JP4088889B2 - Tire contact surface measuring device and tire contact surface measuring method - Google Patents

Tire contact surface measuring device and tire contact surface measuring method Download PDF

Info

Publication number
JP4088889B2
JP4088889B2 JP2003189504A JP2003189504A JP4088889B2 JP 4088889 B2 JP4088889 B2 JP 4088889B2 JP 2003189504 A JP2003189504 A JP 2003189504A JP 2003189504 A JP2003189504 A JP 2003189504A JP 4088889 B2 JP4088889 B2 JP 4088889B2
Authority
JP
Japan
Prior art keywords
tire
contact surface
transparent plate
photographing
cylindrical portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003189504A
Other languages
Japanese (ja)
Other versions
JP2005024365A (en
Inventor
雅則 岩瀬
和彦 河村
亜貴人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2003189504A priority Critical patent/JP4088889B2/en
Publication of JP2005024365A publication Critical patent/JP2005024365A/en
Application granted granted Critical
Publication of JP4088889B2 publication Critical patent/JP4088889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アイス路面に対するタイヤの接地面を撮影することができるタイヤ接地面計測装置及びタイヤ接地面計測方法に関し、特にスタッドレスタイヤの接地形状の計測に有用である。
【0002】
【従来の技術】
タイヤの接地形状は、操縦安定性、騒音、乗心地等のタイヤ性能に大きな影響を及ぼすため、接地形状の計測やその数値化が重要視されている。しかし、スタッドレスタイヤは、使用条件として、通常の路面よりも摩擦係数が大幅に低いアイス路面が想定されるため、その開発を行う際に、実際の使用状況を再現したアイス路面での接地形状の把握が必要となる。
【0003】
一方、タイヤの接地形状を観察する方法としては、タイヤを回転させながら観察を行う方法と、タイヤを静止して観察を行う方法とがあり、実際の使用状況を再現する観点から、前者の方法が有効であるとされている。更に、タイヤを回転さる方法には、実車を使用してコース内の路面下方のピットから観察する方法や、タイヤを自由回転させながら平板路面を移動させる方法などが知られている。
【0004】
具体的には、実車を使用する方法としては、透明板上に顔料の水溶液の水膜を形成しておき、透明板上を実車のタイヤが通過する際に路面下方からタイヤ接地形状を撮影する方法が知られている(例えば、特許文献1参照)。この方法によると、顔料を使用するため、タイヤ接地形状の輪郭が明瞭になるという利点がある。
【0005】
【特許文献1】
特開2001−208653号公報(第2頁、図1)
【非特許文献1】
鵜木崇ら「自動車用タイヤのモデル化に関する研究」自動車技術会、学術講演会前刷集、1997年5月発行(第6頁、図12〜14)。
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1の方法では、アイス路面上に顔料水溶液を使用すると、アイス路面(通常、殆ど水分が存在しない)が適切に再現できず、このためアイス路面を再現して接地形状を観察することはできなかった。また、顔料水溶液を使用せずに、透明板上に氷層を形成して観察した場合、タイヤ接地形状の輪郭が不明瞭になるという問題があった。
【0007】
一方、非特許文献1には、タイヤを自由回転させながら平板路面を移動させ、平板路面に設けたアクリル板の下方から、タイヤ接地形状を撮影する方法が記載されている。このとき、アクリル板の側面から光を入射させることで、接地面圧によって輝度が変化し、これによって接地面圧の分布を知ることができる旨が記載されている。
【0008】
しかし、この方法では、長尺の平板路面を移動させるため、タイヤ接地形状の観察を超低速でしか行えないという問題がある。また、アイス路面を想定したタイヤ接地形状の観察については何ら言及されていない。
【0009】
そこで、本発明の目的は、アイス路面に対するタイヤ接地形状の輪郭を精度良く撮影して、好ましくは実走行に近い速度で計測することができるタイヤ接地面計測装置及びタイヤ接地面計測方法を提供することにある。
【0010】
【課題を解決するための手段】
上記目的は、下記の如き本発明により達成できる。
即ち、本発明のタイヤ接地面計測装置は、氷層を表面に形成した透明板と、その透明板及び/又は前記氷層の内部にこれと略平行な光を照射する光照射手段と、前記氷層の反対側からタイヤ接地面を撮影する撮影手段とを備えることを特徴とする。
【0011】
本発明のタイヤ接地面計測装置によると、氷層を表面に形成した透明板を備えるため、透明板を介してアイス路面に対するタイヤ接地形状を撮影手段で撮影することができる。このとき、透明板及び/又は前記氷層の内部にこれと略平行な光を照射する光照射手段を備えるため、氷層等の内部を全反射する光が、タイヤが接地した界面だけで透過する現象により、タイヤ接地形状の輪郭を精度良く撮影することができる。この現象を、図1(a)〜(b)に基づいて、説明する。従来、図1(b)に示すように、撮影手段6を配置する側から光照射手段5で光を照射していたが、この方法では照射した光が透明板1と氷層2を透過し、透過光がタイヤ3で反射し、再び透明板1と氷層2を透過して撮影手段6に到達するため、タイヤ3の接地界面3aだけでなくその周辺で反射した光も光量が変わらずに撮影され、このため接地形状の輪郭が明確に撮影できなかった。これに対して、本発明では、図1(a)に示すように、光照射手段5を用いて氷層2の内部にこれと略平行な光を照射するため、空気と氷の屈折率の違いによって氷層2の内部で光が全反射し、タイヤ3の接地界面3a以外では光が外部に出ない。このとき、タイヤ3の接地界面3aでは、ゴムの屈折率と氷の屈折率が近いため光がタイヤ側に透過する。これがタイヤ3で反射し、再び透明板1と氷層2を透過して撮影手段6に到達するため、タイヤ3の接地界面3aとその周辺とで光量が異なって撮影され、このため接地形状の輪郭が明確に撮影できる。図3には、本発明のタイヤ接地面計測装置(光照射は氷層の内部)により撮影したタイヤ接地面の静止写真を示しているが、接地形状の輪郭が明確になっている。
【0012】
また、透明板1と氷層2との界面では、空気が介在しないので全反射が起こりにくいため、透明板又は透明板及び氷層の内部にこれと略平行な光を照射する場合にも、上記と同様の作用効果が得られる。
【0013】
上記において、前記透明板が円筒部の少なくとも一部をなし、回転駆動が可能な回転式ドラムと、その円筒部の内面側にタイヤを回転状態で接地可能なタイヤ接地手段とを更に備えることが好ましい。この装置によると、タイヤ接地手段により回転式ドラムの円筒部の内面側にタイヤを接地させながら、円筒部を回転させることによって、車両走行時におけるタイヤの接地状態が再現できる。このとき、円筒部の一部をなす透明板を介して、その表面に形成した氷層に接地するタイヤの接地面を撮影することができる。
【0014】
また、前記透明板が円筒部の少なくとも一部をなし、回転駆動が可能な回転式ドラムと、その円筒部の内面にタイヤのトレッドサンプルを接地状態で支持可能なサンプル接地手段とを更に備えるものであってもよい。この装置によると、回転式ドラムの円筒部を回転させながら、サンプル接地手段によりトレッドサンプルを円筒部の内面に接地状態で支持することにより、スリップ状態におけるタイヤの接地状態が再現できる。このとき、円筒部の一部をなす透明板を介して、その表面に形成した氷層に接地するタイヤの接地面を撮影することができる。
【0015】
前記透明板は前記円筒部の周方向の一部に設けられると共に、前記撮影手段は送られた信号に応じて静止画を撮影するものであり、更に、前記回転式ドラムの回転位置を検出して前記撮影手段に対して撮影のタイミングを決める信号を送る位置検出手段を備えることが好ましい。
【0016】
回転式ドラムの強度や耐久性を考慮すると、前記透明板は円筒部の周方向の一部に設けることが望ましいが、静止画を撮影する場合には、タイミング良く撮影を行う必要がある。従って、上記のように回転位置を検出して撮影のタイミングを決める信号を送る位置検出手段を備えることにより、タイミング良く静止画を撮影することができる。
【0017】
一方、本発明のタイヤ接地面計測方法は、氷層が表面に形成される透明板と、その透明板及び/又は前記氷層の内部にこれと略平行な光を照射する光照射手段と、前記氷層の反対側からタイヤ接地面を撮影する撮影手段と、前記透明板が円筒部の少なくとも一部をなして回転駆動が可能な回転式ドラムと、その円筒部の内面側にタイヤを回転状態で接地可能なタイヤ接地手段とを備えるタイヤ接地面計測装置を用いて、前記回転式ドラムの円筒部の内周面に氷層を形成した後、前記光照射手段により光を照射しつつ、前記回転式ドラムを回転駆動しながら、前記撮影手段で透明板を介してタイヤ接地面を撮影することを特徴とする。
【0018】
このタイヤ接地面計測方法によると、回転式ドラムの円筒部の内周面に氷層が形成されるため、透明板を介してアイス路面に対するタイヤ接地形状を撮影することができる。このとき、透明板及び/又は前記氷層の内部にこれと略平行な光を照射する光照射手段を備えるため、氷層等の内部を全反射する光が、タイヤが接地した界面だけで透過する現象により、タイヤ接地形状の輪郭を精度良く撮影することができる。その際、タイヤ接地手段により回転式ドラムの円筒部の内面側にタイヤを接地させながら、円筒部を回転させることによって、車両走行時におけるタイヤの接地状態が再現できる。
【0019】
上記において、前記タイヤ接地手段により、タイヤに制動力又は駆動力を負荷しながら、前記タイヤ接地面の撮影を行うことが好ましい。これにより、車両の制動状態や駆動状態におけるタイヤの接地状態が再現でき、その際のタイヤ接地形状の輪郭を精度良く撮影することができる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。図1(a)は、本発明のタイヤ接地面計測装置の要部を示す図であり、図2は、本発明のタイヤ接地面計測装置の一例を示す概略構成図である。
【0021】
本発明のタイヤ接地面計測装置は、図1(a)に示すように、氷層2を表面に形成した透明板1と、その透明板1及び/又は前記氷層2の内部にこれと略平行な光を照射する光照射手段5と、前記氷層2の反対側からタイヤ接地面を撮影する撮影手段6とを備える。本実施形態では、図2に示すように、円筒部11を有し回転駆動が可能な回転式ドラム10と、その円筒部11の内面側にタイヤを回転状態で接地可能なタイヤ接地手段20とを更に備える装置の例を示す。
【0022】
透明板1は円筒部11の周方向の少なくとも一部に設けられていればよいが、全体の強度や耐久性を考慮すると、円筒部11の周方向の一部に設けるのが好ましい。透明板1を設ける幅は、タイヤ3の接地界面3aの幅より大きければよい。
【0023】
透明板1は、無色透明または有色透明の何れでもよいが、無色透明のものを使用するのが好ましい。また、ある程度の強度を有し、透明板1の屈折率nD が、氷の屈折率nD (約1.3)に近いものが好ましく、屈折率nD が1.3〜1.55のものが好ましい。透明板1としては、強化ガラス等の無機ガラス板、ポリ塩化ビニル、ポリスチレン、アクリル系樹脂、ポリカーボネート等のプラスチック板、無機結晶板などが挙げられる。透明板1の厚みは、ある程度の強度を確保しつつ全反射を行う上で、20〜50mmが好ましい。
【0024】
氷層2は、透明板1の表面に空気を介在させずに形成するのが好ましい。また、氷層2の表面は凹凸のないフラットな表面にするのが好ましい。このような表面を形成するには、回転式ドラム10の円筒部11をゆっくりと回転させながら、氷層2を形成するのが効果的である。円筒部11の両側には内周側に立設された環状壁が設けられており、この環状壁によって氷になる前の水が円筒部11の内面に溜まるようになっている。
【0025】
また、回転式ドラム10を回転しながらタイヤ接地面の撮影を行うと、氷層2の表面が削れて凹凸が生じる。このため、続けて別のタイヤのタイヤ接地面を撮影する場合、表面の氷を切削して平坦にすることが望ましい。従って、本発明のタイヤ接地面計測装置は、回転式ドラム10の円筒部11の内周面に形成された氷層2を平坦化する切削手段(図示省略)を更に備えることが好ましい。切削手段は、回転式の切削刃、研磨ベルト、研磨布などを備え、好ましくは切削した氷片を吸引する吸引装置を有している。
【0026】
本実施形態では、透明板1の内面に位置する氷層部分2aの側面に対向して配置した光照射手段5(図2では図示省略)を用いて、その内部に氷層部分2aと略平行な光を照射する。本発明では、透明板1又は氷層2の少なくとも何れかに照射を行えばよい。光照射手段5としては、出射方向を制御する反射板5aやレンズなどを備えた、蛍光灯、LED、電球などが使用できる。
【0027】
氷層部分2aの側面には、前記のような環状壁が設けられるが、その少なくとも一部を透明体で形成しておくことで、氷層部分2aの側面から光を照射することができる。本発明においては、光照射手段5からの光の一部が、直接タイヤ3を照射するようにしてもよい。この場合、タイヤ3で反射した光が撮影手段6で撮影されるが、側面からの光によるタイヤ3からの反射は白色(輝度が高い)になり、氷層2との接地界面3aからの反射と明確に異なるため、接地形状の輪郭は、明確に判別できる。
【0028】
撮影手段6は、氷層2の反対側から透明板1を介してタイヤ接地面を撮影できる位置に配置される。撮影手段6としては、CCDカメラ、ビデオカメラ、高速度カメラなどが使用できるが、静止画を撮影する場合には、CCDカメラ(デジタルカメラを含む)が有効である。CCDカメラは、一般に画像入力ボードを介して、パーソナルコンピュータ8に接続され、そこからの信号によって、直接、静止画の撮影時期を制御することができる。この形態では、CCDカメラとパーソナルコンピュータ8とによって撮影手段が構成される。
【0029】
撮影手段6は、連続的に動画の撮影を行うものでもよいが、本実施形態では、撮影手段6として、送られた信号に応じて静止画を撮影する例を示す。撮影した画像データは、必要により画像入力ボードなどを介して、パーソナルコンピュータ8に取り込まれ、この画像データに基づいて、接地形状の輪郭、面積などを数値化することが可能となる。
【0030】
転動画像の撮影を行う場合、回転式ドラム10の回転位置を検出して撮影手段6に対して撮影のタイミングを決める信号を送る位置検出手段7を備えることが好ましい。本実施形態では、位置検出手段7からの信号が、直接パーソナルコンピュータ8に送られる例を示しているが、CCDカメラの中継ボックス(図示省略)に撮影のタイミングを決める信号(トリガー信号)を送ることで、CCDカメラによる撮影を行ってもよい。また、光照射手段5による光の照射を、撮影のタイミングに合わせて行ってもよい。
【0031】
位置検出手段7としては、回転式ドラム10の回転位置を検出できればよく、光学式センサ、磁気センサ、接触式センサなど利用した装置が何れも使用できる。例えば、回転式ドラム10の円筒部11の外周面の1箇所に遮光板を設けて、これがフォトインタラプタ(フォトカップラ)を通過することで、回転式ドラム10の回転位置を検出することができる。
【0032】
このような信号によって、パーソナルコンピュータ8からの信号で、転動画像の撮影時期を制御することができる。
【0033】
回転式ドラム10は、円筒部11の回転駆動が可能な支持機構と駆動機構とを備えていれば、何れの装置形態でもよい。図示した例では、円筒部11の回転軸12が片持ち支持されており、基台14上に設けた駆動機構13によって、円筒部11の回転駆動が行われる。
【0034】
タイヤ接地手段20は、タイヤ3又はホイルの取付部を有し、円筒部11の内面側にタイヤ3を回転状態で接地できればよく、単にタイヤ3を従動支持できるものでもよい。本発明では、タイヤ3に制動力又は駆動力を負荷できるように、タイヤ接地手段20が駆動機構や制動機構を有することが好ましい。駆動機構としては電動モータ等が挙げられ、制動機構としては、電動モータを用いて制動トルクをかける方法や各種のブレーキ手段が挙げられる。
【0035】
また、タイヤ接地手段20は、所定の負荷が係るように接地面に対して垂直に力をかける荷重負荷機構を有することが好ましい。この機構としては、油圧装置や弾性復元力を利用した装置などが挙げられる。また、荷重を計測するための計測器を設けてもよい。
【0036】
更に、タイヤ接地手段20には、スリップ角、キャンバー角などを付与できるようにしてもよい。その場合、スリップ角やキャンバー角が生じるように、ホイル軸を傾斜させる機構をタイヤ接地手段20が備えればよい。
【0037】
次に、以上のようなタイヤ接地面計測装置を用いた本発明の計測方法について説明する。本発明の計測方法は、回転式ドラム10の円筒部11の内周面に氷層2を形成した後、光照射手段5により光を照射しつつ、回転式ドラム10を回転駆動しながら、撮影手段6で透明板1を介してタイヤ接地面を撮影するものである。但し、本発明の計測装置は、回転式ドラム10を回転させずに、静止した状態でタイヤ接地面を撮影する場合にも使用できる。
【0038】
回転式ドラム10を回転駆動させて定常走行を再現する場合、タイヤ接地手段20で接地させたタイヤ3は、回転式ドラム10と同じ速度で回転駆動させるか、または自由回転させるのが好ましい。また、駆動時走行を再現する場合、接地させたタイヤ3を回転式ドラム10より速く回転駆動し、制動時走行を再現する場合、接地させたタイヤ3に対して、電動モータを用いて制動トルクをかければよい。
【0039】
本発明のタイヤ接地面計測装置を用いると、スリップ率と接地形状の関係を調べるための制動試験を行うことができる。その場合、図6に示すように、回転式ドラム10の速度(内周面を回転周速)を一定にしておき、電動モータを制御してタイヤ3の速度(周速)を徐々に低下させる。これによって、スリップ率を例えば0〜1まで変化させることができ、任意のスリップ率での接地形状を計測することができる。
【0040】
本発明では、回転式ドラム10を使用することにより、実走行に近い条件でタイヤ接地面を計測することができる。例えば、回転式ドラム10の内周面を回転周速40km/hr以上で回転させ、その状態でのタイヤ接地面を撮影することが可能である。また、内周面の回転周速を5km/hr程度の低速に制御することも可能であり、幅広い速度でタイヤ接地面を撮影することができる。
【0041】
[他の実施形態]
(1)前述の実施形態では、タイヤ接地手段により回転式ドラムの内面側にタイヤを接地する例を示したが、本発明では、タイヤ接地手段の代わりに、図4に示すように、回転式ドラム10の円筒部11の内面に、タイヤのトレッドサンプル26を接地状態で支持可能なサンプル接地手段25を備えるものでもよい。
【0042】
サンプル接地手段25は、油圧シリンダー25aおよびその可動部先端に着脱自在に設けられた支持板26aを備える。トレッドサンプル26としては、トレッドのブロック単位、接地部の一部、接地部全体などが使用でき、これらが支持板26aに接着される。支持板26aはタイヤの外面形状に合わせて曲面で形成されていてもよく、また、トレッドサンプル26との間に弾性体を介在させて、空気圧を再現できるようにしてもよい。
【0043】
この装置を用いる場合、回転式ドラム10の円筒部11の内周面に氷層2を形成した後、光照射手段5により光を照射しつつ、回転式ドラム11を静止又は回転駆動しながら、サンプル接地手段25によりトレッドサンプル26を接地させて、撮影手段6で透明板1を介してタイヤ接地面を撮影することができる。
【0044】
(2)前述の実施形態では、図1(a)に示すように、光照射手段5を用いて氷層2の内部にこれと略平行な光を照射する例を示したが、本発明では、図5(a)〜(c)に示すような方法で、光照射手段5から光を照射してもよい。
【0045】
例えば、図5(a)に示すように、光照射手段5を用いて透明板1の内部にこれと略平行な光を照射したり、図5(b)〜(c)に示すように、氷層2の側に光照射手段5を配置すると共に、氷層2又は透明板1の内部に傾斜して配置した反射鏡5cで光を反射させて、内部に略平行な光を照射してもよい。反射鏡5cの傾斜角度としては30〜60°が好ましく、45°付近が最も好ましい。反射鏡5cは、曲面タイプでもよい。
【0046】
(3)前述の実施形態では、回転式ドラムを備えるタイヤ接地面計測装置の例を示したが、本発明では、回転式ドラムの代わりに円盤状又は長尺状の平板を用いてもよい。また、実車を使用してコース内の路面下方のピットから観察する際に、氷層を表面に形成した透明板を介して、氷層の反対側からタイヤ接地面を撮影する撮影手段と、その透明板及び/又は前記氷層の内部にこれと略平行な光を照射する光照射手段とを設けてもよい。
【0047】
(4)前述の実施形態では、回転式ドラムの円筒部の内面の全体に氷層を形成する例を示したが、静止画像だけなら、透明板の部分だけでも良く、転動画像を撮る場合は、ドラム内面全周に氷層が形成されているのが好ましい。
【図面の簡単な説明】
【図1】本発明のタイヤ接地面計測装置(a)の作用を、従来装置(b)と比較して説明するための説明図
【図2】本発明のタイヤ接地面計測装置の一例を示す概略構成図
【図3】本発明のタイヤ接地面計測装置により撮影したタイヤ接地面の一例を示す写真(接地境界付近の接地形状写真)
【図4】本発明のタイヤ接地面計測装置の他の例を示す概略構成図
【図5】本発明のタイヤ接地面計測装置の要部の他の例を示す要部拡大図
【図6】スリップ率と接地形状の関係を調べるための制動試験の概念図
【符号の説明】
1 透明板
2 氷層
3 タイヤ
3a タイヤの接地界面
5 光照射手段
6 撮影手段
7 位置検出手段
10 回転式ドラム
11 円筒部
20 タイヤ接地手段
25 サンプル接地手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tire contact surface measuring device and a tire contact surface measuring method capable of photographing a tire contact surface with respect to an ice road surface, and is particularly useful for measuring a contact shape of a studless tire.
[0002]
[Prior art]
Since the ground contact shape of a tire has a great influence on the tire performance such as steering stability, noise, and riding comfort, measurement of the ground contact shape and its quantification are regarded as important. However, since it is assumed that studless tires are used on ice road surfaces, the friction coefficient of which is significantly lower than that of normal road surfaces, the ground contact shape on the ice road surface that reproduces the actual usage conditions is assumed when developing the studless tire. Understanding is required.
[0003]
On the other hand, as a method of observing the ground contact shape of the tire, there are a method of observing while rotating the tire and a method of observing with the tire stationary, and the former method from the viewpoint of reproducing the actual use situation Is considered effective. Furthermore, as a method of rotating the tire, a method of observing from a pit below the road surface in the course using an actual vehicle, a method of moving a flat road surface while freely rotating the tire, and the like are known.
[0004]
Specifically, as a method of using an actual vehicle, a water film of an aqueous solution of a pigment is formed on a transparent plate, and the tire ground contact shape is photographed from below the road surface when the actual vehicle tire passes on the transparent plate. A method is known (see, for example, Patent Document 1). According to this method, since the pigment is used, there is an advantage that the outline of the tire ground contact shape becomes clear.
[0005]
[Patent Document 1]
JP 2001-208653 A (2nd page, FIG. 1)
[Non-Patent Document 1]
Takashi Takagi et al. “Research on modeling of tires for automobiles” published by the Society of Automotive Engineers of Japan, Academic Lecture Preprint, May 1997 (6th page, FIGS. 12-14).
[0006]
[Problems to be solved by the invention]
However, in the method of Patent Document 1, when an aqueous pigment solution is used on the ice road surface, the ice road surface (usually almost no moisture is present) cannot be properly reproduced. For this reason, the ice road surface is reproduced to observe the ground contact shape. I couldn't. Further, when an ice layer is formed on a transparent plate and observed without using an aqueous pigment solution, there is a problem that the outline of the tire ground contact shape becomes unclear.
[0007]
On the other hand, Non-Patent Document 1 describes a method of moving a flat road surface while freely rotating a tire and photographing a tire ground contact shape from below an acrylic plate provided on the flat road surface. At this time, it is described that when light is incident from the side surface of the acrylic plate, the luminance is changed by the contact surface pressure, and thereby the distribution of the contact surface pressure can be known.
[0008]
However, this method has a problem that since the long flat road surface is moved, the tire ground contact shape can be observed only at an extremely low speed. In addition, there is no mention of observation of the tire ground contact shape assuming an ice road surface.
[0009]
Accordingly, an object of the present invention is to provide a tire contact surface measurement device and a tire contact surface measurement method that can accurately photograph the contour of a tire contact surface shape with respect to an ice road surface, and preferably measure at a speed close to actual driving. There is.
[0010]
[Means for Solving the Problems]
The above object can be achieved by the present invention as described below.
That is, the tire ground contact surface measuring device of the present invention comprises a transparent plate having an ice layer formed on the surface thereof, a light irradiating means for irradiating the transparent plate and / or the inside of the ice layer with light substantially parallel thereto, And a photographing means for photographing the tire ground contact surface from the opposite side of the ice layer.
[0011]
According to the tire contact surface measuring apparatus of the present invention, since the transparent plate having the ice layer formed on the surface is provided, the tire contact shape with respect to the ice road surface can be photographed by the photographing means through the transparent plate. At this time, since the transparent plate and / or the light irradiating means for irradiating light substantially parallel to the inside of the ice layer is provided, the light totally reflected inside the ice layer or the like is transmitted only at the interface where the tire is grounded. Due to this phenomenon, the contour of the tire ground contact shape can be accurately photographed. This phenomenon will be described with reference to FIGS. Conventionally, as shown in FIG. 1 (b), light is irradiated by the light irradiation means 5 from the side where the photographing means 6 is arranged. In this method, the irradiated light passes through the transparent plate 1 and the ice layer 2. Since the transmitted light is reflected by the tire 3 and again passes through the transparent plate 1 and the ice layer 2 and reaches the photographing means 6, the amount of light reflected not only at the ground contact interface 3 a of the tire 3 but also at the periphery thereof does not change. Therefore, the outline of the ground contact shape could not be clearly photographed. On the other hand, in the present invention, as shown in FIG. 1 (a), the light irradiation means 5 is used to irradiate the inside of the ice layer 2 with light substantially parallel thereto, so that the refractive index of air and ice is reduced. Due to the difference, the light is totally reflected inside the ice layer 2, and the light does not go outside except the ground interface 3 a of the tire 3. At this time, since the refractive index of rubber and the refractive index of ice are close to each other at the ground contact interface 3a of the tire 3, light is transmitted to the tire side. This is reflected by the tire 3 and again passes through the transparent plate 1 and the ice layer 2 to reach the photographing means 6, so that the grounding interface 3a of the tire 3 and its surroundings are photographed with different amounts of light. The outline can be clearly photographed. FIG. 3 shows a still photograph of the tire contact surface photographed by the tire contact surface measuring device of the present invention (light irradiation is inside the ice layer), and the contour of the contact shape is clear.
[0012]
In addition, since there is no air at the interface between the transparent plate 1 and the ice layer 2, total reflection is unlikely to occur. Therefore, even when light that is substantially parallel to the inside of the transparent plate or the transparent plate and the ice layer is irradiated, The same effect as described above can be obtained.
[0013]
In the above, the transparent plate further includes at least a part of a cylindrical portion, and further includes a rotary drum that can be driven to rotate, and a tire grounding means that can ground the tire in a rotating state on the inner surface side of the cylindrical portion. preferable. According to this apparatus, the ground contact state of the tire during vehicle travel can be reproduced by rotating the cylindrical portion while grounding the tire on the inner surface side of the cylindrical portion of the rotary drum by the tire ground contact means. At this time, the contact surface of the tire that contacts the ice layer formed on the surface of the tire can be photographed through the transparent plate forming a part of the cylindrical portion.
[0014]
The transparent plate further comprises at least a part of a cylindrical part, and a rotary drum capable of being driven to rotate, and a sample grounding means capable of supporting a tread sample of a tire on the inner surface of the cylindrical part in a grounded state. It may be. According to this apparatus, the ground contact state of the tire in the slip state can be reproduced by supporting the tread sample on the inner surface of the cylindrical portion by the sample grounding means while rotating the cylindrical portion of the rotary drum. At this time, the contact surface of the tire that contacts the ice layer formed on the surface of the tire can be photographed through the transparent plate forming a part of the cylindrical portion.
[0015]
The transparent plate is provided in a part of the cylindrical portion in the circumferential direction, and the photographing means photographs a still image in response to a sent signal, and further detects a rotational position of the rotary drum. It is preferable that the apparatus further comprises position detecting means for sending a signal for determining the photographing timing to the photographing means.
[0016]
Considering the strength and durability of the rotary drum, it is desirable to provide the transparent plate in a part of the cylindrical portion in the circumferential direction. However, when taking a still image, it is necessary to take an image with good timing. Therefore, a still image can be taken with good timing by providing the position detecting means for detecting the rotational position and sending the signal for determining the shooting timing as described above.
[0017]
On the other hand, the tire contact surface measurement method of the present invention includes a transparent plate on which an ice layer is formed, a light irradiating means for irradiating the transparent plate and / or the inside of the ice layer with light substantially parallel thereto, A photographing means for photographing the tire ground contact surface from the opposite side of the ice layer, a rotary drum in which the transparent plate forms at least a part of the cylindrical portion and which can be driven to rotate, and the tire is rotated to the inner surface side of the cylindrical portion. After forming an ice layer on the inner peripheral surface of the cylindrical portion of the rotary drum, using a tire ground contact surface measuring device equipped with a tire ground contact means capable of ground contact in a state, while irradiating light by the light irradiation means, While the rotary drum is driven to rotate, the photographing means photographs a tire ground contact surface through a transparent plate.
[0018]
According to this tire contact surface measurement method, since an ice layer is formed on the inner peripheral surface of the cylindrical portion of the rotary drum, it is possible to photograph the tire contact shape with respect to the ice road surface through the transparent plate. At this time, since the transparent plate and / or the light irradiating means for irradiating light substantially parallel to the inside of the ice layer is provided, the light totally reflected inside the ice layer or the like is transmitted only at the interface where the tire is grounded. Due to this phenomenon, the contour of the tire ground contact shape can be accurately photographed. At that time, the ground contact state of the tire during traveling of the vehicle can be reproduced by rotating the cylindrical portion while grounding the tire on the inner surface side of the cylindrical portion of the rotary drum by the tire ground contact means.
[0019]
In the above, it is preferable that the tire contact surface is photographed while applying a braking force or a driving force to the tire. Thereby, the ground contact state of the tire in the braking state and the drive state of the vehicle can be reproduced, and the contour of the tire ground contact shape at that time can be accurately photographed.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Fig.1 (a) is a figure which shows the principal part of the tire contact surface measuring device of this invention, and FIG. 2 is a schematic block diagram which shows an example of the tire contact surface measuring device of this invention.
[0021]
As shown in FIG. 1 (a), the tire ground contact surface measuring device of the present invention has a transparent plate 1 having an ice layer 2 formed on the surface thereof, and the transparent plate 1 and / or the ice layer 2 inside. The light irradiation means 5 which irradiates parallel light, and the imaging | photography means 6 which image | photographs a tire ground-contact surface from the other side of the said ice layer 2 are provided. In the present embodiment, as shown in FIG. 2, a rotary drum 10 having a cylindrical portion 11 that can be rotationally driven, and a tire grounding means 20 that can ground a tire on the inner surface side of the cylindrical portion 11 in a rotating state. An example of an apparatus further comprising:
[0022]
Although the transparent plate 1 should just be provided in at least one part of the circumferential direction of the cylindrical part 11, when the whole intensity | strength and durability are considered, providing in a part of the circumferential direction of the cylindrical part 11 is preferable. The width for providing the transparent plate 1 may be larger than the width of the ground contact interface 3 a of the tire 3.
[0023]
The transparent plate 1 may be either colorless and transparent or colored and transparent, but it is preferable to use a colorless and transparent one. Moreover, it has a certain amount of strength, and the refractive index n D of the transparent plate 1 is preferably close to the refractive index n D of ice (about 1.3), and the refractive index n D is 1.3 to 1.55. Those are preferred. Examples of the transparent plate 1 include inorganic glass plates such as tempered glass, plastic plates such as polyvinyl chloride, polystyrene, acrylic resin, and polycarbonate, inorganic crystal plates, and the like. The thickness of the transparent plate 1 is preferably 20 to 50 mm for total reflection while ensuring a certain level of strength.
[0024]
The ice layer 2 is preferably formed on the surface of the transparent plate 1 without interposing air. The surface of the ice layer 2 is preferably a flat surface with no irregularities. In order to form such a surface, it is effective to form the ice layer 2 while slowly rotating the cylindrical portion 11 of the rotary drum 10. Annular walls standing on the inner periphery are provided on both sides of the cylindrical part 11, and water before becoming ice accumulates on the inner surface of the cylindrical part 11 by the annular wall.
[0025]
When the tire ground contact surface is photographed while the rotary drum 10 is rotated, the surface of the ice layer 2 is shaved and uneven. For this reason, when photographing the tire ground contact surface of another tire in succession, it is desirable to cut the surface ice to make it flat. Therefore, the tire contact surface measuring device of the present invention preferably further includes a cutting means (not shown) for flattening the ice layer 2 formed on the inner peripheral surface of the cylindrical portion 11 of the rotary drum 10. The cutting means includes a rotary cutting blade, a polishing belt, a polishing cloth, and the like, and preferably has a suction device that sucks the cut ice pieces.
[0026]
In the present embodiment, the light irradiation means 5 (not shown in FIG. 2) disposed opposite to the side surface of the ice layer portion 2a located on the inner surface of the transparent plate 1 is used, and the inside thereof is substantially parallel to the ice layer portion 2a. Irradiate light. In the present invention, at least one of the transparent plate 1 and the ice layer 2 may be irradiated. As the light irradiating means 5, a fluorescent lamp, an LED, a light bulb or the like provided with a reflecting plate 5a for controlling the emission direction, a lens, or the like can be used.
[0027]
The annular wall as described above is provided on the side surface of the ice layer portion 2a. By forming at least a part thereof with a transparent body, light can be irradiated from the side surface of the ice layer portion 2a. In the present invention, a part of the light from the light irradiation means 5 may directly irradiate the tire 3. In this case, the light reflected by the tire 3 is photographed by the photographing means 6, but the reflection from the tire 3 by the light from the side surface is white (high brightness), and the reflection from the ground interface 3 a with the ice layer 2. Therefore, the contour of the ground contact shape can be clearly distinguished.
[0028]
The photographing means 6 is arranged at a position where the tire contact surface can be photographed via the transparent plate 1 from the opposite side of the ice layer 2. As the photographing means 6, a CCD camera, a video camera, a high-speed camera or the like can be used, but a CCD camera (including a digital camera) is effective when photographing a still image. The CCD camera is generally connected to the personal computer 8 via an image input board, and the shooting timing of still images can be directly controlled by signals from the CCD camera. In this embodiment, the CCD camera and the personal computer 8 constitute a photographing means.
[0029]
Although the photographing unit 6 may continuously shoot moving images, the present embodiment shows an example in which a still image is photographed as the photographing unit 6 in accordance with a transmitted signal. The captured image data is taken into the personal computer 8 via an image input board or the like as necessary, and the contour, area, etc. of the ground contact shape can be digitized based on this image data.
[0030]
When shooting a rolling image, it is preferable to include position detection means 7 for detecting the rotational position of the rotary drum 10 and sending a signal for determining the shooting timing to the imaging means 6. In the present embodiment, an example is shown in which the signal from the position detection means 7 is sent directly to the personal computer 8, but a signal (trigger signal) for determining the shooting timing is sent to a relay box (not shown) of the CCD camera. Thus, photographing with a CCD camera may be performed. Further, the light irradiation by the light irradiation means 5 may be performed in accordance with the photographing timing.
[0031]
As the position detecting means 7, it is only necessary to detect the rotational position of the rotary drum 10, and any device using an optical sensor, a magnetic sensor, a contact sensor, or the like can be used. For example, a light shielding plate is provided at one location on the outer peripheral surface of the cylindrical portion 11 of the rotary drum 10, and the rotational position of the rotary drum 10 can be detected by passing through a photo interrupter (photo coupler).
[0032]
With such a signal, it is possible to control the shooting time of the rolling image with a signal from the personal computer 8.
[0033]
The rotary drum 10 may be in any device form as long as it includes a support mechanism and a drive mechanism capable of rotationally driving the cylindrical portion 11. In the illustrated example, the rotating shaft 12 of the cylindrical portion 11 is cantilevered, and the cylindrical portion 11 is rotationally driven by the drive mechanism 13 provided on the base 14.
[0034]
The tire grounding means 20 may include a tire 3 or a wheel mounting portion, and may simply ground the tire 3 on the inner surface side of the cylindrical portion 11 in a rotating state. In the present invention, the tire ground contact means 20 preferably has a drive mechanism or a brake mechanism so that a braking force or a driving force can be applied to the tire 3. Examples of the driving mechanism include an electric motor, and examples of the braking mechanism include a method of applying a braking torque using an electric motor and various brake means.
[0035]
Moreover, it is preferable that the tire ground contact means 20 has a load loading mechanism that applies a force perpendicular to the ground contact surface so that a predetermined load is applied. Examples of this mechanism include a hydraulic device and a device using an elastic restoring force. Moreover, you may provide the measuring device for measuring a load.
[0036]
Further, the tire ground contact means 20 may be provided with a slip angle, a camber angle, or the like. In that case, the tire ground contact means 20 may be provided with a mechanism for tilting the wheel shaft so that a slip angle or a camber angle is generated.
[0037]
Next, the measurement method of the present invention using the tire ground contact surface measuring device as described above will be described. In the measuring method of the present invention, after forming the ice layer 2 on the inner peripheral surface of the cylindrical portion 11 of the rotary drum 10, photographing is performed while irradiating the light by the light irradiating means 5 and rotating the rotary drum 10. The means 6 photographs the tire ground contact surface through the transparent plate 1. However, the measuring device of the present invention can also be used when photographing the tire contact surface in a stationary state without rotating the rotary drum 10.
[0038]
When the rotary drum 10 is rotationally driven to reproduce steady running, the tire 3 grounded by the tire grounding means 20 is preferably rotationally driven at the same speed as the rotary drum 10 or freely rotated. In addition, when reproducing the driving travel time, the grounded tire 3 is driven to rotate faster than the rotary drum 10 and when the braking travel time is reproduced, the braking torque is applied to the grounded tire 3 using an electric motor. You can take it.
[0039]
When the tire contact surface measuring device of the present invention is used, a braking test for examining the relationship between the slip ratio and the contact shape can be performed. In this case, as shown in FIG. 6, the speed of the rotary drum 10 (the inner peripheral surface is the rotational peripheral speed) is kept constant, and the electric motor is controlled to gradually decrease the speed of the tire 3 (peripheral speed). . As a result, the slip ratio can be changed from 0 to 1, for example, and the ground contact shape at an arbitrary slip ratio can be measured.
[0040]
In the present invention, by using the rotary drum 10, the tire contact surface can be measured under conditions close to actual running. For example, it is possible to rotate the inner peripheral surface of the rotary drum 10 at a rotational peripheral speed of 40 km / hr or more and take a picture of the tire ground contact surface in that state. Further, the rotational peripheral speed of the inner peripheral surface can be controlled to a low speed of about 5 km / hr, and the tire contact surface can be photographed at a wide speed.
[0041]
[Other Embodiments]
(1) In the above-described embodiment, an example in which the tire is grounded on the inner surface side of the rotary drum by the tire grounding means has been shown. However, in the present invention, as shown in FIG. A sample grounding means 25 capable of supporting the tire tread sample 26 in a grounded state may be provided on the inner surface of the cylindrical portion 11 of the drum 10.
[0042]
The sample grounding means 25 includes a hydraulic cylinder 25a and a support plate 26a detachably provided at the distal end of the movable part. As the tread sample 26, a tread block unit, a part of the grounding portion, the entire grounding portion, or the like can be used, and these are bonded to the support plate 26a. The support plate 26a may be formed in a curved surface according to the outer surface shape of the tire, or an elastic body may be interposed between the support plate 26a and the tread sample 26 so that the air pressure can be reproduced.
[0043]
When using this apparatus, after forming the ice layer 2 on the inner peripheral surface of the cylindrical portion 11 of the rotary drum 10, while irradiating light by the light irradiation means 5, while rotating or rotating the rotary drum 11, The tread sample 26 can be grounded by the sample grounding means 25, and the tire grounding surface can be photographed by the photographing means 6 through the transparent plate 1.
[0044]
(2) In the above-described embodiment, as shown in FIG. 1A, the example in which the light irradiation means 5 is used to irradiate the ice layer 2 with light substantially parallel thereto is shown. The light irradiation means 5 may irradiate light by a method as shown in FIGS.
[0045]
For example, as shown in FIG. 5A, the light irradiation means 5 is used to irradiate the inside of the transparent plate 1 with light substantially parallel thereto, as shown in FIGS. 5B to 5C, The light irradiating means 5 is disposed on the ice layer 2 side, and the light is reflected by the reflecting mirror 5c disposed in an inclined manner inside the ice layer 2 or the transparent plate 1 so as to irradiate substantially parallel light therein. Also good. The inclination angle of the reflecting mirror 5c is preferably 30 to 60 °, and most preferably around 45 °. The reflecting mirror 5c may be a curved surface type.
[0046]
(3) In the above-described embodiment, an example of a tire ground contact surface measuring device including a rotary drum has been described. However, in the present invention, a disk-shaped or elongated flat plate may be used instead of the rotary drum. In addition, when observing from the pit below the road surface in the course using a real vehicle, the photographing means for photographing the tire ground contact surface from the opposite side of the ice layer through a transparent plate formed on the surface of the ice layer, and its You may provide the transparent plate and / or the light irradiation means which irradiates the light substantially parallel to this inside the ice layer.
[0047]
(4) In the above-described embodiment, an example in which an ice layer is formed on the entire inner surface of the cylindrical portion of the rotary drum has been shown. However, if only a still image is used, only a transparent plate may be used, and a rolling image is taken. It is preferable that an ice layer is formed on the entire inner surface of the drum.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram for explaining the operation of a tire contact surface measuring device (a) according to the present invention in comparison with a conventional device (b). FIG. 2 shows an example of a tire contact surface measuring device according to the present invention. Schematic configuration diagram [FIG. 3] A photograph showing an example of a tire contact surface photographed by the tire contact surface measuring device of the present invention (contact shape photograph near the contact boundary)
FIG. 4 is a schematic configuration diagram showing another example of a tire contact surface measuring apparatus according to the present invention. FIG. 5 is an enlarged view of a main part showing another example of the main part of the tire contact surface measuring apparatus according to the present invention. Conceptual diagram of braking test to investigate the relationship between slip ratio and ground contact shape [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Transparent board 2 Ice layer 3 Tire 3a Tire ground interface 5 Light irradiation means 6 Image | photographing means 7 Position detection means 10 Rotary drum 11 Cylindrical part 20 Tire grounding means 25 Sample grounding means

Claims (6)

氷層を表面に形成した透明板と、その透明板及び/又は前記氷層の内部にこれと略平行な光を照射する光照射手段と、前記氷層の反対側からタイヤ接地面を撮影する撮影手段とを備えるタイヤ接地面計測装置。Photographing a tire ground contact surface from the opposite side of the ice plate, a transparent plate having an ice layer formed on the surface, light irradiating means for irradiating the transparent plate and / or the inside of the ice layer with light substantially parallel thereto. A tire ground contact surface measuring device comprising photographing means. 前記透明板が円筒部の少なくとも一部をなし回転駆動が可能な回転式ドラムと、その円筒部の内面側にタイヤを回転状態で接地可能なタイヤ接地手段とを更に備える請求項1記載のタイヤ接地面計測装置。The tire according to claim 1, further comprising a rotary drum in which the transparent plate forms at least a part of a cylindrical portion and capable of being driven to rotate, and a tire grounding means that can ground the tire in a rotating state on the inner surface side of the cylindrical portion. Ground plane measuring device. 前記透明板が円筒部の少なくとも一部をなし回転駆動が可能な回転式ドラムと、その円筒部の内面にタイヤのトレッドサンプルを接地状態で支持可能なサンプル接地手段とを更に備える請求項1記載のタイヤ接地面計測装置。2. The rotary drum in which the transparent plate forms at least a part of a cylindrical portion and can be rotated, and sample grounding means capable of supporting a tread sample of a tire on the inner surface of the cylindrical portion in a grounded state. Tire contact surface measuring device. 前記透明板は前記円筒部の周方向の一部に設けられると共に、前記撮影手段は送られた信号に応じて静止画を撮影するものであり、
更に、前記回転式ドラムの回転位置を検出して前記撮影手段に対して撮影のタイミングを決める信号を送る位置検出手段を備える請求項2又は3に記載のタイヤ接地面計測装置。
The transparent plate is provided in a part of the circumferential direction of the cylindrical portion, and the photographing unit photographs a still image according to a sent signal,
4. The tire ground contact surface measuring device according to claim 2, further comprising position detecting means for detecting a rotational position of the rotary drum and sending a signal for determining a photographing timing to the photographing means.
氷層が表面に形成される透明板と、その透明板及び/又は前記氷層の内部にこれと略平行な光を照射する光照射手段と、前記氷層の反対側からタイヤ接地面を撮影する撮影手段と、前記透明板が円筒部の少なくとも一部をなして回転駆動が可能な回転式ドラムと、その円筒部の内面側にタイヤを回転状態で接地可能なタイヤ接地手段とを備えるタイヤ接地面計測装置を用いて、前記回転式ドラムの円筒部の内周面に氷層を形成した後、前記光照射手段により光を照射しつつ、前記回転式ドラムを回転駆動しながら、前記撮影手段で透明板を介してタイヤ接地面を撮影するタイヤ接地面計測方法。Photographing the tire ground contact surface from the opposite side of the ice plate, a transparent plate having an ice layer formed on the surface, light irradiation means for irradiating the transparent plate and / or the inside of the ice layer with light substantially parallel thereto. A photographing drum, a rotary drum in which the transparent plate forms at least a part of a cylindrical portion and which can be driven to rotate, and a tire grounding means capable of grounding the tire in a rotating state on the inner surface side of the cylindrical portion. After forming an ice layer on the inner peripheral surface of the cylindrical portion of the rotary drum using a contact surface measuring device, the photographing is performed while rotating the rotary drum while irradiating light by the light irradiation means. A tire contact surface measurement method for photographing a tire contact surface through a transparent plate by means. 前記タイヤ接地手段により、タイヤに制動力又は駆動力を負荷しながら、前記タイヤ接地面の撮影を行う請求項5記載のタイヤ接地面計測方法。The tire contact surface measurement method according to claim 5, wherein the tire contact surface is photographed while applying a braking force or a driving force to the tire.
JP2003189504A 2003-07-01 2003-07-01 Tire contact surface measuring device and tire contact surface measuring method Expired - Fee Related JP4088889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189504A JP4088889B2 (en) 2003-07-01 2003-07-01 Tire contact surface measuring device and tire contact surface measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189504A JP4088889B2 (en) 2003-07-01 2003-07-01 Tire contact surface measuring device and tire contact surface measuring method

Publications (2)

Publication Number Publication Date
JP2005024365A JP2005024365A (en) 2005-01-27
JP4088889B2 true JP4088889B2 (en) 2008-05-21

Family

ID=34187696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189504A Expired - Fee Related JP4088889B2 (en) 2003-07-01 2003-07-01 Tire contact surface measuring device and tire contact surface measuring method

Country Status (1)

Country Link
JP (1) JP4088889B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007230328A (en) * 2006-02-28 2007-09-13 Toyo Tire & Rubber Co Ltd Tire ground contact surface measuring device and tire ground contact surface measuring method
US8955374B2 (en) 2011-11-08 2015-02-17 Bridgestone Americas Tire Operations, Llc Footprint test apparatus and method of use
JP6437799B2 (en) * 2014-11-19 2018-12-12 東洋ゴム工業株式会社 Method for producing ice road surface for rubber friction test and rubber friction test method
JP6519270B2 (en) * 2015-03-30 2019-05-29 横浜ゴム株式会社 Apparatus and method for observing a rubber contact surface
IT201800010155A1 (en) * 2018-11-08 2020-05-08 Bridgestone Europe Nv Sa UNIT AND TEST METHOD TO OPTICALLY ACQUIRE A GROUND FOOTPRINT OR ANALOGUE FEATURE OF A TIRE
CN112710483A (en) * 2021-01-12 2021-04-27 东风汽车集团股份有限公司 Testing arrangement of tire dynamic impression

Also Published As

Publication number Publication date
JP2005024365A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
US5088321A (en) Apparatus and method for observing the ground contact patch of a tire
JP4088889B2 (en) Tire contact surface measuring device and tire contact surface measuring method
KR102660871B1 (en) tread line scanner
JP6317892B2 (en) Appearance inspection apparatus and appearance inspection method
EP0685733A1 (en) Method for the measurement of the optical quality of a glass plate
JP2007230328A (en) Tire ground contact surface measuring device and tire ground contact surface measuring method
JP2006290312A (en) Vehicular wheel inspection device
JP2002532697A (en) Method and apparatus for detecting and locating diffusely reflecting coatings on a transparent plate
JP3975497B2 (en) Automatic optical axis angle adjustment device for automotive headlamps
JP2005509880A5 (en)
JPH0363504A (en) Method and device for photographing shape of tire
JPH03156341A (en) Method and apparatus for testing hydroplaning of tire
KR100765394B1 (en) Hydroplaning measuring apparatus of tire
JP3515397B2 (en) Brake wear measurement device and brace wear measurement method
JP5544847B2 (en) Mobile photometer
JP7039719B2 (en) Behavior analyzer for pneumatic tires at the interface with the ground
JP6519270B2 (en) Apparatus and method for observing a rubber contact surface
JPH0363506A (en) Method and device for photographing shape of tire
JP2005132156A (en) Tire contact shape observing method, and device for the same
JPH0363503A (en) Method and device for photographing shape of tire
JP4464988B2 (en) Roll scanner
JPH0363505A (en) Method and device for photographing shape of tire
JPS63271103A (en) Abrasion checker
JPH1144635A (en) Dry/moisture moisture detection system of object surface in which two cameras of same visual field are used
JP2010073216A (en) Roll scanner and method for reading circumferential surface of subject

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080214

R150 Certificate of patent or registration of utility model

Ref document number: 4088889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees