiment.
FIG. 8 is a plan view showing a second embodiment of the electrostatic relay according to the present invention.
9 is a front sectional view taken along the line IX-IX in FIG.
FIG. 10 is a front sectional view showing a state in the middle of a contact-on operation in the second embodiment.
FIG. 11 is a front sectional view showing a contact-on operation completion state in the second embodiment.
FIG. 12 is a front sectional view showing a state in which the applied voltage of the electrostatic actuator is zero after the contact-on operation in the second embodiment.
FIG. 13 is a front sectional view showing a state in the middle of contact-off operation in the second embodiment.
FIG. 14 is a front sectional view showing a contact-off operation completion state in the second embodiment.
FIG. 15 is a plan view showing an embodiment of the present invention.
16 is a front sectional view taken along the line XVI-XVI of FIG.
FIG. 17 is an explanatory diagram showing a manufacturing process of the electrostatic relay according to the embodiment of the present invention.
[Explanation of symbols]
1 Substrate
2 Anchor structure
3, 11L, 11R, 21L, 21R A torsion elastic part of a cantilever shape
4L, 4R fixed electrode
5L, 5R insulation layer
6L, 6R fixed contact
7,7A Relay structure
10, 10A movable structure
12L, 12R, 22L, 22R Movable electrode support
13L, 13R, 23L, 23R Movable electrode
14L, 14R movable contact support
15L, 15R movable contact
31 Sacrificial layer

Claims (5)

基板と、
前記基板上に前記基板との空隙を持って保持された両持ち梁状のねじれ弾性部と、
前記基板と対向するように前記ねじれ弾性部に交差して支持され前記ねじれ弾性部から両側に延長し、各側において枠形形状を成している、前記ねじれ弾性部のねじれ弾性変形により回転自在な可動構造部と、
前記可動構造部の各枠形形状の内部に位置するように前記可動構造部の回転支点の両側にそれぞれ前記ねじれ弾性部と平行な軸を有し各枠形形状の内部において前記ねじれ弾性部側、又は前記ねじれ弾性部と反対側、の端部に位置する弾性連絡部を介して、前記弾性連絡部の弾性変形により前記可動構造部と独立して回転自在となるように前記可動構造部に連結された可動電極部と、
前記可動電極部で構成されるか前記可動電極部に設けられた可動電極と、
前記可動電極に対向するように前記基板上にそれぞれ配置された固定電極と、
前記可動構造部の少なくとも一方の側で、前記可動構造部の前記ねじれ弾性部とは反対側の端部に配置された少なくとも1個の可動接点と、
前記可動接点に接触可能に対向するように前記基板上に配置された固定接点とを備えたことを特徴とする静電リレー。
A substrate,
A torsion elastic portion in the form of a doubly supported beam held on the substrate with a gap with the substrate;
The torsion elastic part is supported so as to face the substrate and extends from the torsion elastic part to both sides, and forms a frame shape on each side, and is rotatable by the torsion elastic deformation of the torsion elastic part. A movable structure,
On either side of the rotation fulcrum of the movable structure so as to be located within each frame shape of the movable structure, the torsional elastic portion in the interior of the frame-shape each have the torsional elastic portion parallel to the axis The movable structure portion is configured to be rotatable independently of the movable structure portion by elastic deformation of the elastic connection portion via an elastic communication portion located on an end of the side or the opposite side of the torsion elastic portion. A movable electrode connected to
A movable electrode constituted by the movable electrode portion or provided on the movable electrode portion;
Fixed electrodes respectively disposed on the substrate so as to face the movable electrode;
At least one movable contact disposed on at least one side of the movable structure portion at an end of the movable structure portion opposite to the torsional elastic portion ;
An electrostatic relay, comprising: a fixed contact disposed on the substrate so as to face the movable contact so as to come into contact therewith.
前記可動電極部の可動端部が、前記可動構造部の前記回転支点側に配置されている請求項1記載の静電リレー。  The electrostatic relay according to claim 1, wherein a movable end portion of the movable electrode portion is disposed on the rotation fulcrum side of the movable structure portion. 前記可動電極部の可動端部が、前記可動構造部の前記可動接点側に配置されている請求項1記載の静電リレー。  The electrostatic relay according to claim 1, wherein a movable end portion of the movable electrode portion is disposed on the movable contact side of the movable structure portion. 前記弾性連絡部の弾性率が前記両持ち梁状のねじれ弾性部の弾性率よりも小さい請求項1から3のいずれか記載の静電リレー。4. The electrostatic relay according to claim 1, wherein an elastic modulus of the elastic connecting portion is smaller than an elastic modulus of the torsion elastic portion of the doubly supported beam shape. 前記可動電極と前記固定電極との間に誘電体層が介在している請求項1から4のいずれか記載の静電リレー。The electrostatic relay according to claim 1, wherein a dielectric layer is interposed between the movable electrode and the fixed electrode.
JP00462399A 1998-01-12 1999-01-11 Electrostatic relay Expired - Fee Related JP4089803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00462399A JP4089803B2 (en) 1998-01-12 1999-01-11 Electrostatic relay

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-14754 1998-01-12
JP1475498 1998-01-12
JP00462399A JP4089803B2 (en) 1998-01-12 1999-01-11 Electrostatic relay

Publications (2)

Publication Number Publication Date
JPH11260233A JPH11260233A (en) 1999-09-24
JP4089803B2 true JP4089803B2 (en) 2008-05-28

Family

ID=26338434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00462399A Expired - Fee Related JP4089803B2 (en) 1998-01-12 1999-01-11 Electrostatic relay

Country Status (1)

Country Link
JP (1) JP4089803B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003242873A (en) 2002-02-19 2003-08-29 Fujitsu Component Ltd Micro-relay
US6714105B2 (en) * 2002-04-26 2004-03-30 Motorola, Inc. Micro electro-mechanical system method
CN100373516C (en) * 2004-09-15 2008-03-05 中国科学院上海微系统与信息技术研究所 Single-pole double-throw radio frequency and microwave micro mechanical switch of warping film structure and producing method

Also Published As

Publication number Publication date
JPH11260233A (en) 1999-09-24

Similar Documents

Publication Publication Date Title
US6115231A (en) Electrostatic relay
JP4613165B2 (en) Switches for microelectromechanical systems
JP4879760B2 (en) Microswitching device and method for manufacturing microswitching device
EP2200063B1 (en) Micro-electromechanical system switch
JP2003504800A (en) Arc resistant high voltage electrostatic switch
US6970060B2 (en) Micro relay of which movable contact remains separated from ground contact in non-operating state
GB2448446A (en) A head electrode region of a beam for an electromechanical device
JP2007535797A (en) Beam for micromachine technology (MEMS) switches
US7755460B2 (en) Micro-switching device
JP2001143595A (en) Folded spring based on micro electro-mechanical rf switch and method of manufacturing the same
JP2001179699A (en) Double microelectronic machine actuator device
JP2006210250A (en) Microswitching element
JP2007035635A (en) Mems switch and its manufacturing method
WO2008045230A9 (en) Contact electrode for microdevices and etch method of manufacture
JP4504237B2 (en) Wet etching method, micro movable element manufacturing method, and micro movable element
US7965159B2 (en) Micro-switching device and manufacturing method for the same
JP4089803B2 (en) Electrostatic relay
JP4144717B2 (en) Electrostatic relay
TW201230114A (en) Electrostatically actuated micro-mechanical switching device
JP2008167508A (en) Actuator and manufacturing method of actuator
JP2003506822A (en) Micro-electromechanical relay and method for producing the relay
JP4628275B2 (en) Microswitching device and method for manufacturing microswitching device
CN101009173A (en) Method for manufacturing microstructure and microstructure
JP4932506B2 (en) Micro switching element
US9634231B2 (en) MEMS switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees