JP4088820B2 - Manufacturing equipment for linear body reinforced resin reinforcement - Google Patents

Manufacturing equipment for linear body reinforced resin reinforcement Download PDF

Info

Publication number
JP4088820B2
JP4088820B2 JP2002034275A JP2002034275A JP4088820B2 JP 4088820 B2 JP4088820 B2 JP 4088820B2 JP 2002034275 A JP2002034275 A JP 2002034275A JP 2002034275 A JP2002034275 A JP 2002034275A JP 4088820 B2 JP4088820 B2 JP 4088820B2
Authority
JP
Japan
Prior art keywords
linear body
resin
reinforcing material
nozzle
rotational motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002034275A
Other languages
Japanese (ja)
Other versions
JP2003231184A (en
Inventor
学 内藤
清士 谷口
慈洋 吉尾
司 大嶋
秀二 日高
裕次 柿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002034275A priority Critical patent/JP4088820B2/en
Publication of JP2003231184A publication Critical patent/JP2003231184A/en
Application granted granted Critical
Publication of JP4088820B2 publication Critical patent/JP4088820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は線状体強化樹脂補強材の製造に関し、詳しくは線状体表面に連続した螺旋状の樹脂突起物を形成するための製造装置に関する。
【0002】
【従来の技術】
従来、線状体強化樹脂補強材には、線状体束に樹脂を含浸させたものを螺旋状に撚り合わせたもの(特開平11-222784号公報)や線状体束にフレキシブルチューブ等を被覆させたもの、あるいは半硬化状態にした線状体束を歯車によって表面に凹凸をつけたもの(特開平6-297591号公報)等がある。また、金属製の補強筋と同等以上のコンクリートとの付着力を発揮する線状体強化樹脂補強材として、熱可塑性樹脂を含浸させた強化線状体を芯部とし、その周囲に熱硬化性樹脂を含浸させた強化線状体を螺旋状に巻き締めたものが開示されている。(特開平7-317214号公報)
しかし、これらの線状体強化樹脂補強材は、突起物を形成する強化線状体に熱硬化性樹脂を使用しているため、加熱硬化させる必要がある。
【0003】
【発明が解決しようとする課題】
そこで、本発明者らは、かかる従来技術の問題点を解消すべく、樹脂を含浸させた線状体を芯材とし、その周囲に樹脂による螺旋状の突起物を形成するための加工装置を提供することを目的とする。また、その加工装置においては、線状体に樹脂を含浸させた後、その線状体に撚りをかけず、また回転軸に線状体を絡ませることなく、線状体の円周方向に回転運動を行うことができる装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
即ち、本発明は下記の構成からなる。
1.ノズルを通過する線状体に樹脂を含浸する機構部と、樹脂含浸された線状体に前記ノズル直径よりも大きい回転運動を与える機構部と、樹脂含浸された線状体を引き取る機構部を備えてなることを特徴とする線状体強化樹脂補強材の製造装置。
2.回転運動を与える機構部は、外周をフリーローラーで支持されており、ギアを配して駆動する、中心軸を持たない回転円盤を有するものであることを特徴とする上記第1に記載の線状体強化樹脂補強材の製造装置。
3.回転運動を与える機構部は、同一周期で回転する一対のギアの側面に連結棒を配し、ギアの外周をタイミングベルトで連結してなるものであることを特徴とする上記第1に記載の線状体強化樹脂補強材の製造装置。
【0005】
かかる構成を採用することにより、ダイス〜引き取りローラー間の樹脂を含浸した線状体に、ノズル直径よりも大きい回転運動を与え、線状体の糸道が円錐台を形成し連続した樹脂突起物を形成し、なおかつ線状体に撚がかからない樹脂補強材の製造装置及び、多錘化を可能とする線状体強化樹脂補強材の製造装置 を得ることができる。
【0006】
以下に本発明を詳述する。
まず、始めに本発明で言う線状体強化樹脂補強材(以下、補強材と略す)とは、線状体に樹脂が被覆、含浸した成形物を言う。
次に、線状体軸方向表面に配する樹脂突起物とは、図1に示すような補強材表面に賦形したネジ山状の突起物を言う。
また、ダイスから出た補強材の糸道が円錐台を形成し、補強材に与えられる回転運動とは、図2に示すようなノズル中心と、加工機間の軸に対する円周方向の回転運動を言う。
最後に、ノズル直径と平行部の長さ、ノズル平行部に至る導入部の導入角はそれぞれ図3に示すものを言う。
【0007】
本発明は、補強材の軸方向に対して、垂直な面内で補強材に回転運動を与える機構部に最大の特徴があり、その目的は、線状体の周囲に樹脂からなる螺旋状の突起物を賦形する製造装置を提供することである。
本発明では、ダイスと引き取り装置との間に補強材の円周方向に回転する円盤を設置し、これを回転して補強材を偏心して賦形する手法を提案する。
ダイス5から引き抜かれた補強材6は、引き取り装置との間に位置する加工機7を通過する。この加工機は中心に貫通軸をもたない回転円盤上に中心軸に対して同心円上に貫通口を開け、この貫通口に補強材を通して軸心を偏心させる方法である。ここで、この回転円盤の特徴は、中心軸をもたないことと、その外周を3つのフリーローラーで支持すること下点にギアを配して駆動することの三点である。このような、支持、駆動方法を採ることによって、初めて補強材が回転円盤に絡むことなく、回転運動を行うことができるようになる。
【0008】
螺旋状突起物が形成されるのは、ダイスのノズル部である。上述のような加工機によってノズル部から引き抜かれた補強材に回転運動が賦与されると、補強材はノズル部でノズル内径に沿って回転運動を行う。集束した線状体の見かけ上の直径に対して、ノズル内径が大きければ、回転方向前面の樹脂を線状体が掻き取る形になり、結果として強化線状体に樹脂の突起物を生じることになる。
補強材形状で重要な項目は、突起物の周期(ピッチ)、山−谷の直径差、山−谷の形状の3つである。 いずれもコンクリートに埋設された場合、補強材とコンクリートとのアンカー効果を発現する上で重要な項目である。ピッチは補強材のアンカー効果、最低限の引き抜きせん断応力を発生する臨界線状体長を決定する。
山−谷の直径差と山−谷の形状は、臨界線状体長が決定された後の引き抜きせん断応力を決定する。臨界線状体長を短くするために、ピッチは短い方が好ましい。直径差は大きすぎると、樹脂の凝集破壊を生じ、引き抜きせん断応力がかえって減少する。逆に小さすぎると、引っかかりが小さくなり、十分な引き抜き応力を得ることができなくなる。よって、ピッチと山−谷の直径差、形状の3つを制御するためには、回転運動を与える加工機とダイスの設計が重要となる。
【0009】
まず、ピッチは加工機の回転速度によって決定される。よって、加工機の回転には、回転斑がないこと、軸心がぶれないこと、高速で回転が可能であることなどが要求される。回転斑はピッチの変動に繋がるため、十分注意しなければならない。回転斑をなくすには、例えば図4の加工機であれば、連結棒の軽量化による慣性モーメントの減少、バランサーの取り付け等が有効である。回転斑は所定回転数の10(%)以下であれば問題ない。
次に山と谷の直径差は、加工機の回転半径並びに、ダイスからの距離とダイスノズル部の形状によって決定される。この2つの条件はノズルと加工機の間に形成される円錐台の大きさによって決定される。
この円錐台の母線と水平線が成す角度が小さくなると、ノズル出口での補強材の回転半径が小さくなっ て、直径差が小さくなる。逆に角度を大きくすると直径差は大きくなるがノズル出口や加工機の貫通口で強化線状体が屈曲されるため、強化線状体の損傷が大きくなり問題がある。よって、この角度は1°〜45°が好ましい。より好ましくは1°〜30°、更に好ましくは1°〜10°である。
【0010】
ダイスの設計では、導入部とノズル部が重要となる。直径差は、集束した時の強化線状体とノズル径によって外径(山の径)がほぼ決定され、内径(谷の径)はノズル部の容積と導入部の導入角(α)によって決定される。この理由は明確ではないが、突起物は、線状体がノズル内部にある樹脂を掻き取ることによって形成されるため、ノズル部の容積が突起物の容積にほぼ等しいためと考えられる。
ノズル部の容積をV、ノズル径をd、長さをLとするとその容積Vは、V=π(0.5d)2Lで決定される。
補強材の性能を確保する上で所望の線状体、樹脂比率が決定されると、必然的にdは決定されるため、この部分の容積はほぼLで決定される。Vが小さいほど突起物は明確になり、山と谷の直径差は大きくなる。
【0011】
また、その形状も細かく、はっきりとした山と谷になる。ここで、線状体への樹脂の含浸は、ノズル部のLが長いほど良好であり、導入角は小さい方が好ましい。しかし、アンカー効果に影響を与える突起物の形状を考慮すると、山と谷の直径の差を大きくするためにLは短く、導入角は大きいほど好ましい。
この相反する課題を解決するには、L/dが0.5以上、20以下が好ましく、より好ましくは1以上、10以下である。また導入角は20°以上80°以下が好ましく、より好ましくは30°以上60°以下である。
【0012】
以上のようにして樹脂含浸、突起物を賦形した補強材は、引き取りローラー8によって引き取られ、その後ワインダー9によってボビンに巻き取られる。
【0013】
図1は、本発明にかかる装置により得られた線状体強化樹脂補強材の一例である。
また図2に本発明の製造工程の概略図を示す。クリールスタンド1から供給された線状体を、開繊バー3によって開繊を行い、含浸バー5によって線状体に樹脂を含浸させる。次に加工機7によって線状体に回転運動が加えられ、これにより、ダイス内部のノズル部11で螺旋状の樹脂突起物が形成される。
図3に本発明のダイスの断面図を示す。
図4は、本発明の加工機正面図並びに側面図である。この加工機は回転円盤の中心に貫通軸をもたず、その外周を3つのフリーローラーで支持し、下点に駆動用ギアを配したものである。
次に図5に本発明の多錘化を可能とした加工機正面図並びに側面図を示す。一対のギアの外周をタイミングベルトで連結し、そのギアの側面に連結棒を配し、この連結棒に貫通孔を設けて、補強材を通す。このような構造をとることにより、容易に多錘化を行うことができる。
【0014】
そして本発明により製造された線状体強化樹脂補強材は、所定の長さに裁断し、コンクリートに混練すれば、著しく靭性の高い構造物を得ることできる。もしくは、連続のまま補強筋として用いれば軽量で靭性の高い構造物を得ることができる。また、従来は螺旋状突起物を芯材に接着させるため、熱硬化性樹脂を使用していたが、本発明の加工機を用いることにより、芯材に被覆した樹脂から直接螺旋状の突起物を形成することが可能となる。これにより、螺旋状突起物を接着させる工程(加熱硬化)が不要となり、製造工程の短縮を図ることができる。
【0015】
【発明の効果】
本発明によると、線状体表面に連続した螺旋状の樹脂突起物を形成することが可能となり、しかも多錘化を可能とした線状体強化樹脂補強材を容易に製造することを可能とした。
【図面の簡単な説明】
【図1】本発明の製造装置により得られた線状体強化樹脂補強材の側面図。
【図2】本発明の製造工程の概略図。
【図3】本発明の樹脂を含浸する機構部のダイス断面図。
【図4】本発明の回転運動を与える機構部の正面図並びに側面図である。
【図5】本発明の製造装置のうち多錘化を可能とした回転運動を与える機構部の正面図並びに側面図。
【符号の説明】
1.クリールスタンド
2.線状体
3.開繊バー
4.曲面バー
5.含浸バー
6.補強材
7.加工機
8.引き取りローラー
9.ワインダー
10.導入部
11.ノズル部
12.貫通孔
13.フリーローラー
14.駆動ギア
15.回転円盤
16.駆動円盤
17.連結棒
18.タイミングベルト
19.従動円盤
20.貫通孔
21.駆動モーター
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the production of a linear body-reinforced resin reinforcing material, and more particularly to a production apparatus for forming a continuous helical resin projection on the surface of a linear body.
[0002]
[Prior art]
Conventionally, a linear body reinforced resin reinforcing material is obtained by spirally twisting a linear body bundle impregnated with a resin (Japanese Patent Laid-Open No. 11-222784) or a linear body bundle with a flexible tube or the like. There is a coated or semi-cured linear body bundle having a surface with irregularities by means of gears (Japanese Patent Laid-Open No. 6-297591). In addition, as a linear body reinforced resin reinforcing material that exhibits adhesion to concrete equal to or better than metal reinforcing bars, a reinforced linear body impregnated with a thermoplastic resin is used as a core, and its surroundings are thermosetting. A material in which a reinforced linear body impregnated with a resin is spirally wound is disclosed. (JP-A-7-317214)
However, since these linear body reinforced resin reinforcing materials use a thermosetting resin for the reinforced linear bodies forming the protrusions, they need to be cured by heating.
[0003]
[Problems to be solved by the invention]
Therefore, in order to solve the problems of the prior art, the present inventors have a processing apparatus for forming a spiral projection made of resin around a linear body impregnated with resin as a core material. The purpose is to provide. In the processing apparatus, after impregnating the linear body with resin, the linear body is not twisted, and the linear body is not entangled with the rotating shaft in the circumferential direction of the linear body. An object of the present invention is to provide a device capable of performing a rotational motion.
[0004]
[Means for Solving the Problems]
That is, the present invention has the following configuration.
1. A mechanism that impregnates the linear body passing through the nozzle with resin, a mechanism that imparts a rotational motion larger than the nozzle diameter to the resin-impregnated linear body, and a mechanism that pulls the linear body impregnated with resin. An apparatus for producing a linear-body-reinforced resin reinforcing material, comprising:
2. The line according to the first aspect described above, wherein the mechanism unit that provides the rotational motion has a rotating disk that is supported by a free roller on the outer periphery and that is driven by a gear and does not have a central axis. Manufacturing equipment for shaped body reinforced resin reinforcement.
3. The mechanism unit for imparting a rotational motion is characterized in that a connecting rod is arranged on the side surfaces of a pair of gears rotating at the same cycle, and the outer periphery of the gear is connected by a timing belt. Equipment for manufacturing linear body reinforced resin reinforcement.
[0005]
By adopting such a configuration, the linear body impregnated with resin between the die and the take-off roller is given a rotational motion larger than the nozzle diameter, and the linear body thread path forms a truncated cone and is a continuous resin protrusion. In addition, there can be obtained a resin reinforcing material manufacturing apparatus that does not twist the linear body and a linear body reinforced resin reinforcing material manufacturing apparatus that can increase the number of spindles.
[0006]
The present invention is described in detail below.
First, the linear body-reinforced resin reinforcing material (hereinafter abbreviated as a reinforcing material) referred to in the present invention refers to a molded product in which a linear body is coated and impregnated with a resin.
Next, the resin protrusion disposed on the surface of the linear body axis refers to a thread-shaped protrusion formed on the surface of the reinforcing material as shown in FIG.
Further, the yarn path of the reinforcing material coming out of the die forms a truncated cone, and the rotational motion given to the reinforcing material is the rotational motion in the circumferential direction with respect to the nozzle center as shown in FIG. 2 and the axis between the processing machines. Say.
Finally, the nozzle diameter, the length of the parallel part, and the introduction angle of the introduction part reaching the nozzle parallel part are as shown in FIG.
[0007]
The present invention has the greatest feature in the mechanism portion that gives rotational motion to the reinforcing material in a plane perpendicular to the axial direction of the reinforcing material, and the purpose thereof is to form a spiral made of resin around the linear body. It is providing the manufacturing apparatus which shapes a protrusion.
In the present invention, a method is proposed in which a disk rotating in the circumferential direction of the reinforcing material is installed between the die and the take-up device, and the reinforcing material is eccentrically shaped by rotating the disk.
The reinforcing material 6 pulled out from the die 5 passes through a processing machine 7 positioned between the drawing device. This processing machine is a method of opening a through hole concentrically with respect to the central axis on a rotating disk having no through axis at the center, and decentering the axis through a reinforcing material in the through hole. Here, the feature of this rotating disk is that it does not have a central axis, and supports its outer periphery with three free rollers, and is driven with a gear disposed at the lower point. By adopting such a support and drive method, the reinforcing material can be rotated for the first time without being entangled with the rotating disk.
[0008]
The spiral projection is formed in the nozzle portion of the die. When a rotational motion is imparted to the reinforcing material extracted from the nozzle portion by the processing machine as described above, the reinforcing material performs a rotational motion along the nozzle inner diameter at the nozzle portion. If the nozzle inner diameter is larger than the apparent diameter of the focused linear body, the linear body scrapes off the resin on the front surface in the rotational direction, resulting in resin protrusions on the reinforced linear body. become.
There are three important items in the shape of the reinforcing material: the period (pitch) of protrusions, the difference in diameter between peaks and valleys, and the shape between peaks and valleys. All of these are important items for expressing the anchor effect between the reinforcing material and the concrete when embedded in concrete. The pitch determines the anchoring effect of the reinforcing material and the critical linear body length that generates the minimum drawing shear stress.
The peak-to-valley diameter difference and peak-to-valley shape determine the drawing shear stress after the critical linear body length has been determined. In order to shorten the critical linear body length, a shorter pitch is preferable. If the diameter difference is too large, the resin will cause cohesive failure, and the drawing shear stress will be reduced. On the other hand, if it is too small, the catch becomes small and sufficient pulling stress cannot be obtained. Therefore, in order to control the pitch, the peak-valley diameter difference, and the three shapes, it is important to design a processing machine and a die that give a rotational motion.
[0009]
First, the pitch is determined by the rotational speed of the processing machine. Therefore, it is required for the rotation of the processing machine that there is no rotation unevenness, that the axis is not shaken, and that the rotation is possible at high speed. Careful attention must be paid to rotation spots because they lead to pitch fluctuations. For example, in the processing machine shown in FIG. 4, it is effective to reduce the moment of inertia by reducing the weight of the connecting rod, and to attach a balancer. There is no problem if the rotational spots are 10 (%) or less of the predetermined rotational speed.
Next, the diameter difference between the peaks and valleys is determined by the rotation radius of the processing machine, the distance from the die, and the shape of the die nozzle part. These two conditions are determined by the size of the truncated cone formed between the nozzle and the processing machine.
When the angle formed by the generatrix and the horizontal line of the truncated cone becomes smaller, the radius of rotation of the reinforcing material at the nozzle outlet becomes smaller and the diameter difference becomes smaller. On the other hand, when the angle is increased, the diameter difference increases, but the reinforced linear body is bent at the nozzle outlet and the through-hole of the processing machine. Therefore, this angle is preferably 1 ° to 45 °. More preferably, it is 1 ° to 30 °, and further preferably 1 ° to 10 °.
[0010]
In the die design, the introduction part and the nozzle part are important. The difference in diameter is determined by the reinforcing linear body and nozzle diameter when focused, and the outer diameter (crest diameter) is almost determined, and the inner diameter (valley diameter) is determined by the nozzle volume and the introduction angle (α) of the introduction section. Is done. Although the reason for this is not clear, it is considered that the protrusion is formed by scraping off the resin in the nozzle and the volume of the nozzle portion is approximately equal to the volume of the protrusion.
When the volume of the nozzle portion is V, the nozzle diameter is d, and the length is L, the volume V is determined by V = π (0.5d) 2 L.
When the desired linear body and resin ratio are determined in order to ensure the performance of the reinforcing material, d is inevitably determined, so the volume of this portion is determined to be approximately L. The smaller V is, the clearer the protrusions are, and the larger the difference in diameter between peaks and valleys.
[0011]
In addition, the shape is fine, and there are clear peaks and valleys. Here, the resin impregnation into the linear body is better as the length L of the nozzle portion is longer, and the introduction angle is preferably smaller. However, in consideration of the shape of the projection that affects the anchor effect, L is short and the introduction angle is preferably large in order to increase the difference between the diameters of the peaks and valleys.
In order to solve this conflicting problem, L / d is preferably 0.5 or more and 20 or less, more preferably 1 or more and 10 or less. The introduction angle is preferably 20 ° to 80 °, more preferably 30 ° to 60 °.
[0012]
The reinforcing material impregnated with resin and shaped as described above is taken up by the take-up roller 8 and then wound around the bobbin by the winder 9.
[0013]
FIG. 1 is an example of a linear body reinforced resin reinforcing material obtained by the apparatus according to the present invention.
FIG. 2 shows a schematic diagram of the production process of the present invention. The linear body supplied from the creel stand 1 is opened by the opening bar 3 and the impregnating bar 5 impregnates the linear body with resin. Next, a rotational motion is applied to the linear body by the processing machine 7, whereby a spiral resin projection is formed at the nozzle portion 11 inside the die.
FIG. 3 shows a cross-sectional view of the die of the present invention.
FIG. 4 is a front view and a side view of the processing machine of the present invention. This processing machine does not have a through shaft at the center of the rotating disk, supports the outer periphery thereof with three free rollers, and has a driving gear at the lower point.
Next, FIG. 5 shows a front view and a side view of a processing machine capable of making a multi spindle according to the present invention. The outer periphery of a pair of gears is connected by a timing belt, a connecting rod is arranged on the side surface of the gear, a through hole is provided in the connecting rod, and a reinforcing material is passed therethrough. By adopting such a structure, it is possible to easily increase the number of spindles.
[0014]
And the linear body reinforcement | strengthening resin reinforcement manufactured by this invention can cut | disconnect to predetermined length, and if it knead | mixes into concrete, a structure with remarkably high toughness can be obtained. Alternatively, if it is used as a reinforcing bar in a continuous state, a light and tough structure can be obtained. Conventionally, a thermosetting resin was used to bond the spiral projection to the core material, but by using the processing machine of the present invention, the spiral projection directly from the resin coated on the core material. Can be formed. Thereby, the process (heat curing) of adhering the spiral projections is not required, and the manufacturing process can be shortened.
[0015]
【The invention's effect】
According to the present invention, it is possible to form a continuous helical resin protrusion on the surface of a linear body, and it is possible to easily manufacture a linear body reinforced resin reinforcing material capable of increasing the weight. did.
[Brief description of the drawings]
FIG. 1 is a side view of a linear body reinforced resin reinforcing material obtained by a production apparatus of the present invention.
FIG. 2 is a schematic view of the production process of the present invention.
FIG. 3 is a sectional view of a die of a mechanism portion impregnated with the resin of the present invention.
FIGS. 4A and 4B are a front view and a side view of a mechanism portion that gives a rotational motion according to the present invention. FIGS.
FIGS. 5A and 5B are a front view and a side view of a mechanism unit that gives a rotational motion that enables a multi-concentration in the manufacturing apparatus of the present invention.
[Explanation of symbols]
1. 1. Creel stand 2. Linear body Opening bar 4. Curved bar 5. 5. Impregnation bar Reinforcing material7. Processing machine 8. Take-up roller 9. Winder 10. Introducing section 11. Nozzle part 12. Through hole 13. Free roller 14. Drive gear 15. Rotating disk 16. Driving disk 17. Connecting rod 18. Timing belt 19. Followed disk 20. Through hole 21. Drive motor

Claims (3)

ノズルを通過する線状体に樹脂を含浸する機構部と、樹脂含浸された線状体に前記ノズル直径よりも大きい回転運動を与える機構部と、樹脂含浸された線状体を引き取る機構部を備えてなることを特徴とする線状体強化樹脂補強材の製造装置。A mechanism that impregnates the linear body passing through the nozzle with resin, a mechanism that imparts a rotational motion larger than the nozzle diameter to the resin-impregnated linear body, and a mechanism that pulls the linear body impregnated with resin. An apparatus for producing a linear-body-reinforced resin reinforcing material, comprising: 回転運動を与える機構部は、外周をフリーローラーで支持されており、ギアを配して駆動する、中心軸を持たず中心軸に対し同心円上に貫通孔を開けた回転円盤を有するものであることを特徴とする請求項1に記載の線状体強化樹脂補強材の製造装置。The mechanism that gives the rotational motion is supported by a free roller on the outer periphery, and has a rotating disk that is driven by a gear and does not have a central axis but has a through hole concentrically with respect to the central axis. The manufacturing apparatus of the linear body reinforcement | strengthening resin reinforcement material of Claim 1 characterized by the above-mentioned. 回転運動を与える機構部は、同一周期で回転する一対のギアの側面に貫通孔を設けた連結棒を配し、ギアの外周をタイミングベルトで連結してなるものであることを特徴とする請求項1に記載の線状体強化樹脂補強材の製造装置。The mechanism unit that provides the rotational motion includes a connecting rod provided with through holes on the side surfaces of a pair of gears that rotate at the same cycle, and the outer periphery of the gear is connected by a timing belt. Item 2. An apparatus for manufacturing a linear body-reinforced resin reinforcing material according to Item 1.
JP2002034275A 2002-02-12 2002-02-12 Manufacturing equipment for linear body reinforced resin reinforcement Expired - Fee Related JP4088820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002034275A JP4088820B2 (en) 2002-02-12 2002-02-12 Manufacturing equipment for linear body reinforced resin reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002034275A JP4088820B2 (en) 2002-02-12 2002-02-12 Manufacturing equipment for linear body reinforced resin reinforcement

Publications (2)

Publication Number Publication Date
JP2003231184A JP2003231184A (en) 2003-08-19
JP4088820B2 true JP4088820B2 (en) 2008-05-21

Family

ID=27776830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002034275A Expired - Fee Related JP4088820B2 (en) 2002-02-12 2002-02-12 Manufacturing equipment for linear body reinforced resin reinforcement

Country Status (1)

Country Link
JP (1) JP4088820B2 (en)

Also Published As

Publication number Publication date
JP2003231184A (en) 2003-08-19

Similar Documents

Publication Publication Date Title
JP2613844B2 (en) Method and apparatus for continuous pultrusion of fiber reinforced plastic rod
US5503928A (en) Fibre reinforced composites
WO2012093561A1 (en) Fiber-reinforced strand, method of manufacturing a fiber-reinforced strand
US5182064A (en) Method for producing fiber reinforced plastic rods having helical ribs
CN112157926A (en) Fiber reinforced composite material winding forming equipment and winding forming process thereof
JP6762928B2 (en) Textile machines and how to operate textile machines
JP4088820B2 (en) Manufacturing equipment for linear body reinforced resin reinforcement
US3388545A (en) Core yarns and a process and apparatus assembly for making them
JPH03218817A (en) Fiber reinforced plastic rod with ridge on surface and its manufacture
JP2006248758A (en) Winder of twisted continuous fiber bundle package for manufacturing long-fiber reinforced resin structure, twisted continuous fiber bundle package and method of manufacturing long-fiber reinforced resin structure
JP2002538313A (en) Twisting device for silk thread
KR102217523B1 (en) Winding apparatus for glass fiber rebar
JP2007112636A (en) Glass roving
CN111844524B (en) Preparation method of hybrid fiber reinforced resin matrix composite material 3D printing wire
EP0125835A2 (en) Production of composites and non-woven fabrics
JP4123409B2 (en) Method for producing fiber reinforced thermoplastic resin reinforcement
JPH02242987A (en) Strand for twisted yarn of fiber composite material, twisted yarn and production thereof
JP7285609B1 (en) Composite String-shaped Body, Composite String-shaped Body Manufacturing Apparatus, and Composite String-shaped Body Manufacturing Method
JPS6178628A (en) Manufacture of frp member that will be placed under influence of torsion
JP3760994B2 (en) FRP spring
JP3781323B2 (en) Method and apparatus for manufacturing fiber reinforced resin composite spiral rod
US3311518A (en) Method of forming a roving ball of non-twisted roving
JP4380885B2 (en) Machine tools used for the production of long fiber reinforced plastic products
JP7353003B1 (en) twisting device
JPH08132547A (en) Method and apparatus for molding spiral rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080213

R151 Written notification of patent or utility model registration

Ref document number: 4088820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees