JP4089122B2 - Contact charger manufacturing method, contact charger obtained by the method, charging method and image recording apparatus - Google Patents

Contact charger manufacturing method, contact charger obtained by the method, charging method and image recording apparatus Download PDF

Info

Publication number
JP4089122B2
JP4089122B2 JP2000098951A JP2000098951A JP4089122B2 JP 4089122 B2 JP4089122 B2 JP 4089122B2 JP 2000098951 A JP2000098951 A JP 2000098951A JP 2000098951 A JP2000098951 A JP 2000098951A JP 4089122 B2 JP4089122 B2 JP 4089122B2
Authority
JP
Japan
Prior art keywords
charging
contact
charger
carbon nanotubes
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000098951A
Other languages
Japanese (ja)
Other versions
JP2001281965A (en
Inventor
幸栄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2000098951A priority Critical patent/JP4089122B2/en
Publication of JP2001281965A publication Critical patent/JP2001281965A/en
Application granted granted Critical
Publication of JP4089122B2 publication Critical patent/JP4089122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は接触型帯電器の製造方法、該方法によって得られる接触型帯電器、該接触型帯電器を用いる帯電方法および、この接触型帯電器を搭載した複写機、プリンター、ファクシミリ等の画像記録装置に関するものである。
【0002】
【従来の技術】
従来の帯電方式はコロナ放電を用いたコロトロン、スコロトロンが主流であった。しかし、コロナ放電は空気中に電界をかけることから、オゾンやNOX などの有害物質を大量に発生することや、消費電力が多いといった欠点があった。したがって、近年の環境に対する配慮から、環境への影響の少ないローラー帯電へと移行しつつある。
【0003】
ローラー帯電とは、その帯電ローラー(導電性ゴムローラー)を感光体と接触させ、感光体・帯電ローラー間の微小空隙で放電を起こして感光体表面を帯電させる方法であり、この方法により、コロトロンと比較しオゾン発生量が著しく低減(1/100〜1/500に低減)されている。
【0004】
しかしながら、帯電ローラーも感光体・帯電ローラー間の微小空隙に電圧を加えコロナ放電を起こすことから、原理的にオゾン発生量をゼロにすることはできない。また、感光体の劣化はコロトロンと同程度か、又はこれよりも悪化する傾向にある。そこで、オゾンが全く発生せず、かつ感光体の劣化のない帯電方式が強く望まれ、最近では電荷注入方式が注目されている。
【0005】
電荷注入方式とは放電を起こさないで、接触型帯電器から直接電荷を感光層に注入する方法で、原理的にオゾンは発生せず、感光体の劣化も少ないことが予想される。
【0006】
電荷注入においては,接触型帯電器と感光体との接触抵抗が電荷を注入する際の注入速度に影響を与えるため、接触抵抗は低いほど良いと考えられる。そのため特開平6−75459号公報に記載の技術では、テトラシアノキノジメタン(TCNQ)等の電子受容性化合物とテトラチアフルバレン(TTF)等の電子供与性化合物から構成される電荷移動錯体を高分子ネットワークに置換し、全体に導電性を付与した高分子材料からなる導電性ゴムで帯電ローラーを作製している。
【0007】
しかしながら香川、古川、新川らによるJapan Hardcopy‘92、pp.287〜290には、80%RHの高湿下では有機感光体(以後OPCと略す)は十分な帯電電圧が得られるが、30〜50%RHの湿度下では印加電圧の半分までしか帯電されず、注入速度が遅いことが報告されている。しかし、適度なゴム硬度を維持しながら導電性ゴムを低抵抗化することは、高分子材料の選択の点から容易ではないと考えらえる。
【0008】
一方、特開平7−140729号公報に記載の技術では、吸水性のスポンジローラーを用いて感光体に電荷を注入している。吸水性のスポンジローラーを用いる場合、ローラーの含水率がローラー抵抗や電荷の注入速度に大きな影響を与えるので、ローラーからの水分蒸発によって帯電電位が変動する恐れがある。帯電電位の変動を抑えるためには、ローラーからの水分蒸発を長期に渡って厳密に制御する必要があり、接触型帯電器の構造が複雑になり、安価に製造することができない。
【0009】
また、特開平9−101649号公報には、帯電ブラシの導電性繊維をエッチング繊維または分割繊維とすることによって、導電性繊維と感光体との接触面積を増加させ、電荷注入の速度を向上させることが提案されている。導電性繊維をエッチング繊維または分割繊維としたことで、実質的により細い径の導電性繊維を用いたことになり、感光体との接触面積を増加することができる。しかしながら、分割された繊維の引張り強度は分割前の導電性繊維と比較し、分割された分だけ低くなる。その結果、感光体と接触した場合、分割された繊維は切断しやすくなり、長期の使用では帯電電位のバラツキを起こし、接触型帯電器の寿命を低下させる原因となってしまう。逆に長寿命の接触型帯電器を得ようとすると、導電性繊維の分割数を多くできないため接触面積の大幅な増加は期待できず、電荷注入速度向上の著しい改善はできない。
【0010】
【発明が解決しようとする課題】
本発明は、従来技術の上記問題点に鑑みなされたもので、その第1の目的は、低電圧で被帯電体に十分、かつ均一な帯電電圧を与えることができ、オゾンやNOX が発生せず、初期特性が長期間にわたって維持され、かつ被帯電体に機械的ダメージを与えにくい接触型帯電器を安価に製造することのできる方法を提供することにある。
本発明の第2の目的は、上記製造方法によって得られる接触型帯電器を提供すること、第3の目的は、この接触型帯電器を用いる帯電方法を提供すること、第4の目的は、この接触型帯電器を備えた画像記録装置を提供することにある。
【0011】
【課題を解決するための手段】
請求項1記載の接触型帯電器の製造方法は、摺擦帯電部材を備え、該摺擦帯電部材を被帯電体の表面に摺擦接触させながら、該被帯電体・摺擦帯電部材間に電位差を印加することによって、前記被帯電体を所定の表面電位に帯電させる接触型帯電器を製造する方法であって、基材樹脂とカーボンナノチューブを混合し、該混合物を所定形状に成形し、該成形物を延伸処理して導電性樹脂成形物とした後、該導電性樹脂成形物を支持体に貼り付け、該導電性樹脂成形物を機械研磨および/または裁断することにより、前記カーボンナノチューブの長手方向の一部を前記導電性樹脂成形物外に突出させて前記摺擦帯電部材として設けることを特徴とする。
【0012】
請求項2記載の接触型帯電器の製造方法は、摺擦帯電部材を備え、該摺擦帯電部材を被帯電体の表面に摺擦接触させながら、該被帯電体・摺擦帯電部材間に電位差を印加することによって、前記被帯電体を所定の表面電位に帯電させる接触型帯電器を製造する方法であって、基材樹脂とカーボンナノチューブを混合し、該混合物を所定形状に成形し、該成形物を延伸処理して導電性樹脂成形物とし、該導電性樹脂成形物を機械研磨および/または裁断することにより、前記カーボンナノチューブの長手方向の一部を前記導電性樹脂成形物外に突出させた後、これを支持体に、前記摺擦帯電部材として設けることを特徴とする。
【0013】
本発明の接触型帯電器の製造方法においては、前記導電性樹脂成形物フィルム状またはシート状とすることができる。
【0014】
本発明の接触型帯電器の製造方法においては、前記導電性樹脂成形物を繊維状とすることができる。
【0015】
接触型帯電器は、請求項1又は2に記載の方法によって得ることができる。
【0016】
請求項記載の接触型帯電器は、請求項1又は2に記載の方法によって得られた帯電器が帯電ローラーであることを特徴とする。
【0017】
請求項記載の接触型帯電器は、請求項1又は2に記載の方法によって得られた帯電器が帯電ブレードであることを特徴とする。
【0018】
請求項記載の接触型帯電器は、請求項1又は2に記載の方法によって得られた帯電器が帯電ベルトであることを特徴とする。
【0019】
請求項記載の接触型帯電器は、請求項1又は2に記載の方法によって得られた帯電器が帯電ブラシであることを特徴とする。
【0020】
請求項記載の帯電方法は、請求項のいずれかに記載の接触型帯電器を用いて被帯電体を所定の表面電位に帯電させることを特徴とする。
【0021】
請求項記載の画像記録装置は、請求項のいずれかに記載の接触型帯電器を備えたことを特徴とする。
【0022】
本発明の接触型帯電器の製造方法によれば、基材樹脂とカーボンナノチューブを混合し、この混合物を成形・延伸することで、カーボンナノチューブを配列(配向)させて構成した摺擦帯電部材を備える接触型帯電器を容易に、かつ低コストで提供することができる。
【0023】
また、この方法で得られる接触型帯電器は、低電圧動作が可能で、かつ接触抵抗を低減できるため短時間で十分な帯電電圧を被帯電体に与えることができる。しかもカーボンナノチューブは、化学的・機械的に安定で導電性の接点の安定性が高いため環境による変動が少なく、十分な強度をもつ。
【0024】
さらに、本発明の接触型帯電器によれば、オゾンやNOX の発生を抑え、帯電ムラをなくすことができ、摺動性(自己潤滑性)が高いため被帯電体に傷をつけるなどの不具合が少なくなる。また本発明の接触型帯電器は、除電についても同様の効果を持つものである。
【0025】
カーボンナノチューブは、グラファイト状炭素原子面を丸めた円筒の1個または数個〜数十個が、入れ子状に配列した繊維状構造を有し、その直径がナノメートルオーダーのきわめて微細な物質である。カーボンナノチューブは、その構造によって金属から半導体までの幅広い電気特性を持つ。また、微小でありながな表面積が大きい、アスペクト比(長さ/直径比)が大きい、中空であるといった独特の形状を有する。さらに、形状に由来する特殊な特性をもつことから、新しい炭素材料として産業上への種々の応用が期待されている。カーボンナノチューブには、単層カーボンナノチューブと多層カーボンナノチューブがあり、グラファイト状炭素原子面を丸めた円筒が1個のものを単層カーボンナノチューブ、複数個のものを多層カーボンナノチューブという。
【0026】
【実施例】
以下、本発明の実施例を、図面を参照しながら説明する。なお、本発明の範囲はこの実施例により限定されるものではない。
<実施例1>
本発明に係る接触型帯電器の製造方法では、基材樹脂とカーボンナノチューブとを混合し、該混合物を所定形状に成形し、次いで該成形物を延伸処理して導電性樹脂成形物とした後、該導電性樹脂成形物を支持体に前記摺擦帯電部材として設ける。そこでまず、上記導電性樹脂成形物の作製方法、および上記成形物の延伸処理によるカーボンナノチューブの配列(配向)について図1をもとに説明する。
【0027】
まず、公知技術によってカーボンナノチューブを作製した。雰囲気ガスにヘリウムを用い、500Torr(6.65×104 Pa)の圧力で陽極、陰極ともグラファイト棒を用いたDCアーク放電法により合成した。電流量は約100Aで、電極径は1cm、電極間距離は約1mmとした。その結果、陰極の先端に約1cm径の円柱状堆積物が生成し、多層カーボンナノチューブが束になったものが観察された。合成後の多層カーボンナノチューブには種々の不純物が含まれるため、これを有機溶媒や、界面活性剤が添加された水溶液に分散させた後、遠心分離法や限外ろ過法によって高純度に精製した。
【0028】
精製した多層カーボンナノチューブを、粉末状のポリエチレン(融点120℃)と混合し、ポリエチレンの融点以上(140℃)に加熱し、融解・均一分散を行い、これをフィルムに成形した。このフィルムをポリエチレンのガラス転移温度以上、融点以下の温度(100℃)に加熱しながら一方向に引っ張ることで、フィルムの延伸処理を行った(1軸延伸)。延伸処理することによって、カーボンナノチューブの長手方向が延伸方向に揃うようになる。図1(a)は、延伸処理前のフィルム(基材樹脂102、すなわちポリエチレン)におけるカーボンナノチューブ101の配列状態を、図1(b)は延伸処理後のフィルムにおけるカーボンナノチューブ101の配列状態をそれぞれ示す模式図である。
なお、図1(b)の「摺動方向A」および「摺動方向B」は、被帯電体(図略)に対する摺擦帯電部材の摺擦接触方向の具体例を示すもので、上記延伸処理後のフィルムを用いた摺擦帯電部材によれば、摺動方向A,Bのどちらにしても、優れた帯電結果が得られる効果がある。
【0029】
フィルムの延伸率(%)
=[(延伸後のフィルム長さ)/(延伸前のフィルム長さ)]×100
と定義し、図2に示す延伸方向とカーボンナノチューブ101の長手方向のなす角をθとして、フィルム中のカーボンナノチューブの配列の程度を示すパラメータS(オーダーパラメーター)を
S=(1/2)<3cos2 θ−1> ……(<>は、統計平均を示す)。
と定義すると、図1(a)のような延伸処理をしない場合、配列はランダムで、その時のオーダーパラメーターSは0であり、全てのカーボンナノチューブが延伸方向と一致した場合にはS=1となる。
【0030】
図3に示すように、延伸率を大きくするに従いオーダーパラメーターSが増大し、やがて飽和する。したがって安定した配列、ひいては特性が安定した帯電器を作製するには、上記Sが飽和した範囲の延伸率を用いることが好ましい。
【0031】
図4は帯電ローラー401の構造および、これによるOPC405の帯電方法を示す模式図である。この帯電ローラー401の作製では、直径10mmのSUS金属芯404の外周面を、カーボンブラックを分散させた厚さ5mmの導電性シリコーンゴム403で被覆し、その表面に、上記カーボンナノチューブを含むポリエチレンフィルムの延伸物(延伸フィルム)402を貼り付けた。この場合、フィルムの延伸方向Cを帯電ローラー401の回転方向に直交させた。
【0032】
さらに、延伸フィルム402の表面を、粒径3μmのアルミナ砥粒等により研磨することにより、カーボンナノチューブの長手方向の一部をローラー表面から突出させて帯電ローラー401とした。なお、この実施例1では、上記延伸フィルム402が上記摺擦帯電部材に、上記金属芯404が支持体にそれぞれ該当する。また、延伸フィルム402の抵抗範囲は、ピンホール対策から102 〜1010Ω・cmに制御することが好ましく、そのため、延伸フィルム402のカーボンナノチューブ配合率は4wt%とした。
【0033】
一方、OPC405を公知技術によって作製した。すなわち、Al基体407上に、酸化チタン微粒子からなるホール注入阻止層をディップコート法により厚さ5μmで形成し、その上に電荷発生層と電荷輸送層が積層する有機感光層406を形成した。
【0034】
回転周速250mm/sのOPC405の有機感光層406に、上記帯電ローラー401をニップ幅2mmで接触させて従動回転させることにより帯電を行った。この場合、直流電源408により延伸フィルム402・有機感光層406間に−500Vの電位差を印加した。その結果、−440Vの表面電位が測定され、帯電ローラー401が十分な帯電能力を持つことが確認された。また、カスケード現像によりムラのない帯電が確認され、さらに、連続的に帯電したところ、NOX は殆ど検出されなかった。また、上記のように延伸した樹脂フィルムによりカーボンナノチューブを保持したことで感光体の機械的ダメージが、カーボンナノチューブのないフィルムに比べて格段に低下し、また単に樹脂でカーボンナノチューブを保持(未延伸樹脂フィルムで保持)した場合よりも軽減されることが判った。
【0035】
この実施例1では、カーボンナノチューブとして多層カーボンナノチューブを用いたが、単層カーボンナノチューブを用いることもできる。また、これらのカーボンナノチューブは開管、閉管のどちらにしても、本発明の所期の目的が達成される。
【0036】
また、カーボンナノチューブの製造ではDCアーク放電法を用いたが、他の方法として、(1)ベンゼン、エチレン、アセチレン等の炭化水素を、H2 ガスをキャリアガスとして流過させながら1000〜1500℃で熱分解する多層カーボンナノチューブの作製方法、(2)グラファイトにFe,Co,Ni,Ru,Rh,Pd,Os,Ir,Pt,La,Y等の金属触媒を混合したコンポジット棒を陽極として用い、陰極としてグラファイト棒を用い、100〜700Torr(1.33×104 〜9.31×104 Pa)のHeまたはH2 雰囲気でのアーク放電により合成する単層カーボンナノチューブの作製方法、(3)前記のコンポジット棒を電気炉中で1000〜1400℃に加熱し、500Torr(6.65×104 Pa)のAr雰囲気で、Nd:YAGパルスレーザーを照射する単層カーボンナノチューブの作製方法など、公知の方法が採用できる。
【0037】
また、延伸する樹脂としてポリエチレンを用いたが、ポリテレフタル酸エチレン(PET)やポリテレフタル酸ブチレン(PBT)などのポリエステル、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリビニルアルコール(PVA)、ポリアミド(PA)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリウレタン、エチレン−ビニルアルコール共重合体など、加熱や溶媒によって軟化する種々の樹脂を採用することができる。
【0038】
さらに、上記帯電ローラー401では、金属芯404上に樹脂導通部分を2重構造で設けたが、カーボンナノチューブを含む樹脂単層でも良いし、3層以上の多層構造としても良い。また抵抗のコントロールは、カーボンナノチューブ単体だけではなく、金属フィラーやカーボンブラック、テトラシアノキノジメタン(TCNQ)等の電子受容性化合物とテトラチアフルバレン(TTF)等の電子供与性化合物から構成される電荷移動錯体を併用することもできる。
【0039】
さらに、カーボンナノチューブを延伸樹脂表面から突出させる方法として研磨を用いたが、化学的な薬液による方法やドライエッチング、アッシングなどを用いることもできる。また、OPCを用いる負帯電を示したが、これに限定されるわけではなく、Se系やa−Si、ZnO等の無機感光体や、その他の被帯電体および正帯電にも、同じ帯電器が使用できる。また、電圧として直流電圧を印加したが、交流との重畳でも何ら問題ない。
【0040】
また、フィルムの延伸方向を帯電ローラー401の回転方向に直交させたが、平行の場合には、より固体潤滑材の機能が発揮され、摩擦が小さく、0°を超え90°未満の角度をつけた場合でも、十分な帯電電位と、ムラのない帯電結果が得られる。さらに、OPC(被帯電体)を駆動ローラー、帯電ローラーを従動ローラーとしたが、帯電時間を長くして更に十分な帯電電位を与えるために帯電ローラーを駆動ローラー、OPCを従動ローラーとすることもできる。
【0041】
<実施例2>
図5は帯電ブレード(ブレード型接触帯電器)の構造およびその製造方法を示す模式図である。図5(a)に示すように、実施例1と同様の方法で、延伸によってカーボンナノチューブ501を配列させた延伸シート502(ポリエチレンシート:厚さ0.4mm)を成形した。カーボンナノチューブ501の配合分散量は4wt%とした。このシート502を図5(a)のように5層積層し、貼り合わせた後、カーボンナノチューブ501の配列方向(延伸方向)に垂直に裁断することにより、図5(b)のように、カーボンナノチューブ501の長手方向の一部を裁断面504から、これに垂直に突出させた。この積層裁断物をSUS基体506に導電性接着剤を用いて貼り付け、裁断面504を実施例1と同様にして研磨することにより、カーボンナノチューブの配列が上記裁断で一部失われているダメージ層を取り除いた。この研磨によって、図5(c)に示すように、内部のカーボンナノチューブ501が、帯電ブレード500の帯電面507から垂直に突出した。
【0042】
上記帯電ブレード500を、実施例1と同じようして作製したOPCに接触させて帯電を行った。帯電ブレード500のニップ幅は2mmとした。−500Vの直流電圧を印加し、OPCの回転周速を200mm/sとしたときの表面電位は−460Vであり、十分な帯電能力を持つことが確認された。また、カスケード現像によりムラのない帯電が確認された。さらに、連続的に帯電したところ、オゾンやNOX は殆ど検出されなかった。また、帯電ブレード500の摩擦係数は、カーボンナノチューブのないブレードの1/2〜1/10に低減しており、カーボンナノチューブを単に樹脂で保持した場合よりも更に小さくなっており、感光体の機械的ダメージも軽減されていることが判った。
【0043】
実施例2では、延伸によってカーボンナノチューブを配列させた樹脂シートを複数枚積層したが、単層でも(上記樹脂シートを1枚用いる)何ら問題ない。また、カーボンナノチューブの配列方向が帯電面507に垂直の場合を示したが、カーボンナノチューブの配列面が帯電面内にあるように、かつ、その配列方向をOPCの回転方向に垂直または平行にした場合や、カーボンナノチューブの配列方向とOPCの回転方向のなす角を0°を超え、90°未満とした場合でも十分な帯電電位が得られ、帯電ムラのないことが判った。
【0044】
<実施例3>
図6は、帯電ブラシ(ブラシ型接触帯電器)の要部である帯電ブラシ本体を構成する、延伸処理後の導電性繊維602(ブラシの毛)を示す模式図である。この帯電ブラシの製造方法について説明する。まず公知技術によって単層カーボンナノチューブを作製した。ここでは、陽極としてグラファイトにFe−Ni金属触媒を混合したコンポジット棒を、陰極としてグラファイト棒をそれぞれ用い、500Torr(6.65×104 Pa)のHe雰囲気でのアーク放電により、単層カーボンナノチューブを作製した。この単層カーボンナノチューブを遠心分離法及び限外ろ過を用いて精製した。この単層カーボンナノチューブをナイロン樹脂に分散(分散量は4wt%)させて溶融紡糸した後、延伸処理することにより、延伸導電性繊維を得た。
【0045】
この延伸導電性繊維をウレタンのパッドで挟んで1〜500g/cm2 の荷重を印加し、その間に粒径1μmのアルミナを供給し、上記延伸繊維を片側から引き出して表面を機械的に研磨し、カーボンナノチューブを繊維表面から突出させた。この対角線に配置したウレタンパッドを2段直交するように配置し、繊維の表面全てでカーボンナノチューブが突出するようにした。その結果図6に示すように、分散したカーボンナノチューブ601が延伸導電性繊維602の延伸方向に配向した。なお、荷重や引出し速度等によっては1段でも良いし、複数段でも良い。
【0046】
ここでは溶融紡糸を用いたが、乾式紡糸や湿式紡糸、エマルション紡糸、ゲル紡糸、急速加熱紡糸などを採用することもできる。また、紡糸と延伸を2工程で行ったが、(1)紡糸と延伸を連続して行う直延法、(2)紡糸時の速度を速くすることにより半延伸状態の半延伸糸(POY:Partially Oriented Yarn) を得た後、延伸する方法、(3)超高速紡糸で紡糸と延伸を1工程で同時に行う方法を用いることもできる。さらに、これら紡糸・延伸・研磨工程を一貫プロセスとしても良い。
【0047】
この様にしてカーボンナノチューブを突出させた延伸導電性繊維602を保持部材(支持体)703に植毛して、図7に示す帯電ブラシ701を作製した。植毛密度は、一般的な帯電ブラシと同様に50〜300本/mm2 程度にするのが良い。図7に示すように、実施例1と同じようにして作製したOPC704に接触させて帯電を行った。この図において符号705は有機感光層、符号706はAl基体である。帯電ブラシ701のニップ幅は4mmとした。直流電源707を用いて−500Vの直流電圧を印加し、OPC704の回転周速を250mm/sとした場合の表面電位は−450Vであり、十分な帯電能力を持つことが確認された。また、カスケード現像によりムラのない帯電が得られることが確認された。さらに、連続的に帯電したところオゾンやNOX は殆ど検出されなかった。
【0048】
ここでは固定ブラシの例を示したが、金属芯に電気植毛で導電性繊維を植毛した円柱状の回転ブラシとしても良い。この場合、強制回転される被帯電体に従動させたときでも、帯電時間を長くすることができる。また、更に十分な帯電電位を得るために、回転ブラシを被帯電体と逆方向に回転させても良い。また、導電性繊維用の繊維としては、実施例1で列挙した樹脂からなるもの以外に、レーヨンやアクリル繊維などを採用することもできる。
【0049】
<実施例4>
図8は、帯電ベルト801(ベルト型接触式帯電器)の構造および、これによる帯電方法を示す模式図である。この無端状帯電ベルト801を以下の方法で作製した。実施例1と同様に延伸によって、カーボンナノチューブが配列した延伸シート802(ポリエチレンシート:厚さ0.1mm)を成形した。カーボンナノチューブの分散量は4wt%とした。このシートを、カーボンブラックで導電性を付与したシリコーンゴムベルト803(厚さ3mm)に、帯電ベルト801の走行方向が上記延伸の方向に直交するように貼り合わせて帯電ベルト801を作製した。この帯電ベルト801では、上記延伸シート802と、これを保持する保持部材(支持体)であるシリコーンゴムベルト803とからなる2層構造としたが、延伸シート単体でも良いし、また3層以上の積層ベルトでも良い。
【0050】
実施例1と同じようにして作製したOPC804に、上記帯電ベルト801を接触させて帯電を行った。帯電ベルト801のニップ幅(OPCとの接触幅)を4mmとし、帯電ベルト801はOPC804に従動走行させた。図8において符号806はAl基体、符号805は有機感光層である。
【0051】
直流電源807により−500Vの電圧を印加した場合、OPC804の周速を250mm/sのとき、−430Vの表面電位が測定され、十分な帯電能力を持つことが確認された。また、カスケード現像によりムラのない帯電が確認された。さらに、連続的に帯電した場合、オゾンやNOX は殆ど検出されなかった。また、この帯電ベルト801では、延伸した樹脂でカーボンナノチューブを保持したことにより、感光体の機械的ダメージが、カーボンナノチューブを含まない帯電ベルトに比べ格段に低下し、しかも、単に樹脂でカーボンナノチューブを保持した場合よりも軽減されていることが判った。
【0052】
図8の帯電ベルト801は被帯電体に従動させたが、帯電時間を長くし、更に十分な帯電をするために被帯電体の回転方向と逆方向に走行させても良い。また、ポリエチレンシートの延伸方向は、被帯電体の回転方向に垂直の場合を示したが、平行の場合には固体潤滑材の機能が、より的確に発揮されて摩擦が小さくなり、0°を超え、90°未満の角度を付けた場合でも、十分な帯電電位が得られ、帯電ムラのないことが確認された。
【0053】
【発明の効果】
以上の説明で明らかなように、本発明によれば以下の効果が得られる。
(1)請求項1及び2記載の接触型帯電器の製造方法による効果:この製造方法によれば、基材樹脂とカーボンナノチューブを混合し、この混合物を成形・延伸することで、カーボンナノチューブを配列させて構成した摺擦帯電部材を備える接触型帯電器を容易に、かつ低コストで提供することができる。また、この製造方法においては、カーボンナノチューブの配列処理を、基材樹脂の延伸により行うため、該配列処理がラビングなどを用いる方法に比べて容易であり、摺擦帯電部材を大量に作製することができる。
【0054】
とくに、カーボンナノチューブの長手方向の一部を導電性樹脂成形物の表面から突出させる方法として、導電性樹脂成形物を機械研磨、裁断の少なくとも一方を用いるので、上記摺擦帯電部材を簡便な工程で、安価・大量に作製することができる。
【0055】
(2)請求項1又は2記載の接触型帯電器による効果:上記製造方法で得られた接触型帯電器の摺擦帯電部材では、延伸処理した基材樹脂中に配列したカーボンナノチューブが含まれている。したがって、この接触型帯電器では、被帯電体(または被除電体)と接触する面にカーボンナノチューブがあるため、従来のコロトロンやスコロトロン帯電器に比べて格段に、また従来の接触型帯電器に比べて、より低電圧で被帯電体に十分な帯電電圧を与える(被除電体を十分に除電する)ことができるうえ、オゾンやNOX の発生量を非常に少なくすることができる。
【0056】
また、上記接触型帯電器では、摺擦帯電部材の表面層に摩耗等が発生しても、基材樹脂内部(導電性樹脂成形物の内部)のカーボンナノチューブが表面に突出するため、初期特性を維持することができて、安定な帯電(除電)が可能となる。さらに、カーボンナノチューブは摩擦係数が小さいため、被帯電体(または被除電体)に機械的ダメージを与えにくく、オゾンやNOX が発生しないことと併せて感光体の長寿命化が可能となる。さらに、上記接触型帯電器では、カーボンナノチューブを配列させてあるため帯電ムラもない。
【0057】
(3)請求項記載の接触型帯電器による効果:この接触型帯電器は、被帯電体(または被除電体)と主にカーボンナノチューブで接触する帯電ローラーである。カーボンナノチューブはダングリングボンドを持たないため化学的に安定であり、かつシームレス構造のため機械的強度が非常に高い。そのため、導電性の接点の安定性が非常に良く、全体に導電性が付与された、従来の導電性ゴムや吸水性のスポンジローラーと比較し、環境による変動が少なく、長期に渡って安定した帯電(除電)能力を維持できる。また、被帯電体(または被除電体)と主にカーボンナノチューブで接触するさせることで十分な帯電電位を与える(除電する)ことができる。
【0058】
さらに、摺擦帯電部材の表面層に摩耗等が発生しても、基材樹脂内部のカーボンナノチューブが表面から突出するため、初期特性を維持することができて、安定な帯電(除電)が可能となる。さらに、従来の帯電ローラーと違ってオゾンやNOX が発生しないため、これらに起因する感光体劣化が低減し、長寿命化が可能となる。さらに、延伸を行った樹脂でカーボンナノチューブを保持しているため機械的ダメージが低減し、帯電ムラもない。さらに、カーボンナノチューブの配列処理を、基材樹脂の延伸により行うため、該配列処理がラビングなどを用いる方法に比べて容易であり、摺擦帯電部材を大量に作製できるので、低コストで提供することができる。
【0059】
(4)請求項記載の接触型帯電器による効果:この接触型帯電器は、被帯電体(または被除電体)と主にカーボンナノチューブで接触する帯電ブレードである。カーボンナノチューブは固体潤滑材としての機能を持ち、カーボンナノチューブのない従来の帯電ブレードと比較し、帯電ブレード・感光層間の摩擦係数を低減でき、被帯電体(または被除電体)に機械的ダメージを与えにくく、感光層、特に有機感光層の寿命を向上させることができる。また、被帯電体(または被除電体)と主にカーボンナノチューブで接触するさせることで、十分な帯電電位を与える(除電する)ことができる。また、摺擦帯電部材の表面層に摩耗等が発生しても、基材樹脂内部のカーボンナノチューブが表面から突出するため、初期特性を維持することができて、安定な帯電(除電)が可能となる。さらに、延伸を行った樹脂でカーボンナノチューブを保持することで機械的ダメージを低減でき、帯電ムラもない。さらに、樹脂を延伸してカーボンナノチューブを配列させてあるため、ラビングなどを用いる方法に比べて容易で、大量に作製できるため、低コストで作製できる。
【0060】
(5)請求項記載の接触型帯電器による効果:この接触型帯電器は、被帯電体(または被除電体)と主にカーボンナノチューブで接触する帯電ベルトである。カーボンナノチューブは固体潤滑材としての機能を持ち、カーボンナノチューブのない従来の帯電ベルトと比較し、帯電ベルト・被帯電物間の摩擦係数を低減でき、被帯電体(または被除電体)及びベルト自身に機械的ダメージを与えにくく、感光層、特に有機感光層の寿命を向上させることができる。また、被帯電体(または被除電体)と主にカーボンナノチューブで接触することで、従来の帯電ベルトに比べ、十分な帯電電位を与える(除電する)ことができる。また、カーボンナノチューブの保持体であるフィルムまたはシートに摩耗等が発生しても、内部のカーボンナノチューブが表面から突出するため初期特性を維持でき、安定な帯電が可能となる。さらに、カーボンナノチューブを延伸樹脂で保持しているので、機械的ダメージを低減でき、帯電ムラもない。樹脂を延伸してカーボンナノチューブを配向させてあるため、ラビングなどを用いる方法に比べて容易で、大量に作製できるため、低コストで作製できる。
【0061】
(6)請求項記載の接触型帯電器による効果:この接触型帯電器は、カーボンナノチューブが導電性繊維で保持された構造の帯電ブラシである。被帯電体(または除電体)と主にカーボンナノチューブで接触させることで、導電性繊維がエッチング繊維、分割繊維からなる従来の帯電ブラシと比較し、十分な帯電電位を与える(除電する)ことができ、強度も十分である。また、導電性繊維の表面に摩耗等が発生しても内部のカーボンナノチューブが表面から突出するため、初期特性を維持でき、安定な帯電(除電)が可能となる。さらに、カーボンナノチューブを延伸樹脂で保持してあるので、帯電ムラもない。樹脂を延伸してカーボンナノチューブを配列させてあるため、ラビングなどを用いる方法に比べて容易で、大量に作製できるため、低コストで作製できる。
【0062】
(7)請求項7記載の帯電方法による効果:この帯電方法では、請求項のいずれかに記載の接触型帯電器を用いるので、これらの接触型帯電器による上記効果が得られる。
【0063】
(8)請求項に記載の画像記録装置による効果:この画像記録装置では、請求項のいずれかに記載の接触型帯電器を用いるので、これらの接触型帯電器による上記効果が得られる。
【図面の簡単な説明】
【図1】基材樹脂の延伸による、カーボンナノチューブの配列(配向)を示す模式図であって、(a)は未延伸の基材樹脂を、(b)は延伸後の基材樹脂をそれぞれ示す。
【図2】基材樹脂の延伸方向とカーボンナノチューブの長手方向のなす角θの説明図である。
【図3】基材樹脂の延伸率と、カーボンナノチューブの配列の程度との関係を定性的に示すグラフである。
【図4】本発明の実施例1に係る帯電ローラーの構造および、これによる帯電方法を示す説明図である。
【図5】本発明の実施例2に係る帯電ブレードの構造および、その作製方法を示す説明図である。
【図6】本発明の実施例3に係る導電性繊維(帯電ブラシ本体:帯電ブラシの毛)を示す斜視図である。
【図7】図6の導電性繊維を用いて構成した帯電ブラシの構造および、これによる帯電方法を示す説明図である。
【図8】本発明の実施例4に係る帯電ベルトの構造および、これによる帯電方法を示す説明図である。
【符号の説明】
101 カーボンナノチューブ
102 基材樹脂
401 帯電ローラー
402 延伸フィルム
403 導電性シリコーンゴム
404 金属芯
405 OPC
406 有機感光層
407 Al基体
408 直流電源
500 帯電ブレード
501 カーボンナノチューブ
502 延伸シート
504 裁断面
506 SUS基体
507 帯電面
601 カーボンナノチューブ
602 導電性繊維(延伸繊維)
701 帯電ブラシ
703 保持部材(支持体)
704 OPC
705 有機感光層
706 Al基体
707 直流電源
801 帯電ベルト
802 延伸シート
803 保持部材(支持体)
804 OPC
805 有機感光層
806 Al基体
807 直流電源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a contact charger, a contact charger obtained by the method, a charging method using the contact charger, and an image recording device such as a copying machine, a printer, and a facsimile equipped with the contact charger. It relates to the device.
[0002]
[Prior art]
Conventional charging systems have mainly been corotrons and scorotrons using corona discharge. However, since corona discharge applies an electric field in the air, ozone and NOXThere are drawbacks such as the generation of a large amount of harmful substances such as, and the large amount of power consumption. Therefore, in recent years, environmental considerations are shifting to roller charging with less environmental impact.
[0003]
Roller charging is a method in which a charging roller (conductive rubber roller) is brought into contact with a photoconductor, and a discharge is generated in a minute gap between the photoconductor and the charging roller to charge the surface of the photoconductor. The amount of generated ozone is significantly reduced (reduced to 1/100 to 1/500).
[0004]
However, since the charging roller also applies a voltage to the minute gap between the photoconductor and the charging roller to cause corona discharge, the amount of ozone generated cannot be reduced to zero in principle. Further, the deterioration of the photoreceptor tends to be the same as or worse than that of corotron. Therefore, a charging method that does not generate ozone at all and does not deteriorate the photoreceptor is strongly desired. Recently, a charge injection method has been attracting attention.
[0005]
The charge injection method is a method in which charges are directly injected into the photosensitive layer from a contact charger without causing discharge. In principle, ozone is not generated and the photoreceptor is expected to be less deteriorated.
[0006]
In charge injection, the contact resistance between the contact-type charger and the photosensitive member affects the injection speed when the charge is injected, so it is considered that the lower the contact resistance, the better. Therefore, in the technique described in JP-A-6-75459, a charge transfer complex composed of an electron-accepting compound such as tetracyanoquinodimethane (TCNQ) and an electron-donating compound such as tetrathiafulvalene (TTF) is increased. The charging roller is made of a conductive rubber made of a polymer material substituted with a molecular network and imparted conductivity to the whole.
[0007]
However, Kagawa, Furukawa, Shinkawa et al., Japan Hardcopy '92, pp. In 287 to 290, an organic photoreceptor (hereinafter abbreviated as OPC) can obtain a sufficient charging voltage under a high humidity of 80% RH, but is charged up to half of the applied voltage under a humidity of 30 to 50% RH. However, it has been reported that the injection rate is slow. However, it can be considered that it is not easy to reduce the resistance of the conductive rubber while maintaining an appropriate rubber hardness from the viewpoint of selecting a polymer material.
[0008]
On the other hand, in the technique described in Japanese Patent Application Laid-Open No. 7-140729, charges are injected into the photoreceptor using a water-absorbing sponge roller. When a water-absorbing sponge roller is used, the water content of the roller has a great influence on the roller resistance and the charge injection speed, so that the charging potential may fluctuate due to the evaporation of moisture from the roller. In order to suppress the fluctuation of the charging potential, it is necessary to strictly control the evaporation of moisture from the roller over a long period of time, and the structure of the contact charger becomes complicated and cannot be manufactured at low cost.
[0009]
Japanese Patent Application Laid-Open No. 9-101649 discloses that the conductive fiber of the charging brush is an etching fiber or a split fiber, thereby increasing the contact area between the conductive fiber and the photoconductor and improving the charge injection speed. It has been proposed. By using conductive fibers as etching fibers or split fibers, conductive fibers having a substantially smaller diameter are used, and the contact area with the photoreceptor can be increased. However, the tensile strength of the divided fibers is lower by the amount of the divided fibers than the conductive fibers before the division. As a result, when it comes into contact with the photoreceptor, the divided fibers are likely to be cut, causing a variation in charging potential when used for a long period of time, which causes a decrease in the life of the contact charger. Conversely, when trying to obtain a long-life contact charger, the number of conductive fibers cannot be increased, so that a significant increase in contact area cannot be expected, and a significant improvement in charge injection rate cannot be achieved.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems of the prior art. The first object of the present invention is to provide a sufficient and uniform charging voltage to a member to be charged with a low voltage.XIt is an object of the present invention to provide a method capable of producing a contact type charger at low cost, in which initial characteristics are maintained for a long period of time and mechanical damage is not easily caused to an object to be charged.
The second object of the present invention is to provide a contact charger obtained by the above manufacturing method, the third object is to provide a charging method using this contact charger, and the fourth object is to An object of the present invention is to provide an image recording apparatus provided with the contact charger.
[0011]
[Means for Solving the Problems]
  The method of manufacturing a contact charger according to claim 1 includes a frictional charging member, and the frictional charging member is slidably contacted with the surface of the object to be charged, while being in contact with the surface of the object to be charged and the frictional charging member. A method of manufacturing a contact charger for applying a potential difference to charge the object to be charged to a predetermined surface potential, mixing a base resin and a carbon nanotube, and forming the mixture into a predetermined shape, After stretching the molded product to obtain a conductive resin molded product, the conductive resin molded product is used as a support.By sticking and mechanically polishing and / or cutting the conductive resin molded product, a part of the carbon nanotube in the longitudinal direction is projected out of the conductive resin molded product.It is provided as the rubbing charging member.
[0012]
  The method of manufacturing a contact charger according to claim 2 is:A sliding charging member, and applying a potential difference between the charged body and the sliding charging member while the sliding charging member is in sliding contact with the surface of the charged body, A method of manufacturing a contact-type charger for charging to a surface potential, wherein a base resin and carbon nanotubes are mixed, the mixture is molded into a predetermined shape, and the molded product is stretched to form a conductive resin molded product. ,By mechanically polishing and / or cutting the conductive resin molded product, a part of the carbon nanotube in the longitudinal direction is projected outside the conductive resin molded product.Then, this is provided on the support as the rubbing charging member.It is characterized by that.
[0013]
  Of the present inventionMethod for manufacturing contact chargerInThe conductive resin moldingTheFilm or sheetIt can be.
[0014]
  Of the present inventionMethod for manufacturing contact chargerIn, The conductive resin molding is fibrousIt can be.
[0015]
  The contact charger is obtained by the method according to claim 1 or 2.Obtainable.
[0016]
  Claim3The described contact charger isA charger obtained by the method according to claim 1 or 2.It is a charging roller.
[0017]
  Claim4The described contact charger isA charger obtained by the method according to claim 1 or 2.It is a charging blade.
[0018]
  Claim5The described contact charger isA charger obtained by the method according to claim 1 or 2.It is a charging belt.
[0019]
  Claim6The described contact charger isA charger obtained by the method according to claim 1 or 2.It is a charging brush.
[0020]
  Claim7The charging method described in claim3~6Any one of the above-described contact-type chargers is used to charge a member to be charged to a predetermined surface potential.
[0021]
  Claim8The image recording apparatus according to claim3~6The contact charger according to any one of the above is provided.
[0022]
According to the method for manufacturing a contact charger of the present invention, a frictional charging member configured by arranging (orienting) carbon nanotubes by mixing a base resin and carbon nanotubes, and molding and stretching the mixture. The contact charger provided can be provided easily and at low cost.
[0023]
Further, the contact charger obtained by this method can be operated at a low voltage and can reduce the contact resistance, so that a sufficient charging voltage can be applied to the member to be charged in a short time. Moreover, carbon nanotubes have sufficient strength because they are chemically and mechanically stable and have high stability of conductive contacts, so that there are few fluctuations due to the environment.
[0024]
Furthermore, according to the contact charger of the present invention, ozone or NOXCan be prevented, charging unevenness can be eliminated, and since the slidability (self-lubricating property) is high, problems such as damage to the charged body are reduced. The contact charger of the present invention also has the same effect with respect to static elimination.
[0025]
A carbon nanotube is a very fine substance having a fibrous structure in which one or several to several tens of cylinders having a rounded graphite-like carbon atom surface are arranged in a nested manner, and the diameter thereof is on the order of nanometers. . Carbon nanotubes have a wide range of electrical properties from metals to semiconductors depending on their structure. Moreover, it has a unique shape such as a small surface area, a large surface area, a large aspect ratio (length / diameter ratio), and a hollow shape. Furthermore, since it has special characteristics derived from its shape, various industrial applications are expected as a new carbon material. Carbon nanotubes include single-walled carbon nanotubes and multi-walled carbon nanotubes. A single-walled carbon nanotube with a rounded graphite-like carbon atom surface is called a single-walled carbon nanotube, and a plurality of carbon nanotubes are called a multi-walled carbon nanotube.
[0026]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. The scope of the present invention is not limited by this example.
<Example 1>
In the method of manufacturing a contact charger according to the present invention, after the base resin and the carbon nanotube are mixed, the mixture is molded into a predetermined shape, and then the molded product is stretched to obtain a conductive resin molded product. The conductive resin molding is provided on the support as the frictional charging member. First, the method for producing the conductive resin molded product and the arrangement (orientation) of carbon nanotubes by the stretching process of the molded product will be described with reference to FIG.
[0027]
First, carbon nanotubes were produced by a known technique. Helium was used as the atmospheric gas and 500 Torr (6.65 × 10 6FourThe anode and cathode were synthesized by a DC arc discharge method using a graphite rod at a pressure of Pa). The amount of current was about 100 A, the electrode diameter was 1 cm, and the distance between the electrodes was about 1 mm. As a result, a cylindrical deposit having a diameter of about 1 cm was generated at the tip of the cathode, and a bundle of multi-walled carbon nanotubes was observed. Since the multi-walled carbon nanotubes after synthesis contain various impurities, they are dispersed in an organic solvent or an aqueous solution to which a surfactant is added, and then purified to high purity by centrifugation or ultrafiltration. .
[0028]
The purified multi-walled carbon nanotubes were mixed with powdered polyethylene (melting point 120 ° C.), heated to a temperature higher than the melting point of polyethylene (140 ° C.), melted and uniformly dispersed, and formed into a film. The film was stretched (uniaxial stretching) by pulling in one direction while heating the film to a temperature not lower than the glass transition temperature of polyethylene and not higher than the melting point (100 ° C.). By stretching, the longitudinal direction of the carbon nanotubes is aligned with the stretching direction. 1A shows the arrangement state of the carbon nanotubes 101 in the film (base resin 102, that is, polyethylene) before the stretching treatment, and FIG. 1B shows the arrangement state of the carbon nanotubes 101 in the film after the stretching treatment. It is a schematic diagram shown.
Note that “sliding direction A” and “sliding direction B” in FIG. 1B show specific examples of the rubbing contact direction of the rubbing charging member with respect to the body to be charged (not shown). According to the friction charging member using the processed film, there is an effect that an excellent charging result can be obtained in any of the sliding directions A and B.
[0029]
Film stretch ratio (%)
= [(Film length after stretching) / (film length before stretching)] × 100
2 is defined, and an angle between the stretching direction shown in FIG. 2 and the longitudinal direction of the carbon nanotube 101 is θ, and a parameter S (order parameter) indicating the degree of arrangement of the carbon nanotubes in the film is defined as θ.
S = (1/2) <3 cos2θ-1> (<> indicates a statistical average).
When the stretching process as shown in FIG. 1A is not performed, the arrangement is random, the order parameter S at that time is 0, and when all the carbon nanotubes match the stretching direction, S = 1. Become.
[0030]
As shown in FIG. 3, the order parameter S increases as the stretching ratio increases, and eventually saturates. Therefore, in order to produce a charger having a stable arrangement and thus stable characteristics, it is preferable to use a drawing ratio in a range where S is saturated.
[0031]
FIG. 4 is a schematic diagram showing the structure of the charging roller 401 and the charging method of the OPC 405 by this. In the production of the charging roller 401, the outer peripheral surface of a SUS metal core 404 having a diameter of 10 mm is covered with a conductive silicone rubber 403 having a thickness of 5 mm in which carbon black is dispersed, and the polyethylene film containing the carbon nanotubes is formed on the surface. A stretched product (stretched film) 402 was attached. In this case, the stretching direction C of the film was orthogonal to the rotation direction of the charging roller 401.
[0032]
Furthermore, the surface of the stretched film 402 was polished with alumina abrasive grains having a particle diameter of 3 μm, so that a part of the carbon nanotubes in the longitudinal direction protruded from the roller surface to form a charging roller 401. In Example 1, the stretched film 402 corresponds to the frictional charging member, and the metal core 404 corresponds to the support. Further, the resistance range of the stretched film 402 is 10 from the countermeasure against pinholes.2-10TenIt is preferable to control to Ω · cm. Therefore, the carbon nanotube content of the stretched film 402 is 4 wt%.
[0033]
On the other hand, OPC405 was produced by a known technique. That is, on the Al substrate 407, a hole injection blocking layer made of titanium oxide fine particles was formed with a thickness of 5 μm by dip coating, and an organic photosensitive layer 406 in which a charge generation layer and a charge transport layer were laminated was formed thereon.
[0034]
The organic photosensitive layer 406 of the OPC 405 with a rotational peripheral speed of 250 mm / s was charged by bringing the charging roller 401 into contact with the nip width of 2 mm and rotating it. In this case, a potential difference of −500 V was applied between the stretched film 402 and the organic photosensitive layer 406 by the DC power source 408. As a result, a surface potential of −440 V was measured, and it was confirmed that the charging roller 401 had sufficient charging ability. In addition, it was confirmed that the charging without any unevenness was confirmed by the cascade development.XWas hardly detected. In addition, the carbon nanotubes are held by the resin film stretched as described above, so that the mechanical damage of the photoreceptor is remarkably reduced as compared to a film without carbon nanotubes, and the carbon nanotubes are simply held by the resin (unstretched) It was found that this was reduced compared with the case of holding with a resin film.
[0035]
In Example 1, multi-walled carbon nanotubes are used as carbon nanotubes, but single-walled carbon nanotubes can also be used. Moreover, the intended object of the present invention can be achieved regardless of whether the carbon nanotube is an open tube or a closed tube.
[0036]
Moreover, although the DC arc discharge method was used in the production of the carbon nanotube, as another method, (1) hydrocarbons such as benzene, ethylene, acetylene,2(2) graphite, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, La, Y, which are pyrolytically decomposed at 1000-1500 ° C. while flowing a gas as a carrier gas A composite rod mixed with a metal catalyst such as a cathode is used as an anode, a graphite rod is used as a cathode, and 100 to 700 Torr (1.33 × 10 6Four~ 9.31 × 10FourPa) He or H2A method for producing single-walled carbon nanotubes synthesized by arc discharge in an atmosphere, (3) the composite rod is heated to 1000 to 1400 ° C. in an electric furnace, and 500 Torr (6.65 × 10 6FourA known method such as a method for producing a single-walled carbon nanotube that is irradiated with an Nd: YAG pulse laser in an Ar atmosphere of Pa) can be employed.
[0037]
Moreover, although polyethylene was used as the resin for stretching, polyesters such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), polyvinyl chloride (PVC), polyvinylidene chloride, polyvinyl alcohol (PVA), polyamide ( Various resins that are softened by heating or a solvent such as PA), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyurethane, and ethylene-vinyl alcohol copolymer can be employed.
[0038]
Further, in the charging roller 401, the resin conductive portion is provided on the metal core 404 in a double structure, but a single resin layer including carbon nanotubes or a multilayer structure of three or more layers may be used. Resistance control is not limited to carbon nanotubes alone, but is composed of an electron-accepting compound such as metal filler, carbon black, tetracyanoquinodimethane (TCNQ) and an electron-donating compound such as tetrathiafulvalene (TTF). A charge transfer complex can also be used in combination.
[0039]
Further, polishing is used as a method for causing the carbon nanotubes to protrude from the surface of the stretched resin, but a method using a chemical chemical solution, dry etching, ashing, or the like can also be used. Moreover, although negative charging using OPC has been shown, the present invention is not limited to this, and the same charger can be used for Se-based, a-Si, ZnO and other inorganic photoreceptors, other charged objects, and positive charging. Can be used. Further, although a DC voltage is applied as a voltage, there is no problem even if it is superimposed with an AC.
[0040]
In addition, the film stretching direction is perpendicular to the rotation direction of the charging roller 401. However, when the film is parallel, the function of the solid lubricant is more exhibited, the friction is small, and an angle of more than 0 ° and less than 90 ° is applied. Even in this case, a sufficient charging potential and a uniform charging result can be obtained. Further, although the OPC (charged body) is a driving roller and the charging roller is a driven roller, the charging roller may be a driving roller and the OPC may be a driven roller in order to provide a sufficient charging potential by extending the charging time. it can.
[0041]
<Example 2>
FIG. 5 is a schematic view showing a structure of a charging blade (blade-type contact charger) and a manufacturing method thereof. As shown in FIG. 5A, a stretched sheet 502 (polyethylene sheet: thickness 0.4 mm) in which carbon nanotubes 501 are arranged by stretching was formed by the same method as in Example 1. The compounding dispersion amount of the carbon nanotube 501 was 4 wt%. 5 layers of this sheet 502 are laminated as shown in FIG. 5A, bonded, and then cut perpendicularly to the arrangement direction (stretching direction) of the carbon nanotubes 501 to obtain carbon as shown in FIG. A part of the nanotube 501 in the longitudinal direction protruded from the cut surface 504 perpendicularly thereto. The laminated cut material is attached to the SUS substrate 506 using a conductive adhesive, and the cut surface 504 is polished in the same manner as in Example 1 so that the carbon nanotube array is partially lost by the cutting. The layer was removed. By this polishing, as shown in FIG. 5C, the internal carbon nanotubes 501 protrude vertically from the charging surface 507 of the charging blade 500.
[0042]
Charging was performed by bringing the charging blade 500 into contact with an OPC produced in the same manner as in Example 1. The nip width of the charging blade 500 was 2 mm. When a DC voltage of −500 V was applied and the rotational peripheral speed of the OPC was 200 mm / s, the surface potential was −460 V, and it was confirmed that the surface potential was sufficient. In addition, uniform charging was confirmed by cascade development. Furthermore, when continuously charged, ozone and NOXWas hardly detected. In addition, the friction coefficient of the charging blade 500 is reduced to 1/2 to 1/10 that of the blade without carbon nanotubes, which is even smaller than when the carbon nanotubes are simply held by a resin. Damage was also reduced.
[0043]
In Example 2, a plurality of resin sheets in which carbon nanotubes are arranged by stretching are laminated, but there is no problem even if a single layer is used (one resin sheet is used). In addition, the case where the arrangement direction of the carbon nanotubes is perpendicular to the charging surface 507 is shown. However, the arrangement direction of the carbon nanotubes is in the charging surface, and the arrangement direction is perpendicular or parallel to the rotation direction of the OPC. In this case, even when the angle formed by the arrangement direction of the carbon nanotubes and the rotation direction of the OPC is more than 0 ° and less than 90 °, a sufficient charging potential is obtained, and it has been found that there is no charging unevenness.
[0044]
<Example 3>
FIG. 6 is a schematic diagram showing the conductive fiber 602 (brush hair) after the stretching treatment, which constitutes a charging brush body that is a main part of the charging brush (brush-type contact charger). A method for manufacturing the charging brush will be described. First, single-walled carbon nanotubes were produced by a known technique. Here, a composite rod in which Fe—Ni metal catalyst is mixed with graphite as an anode is used, and a graphite rod is used as a cathode, respectively, and 500 Torr (6.65 × 10 6) is used.FourSingle-walled carbon nanotubes were produced by arc discharge in a He atmosphere of Pa). The single-walled carbon nanotube was purified using a centrifugal separation method and ultrafiltration. This single-walled carbon nanotube was dispersed in a nylon resin (dispersion amount 4 wt%), melt-spun, and then subjected to a stretching treatment to obtain a stretched conductive fiber.
[0045]
This stretched conductive fiber is sandwiched between urethane pads and 1 to 500 g / cm.2In the meantime, alumina having a particle diameter of 1 μm was supplied, the drawn fiber was pulled out from one side, the surface was mechanically polished, and the carbon nanotubes were projected from the fiber surface. The urethane pads arranged on the diagonal line were arranged so as to be orthogonal to two stages so that the carbon nanotubes protruded from the entire fiber surface. As a result, as shown in FIG. 6, the dispersed carbon nanotubes 601 were oriented in the drawing direction of the drawn conductive fibers 602. Depending on the load, the drawing speed, etc., one stage or a plurality of stages may be used.
[0046]
Here, melt spinning is used, but dry spinning, wet spinning, emulsion spinning, gel spinning, rapid heating spinning, and the like can also be employed. In addition, spinning and drawing were performed in two steps. (1) A straight-drawing method in which spinning and drawing were continuously performed, and (2) a semi-drawn yarn (POY: semi-drawn) by increasing the spinning speed. A method of drawing after obtaining Partially Oriented Yarn), and (3) a method of simultaneously spinning and drawing in one step by ultra-high speed spinning can also be used. Furthermore, these spinning, drawing and polishing steps may be integrated.
[0047]
The stretched conductive fibers 602 from which the carbon nanotubes were protruded in this way were planted in a holding member (support) 703 to produce a charging brush 701 shown in FIG. The flocking density is 50 to 300 / mm, similar to general charging brushes.2A good level. As shown in FIG. 7, charging was performed by contacting the OPC 704 produced in the same manner as in Example 1. In this figure, reference numeral 705 denotes an organic photosensitive layer, and reference numeral 706 denotes an Al substrate. The nip width of the charging brush 701 was 4 mm. When a DC voltage of −500 V was applied using the DC power supply 707 and the rotational peripheral speed of the OPC 704 was 250 mm / s, the surface potential was −450 V, and it was confirmed that the surface potential was sufficient. Further, it was confirmed that uniform charging can be obtained by cascade development. Furthermore, when continuously charged, ozone and NOXWas hardly detected.
[0048]
Although an example of a fixed brush is shown here, a cylindrical rotating brush in which conductive fibers are implanted in a metal core by electric flocking may be used. In this case, the charging time can be extended even when the object to be forcibly rotated is driven. Further, in order to obtain a more sufficient charging potential, the rotating brush may be rotated in the direction opposite to the charged body. Further, as the fibers for the conductive fibers, rayon, acrylic fibers, and the like can be employed in addition to those made of the resins listed in Example 1.
[0049]
<Example 4>
FIG. 8 is a schematic diagram showing the structure of the charging belt 801 (belt-type contact charger) and the charging method using the structure. This endless charging belt 801 was produced by the following method. A stretched sheet 802 (polyethylene sheet: thickness 0.1 mm) in which carbon nanotubes are arranged was formed by stretching in the same manner as in Example 1. The amount of carbon nanotube dispersion was 4 wt%. This sheet was bonded to a silicone rubber belt 803 (thickness 3 mm) imparted with conductivity with carbon black so that the running direction of the charging belt 801 was orthogonal to the direction of stretching. The charging belt 801 has a two-layer structure composed of the stretched sheet 802 and a silicone rubber belt 803 that is a holding member (support) that holds the stretched sheet 802. However, the stretched sheet may be a single layer or a laminate of three or more layers. A belt may be used.
[0050]
The charging was performed by bringing the charging belt 801 into contact with the OPC 804 manufactured in the same manner as in Example 1. The nip width of the charging belt 801 (contact width with the OPC) was set to 4 mm, and the charging belt 801 was driven to follow the OPC 804. In FIG. 8, reference numeral 806 denotes an Al substrate, and reference numeral 805 denotes an organic photosensitive layer.
[0051]
When a voltage of −500 V was applied from the DC power supply 807, a surface potential of −430 V was measured when the peripheral speed of the OPC 804 was 250 mm / s, and it was confirmed that the battery had sufficient charging ability. In addition, uniform charging was confirmed by cascade development. Furthermore, when continuously charged, ozone and NOXWas hardly detected. Further, in the charging belt 801, the carbon nanotubes are held by the stretched resin, so that the mechanical damage of the photoreceptor is remarkably reduced as compared with the charging belt not containing the carbon nanotubes. It was found that it was reduced compared to the case of holding.
[0052]
Although the charging belt 801 in FIG. 8 is driven by the member to be charged, the charging belt 801 may be run in the direction opposite to the rotation direction of the member to be charged in order to increase the charging time and further sufficiently charge. In addition, the drawing direction of the polyethylene sheet is shown as being perpendicular to the rotation direction of the member to be charged, but in the case of being parallel, the function of the solid lubricant is more accurately exhibited and the friction is reduced, and 0 ° is set. Even when the angle is greater than 90 °, sufficient charging potential is obtained, and it is confirmed that there is no charging unevenness.
[0053]
【The invention's effect】
  As is apparent from the above description, the present invention provides the following effects.
(1) Claim 1And 2Effects of the described contact charger manufacturing method: According to this manufacturing method, the base resin and the carbon nanotubes are mixed, and the mixture is formed and stretched to form and stretch the carbon nanotubes. A contact-type charger including a member can be provided easily and at low cost. Further, in this manufacturing method, since the alignment process of the carbon nanotubes is performed by stretching the base resin, the alignment process is easier than a method using rubbing or the like, and a large amount of friction charging members are manufactured. Can do.
[0054]
  In particular,As a method for projecting a part of the longitudinal direction of the bonn nanotube from the surface of the conductive resin molding, at least one of mechanical polishing and cutting of the conductive resin molding is used. It can be manufactured at low cost and in large quantities.
[0055]
(2) Claim1 or 2Effect by the described contact-type charger: The frictional charging member of the contact-type charger obtained by the above production method contains carbon nanotubes arranged in the stretched base resin. Therefore, in this contact type charger, carbon nanotubes are present on the surface in contact with the object to be charged (or the object to be neutralized), so that it is much better than conventional corotron and scorotron chargers, and in the conventional contact type charger. Compared with this, it is possible to apply a sufficient charging voltage to the object to be charged at a lower voltage (to sufficiently neutralize the object to be discharged), as well as ozone and NO.XThe generation amount of can be greatly reduced.
[0056]
In the contact charger, even if the surface layer of the frictional charging member is worn, carbon nanotubes inside the base resin (inside the conductive resin molding) protrude from the surface. Can be maintained, and stable charging (static elimination) becomes possible. Furthermore, since the carbon nanotube has a small friction coefficient, it is difficult to cause mechanical damage to the charged body (or the discharged body), such as ozone and NO.XIt is possible to extend the life of the photosensitive member in combination with the fact that no occurrence occurs. Further, in the contact charger, since the carbon nanotubes are arranged, there is no charging unevenness.
[0057]
(3) Claim3Advantages of the described contact-type charger: This contact-type charger is a charging roller that comes into contact with a member to be charged (or a member to be discharged) mainly by carbon nanotubes. Carbon nanotubes are chemically stable because they do not have dangling bonds, and have a very high mechanical strength due to their seamless structure. Therefore, the stability of the conductive contact is very good, compared to the conventional conductive rubber and water-absorbing sponge roller, which has been imparted with conductivity overall, there is less fluctuation due to the environment and stable over the long term Charge (static charge) capability can be maintained. In addition, a sufficient charging potential can be applied (charge removal) by bringing the object to be charged (or the charge removal object) into contact mainly with the carbon nanotube.
[0058]
In addition, even if wear occurs on the surface layer of the frictional charging member, the carbon nanotubes inside the base resin protrude from the surface, so the initial characteristics can be maintained and stable charging (static elimination) is possible. It becomes. In addition, unlike conventional charging rollers, ozone and NOXTherefore, the deterioration of the photoreceptor due to these is reduced and the life can be extended. Furthermore, since the carbon nanotubes are held by the stretched resin, mechanical damage is reduced and there is no uneven charging. Furthermore, since the alignment process of the carbon nanotubes is performed by stretching the base resin, the alignment process is easier than a method using rubbing or the like, and a large amount of frictional charging members can be produced. be able to.
[0059]
(4) Claim4Effect by the described contact-type charger: This contact-type charger is a charging blade that comes into contact with an object to be charged (or an object to be discharged) mainly by carbon nanotubes. Carbon nanotubes function as a solid lubricant and can reduce the friction coefficient between the charging blade and the photosensitive layer compared to conventional charging blades without carbon nanotubes, resulting in mechanical damage to the charged object (or discharged object). The lifetime of the photosensitive layer, particularly the organic photosensitive layer, can be improved. In addition, a sufficient charging potential can be applied (discharged) by bringing the object to be charged (or the object to be discharged) into contact with mainly the carbon nanotube. In addition, even if wear occurs on the surface layer of the frictional charging member, the carbon nanotubes inside the base resin protrude from the surface, so that the initial characteristics can be maintained and stable charging (static elimination) is possible. It becomes. Furthermore, by holding the carbon nanotubes with the stretched resin, mechanical damage can be reduced and there is no uneven charging. Furthermore, since the carbon nanotubes are arranged by stretching the resin, it is easier than a method using rubbing or the like and can be produced in large quantities, so that it can be produced at low cost.
[0060]
(5) Claim5Effect by the described contact-type charger: This contact-type charger is a charging belt that is in contact with an object to be charged (or an object to be discharged) mainly by carbon nanotubes. Carbon nanotubes function as a solid lubricant and can reduce the coefficient of friction between the charged belt and the object to be charged compared to conventional charging belts without carbon nanotubes. It is possible to improve the life of the photosensitive layer, particularly the organic photosensitive layer. Further, by contacting the object to be charged (or the object to be neutralized) mainly with carbon nanotubes, it is possible to give a sufficient charging potential (to eliminate the charge) as compared with a conventional charging belt. In addition, even when wear or the like occurs in the film or sheet that is a carbon nanotube holder, the initial characteristics can be maintained because the internal carbon nanotubes protrude from the surface, and stable charging becomes possible. Furthermore, since the carbon nanotubes are held by the stretched resin, mechanical damage can be reduced and there is no uneven charging. Since the carbon nanotubes are oriented by stretching the resin, it is easier than a method using rubbing or the like, and can be produced in large quantities, so that it can be produced at low cost.
[0061]
(6) Claim6Advantages of the described contact charger: This contact charger is a charging brush having a structure in which carbon nanotubes are held by conductive fibers. By making contact with the object to be charged (or neutralizing body) mainly with carbon nanotubes, it is possible to give a sufficient charging potential (to eliminate static electricity) compared to conventional charging brushes in which conductive fibers are made of etched fibers and split fibers. And strength is sufficient. In addition, even if abrasion or the like occurs on the surface of the conductive fiber, the internal carbon nanotubes protrude from the surface, so that the initial characteristics can be maintained and stable charging (static elimination) is possible. Furthermore, since the carbon nanotubes are held by the stretched resin, there is no uneven charging. Since the carbon nanotubes are arranged by stretching the resin, it is easier than a method using rubbing or the like and can be produced in large quantities, so that it can be produced at low cost.
[0062]
(7) Effects of the charging method according to claim 7:3~6Since the contact-type charger described in any of the above is used, the above-described effects of these contact-type chargers can be obtained.
[0063]
(8) Claim8The effect of the image recording apparatus according to claim 1 is:3~6Since the contact-type charger described in any of the above is used, the above-described effects of these contact-type chargers can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the alignment (orientation) of carbon nanotubes by stretching a base resin, wherein (a) shows an unstretched base resin, and (b) shows a base resin after stretching. Show.
FIG. 2 is an explanatory diagram of an angle θ formed by a stretching direction of a base resin and a longitudinal direction of a carbon nanotube.
FIG. 3 is a graph qualitatively showing the relationship between the stretching ratio of the base resin and the degree of arrangement of the carbon nanotubes.
FIG. 4 is an explanatory diagram showing a structure of a charging roller according to Embodiment 1 of the present invention and a charging method using the same.
FIG. 5 is an explanatory diagram showing a structure of a charging blade according to a second embodiment of the present invention and a manufacturing method thereof.
FIG. 6 is a perspective view showing conductive fibers (charging brush body: charging brush bristles) according to Example 3 of the invention.
7 is an explanatory view showing a structure of a charging brush constructed using the conductive fiber of FIG. 6 and a charging method using the charging brush.
FIG. 8 is an explanatory diagram showing a structure of a charging belt according to a fourth embodiment of the present invention and a charging method using the same.
[Explanation of symbols]
101 carbon nanotube
102 Base resin
401 Charging roller
402 Stretched film
403 conductive silicone rubber
404 metal core
405 OPC
406 Organic photosensitive layer
407 Al base
408 DC power supply
500 Charging blade
501 Carbon nanotube
502 Stretched sheet
504 Cut section
506 SUS substrate
507 Charged surface
601 Carbon nanotube
602 Conductive fiber (drawn fiber)
701 Charging brush
703 Holding member (support)
704 OPC
705 Organic photosensitive layer
706 Al base
707 DC power supply
801 Charging belt
802 Stretched sheet
803 Holding member (support)
804 OPC
805 Organic photosensitive layer
806 Al base
807 DC power supply

Claims (8)

摺擦帯電部材を備え、該摺擦帯電部材を被帯電体の表面に摺擦接触させながら、該被帯電体・摺擦帯電部材間に電位差を印加することによって、前記被帯電体を所定の表面電位に帯電させる接触型帯電器を製造する方法であって、基材樹脂とカーボンナノチューブを混合し、該混合物を所定形状に成形し、該成形物を延伸処理して導電性樹脂成形物とした後、該導電性樹脂成形物を支持体に貼り付け、該導電性樹脂成形物を機械研磨および/または裁断することにより、前記カーボンナノチューブの長手方向の一部を前記導電性樹脂成形物外に突出させて前記摺擦帯電部材として設けることを特徴とする接触型帯電器の製造方法。A sliding charging member, and applying a potential difference between the charged body and the sliding charging member while the sliding charging member is in sliding contact with the surface of the charged body, A method of manufacturing a contact-type charger for charging to a surface potential, which comprises mixing a base resin and carbon nanotubes, forming the mixture into a predetermined shape, and subjecting the molded product to a stretching treatment to produce a conductive resin molded product. Then, the conductive resin molded product is attached to a support , and the conductive resin molded product is mechanically polished and / or cut to remove a part of the carbon nanotube in the longitudinal direction from the conductive resin molded product. The contact charger is provided as the rubbing charging member by projecting to the contact charging device. 摺擦帯電部材を備え、該摺擦帯電部材を被帯電体の表面に摺擦接触させながら、該被帯電体・摺擦帯電部材間に電位差を印加することによって、前記被帯電体を所定の表面電位に帯電させる接触型帯電器を製造する方法であって、基材樹脂とカーボンナノチューブを混合し、該混合物を所定形状に成形し、該成形物を延伸処理して導電性樹脂成形物とし、該導電性樹脂成形物を機械研磨および/または裁断することにより、前記カーボンナノチューブの長手方向の一部を前記導電性樹脂成形物外に突出させた後、これを支持体に、前記摺擦帯電部材として設けることを特徴とする接触型帯電器の製造方法。A sliding charging member, and applying a potential difference between the charged body and the sliding charging member while the sliding charging member is in sliding contact with the surface of the charged body, A method of manufacturing a contact-type charger for charging to a surface potential, wherein a base resin and carbon nanotubes are mixed, the mixture is molded into a predetermined shape, and the molded product is stretched to form a conductive resin molded product. Then, by mechanically polishing and / or cutting the conductive resin molded product, a part of the carbon nanotube in the longitudinal direction is projected outside the conductive resin molded product, and this is then rubbed on the support. A method of manufacturing a contact-type charger, characterized by being provided as a charging member. 請求項1又は2に記載の方法によって得られた帯電器が帯電ローラーであることを特徴とする接触型帯電器。A contact-type charger, wherein the charger obtained by the method according to claim 1 is a charging roller. 請求項1又は2に記載の方法によって得られた帯電器が帯電ブレードであることを特徴とする接触型帯電器。A contact-type charger, wherein the charger obtained by the method according to claim 1 or 2 is a charging blade. 請求項1又は2に記載の方法によって得られた帯電器が帯電ベルトであることを特徴とする接触型帯電器。A contact-type charger, wherein the charger obtained by the method according to claim 1 is a charging belt. 請求項1又は2に記載の方法によって得られた帯電器が帯電ブラシであることを特徴とする接触型帯電器。A contact-type charger, wherein the charger obtained by the method according to claim 1 is a charging brush. 請求項のいずれかに記載の接触型帯電器を用いて被帯電体を所定の表面電位に帯電させることを特徴とする帯電方法。A charging method comprising charging a member to be charged to a predetermined surface potential using the contact charger according to any one of claims 3 to 6 . 請求項のいずれかに記載の接触型帯電器を備えたことを特徴とする画像記録装置。An image recording apparatus comprising the contact charger according to any one of claims 3 to 6 .
JP2000098951A 2000-03-31 2000-03-31 Contact charger manufacturing method, contact charger obtained by the method, charging method and image recording apparatus Expired - Fee Related JP4089122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000098951A JP4089122B2 (en) 2000-03-31 2000-03-31 Contact charger manufacturing method, contact charger obtained by the method, charging method and image recording apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000098951A JP4089122B2 (en) 2000-03-31 2000-03-31 Contact charger manufacturing method, contact charger obtained by the method, charging method and image recording apparatus

Publications (2)

Publication Number Publication Date
JP2001281965A JP2001281965A (en) 2001-10-10
JP4089122B2 true JP4089122B2 (en) 2008-05-28

Family

ID=18613366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000098951A Expired - Fee Related JP4089122B2 (en) 2000-03-31 2000-03-31 Contact charger manufacturing method, contact charger obtained by the method, charging method and image recording apparatus

Country Status (1)

Country Link
JP (1) JP4089122B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8737884B2 (en) 2011-10-12 2014-05-27 Canon Kabushiki Kaisha Charging member and electrophotographic image forming apparatus

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887935B (en) 2000-08-22 2013-09-11 哈佛学院董事会 Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices
JP4583710B2 (en) 2000-12-11 2010-11-17 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ Nano sensor
EP1437379A1 (en) * 2003-01-09 2004-07-14 Borealis Technology Oy Article comprising stretched polymer composition with nanofillers
JP4454353B2 (en) * 2003-05-09 2010-04-21 昭和電工株式会社 Linear fine carbon fiber and resin composite using the same
EP1831973A2 (en) 2004-12-06 2007-09-12 The President and Fellows of Harvard College Nanoscale wire-based data storage
WO2006132659A2 (en) 2005-06-06 2006-12-14 President And Fellows Of Harvard College Nanowire heterostructures
WO2007145701A2 (en) * 2006-04-07 2007-12-21 President And Fellows Of Harvard College Nanoscale wire methods and devices
JP2007332271A (en) * 2006-06-15 2007-12-27 Miraial Kk Polymeric molded product
US7428402B2 (en) * 2006-07-26 2008-09-23 Xerox Corporation Carbon nanotube composites for blade cleaning in electrophotographic marking systems
WO2008033303A2 (en) 2006-09-11 2008-03-20 President And Fellows Of Harvard College Branched nanoscale wires
WO2008127314A1 (en) 2006-11-22 2008-10-23 President And Fellows Of Harvard College High-sensitivity nanoscale wire sensors
JP5391621B2 (en) 2008-09-25 2014-01-15 富士ゼロックス株式会社 Charging apparatus, image forming assembly using the same, and image forming apparatus
WO2011038228A1 (en) 2009-09-24 2011-03-31 President And Fellows Of Harvard College Bent nanowires and related probing of species
CN103921368B (en) * 2014-04-14 2016-06-29 北京航空航天大学 A kind of high-orientation carbon nanotube composite preform and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8737884B2 (en) 2011-10-12 2014-05-27 Canon Kabushiki Kaisha Charging member and electrophotographic image forming apparatus

Also Published As

Publication number Publication date
JP2001281965A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
JP4089122B2 (en) Contact charger manufacturing method, contact charger obtained by the method, charging method and image recording apparatus
JP6415221B2 (en) Charging roller and manufacturing method thereof
US4319831A (en) Cleaning device in a copying machine
US10777367B2 (en) Fibrous electrode with buckle structure, method of manufacturing the same, and supercapacitor including the same
EP0735436B1 (en) Charging member, and process cartridge and electrophotographic apparatus having the charging member
JP4452859B2 (en) Conductive multileaf fiber and electrophotographic brush using the same
EP0735438B1 (en) Charging member, process cartridge, and electrophotographic apparatus employing the charging member
US20130114978A1 (en) Charging member, electrophotographic image forming apparatus and electrophotographic image forming process
JP4484382B2 (en) Charger and image forming apparatus
JP2002278217A (en) Device and method for contact electrifying, image forming device, and process cartridge
JP4119072B2 (en) Contact-type charger and method for manufacturing the same
JP3769649B2 (en) Semiconductive fibers and their use
JP2694316B2 (en) Charging device
JP4155484B2 (en) Contact-type charger and image forming apparatus
JP2004279917A (en) Conductive part for image forming apparatus and image forming apparatus
JP2008101314A (en) Conductive polyester fiber and brush product made of the same
JP3332713B2 (en) Charging member, process cartridge having the charging member, and electrophotographic apparatus
JP2002287462A (en) Contact type electrifier, and image forming device and process cartridge using the contact type electrifier
JP2005273054A (en) Electrically conductive fiber, raised fabric for electrically conductive brush, and electrically conductive brush
JP2004251373A (en) Roll, sheet rolled body manufacturing method and sheet take-up device
JP2009174089A (en) Conductive polyester fiber and brush product made therefrom
US8737884B2 (en) Charging member and electrophotographic image forming apparatus
JP2002148901A (en) Electrifying device
JP3287760B2 (en) Charging member, process cartridge having the charging member, and electrophotographic apparatus
JP2003295583A (en) Electrostatic charging member, method for forming surface of electrostatic charging member, electrostatic charging device, and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees