JP4088615B2 - Pulverized coal fuel supply device - Google Patents

Pulverized coal fuel supply device Download PDF

Info

Publication number
JP4088615B2
JP4088615B2 JP2004234711A JP2004234711A JP4088615B2 JP 4088615 B2 JP4088615 B2 JP 4088615B2 JP 2004234711 A JP2004234711 A JP 2004234711A JP 2004234711 A JP2004234711 A JP 2004234711A JP 4088615 B2 JP4088615 B2 JP 4088615B2
Authority
JP
Japan
Prior art keywords
pulverized coal
burner
fine powder
mill
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004234711A
Other languages
Japanese (ja)
Other versions
JP2006052892A (en
Inventor
慎治 松本
章泰 岡元
次男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004234711A priority Critical patent/JP4088615B2/en
Publication of JP2006052892A publication Critical patent/JP2006052892A/en
Application granted granted Critical
Publication of JP4088615B2 publication Critical patent/JP4088615B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、微粉炭を燃焼させる石炭焚きボイラ等の微粉炭燃料の燃焼装置に適用され、火炉内に微粉炭燃料を噴出して燃焼せしめるバーナを該火炉の燃焼ガス流動方向に複数段設置し、原料炭をミルにより粉砕した粉砕炭を前記バーナに送り込むように構成された微粉炭燃料供給装置に関する。   The present invention is applied to a combustion apparatus for pulverized coal fuel such as a coal-fired boiler that burns pulverized coal, and burners for injecting and burning pulverized coal fuel into a furnace are installed in a plurality of stages in the combustion gas flow direction of the furnace. The present invention also relates to a pulverized coal fuel supply apparatus configured to send pulverized coal obtained by pulverizing raw coal into a burner.

火炉内に微粉炭燃料を噴出して燃焼せしめるバーナを該火炉の燃焼ガス流動方向に複数段設置し、原料炭をミルにより粉砕した粉砕炭を前記バーナに送り込むように構成された石炭焚きボイラ等の微粉炭燃料の燃焼装置においては、高い微粉度の微粉炭燃料を各バーナに供給するための種々の技術が提供されている。
かかる技術の1つである特許文献1(特開2004−125327号公報)の技術においては、ミルからの微粉炭を一次的に貯蔵するホッパーと、該ホッパーから微粉炭を定量的に切り出す切り出しホッパーと、該切り出しホッパーと火炉のバーナとを接続する輸送配管に設けられた分級装置とをそなえて、微粉炭の搬送性を損なうことなく小粒径の微粉炭を安定してバーナに供給するように構成されている。
A coal-fired boiler configured to install a plurality of burners for injecting and burning pulverized coal fuel into the furnace in the combustion gas flow direction of the furnace, and to feed the pulverized coal obtained by pulverizing the raw coal into the burner. In the pulverized coal fuel combustion apparatus, various techniques for supplying pulverized coal fuel with high fineness to each burner are provided.
In the technique of Patent Document 1 (Japanese Patent Laid-Open No. 2004-125327), which is one of such techniques, a hopper that primarily stores pulverized coal from a mill, and a cutting hopper that quantitatively cuts pulverized coal from the hopper And a classifier provided in a transport pipe that connects the cutting hopper and the furnace burner so as to stably supply pulverized coal with a small particle size to the burner without impairing the transportability of the pulverized coal. It is configured.

特開2004−125327号公報JP 2004-125327 A

石炭焚きボイラ等の微粉炭燃料の燃焼装置において、未燃分を無くして燃焼効率を向上しかつNOx発生量を低減した燃焼を行うには、火炉の燃焼ガス流動方向に複数段設置されているバーナから粗粒分が少なく高微粉度(200♯パスの微粉(粒度75μ以下の微粉)の占める割合が95%以上)の微粉炭の燃焼を火炉全体で行い、火炉の全燃焼域において均一な燃焼を保持する必要がある。
かかる燃焼を実現するために、前記複数段のバーナに均一に前記のような高微粉度の微粉炭を供給するようにすると、各バーナに微粉炭を供給するためのミルの動力増加やミルの負荷増大に伴うローラの摩耗増大を招く。
In a combustion apparatus for pulverized coal fuel such as a coal-fired boiler, multiple stages are installed in the flow direction of the combustion gas in the furnace to eliminate unburned components and improve combustion efficiency and reduce NOx generation. Combustion of pulverized coal from the burner with a small amount of coarse particles and high fineness (the ratio of fine powder of 200 # pass (fine powder of particle size of 75μ or less) is 95% or more) is performed throughout the furnace, and is uniform in the entire combustion zone of the furnace It is necessary to maintain combustion.
In order to realize such combustion, if the pulverized coal with high fineness as described above is uniformly supplied to the burners of the plurality of stages, the power of the mill for supplying the pulverized coal to each burner is increased. This causes an increase in roller wear accompanying an increase in load.

また、前記のように高微粉度の微粉炭を供給しかつローラの摩耗を回避するためにミルの容量に余裕を持たせた設計を行うと、ミルが大型化して設備コストの増大を招く。
さらに、前記ミルの内部には分級装置を備えているが、ミル内部での微粉炭の流れの偏流や該分級装置に吹き込まれる微粉炭の粒子濃度が高いために分級精度の上昇が困難であり、このため各バーナに均一な粒度の微粉炭を供給し難い。
In addition, if the design is made such that the pulverized coal having a high fineness is supplied and the capacity of the mill is sufficient to avoid wear of the roller as described above, the mill becomes larger and the equipment cost increases.
Furthermore, although a classification device is provided inside the mill, it is difficult to increase the classification accuracy due to the drift of the flow of pulverized coal inside the mill and the high concentration of pulverized coal particles blown into the classification device. Therefore, it is difficult to supply pulverized coal having a uniform particle size to each burner.

然るに、前記特許文献1(特開2004−125327号公報)の技術にあっては、ミルから送り出された粉砕炭を、複数のホッパーを通してから圧縮空気によって分級器に供給し、該分級器で微粉と粗粉とに分級し、微粉を火炉へ供給するとともに粗粉をミルに戻して再粉砕するように構成されているにとどまり、微粉炭の粒度を火炉の全燃焼域において均一な燃焼を保持するように制御する手段については開示されていない。   However, in the technique of Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-125327), the pulverized charcoal fed from the mill is supplied to the classifier by compressed air after passing through a plurality of hoppers. It is configured to classify the pulverized coal into coarse powder, supply the fine powder to the furnace, and return the coarse powder to the mill for re-grinding. No means for controlling to do so is disclosed.

本発明はかかる従来技術の課題に鑑み、火炉の燃焼ガス流動方向に複数段設置されたバーナへの微粉炭の粒度を、各段のバーナにおいて均一な燃焼を実現して未燃分及びNOx(窒素酸化物)の発生を抑制し得る粒度に保持し、ミルの容量を適正容量にしてミルの装置コストを低減可能にした微粉炭燃料供給装置を提供することを目的とする。   In view of the problems of the prior art, the present invention realizes uniform combustion in each stage of the burner arranged in a plurality of stages in the combustion gas flow direction of the furnace to achieve uniform combustion in each stage of the burner and NOx ( An object of the present invention is to provide a pulverized coal fuel supply device that maintains a particle size capable of suppressing the generation of nitrogen oxides and that can reduce the mill device cost by setting the mill capacity to an appropriate capacity.

本発明はかかる目的を達成するもので、火炉内に微粉炭燃料を噴出して燃焼せしめるバーナを該火炉の燃焼ガス流動方向に複数段設置し、原料炭をミルにより粉砕した粉砕炭を前記バーナに送り込むように構成された微粉炭燃料供給装置において、前記ミルと前記各段のバーナとを接続し前記ミルからの前記粉砕炭を前記バーナに搬送する微粉炭供給管のうち、前記火炉の出口に近い下流側バーナに接続される微粉炭供給管に前記ミルからの粉砕炭を粒度の粗い粗粉と粒度の小さい微粉とに分級する分級装置を設置し、該分級装置の微粉出口を前記下流側バーナに接続し、該分級装置の粗粉出口を前記下流側バーナよりも前記燃焼ガス流動方向上流側のバーナへの微粉炭供給管に接続して、前記分級装置で分級された前記微粉を前記下流側バーナに供給するとともに、前記粗粉を前記上流側のバーナに供給するように構成したことを第1の要旨とする。
そして請求項1記載の発明前記第1の要旨に加えて、前記複数段のバーナ毎に設けられた前記ミルを同一容量に構成し、前記下流側バーナよりも燃焼ガス流動方向上流側に配置された中間段のバーナへは前記ミルから前記微粉炭供給管を介して直接粉砕炭を供給し、前記分級装置の粗粉出口を前記中間段のバーナよりも前記燃焼ガス流動方向上流側のバーナへの微粉炭供給管に接続することにある
The present invention achieves such an object. A burner for injecting and burning pulverized coal fuel into a furnace is installed in a plurality of stages in the combustion gas flow direction of the furnace, and pulverized coal obtained by pulverizing raw coal with a mill is used as the burner. In the pulverized coal fuel supply device configured to be fed into the pulverized coal fuel supply pipe, the outlet of the furnace among the pulverized coal supply pipes that connect the mill and the burners of each stage and convey the pulverized coal from the mill to the burner. A classification device for classifying the pulverized coal from the mill into coarse coarse particles and small fine particles is installed in the pulverized coal supply pipe connected to the downstream burner close to the downstream, and the fine powder outlet of the classification device is connected to the downstream Connected to the side burner, the coarse powder outlet of the classifier is connected to the pulverized coal supply pipe to the burner on the upstream side in the combustion gas flow direction from the downstream burner, and the fine powder classified by the classifier The downstream bar And supplies to the burner, the first aspect in that the coarse powder was configured to supply to the upstream side of the burner.
The invention of claim 1, wherein, in addition to the first aspect, the mill provided for each burner of the plurality of stages configured in the same volume, the combustion gas flow direction upstream of the downstream burner The pulverized coal is directly supplied from the mill to the intermediate stage burner via the pulverized coal supply pipe, and the coarse powder outlet of the classifier is located upstream of the intermediate stage burner in the combustion gas flow direction. It is to connect to the pulverized coal supply pipe to the burner.

火炉の燃焼ガス流動方向に複数段のバーナを設置した石炭焚きボイラ等の微粉炭燃料の燃焼装置においては、火炉の出口までの距離が大きい燃焼ガス流動方向上流側のバーナから火炉内に噴出される微粉炭燃料の燃焼時間が、火炉の出口までの距離が小さい燃焼ガス流動方向下流側のバーナからの微粉炭燃料の燃焼時間よりも長くなる。
このため、火炉の出口までの距離が小さく燃焼時間が短い前記下流側バーナからの微粉炭燃料の粒度を、前記のように未燃分を無くして着火性を向上しかつNOx発生量を低減した燃焼を行うに必要な高微粉度(200♯パスの微粉(粒度75μ以下の微粉)の占める割合が95%以上)に保持すると、前記燃焼時間が前記下流側バーナからの微粉炭燃料よりも長くなる燃焼ガス流動方向上流側のバーナからの微粉炭燃料は、その粒度を前記下流側バーナからの微粉炭燃料の粒度よりも粗にしても、前記下流側バーナからの微粉炭燃料と同レベルの完全燃焼を行うことが可能となる。
In a combustion device for pulverized coal fuel such as a coal-fired boiler with multiple burners installed in the combustion gas flow direction of the furnace, the burner is jetted into the furnace from the burner upstream in the combustion gas flow direction where the distance to the furnace outlet is large. The combustion time of the pulverized coal fuel becomes longer than the combustion time of the pulverized coal fuel from the burner on the downstream side in the combustion gas flow direction where the distance to the furnace outlet is small.
For this reason, the particle size of the pulverized coal fuel from the downstream burner with a short distance to the furnace outlet and a short combustion time is eliminated as described above to improve the ignitability and reduce the amount of NOx generated. Holding at the high fineness necessary for combustion (the proportion of fine powder of 200 # pass (fine powder of particle size 75 μm or less) is 95% or more), the combustion time is longer than the pulverized coal fuel from the downstream burner. The pulverized coal fuel from the upstream burner in the combustion gas flow direction has the same level as the pulverized coal fuel from the downstream burner even if the particle size is coarser than the particle size of the pulverized coal fuel from the downstream burner. Complete combustion is possible.

本発明はかかる知見に基づいてなされたもので、火炉の出口に近い下流側バーナに接続される微粉炭供給管に前記ミルからの粉砕炭を粒度の粗い粗粉と粒度の小さい微粉とに分級する分級装置を設置し、該分級装置の微粉出口を火炉の出口までの距離が小さく燃焼時間が短い前記下流側バーナに接続して該下流側バーナからの微粉炭燃料の粒度を前記のような高微粉度に保持するとともに、該分級装置の粗粉出口を前記火炉の出口までの距離が大きく燃焼時間が長い燃焼ガス流動方向上流側のバーナへの微粉炭供給管に接続して該上流側バーナには前記下流側バーナへの微粉炭燃料よりも粒度が粗の微粉炭燃料を供給することにより、前記下流側バーナ及び上流側のバーナで、未燃分を無くして着火性を向上しかつNOx発生量を低減した同一レベルの燃焼を行うことができる。   The present invention has been made based on such knowledge, and classifies the pulverized coal from the mill into coarse pulverized powder and fine pulverized powder with a small particle size in a pulverized coal supply pipe connected to a downstream burner close to the outlet of the furnace. A classifier is connected, and the fine powder outlet of the classifier is connected to the downstream burner where the distance to the furnace outlet is small and the combustion time is short, and the particle size of the pulverized coal fuel from the downstream burner is as described above While maintaining a high fineness, the coarse powder outlet of the classifier is connected to the pulverized coal supply pipe to the burner on the upstream side in the combustion gas flow direction where the distance to the furnace outlet is large and the combustion time is long. By supplying pulverized coal fuel having a coarser particle size than the pulverized coal fuel to the downstream burner to the burner, the downstream burner and the upstream burner eliminate unburned components and improve ignitability. Reduced NOx generation It is possible to perform the level of combustion.

従ってかかる発明によれば、火炉の出口に近い下流側バーナに接続されるミルのみ前記高微粉度の微粉炭燃料粒度に対応した容量に設計すれば、上流側のバーナに接続されるミルは前記下流側バーナに接続されるミルよりも小容量の設計であっても、未燃分を無くして着火性を向上しかつNOx発生量を低減した前記下流側バーナ側と同一レベルの燃焼を行うことがが可能となる。
これにより、前記下流側バーナに接続される微粉炭供給管に分級装置を設置して、該分級装置からの微粉を下流側バーナに供給し該分級装置からの粗粉を上流側バーナに供給するというきわめて簡単な構造かつ低コストの微粉炭燃料供給装置で以って、各段のバーナにおいて均一な燃焼を実現して、未燃分を無くして着火性を向上しかつNOxの発生を抑制し得る燃焼を行うことが可能となる。
Therefore, according to this invention, if only the mill connected to the downstream burner near the outlet of the furnace is designed to have a capacity corresponding to the high fineness pulverized coal fuel particle size, the mill connected to the upstream burner is Even if the design is smaller than that of the mill connected to the downstream burner, combustion should be performed at the same level as that of the downstream burner with no unburned content, improved ignitability, and reduced NOx generation. Is possible.
Thereby, a classification device is installed in the pulverized coal supply pipe connected to the downstream burner, fine powder from the classification device is supplied to the downstream burner, and coarse powder from the classification device is supplied to the upstream burner. The pulverized coal fuel supply device with an extremely simple structure and low cost realizes uniform combustion in each stage of the burner, eliminates unburned components, improves ignitability, and suppresses the generation of NOx. It is possible to obtain combustion.

また、請求項2記載の発明前記第1の要旨に加えて、前記分級装置の微粉出口と前記下流側バーナとを接続する前記微粉炭供給管に前記微粉を溜める捕集ビンを設置し、該捕集ビン内に溜められる微粉の量を検出する微粉量検出手段と、該微粉量検出手段からの前記微粉の量の検出値に基づき該分級装置を通った微粉量が一定の目標範囲内になるように前記分級装置の回転数を制御するコントローラとを備えてなることを特徴とする。
かかる発明において、前記微粉量検出手段は具体的には次の2つの手段による。
(1)前記微粉量検出手段は前記捕集ビン内における微粉のレベルを検出するレベル計からなり、前記コントローラは前記レベル計からのレベル検出値が目標レベル範囲内になるように前記分級装置の回転数を制御するように構成される。
(2)前記微粉量検出手段は前記捕集ビン内における微粉の重量を検出するロードセルからなり、前記コントローラは前記ロードセルからの微粉重量検出値が目標重量範囲内になるように前記分級装置の回転数を制御するように構成される。
The invention of claim 2, wherein, in addition to the first aspect, established a collecting bottle for storing the fines to the pulverized coal supply pipe which connects the fines outlet of the classification device and said downstream burner A fine powder amount detecting means for detecting the amount of fine powder accumulated in the collection bottle, and a target range in which the fine powder amount passing through the classifier is constant based on the detected value of the fine powder amount from the fine powder amount detecting means. And a controller for controlling the rotation speed of the classifier so as to be inside.
In this invention, the fine powder amount detecting means is specifically based on the following two means.
(1) The fine powder amount detecting means comprises a level meter for detecting the level of fine powder in the collection bottle, and the controller is adapted to control the classifier so that the level detection value from the level meter is within a target level range. It is configured to control the rotational speed.
(2) The fine powder amount detection means comprises a load cell that detects the weight of fine powder in the collection bin, and the controller rotates the classifier so that the fine powder weight detection value from the load cell is within a target weight range. Configured to control the number.

かかる発明によれば、分級装置の微粉出口と下流側バーナとを接続する微粉炭供給管に微粉を溜める捕集ビンを設置して、該捕集ビン内に一時的に溜められる微粉の量を、レベル計による微粉のレベルあるいはロードセルによる微粉重量によって検出し、かかる微粉の量の検出値に基づき分級装置の回転数を下流側バーナへの微粉量が一定の目標範囲内になるように制御することにより、分級装置における分級精度を高精度に保持することが可能となり、各段のバーナに供給する微粉炭の粒度を、均一な燃焼を実現して未燃分及びNOxの発生を抑制し得る粒度に保持することができる。   According to this invention, the collection bin for collecting fine powder is installed in the pulverized coal supply pipe connecting the fine powder outlet of the classifier and the downstream burner, and the amount of fine powder temporarily stored in the collection bin is set. Detecting by the level of fine powder by the level meter or the fine powder weight by the load cell, and controlling the number of rotations of the classifier so that the fine powder amount to the downstream burner is within a certain target range based on the detected value of the fine powder amount. As a result, the classification accuracy in the classification device can be maintained with high accuracy, and the particle size of the pulverized coal supplied to the burners at each stage can be achieved to achieve uniform combustion and suppress the generation of unburned components and NOx. The particle size can be maintained.

また、請求項5記載の発明前記第1の要旨に加えて、前記分級装置の微粉出口と前記下流側バーナとを接続する前記微粉炭供給管に前記微粉を溜める捕集ビンを設置し、該捕集ビンの前記微粉炭供給管への接続部に、空気流により該捕集ビン内の微粉を前記微粉炭供給管内に搬送する空気搬送装置を設けるとともに、該空気搬送装置への空気量を調整する空気量調整手段を設け、前記空気量調整手段により前記空気搬送装置の空気量を調整することにより、前記捕集ビンから微粉炭供給管に搬送される微粉の量を制御するように構成してなることを特徴とする。
かかる発明によれば、分級装置の微粉出口と下流側バーナとを接続する微粉炭供給管に微粉を溜める捕集ビンを設置して、該捕集ビン内の微粉を空気搬送装置により下流側バーナに供給し、空気量調整手段により該空気搬送装置の空気量を調整して捕集ビンから下流側バーナに供給される微粉量を制御することにより、下流側バーナへの微粉量を常時適正量に維持することができる。
The invention of claim 5, wherein, in addition to the first aspect, established a collecting bottle for storing the fines to the pulverized coal supply pipe which connects the fines outlet of the classification device and said downstream burner In addition, an air conveyance device that conveys the fine powder in the collection bin into the pulverized coal supply pipe by an air flow is provided at a connection portion of the collection bin to the pulverized coal supply pipe, and air to the air conveyance device An air amount adjusting means for adjusting the amount is provided, and the amount of fine powder conveyed from the collection bin to the pulverized coal supply pipe is controlled by adjusting the air amount of the air conveying device by the air amount adjusting means. It is characterized by comprising.
According to this invention, the collection bin for collecting fine powder is installed in the pulverized coal supply pipe that connects the fine powder outlet of the classifier and the downstream burner, and the fine powder in the collection bin is moved to the downstream burner by the air conveying device. The amount of fine powder supplied to the downstream burner is always controlled by adjusting the air amount of the air conveying device by the air amount adjusting means and controlling the amount of fine powder supplied from the collection bin to the downstream burner. Can be maintained.

また、参考技術は、火炉内に微粉炭燃料を噴出して燃焼せしめるバーナを該火炉の燃焼ガス流動方向に複数段設置し、原料炭をミルにより粉砕した粉砕炭を前記バーナに送り込むように構成された微粉炭燃料供給装置において、前記ミルを前記バーナと同数設けて各段のバーナに微粉炭供給管を介して接続するとともに、前記火炉における燃焼ガス流動方向上流側のバーナに接続されるミルを、その粒度が該上流側のバーナよりも前記火炉の出口に近い下流側のミルの粒度よりも大きくなるように構成した。
かかる参考技術において好ましくは、前記バーナと同数設けた複数のミルは、前記火炉の出口に近い下流側のミルが粒度の最も小さいミルに構成され、燃焼ガス流動方向上流側になるに従い粒度の大きいミルにより構成する。
In addition, the reference technology is configured such that burners for injecting and burning pulverized coal fuel into a furnace are installed in multiple stages in the combustion gas flow direction of the furnace, and pulverized coal obtained by pulverizing raw coal by a mill is sent to the burner. In the pulverized coal fuel supply apparatus, the same number of the mills as the burners are connected to the burners at each stage via the pulverized coal supply pipes, and the mills are connected to the burners on the upstream side in the combustion gas flow direction in the furnace. Was configured such that its particle size was larger than that of the downstream mill closer to the furnace outlet than the upstream burner .
In such a reference technique , preferably, the plurality of mills provided in the same number as the burner is configured such that the downstream mill close to the furnace outlet is the smallest in particle size, and the particle size increases toward the upstream in the combustion gas flow direction. Consists of a mill.

かかる参考技術によれば、火炉の出口までの距離が大きく燃焼時間が長い燃焼ガス流動方向上流側のバーナに接続されるミルを、その粒度が火炉の出口までの距離が小さく燃焼時間が短い下流側バーナに接続されるミルよりも大きくなるように構成することにより、下流側のバーナに接続されるミルからの微粉炭燃料の粒度を高微粉度に保持するとともに、上流側バーナに接続されるミルからの微粉炭燃料の粒度を前記下流側バーナよりも粗とすることにより、前記下流側バーナ及び上流側のバーナで、未燃分を無くして着火性を向上しかつNOx発生量を低減した同一レベルの燃焼を行うことができる。
これにより、前記上流側のバーナに接続されるミルの容量を下流側バーナに接続されるミルの容量よりも小さく設計しても、未燃分を無くしかつNOx発生量を低減した同一レベルの燃焼を行うことが可能となり、ミルを小型化、低コスト化することができる。

According to such a reference technique , a mill connected to a burner on the upstream side in the flow direction of the combustion gas with a long distance to the furnace outlet and a long combustion time is connected to the downstream with a small particle size and a short combustion time to the furnace outlet. By configuring so as to be larger than the mill connected to the side burner, the particle size of the pulverized coal fuel from the mill connected to the downstream burner is maintained at a high fineness and connected to the upstream burner. By making the particle size of the pulverized coal fuel from the mill coarser than that of the downstream burner, the downstream burner and the upstream burner eliminate unburned components to improve ignitability and reduce NOx generation. The same level of combustion can be performed.
Thus, even if the capacity of the mill connected to the upstream burner is designed to be smaller than the capacity of the mill connected to the downstream burner, the combustion at the same level that eliminates unburned parts and reduces the amount of NOx generated This makes it possible to reduce the size and cost of the mill.

本発明によれば、下流側バーナに接続される微粉炭供給管に高精度の分級装置を設置することにより、火炉の出口に近い下流側バーナに接続されるミルのみ高微粉度の微粉炭燃料粒度に対応した容量に設計すれば、上流側のバーナに接続されるミルは前記下流側バーナに接続されるミルよりも小容量の設計であっても、未燃分を無くしかつNOx発生量を低減した前記下流側バーナ側と同一レベルの燃焼を行うことが可能となる。
これにより、前記下流側バーナに接続される微粉炭供給管に分級装置を設置して、該分級装置からの微粉を下流側バーナに供給し該分級装置からの粗粉を上流側バーナに供給するというきわめて簡単な構造かつ低コストの微粉炭燃料供給装置で以って、各段のバーナにおいて均一な燃焼を実現して未燃分及びNOxの発生を抑制し得る燃焼を行うことが可能となる。
According to the present invention, a pulverized coal fuel having a high fineness only in a mill connected to the downstream burner close to the furnace outlet is provided by installing a high-precision classification device in the pulverized coal supply pipe connected to the downstream burner. If the capacity corresponding to the particle size is designed, even if the mill connected to the upstream burner is designed to have a smaller capacity than the mill connected to the downstream burner, the unburned portion is eliminated and the amount of NOx generated is reduced. It is possible to perform combustion at the same level as the reduced downstream burner side.
Thereby, a classification device is installed in the pulverized coal supply pipe connected to the downstream burner, fine powder from the classification device is supplied to the downstream burner, and coarse powder from the classification device is supplied to the upstream burner. With the pulverized coal fuel supply device having a very simple structure and low cost, it is possible to achieve uniform combustion in each stage of the burner and to perform combustion capable of suppressing the generation of unburned components and NOx. .

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.

図1は、本発明の第1実施例に係る石炭焚きボイラにおける微粉炭燃料供給装置の系統図である。
図1において、1はボイラの火炉、1aは該火炉1からの燃焼ガスの出口である火炉出口、2a、2b、2cは前記火炉1内に微粉炭燃料を噴出して燃焼せしめるバーナで、該火炉1の燃焼ガス流動方向(Y矢方向)に複数段設置されている。前記火炉出口1aに最も近いバーナ2aが下流側バーナ、該下流側バーナ2aよりも前記火炉出口1aから最も離れたバーナ2cが上流側バーナ、2bが中流側バーナを構成する。5は前記各バーナ2a、2b、2cの下流側にアディショナルエアを供給するためのアディショナルエアノズルである。
FIG. 1 is a system diagram of a pulverized coal fuel supply apparatus in a coal fired boiler according to a first embodiment of the present invention.
In FIG. 1, 1 is a furnace of a boiler, 1a is a furnace outlet which is an outlet of combustion gas from the furnace 1, 2a, 2b and 2c are burners for injecting and burning pulverized coal fuel into the furnace 1. A plurality of stages are installed in the combustion gas flow direction (Y arrow direction) of the furnace 1. The burner 2a closest to the furnace outlet 1a constitutes a downstream burner, the burner 2c farthest from the furnace outlet 1a relative to the downstream burner 2a constitutes an upstream burner, and 2b constitutes a midstream burner. Reference numeral 5 denotes an additional air nozzle for supplying additional air to the downstream side of each of the burners 2a, 2b and 2c.

3a、3b、3cは原料炭を粉砕して微粉炭(粉砕炭)を生成するミルで、3aが下流側ミル、3cが上流側ミル、3bが中流側ミルを構成する。前記各ミルの詳細構造は後述する。4a、4b、4cは前記下流側ミル3a、中流側ミル3b、上流側ミル3cと前記下流側バーナ2a、中流側バーナ2b、上流側バーナ2cとをそれぞれ接続する微粉炭供給管である。
10は分級装置で、前記火炉出口1aに最も近い位置に設けられた下流側バーナ2aに接続される微粉炭供給管4aに設置されて前記下流側ミル3aからの粉砕炭を粒度の粗い粗粉と粒度の小さい微粉とに分級するものである。
3a, 3b, and 3c are mills that pulverize raw coal to generate pulverized coal (crushed coal). 3a is a downstream mill, 3c is an upstream mill, and 3b is a midstream mill. The detailed structure of each mill will be described later. Reference numerals 4a, 4b, and 4c are pulverized coal supply pipes that connect the downstream mill 3a, the midstream mill 3b, the upstream mill 3c and the downstream burner 2a, the midstream burner 2b, and the upstream burner 2c, respectively.
A classifier 10 is installed in a pulverized coal supply pipe 4a connected to a downstream burner 2a provided at a position closest to the furnace outlet 1a, and pulverized coal from the downstream mill 3a is coarsely crushed with coarse particles. And fine powder with small particle size.

前記分級装置10の微粉出口は前記微粉炭供給管4aに接続されて前記下流側バーナ2aに該微粉炭供給管4aを通して微粉を供給する。また、該分級装置10の粗粉出口は、フィーダ12及び粗粉管11を介して前記上流側バーナ2cの微粉炭供給管4cに接続され、前記分級装置10からの粗粉及び前記上流側ミル3cからの粉砕炭(微粉炭)を混合し微粉炭供給管4cを通して前記上流側バーナ2cに供給するようになっている。
また、前記中流側ミル3bからの粉砕炭(微粉炭)は微粉炭供給管4bを通して中流側バーナ2bに直接粉砕炭(微粉炭)を供給するようになっている。
The fine powder outlet of the classifier 10 is connected to the pulverized coal supply pipe 4a to supply pulverized powder to the downstream burner 2a through the pulverized coal supply pipe 4a. The coarse powder outlet of the classifier 10 is connected to the pulverized coal supply pipe 4c of the upstream burner 2c via a feeder 12 and a coarse powder pipe 11, and the coarse powder from the classifier 10 and the upstream mill The pulverized coal (pulverized coal) from 3c is mixed and supplied to the upstream burner 2c through the pulverized coal supply pipe 4c.
The pulverized coal (pulverized coal) from the intermediate flow side mill 3b is supplied directly to the intermediate flow side burner 2b through the pulverized coal supply pipe 4b.

図8は前記ミル3(下流側ミル3a、中流側ミル3b、上流側ミル3c)の詳細を示す断面図で、図8において、41は台座、40は本体ケース、33はローラ軸の軸端部に固着されて軸心回りにモータ等により回転駆動され荷重装置36により粉砕荷重が負荷されるローラ、34は回転中心32a回りにモータ等により回転駆動される粉砕テーブルであり、原料炭(被粉砕物)は供給管32を通って前記粉砕テーブル34上の受け面34aに落下し、ローラ33の粉砕面と粉砕テーブル34の受け面34aとの間に噛み込まれる。
そして、該原料炭は、荷重装置36により粉砕荷重を負荷されながら回転している前記ローラ33によって、回転中心32a回りに回転している粉砕テーブル34の受け面34aに押圧され、微粉状に粉砕される。35は偏流板である。
FIG. 8 is a cross-sectional view showing details of the mill 3 (downstream mill 3a, midstream mill 3b, upstream mill 3c). In FIG. 8, 41 is a base, 40 is a body case, and 33 is a shaft end of a roller shaft. A roller 34 is fixed to the part and is driven to rotate around a shaft by a motor or the like and is loaded with a pulverizing load by a load device 36. A pulverizing table 34 is driven to rotate around a rotation center 32a by a motor or the like. The pulverized material) passes through the supply pipe 32 and falls onto the receiving surface 34a on the pulverizing table 34, and is caught between the pulverizing surface of the roller 33 and the receiving surface 34a of the pulverizing table 34.
The coking coal is pressed against the receiving surface 34a of the crushing table 34 rotating around the rotation center 32a by the roller 33 rotating while being applied with a crushing load by the load device 36, and pulverized into fine powder. Is done. Reference numeral 35 denotes a drift plate.

このようにして粉砕された微粒分は熱風供給口38からの熱風によって乾燥されながら上方の分級装置31に搬送される。粗粒分は本体ケース40の内壁まで飛ばされて該内壁に沿って落下し、粉砕テーブル34の受け面34aに戻される。
該分級装置31においては、駆動モータ39により回転駆動される回転羽根31aによって前記粉砕炭を微粉と粗粉とに分級し、粗粉は粉砕テーブル34の受け面34aに落下させ、微粉は微粉出口管37を通して前記微粉炭供給管4(4a、4b、4c)に送り込まれる。31bは該分級装置31の整流コーンである。
The fine particles thus pulverized are conveyed to the upper classifier 31 while being dried by hot air from the hot air supply port 38. The coarse particles are blown to the inner wall of the main body case 40, fall along the inner wall, and returned to the receiving surface 34a of the crushing table 34.
In the classifier 31, the pulverized charcoal is classified into fine powder and coarse powder by a rotary blade 31a rotated by a drive motor 39, the coarse powder is dropped on the receiving surface 34a of the pulverization table 34, and the fine powder is discharged to the fine powder outlet. The pulverized coal supply pipe 4 (4a, 4b, 4c) is fed through the pipe 37. 31 b is a rectifying cone of the classifier 31.

図2は、図1における分級装置10の概略断面図である。
図2において、19は本体ケース、14は整流コーン、13は前記ミル3(下流側ミル3a、中流側ミル3b、上流側ミル3c)の微粉出口管37からの粉砕炭(前記ミル3からの微粉分)を導入するための粉砕炭入口管、16は微粉出口管、11は粗粉管である。
15は分級機駆動モータ25によりN矢印のように回転駆動される回転軸18に固定されて回転する回転羽根であり、該回転羽根15により前記粉砕炭入口管13から導入される粉砕炭を微粉と粗粉とに分級する。
該回転羽根15の回転によって分級された微粉は微粉出口16を通って微粉炭供給管4aに送り込まれ、該微粉炭供給管4aを通って前記下流側バーナ2aの供給される。一方、該回転羽根15の回転によって分級された粗粉は粗粉管11及びフィーダ12を通って
前記上流側バーナ2cの微粉炭供給管4cに送り込まれ、前記上流側ミル3cからの粉砕炭(微粉炭)とを混合され、微粉炭供給管4cを通して前記上流側バーナ2cに供給される。
FIG. 2 is a schematic cross-sectional view of the classification device 10 in FIG.
In FIG. 2, 19 is a main body case, 14 is a rectifying cone, 13 is pulverized charcoal (from the mill 3) from a fine powder outlet pipe 37 of the mill 3 (downstream mill 3a, midstream mill 3b, upstream mill 3c). A pulverized coal inlet pipe for introducing a fine powder component), 16 is a fine powder outlet pipe, and 11 is a coarse powder pipe.
Reference numeral 15 denotes a rotating blade fixed to a rotating shaft 18 that is rotationally driven as indicated by an arrow N by a classifier drive motor 25 and rotates. The rotating blade 15 finely pulverizes the coal introduced from the pulverized coal inlet pipe 13. And coarse powder.
The fine powder classified by the rotation of the rotary blade 15 is sent to the pulverized coal supply pipe 4a through the fine powder outlet 16, and supplied to the downstream burner 2a through the pulverized coal supply pipe 4a. On the other hand, the coarse powder classified by the rotation of the rotary blade 15 is sent to the pulverized coal supply pipe 4c of the upstream burner 2c through the coarse powder pipe 11 and the feeder 12, and pulverized charcoal (from the upstream mill 3c ( Pulverized coal) is mixed and supplied to the upstream burner 2c through the pulverized coal supply pipe 4c.

かかる第1実施例によれば、火炉出口1aに近い下流側バーナ2aに接続される微粉炭供給管4aにミル3aからの粉砕炭を粒度の粗い粗粉と粒度の小さい微粉とに分級する分級装置10を設置し、該分級装置10の微粉出口16を火炉出口1aまでの距離が小さく燃焼時間が短い下流側バーナ2aに接続して、該下流側バーナ2aからの微粉炭燃料の粒度を高微粉度(200♯パスの微粉(粒度75μ以下の微粉)の占める割合が95%以上)に保持するとともに、該分級装置10の粗粉出口(粗粉管11)を前記火炉出口1aまでの距離が大きく燃焼時間が長い燃焼ガス流動方向の上流側バーナ2cへの微粉炭供給管4cに接続して、該上流側バーナ2cには前記下流側バーナ2aへの微粉炭燃料よりも粒度が粗の微粉炭燃料を供給することにより、前記下流側バーナ2a及び上流側バーナ2cで、未燃分を無くして着火性を向上しかつNOx発生量を低減した同一レベルの燃焼を行うことができる。   According to the first embodiment, the pulverized coal supply pipe 4a connected to the downstream burner 2a close to the furnace outlet 1a is classified into coarse pulverized powder and fine pulverized powder having a small particle size. The apparatus 10 is installed, and the fine powder outlet 16 of the classifier 10 is connected to the downstream burner 2a where the distance to the furnace outlet 1a is small and the combustion time is short, and the particle size of the pulverized coal fuel from the downstream burner 2a is increased. While maintaining the fineness (the ratio of the fine powder of 200 # pass (fine powder of particle size 75 μm or less) is 95% or more), the distance from the coarse powder outlet (coarse powder tube 11) of the classifier 10 to the furnace outlet 1a Is connected to the pulverized coal supply pipe 4c to the upstream burner 2c in the combustion gas flow direction with a long combustion time, and the upstream burner 2c has a coarser particle size than the pulverized coal fuel to the downstream burner 2a. Supply pulverized coal fuel And by, in the downstream burner 2a and the upstream burner 2c, it is possible to perform the same level of combustion with reduced improving vital NOx emissions ignitability by eliminating unburned.

即ち、火炉1の燃焼ガス流動方向に複数段のバーナ2a、2b、2cを設置した石炭焚きボイラ等の微粉炭燃料の燃焼装置においては、火炉出口1aまでの距離が大きい燃焼ガス流動方向上流側バーナ2cから火炉1内に噴出される微粉炭燃料の燃焼時間が、火炉出口1aまでの距離が小さい燃焼ガス流動方向の下流側バーナ2aからの微粉炭燃料の燃焼時間よりも長くなる。
このため、火炉出口1aまでの距離が小さく燃焼時間が短い下流側バーナ2aからの微粉炭燃料の粒度を、未燃分を無くして着火性を向上しかつNOx発生量を低減した燃焼を行うに必要な高微粉度に保持すると、前記燃焼時間が前記下流側バーナ2aからの微粉炭燃料よりも長くなる燃焼ガス流動方向の上流側バーナ2cからの微粉炭燃料は、その粒度を前記下流側バーナ2aからの微粉炭燃料の粒度よりも粗にしても、前記下流側バーナ2aからの微粉炭燃料と同レベルの完全燃焼を行うことが可能となる。
That is, in a combustion apparatus for pulverized coal fuel such as a coal-fired boiler in which a plurality of burners 2a, 2b and 2c are installed in the combustion gas flow direction of the furnace 1, the upstream side of the combustion gas flow direction having a large distance to the furnace outlet 1a The combustion time of the pulverized coal fuel ejected from the burner 2c into the furnace 1 is longer than the combustion time of the pulverized coal fuel from the downstream burner 2a in the combustion gas flow direction where the distance to the furnace outlet 1a is small.
For this reason, in order to perform combustion in which the particle size of the pulverized coal fuel from the downstream burner 2a with a short distance to the furnace outlet 1a and a short combustion time is eliminated, the ignitability is improved and the NOx generation amount is reduced. If the required high fineness is maintained, the combustion time becomes longer than the pulverized coal fuel from the downstream burner 2a, and the pulverized coal fuel from the upstream burner 2c in the combustion gas flow direction has the particle size of the downstream burner. Even if it is coarser than the particle size of the pulverized coal fuel from 2a, complete combustion at the same level as the pulverized coal fuel from the downstream burner 2a can be performed.

従ってかかる実施例によれば、火炉出口1aに近い下流側バーナ2aに接続されるミル3aのみ前記高微粉度の微粉炭燃料粒度に対応した容量に設計すれば、上流側バーナ2cに接続されるミル3cは前記下流側バーナ2aに接続されるミル3cよりも小容量の設計であっても、未燃分を無くしかつNOx発生量を低減した前記下流側バーナ側と同一レベルの燃焼を行うことが可能となる。
これにより、前記下流側バーナ2aに接続される微粉炭供給管4aに分級装置10を設置して、該分級装置10からの微粉を下流側バーナ2aに供給し該分級装置10からの粗粉を上流側バーナ2cに供給するという、きわめて簡単な構造かつ低コストの微粉炭燃料供給装置で以って、各段のバーナにおいて均一な燃焼を実現して未燃分及びNOx(窒素酸化物)の発生を抑制し得る燃焼を行うことが可能となる。
Therefore, according to this embodiment, if only the mill 3a connected to the downstream burner 2a close to the furnace outlet 1a is designed to have a capacity corresponding to the high fineness pulverized coal fuel particle size, it is connected to the upstream burner 2c. Even if the mill 3c is designed to have a smaller capacity than the mill 3c connected to the downstream burner 2a, it performs combustion at the same level as the downstream burner side with no unburned portion and reduced NOx generation. Is possible.
Thereby, the classification apparatus 10 is installed in the pulverized coal supply pipe 4a connected to the downstream burner 2a, the fine powder from the classification apparatus 10 is supplied to the downstream burner 2a, and the coarse powder from the classification apparatus 10 is supplied. An extremely simple structure and low-cost pulverized coal fuel supply device that supplies the upstream burner 2c realizes uniform combustion in each stage of the burner, and generates unburned matter and NOx (nitrogen oxide). Combustion capable of suppressing generation can be performed.

図3は本発明の第2実施例を示す図1対応図である。
この実施例においては、ミル3a、3b、3cをバーナ2a、2b、2cと同数設けて、各段のバーナ2a、2b、2cに微粉炭供給管4a、4b、4cを介して接続するとともに、前記火炉1における燃焼ガス流動方向の上流側バーナ2cに接続される上流側ミル3cを、その粒度が該上流側バーナ2cよりも前記火炉出口1aに近い下流側バーナ2aに接続される下流側ミル3aの粒度よりも大きく構成し、さらに前記下流側バーナ2aと上流側バーナ2cとの間に位置する中流側バーナ2bに接続される中流側ミル3b粒度を前記下流側ミル3aと上流側ミル3cとの中間粒度に構成している。
即ちかかる実施例においては、前記バーナ2と同数設けた複数のミル3は、前記火炉出口1aに近い下流側ミル3aが粒度の最も小さいミルに構成され、燃焼ガス流動方向上流側になるに従い粒度の大きいミル3により構成する。
FIG. 3 is a view corresponding to FIG. 1 showing a second embodiment of the present invention.
In this embodiment, the same number of mills 3a, 3b, and 3c as burners 2a, 2b, and 2c are provided and connected to the burners 2a, 2b, and 2c of each stage through pulverized coal supply pipes 4a, 4b, and 4c, The upstream mill 3c connected to the upstream burner 2c in the combustion gas flow direction in the furnace 1 is connected to the downstream burner 2a whose particle size is closer to the furnace outlet 1a than the upstream burner 2c. The intermediate-flow-side mill 3b is configured to have a particle size larger than the particle size of 3a and is connected to the intermediate-stream-side burner 2b located between the downstream-side burner 2a and the upstream-side burner 2c. It has a medium grain size.
That is, in this embodiment, the plurality of mills 3 provided in the same number as the burners 2 are configured such that the downstream mill 3a near the furnace outlet 1a has the smallest particle size, and the particle size increases toward the upstream in the combustion gas flow direction. The large mill 3 is used.

かかる第2実施例によれば、火炉出口1aまでの距離が大きく燃焼時間が長い燃焼ガス流動方向の上流側バーナ2cに接続される上流側ミル3cを、その粒度が火炉出口1aまでの距離が小さく燃焼時間が短い下流側バーナ2aに接続される下流側ミル3aよりも大きくなるように構成することにより、下流側バーナ2aに接続されるミルからの微粉炭燃料の粒度を高微粉度に保持するとともに、上流側バーナ2cに接続される上流側ミル3cからの微粉炭燃料の粒度を前記下流側バーナ2aよりも粗とすることにより、前記下流側バーナ2a及び上流側バーナ2cで、未燃分を無くして着火性を向上しかつNOx発生量を低減した同一レベルの燃焼を行うことが可能となる。   According to the second embodiment, the upstream mill 3c connected to the upstream burner 2c in the combustion gas flow direction having a long distance to the furnace outlet 1a and a long combustion time has a particle size of the distance to the furnace outlet 1a. By maintaining a small particle size of the pulverized coal fuel from the mill connected to the downstream burner 2a, the particle size of the pulverized coal fuel is maintained at a high fineness by being configured to be larger than the downstream mill 3a connected to the downstream burner 2a having a small combustion time. In addition, by making the particle size of the pulverized coal fuel from the upstream mill 3c connected to the upstream burner 2c coarser than that of the downstream burner 2a, unburned in the downstream burner 2a and the upstream burner 2c. It becomes possible to perform combustion at the same level with improved ignitability and reduced NOx generation by eliminating the minute.

これにより、前記上流側バーナ2cに接続される上流側ミル3cの容量及び前記中流側バーナ2bに接続される中流側ミル3bの容量を、下流側バーナ2aに接続される下流側ミル3aの容量よりも小さく設計しても、未燃分を無くしかつNOx発生量を低減した同一レベルの燃焼を行うことが可能となり、ミル3a、3b、3cを小型化、低コスト化することができる。
その他の構成は前記第1実施例(図1)と同様であり、これと同一の部材は同一の符号で示す。
Thereby, the capacity of the upstream mill 3c connected to the upstream burner 2c and the capacity of the middle flow mill 3b connected to the middle flow burner 2b are set to the capacity of the downstream mill 3a connected to the downstream burner 2a. Even if designed smaller than this, it becomes possible to perform combustion at the same level with no unburned content and reduced NOx generation amount, and the mills 3a, 3b, 3c can be reduced in size and cost.
Other configurations are the same as those of the first embodiment (FIG. 1), and the same members are denoted by the same reference numerals.

図4は本発明の第3実施例を示す図1対応図である。
この実施例においては、前記分級装置10の微粉出口16(図2参照)と前記下流側バーナ2aとを接続する微粉炭供給管4aに前記微粉を溜める捕集ビン20を設置している。27は該捕集ビン20の出口を開閉するフィーダである。
23は該捕集ビン20内に溜められる微粉22のレベルを検出するレベル計、21前記捕集ビン内における微粉の重量を検出するロードセル、24は前記分級装置10における分級機駆動モータ25の回転数を制御するモータコントローラであり、前記レベル計23からの微粉レベル検出値及び前記ロードセル21からの微粉重量検出値は前記モータコントローラ24に入力される。
FIG. 4 is a view corresponding to FIG. 1 showing a third embodiment of the present invention.
In this embodiment, a collection bin 20 for collecting the fine powder is installed in a fine coal supply pipe 4a connecting the fine powder outlet 16 (see FIG. 2) of the classifier 10 and the downstream burner 2a. A feeder 27 opens and closes the outlet of the collection bin 20.
23 is a level meter for detecting the level of fine powder 22 stored in the collection bin 20, 21 is a load cell for detecting the weight of fine powder in the collection bin, and 24 is a rotation of a classifier drive motor 25 in the classification device 10. The fine powder level detection value from the level meter 23 and the fine powder weight detection value from the load cell 21 are input to the motor controller 24.

図5は、かかる第3実施例における制御ブロック図である。
図5において、前記レベル計23からの微粉レベル検出値及び前記ロードセル21からの微粉重量検出値はモータコントローラ24のモータ回転数算出部242に入力される。241はレベル設定部で、図6(A)のように、微粉レベルの上昇に従いモータ回転数(分級機駆動モータ25の回転数)を低下するように設定されている。243は重量設定部で、図6(B)のように、ロードセル出力の増加(微粉重量の増加)に従いモータ回転数(分級機駆動モータ25の回転数)を低下するように設定されている。
FIG. 5 is a control block diagram in the third embodiment.
In FIG. 5, the fine powder level detection value from the level meter 23 and the fine powder weight detection value from the load cell 21 are input to the motor rotation number calculation unit 242 of the motor controller 24. A level setting unit 241 is set so as to decrease the motor rotation speed (the rotation speed of the classifier driving motor 25) as the fine powder level increases, as shown in FIG. A weight setting unit 243 is set to decrease the motor rotation speed (the rotation speed of the classifier driving motor 25) as the load cell output increases (increase in the fine powder weight) as shown in FIG. 6B.

前記モータ回転数算出部242においては、前記微粉レベル検出値と前記レベル設定部241に設定された微粉レベル設定値とを比較して、微粉レベル検出値が微粉レベル設定値になるようなモータ回転数(モータ回転数の補正値)を算出する。
また、前記モータ回転数算出部242においては、前記微粉重量検出値(ロードセル出力)と前記重量設定部243に設定された微粉重量設定値とを比較して、微粉重量検出値が微粉重量設定値になるようなモータ回転数(モータ回転数の補正値)を算出する。
244はモータ制御装置で、前記微粉レベルによるモータ回転数の補正値あるいは微粉重量によるモータ回転数の補正値のいずれか一方または双方によるモータ回転数の補正値で以って分級機駆動モータ25の回転数を制御する。
これにより、前記レベル検出値がレベル設定部241に設定された目標レベル範囲内になるように、あるいは前微粉重量検出値が重量設定部243に設定された目標重量範囲内になるように、前記分級装置の回転数を制御することができる。
The motor rotation number calculation unit 242 compares the fine powder level detection value with the fine powder level setting value set in the level setting unit 241, and rotates the motor so that the fine powder level detection value becomes the fine powder level setting value. The number (correction value of the motor speed) is calculated.
Further, in the motor rotation speed calculation unit 242, the fine powder weight detection value (load cell output) is compared with the fine powder weight setting value set in the weight setting unit 243, and the fine powder weight detection value is determined as the fine powder weight setting value. The motor rotation speed (the correction value of the motor rotation speed) is calculated as follows.
Reference numeral 244 denotes a motor controller, which is a motor rotation speed correction value based on one or both of the motor rotation speed correction value based on the fine powder level and the motor rotation speed correction value based on the fine powder weight. Control the number of revolutions.
Thereby, the level detection value is within the target level range set in the level setting unit 241, or the previous fine powder weight detection value is within the target weight range set in the weight setting unit 243. The number of rotations of the classifier can be controlled.

かかる第3実施例によれば、分級装置10の微粉出口と下流側バーナ2aとを接続する微粉炭供給管4aに微粉を溜める捕集ビン20を設置して、該捕集ビン20内に一時的に溜められる微粉22の量を、レベル計23による微粉のレベルあるいはロードセル21による微粉重量によって検出し、かかる微粉の量の検出値に基づき分級装置10の回転数を下流側バーナ2aへの微粉量が一定の目標範囲内になるように制御することにより、分級装置10における分級精度を高精度に保持すること可能となる。
これにより、各段のバーナ2a、2b、2cに供給する微粉炭の粒度を、均一な燃焼を実現して未燃分及びNOxの発生を抑制し得る粒度に保持することができる。
その他の構成は前記第1実施例(図1)と同様であり、これと同一の部材は同一の符号で示す。
According to the third embodiment, the collection bin 20 for collecting fine powder is installed in the pulverized coal supply pipe 4a that connects the fine powder outlet of the classifier 10 and the downstream burner 2a. The amount of fine powder 22 accumulated is detected by the level of fine powder by the level meter 23 or the fine powder weight by the load cell 21, and based on the detected value of the amount of fine powder, the rotation speed of the classifier 10 is fine powder to the downstream burner 2a. By controlling the amount to be within a certain target range, the classification accuracy in the classification device 10 can be maintained with high accuracy.
Thereby, the particle size of the pulverized coal supplied to the burners 2a, 2b, and 2c at each stage can be maintained at a particle size that can realize uniform combustion and suppress the generation of unburned components and NOx.
Other configurations are the same as those of the first embodiment (FIG. 1), and the same members are denoted by the same reference numerals.

図7は本発明の第4実施例を示す図1対応図である。
この実施例においては、前記分級装置10の微粉出口16(図2参照)と前記下流側バーナ2aとを接続する前記微粉炭供給管4aに前記微粉を溜める捕集ビン20を設置し、該捕集ビン20のフィーダ40出口の前記微粉炭供給管4aへの接続部に、空気圧縮機43から空気管44を通して供給される空気流のエジェクタ作用により該捕集ビン20内の微粉を前記微粉炭供給管4a内に搬送する空気搬送装置41を設けるとともに、該空気搬送装置41への空気量を調整する空気制御弁42を設けている。
そして、前記空気制御弁42によって前記空気搬送装置41の空気量を調整することにより前記捕集ビン20からフィーダ40を介して微粉炭供給管4aに搬送される微粉の量を制御する。
FIG. 7 is a block diagram corresponding to FIG. 1, showing a fourth embodiment of the present invention.
In this embodiment, a collection bin 20 for collecting the fine powder is installed in the fine coal supply pipe 4a connecting the fine powder outlet 16 (see FIG. 2) of the classifier 10 and the downstream burner 2a, The pulverized coal in the collection bin 20 is pulverized by the ejector action of the air flow supplied from the air compressor 43 through the air pipe 44 to the connection part of the feeder 40 outlet of the bin 20 to the pulverized coal supply pipe 4a. An air conveyance device 41 that conveys into the supply pipe 4 a is provided, and an air control valve 42 that adjusts the amount of air to the air conveyance device 41 is provided.
Then, the amount of fine powder conveyed from the collection bin 20 to the pulverized coal supply pipe 4a via the feeder 40 is controlled by adjusting the air amount of the air conveying device 41 by the air control valve 42.

かかる第4実施例によれば、分級装置10の微粉出口16(図2参照)と下流側バーナ2aとを接続する微粉炭供給管4aに微粉を溜める捕集ビン20を設置して、該捕集ビン20内の微粉22を空気搬送装置41のエジェクタ作用により下流側バーナ2aに供給するとともに、空気制御弁42により該空気搬送装置41の空気量を調整して捕集ビン20から下流側バーナ2aに供給される微粉量を制御することにより、該下流側バーナ2aへの微粉量を常時適正量に維持することができる。   According to the fourth embodiment, the collection bin 20 for collecting fine powder is installed in the fine coal supply pipe 4a connecting the fine powder outlet 16 (see FIG. 2) of the classifier 10 and the downstream burner 2a, and The fine powder 22 in the collecting bin 20 is supplied to the downstream burner 2a by the ejector action of the air conveying device 41, and the air amount of the air conveying device 41 is adjusted by the air control valve 42 from the collecting bin 20 to the downstream burner. By controlling the amount of fine powder supplied to 2a, the amount of fine powder to the downstream burner 2a can always be maintained at an appropriate amount.

本発明によれば、火炉の燃焼ガス流動方向に複数段設置されたバーナへの微粉炭の粒度を、各段のバーナにおいて均一な燃焼を実現して未燃分及びNOx(窒素酸化物)の発生を抑制し得る粒度に保持することが可能となって、ミルの容量を適正容量にしてミルの装置コストを低減可能にした微粉炭燃料供給装置を提供できる。   According to the present invention, the particle size of the pulverized coal to the burners installed in a plurality of stages in the flow direction of the combustion gas in the furnace is realized so that uniform combustion can be achieved in each stage of the burner, and the unburned matter and NOx (nitrogen oxide) A pulverized coal fuel supply apparatus can be provided in which the generation capacity can be maintained and the mill capacity can be set to an appropriate capacity and the mill apparatus cost can be reduced.

本発明の第1実施例に係る石炭焚きボイラにおける微粉炭燃料供給装置の系統図である。It is a systematic diagram of the pulverized coal fuel supply apparatus in the coal burning boiler which concerns on 1st Example of this invention. 前記第1実施例における分級装置の概略断面図である。It is a schematic sectional drawing of the classification apparatus in the said 1st Example. 本発明の第2実施例を示す図1対応図である。FIG. 3 is a view corresponding to FIG. 1 showing a second embodiment of the present invention. 本発明の第3実施例を示す図1対応図である。FIG. 6 is a view corresponding to FIG. 1 showing a third embodiment of the present invention. 前記第3実施例における制御ブロック図である。It is a control block diagram in the third embodiment. (A)(B)は前記第3実施例における分級装置の特性線図である。(A) and (B) are characteristic diagrams of the classifier in the third embodiment. 本発明の第4実施例を示す図1対応図である。FIG. 6 is a view corresponding to FIG. 1 showing a fourth embodiment of the present invention. 前記各実施例におけるミルの断面図である。It is sectional drawing of the mill in each said Example.

符号の説明Explanation of symbols

1 火炉
1a 火炉出口
2a 下流側バーナ
2b 中流側バーナ
2c 上流側バーナ
3a 下流側ミル
3b 中流側ミル
3c 上流側ミル
4a、4b、4c 微粉炭供給管
5 アディショナルエアノズル
10 分級装置
11 粗粉管
13 粉砕炭入口管
15 回転羽根
16 微粉出口
20 捕集ビン
21 ロードセル
23 レベル計
24 モータコントローラ
31 分級装置(ミル)
41 空気搬送装置
42 空気制御弁
1 furnace 1a furnace outlet 2a downstream burner 2b middle stream burner 2c upstream burner 3a downstream mill 3b middle stream mill 3c upstream mill 4a, 4b, 4c pulverized coal supply pipe 5 additional air nozzle 10 classifier 11 coarse powder pipe 13 grinding Charcoal inlet pipe 15 Rotary blade 16 Fine powder outlet 20 Collection bottle 21 Load cell 23 Level meter 24 Motor controller 31 Classifier (mill)
41 Air Conveying Device 42 Air Control Valve

Claims (5)

火炉内に微粉炭燃料を噴出して燃焼せしめるバーナを該火炉の燃焼ガス流動方向に複数段設置し、原料炭をミルにより粉砕した粉砕炭を前記バーナに送り込むように構成された微粉炭燃料供給装置において、前記ミルと前記各段のバーナとを接続し前記ミルからの前記粉砕炭を前記バーナに搬送する微粉炭供給管のうち、前記火炉の出口に近い下流側バーナに接続される微粉炭供給管に、前記ミルからの粉砕炭を粒度の粗い粗粉と粒度の小さい微粉とに分級する分級装置を設置し、該分級装置の微粉出口を前記下流側バーナに接続し、該分級装置の粗粉出口を前記下流側バーナよりも前記燃焼ガス流動方向上流側のバーナへの微粉炭供給管に接続して、前記分級装置で分級された前記微粉を前記下流側バーナに供給するとともに、前記粗粉を前記上流側バーナに供給するように構成し、
更に、前記複数段のバーナ毎に設けられた前記ミルを同一容量に構成し、前記下流側バーナよりも燃焼ガス流動方向上流側に配置された中間段のバーナへは前記ミルから前記微粉炭供給管を介して直接粉砕炭を供給し、前記分級装置の粗粉出口を前記中間段のバーナよりも前記燃焼ガス流動方向上流側のバーナへの微粉炭供給管に接続してなることを特徴とする微粉炭燃料供給装置。
A pulverized coal fuel supply configured to inject a pulverized coal fuel into a furnace and install it in multiple stages in the combustion gas flow direction of the furnace, and to feed the pulverized coal obtained by pulverizing the raw coal into a burner. In the apparatus, the pulverized coal connected to the downstream burner near the outlet of the furnace among the pulverized coal supply pipes that connect the mill and the burners at each stage and convey the pulverized coal from the mill to the burner. In the supply pipe, a classification device for classifying the pulverized coal from the mill into coarse coarse particles and small fine particles is installed, and the fine powder outlet of the classification device is connected to the downstream burner, and the classification device The coarse powder outlet is connected to the pulverized coal supply pipe to the burner on the upstream side in the combustion gas flow direction from the downstream burner, and the fine powder classified by the classifier is supplied to the downstream burner, and Coarse powder Configured to provide a serial upstream burner,
Further, the mill provided for each of the plurality of stages of burners is configured to have the same capacity, and the pulverized coal is supplied from the mill to the intermediate stage burner disposed upstream of the downstream burner in the combustion gas flow direction. The pulverized coal is supplied directly through a pipe, and the coarse powder outlet of the classifier is connected to a pulverized coal supply pipe to the burner upstream of the intermediate stage burner in the combustion gas flow direction. the pulverized coal fuel supply system you.
火炉内に微粉炭燃料を噴出して燃焼せしめるバーナを該火炉の燃焼ガス流動方向に複数段設置し、原料炭をミルにより粉砕した粉砕炭を前記バーナに送り込むように構成された微粉炭燃料供給装置において、前記ミルと前記各段のバーナとを接続し前記ミルからの前記粉砕炭を前記バーナに搬送する微粉炭供給管のうち、前記火炉の出口に近い下流側バーナに接続される微粉炭供給管に、前記ミルからの粉砕炭を粒度の粗い粗粉と粒度の小さい微粉とに分級する分級装置を設置し、該分級装置の微粉出口を前記下流側バーナに接続し、該分級装置の粗粉出口を前記下流側バーナよりも前記燃焼ガス流動方向上流側のバーナへの微粉炭供給管に接続して、前記分級装置で分級された前記微粉を前記下流側バーナに供給するとともに、前記粗粉を前記上流側バーナに供給するように構成し、
更に、前記分級装置の微粉出口と前記下流側バーナとを接続する前記微粉炭供給管に前記微粉を溜める捕集ビンを設置し、該捕集ビン内に溜められる微粉の量を検出する微粉量検出手段と、該微粉量検出手段からの前記微粉の量の検出値に基づき該分級装置を通った微粉量が一定の目標範囲内になるように前記分級装置の回転数を制御するコントローラとを備えてなることを特徴とする微粉炭燃料供給装置。
A pulverized coal fuel supply configured to inject a pulverized coal fuel into a furnace and install it in multiple stages in the combustion gas flow direction of the furnace, and to feed the pulverized coal obtained by pulverizing the raw coal into a burner. In the apparatus, the pulverized coal connected to the downstream burner near the outlet of the furnace among the pulverized coal supply pipes that connect the mill and the burners at each stage and convey the pulverized coal from the mill to the burner. In the supply pipe, a classification device for classifying the pulverized coal from the mill into coarse coarse particles and small fine particles is installed, and the fine powder outlet of the classification device is connected to the downstream burner, and the classification device The coarse powder outlet is connected to the pulverized coal supply pipe to the burner on the upstream side in the combustion gas flow direction from the downstream burner, and the fine powder classified by the classifier is supplied to the downstream burner, and Coarse powder Configured to provide a serial upstream burner,
Furthermore, a collection bin for storing the fine powder is installed in the pulverized coal supply pipe connecting the fine powder outlet of the classifier and the downstream burner, and the amount of fine powder for detecting the amount of fine powder stored in the collection bin And a controller that controls the number of revolutions of the classifier so that the amount of fine powder that has passed through the classification device is within a predetermined target range based on the detected value of the amount of fine powder from the fine powder amount detection means. pulverized coal fuel supply system you characterized in that it comprises.
前記微粉量検出手段は前記捕集ビン内における微粉のレベルを検出するレベル計からなり、前記コントローラは前記レベル計からのレベル検出値が目標レベル範囲内になるように前記分級装置の回転数を制御するように構成されてなることを特徴とする請求項記載の微粉炭燃料供給装置。 The fine powder amount detection means comprises a level meter that detects the level of fine powder in the collection bin, and the controller controls the rotation speed of the classifier so that the level detection value from the level meter is within a target level range. The pulverized coal fuel supply device according to claim 2 , wherein the pulverized coal fuel supply device is configured to be controlled. 前記微粉量検出手段は前記捕集ビン内における微粉の重量を検出するロードセルからなり、前記コントローラは前記ロードセルからの微粉重量検出値が目標重量範囲内になるように前記分級装置の回転数を制御するように構成されてなることを特徴とする請求項記載の微粉炭燃料供給装置。 The fine powder amount detection means comprises a load cell that detects the weight of fine powder in the collection bin, and the controller controls the rotation speed of the classification device so that the fine powder weight detection value from the load cell is within a target weight range. The pulverized coal fuel supply device according to claim 2 , wherein the pulverized coal fuel supply device is configured as described above. 火炉内に微粉炭燃料を噴出して燃焼せしめるバーナを該火炉の燃焼ガス流動方向に複数段設置し、原料炭をミルにより粉砕した粉砕炭を前記バーナに送り込むように構成された微粉炭燃料供給装置において、前記ミルと前記各段のバーナとを接続し前記ミルからの前記粉砕炭を前記バーナに搬送する微粉炭供給管のうち、前記火炉の出口に近い下流側バーナに接続される微粉炭供給管に、前記ミルからの粉砕炭を粒度の粗い粗粉と粒度の小さい微粉とに分級する分級装置を設置し、該分級装置の微粉出口を前記下流側バーナに接続し、該分級装置の粗粉出口を前記下流側バーナよりも前記燃焼ガス流動方向上流側のバーナへの微粉炭供給管に接続して、前記分級装置で分級された前記微粉を前記下流側バーナに供給するとともに、前記粗粉を前記上流側バーナに供給するように構成し、
更に、前記分級装置の微粉出口と前記下流側バーナとを接続する前記微粉炭供給管に前記微粉を溜める捕集ビンを設置し、該捕集ビンの前記微粉炭供給管への接続部に、空気流により該捕集ビン内の微粉を前記微粉炭供給管内に搬送する空気搬送装置を設けるとともに、該空気搬送装置への空気量を調整する空気量調整手段を設け、前記空気量調整手段により前記空気搬送装置の空気量を調整することにより前記捕集ビンから微粉炭供給管に搬送される微粉の量を制御するように構成してなることを特徴とする微粉炭燃料供給装置。
A pulverized coal fuel supply configured to inject a pulverized coal fuel into a furnace and install it in multiple stages in the combustion gas flow direction of the furnace, and to feed the pulverized coal obtained by pulverizing the raw coal into a burner. In the apparatus, the pulverized coal connected to the downstream burner near the outlet of the furnace among the pulverized coal supply pipes that connect the mill and the burners at each stage and convey the pulverized coal from the mill to the burner. In the supply pipe, a classification device for classifying the pulverized coal from the mill into coarse coarse particles and small fine particles is installed, and the fine powder outlet of the classification device is connected to the downstream burner, and the classification device The coarse powder outlet is connected to the pulverized coal supply pipe to the burner on the upstream side in the combustion gas flow direction from the downstream burner, and the fine powder classified by the classifier is supplied to the downstream burner, and Coarse powder Configured to provide a serial upstream burner,
Furthermore, a collection bin for storing the fine powder is installed in the pulverized coal supply pipe connecting the pulverized powder outlet of the classifier and the downstream burner, and the connection portion of the collection bin to the pulverized coal supply pipe is An air conveying device that conveys the fine powder in the collection bin into the pulverized coal supply pipe by an air flow is provided, and an air amount adjusting means that adjusts the air amount to the air conveying device is provided, and the air amount adjusting means pulverized coal fuel supply system you characterized by being configured to control the amount of fines to be transported to the pulverized coal supply pipe from the collecting bottle by adjusting the amount of air in the pneumatic conveying system.
JP2004234711A 2004-08-11 2004-08-11 Pulverized coal fuel supply device Expired - Fee Related JP4088615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004234711A JP4088615B2 (en) 2004-08-11 2004-08-11 Pulverized coal fuel supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004234711A JP4088615B2 (en) 2004-08-11 2004-08-11 Pulverized coal fuel supply device

Publications (2)

Publication Number Publication Date
JP2006052892A JP2006052892A (en) 2006-02-23
JP4088615B2 true JP4088615B2 (en) 2008-05-21

Family

ID=36030488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004234711A Expired - Fee Related JP4088615B2 (en) 2004-08-11 2004-08-11 Pulverized coal fuel supply device

Country Status (1)

Country Link
JP (1) JP4088615B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5380394B2 (en) * 2010-08-09 2014-01-08 株式会社東芝 Nuclear medicine imaging apparatus and analysis system

Also Published As

Publication number Publication date
JP2006052892A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
JP5594941B2 (en) Biomass crusher and control method of the apparatus
KR101159152B1 (en) Classification device, standing pulverizer using the classification device, and coal burning boiler apparatus
US8899163B2 (en) Biomass pulverizing apparatus and biomass/coal mixed-combustion system
WO2013046422A1 (en) Biomass crushing device, and system for mixed combustion of biomass and coal
KR102045781B1 (en) Grinding and Drying Plant
US20130061787A1 (en) Biomass pulverizing apparatus and biomass/coal mixed-combustion system
KR101622582B1 (en) Method and installation for coal grinding in inert operation or in non-inert operation
JP5511619B2 (en) Biomass crusher and biomass / coal co-firing system
JP2009079830A (en) Solid fuel crushing supply device and method
CN111482242B (en) Solid fuel pulverizer, power generation facility provided with same, and control method therefor
JP5645482B2 (en) Biomass crusher and biomass / coal co-firing system
JP2003334460A (en) Operation method of apparatus for mixing and crushing coal and wood waste
US4518123A (en) Method for controlling the pulverization and dryness of flammable materials passing through a pulverizer, and method of controlling the pulverizing rate of the pulverizer
JP5198763B2 (en) Vertical roller mill and coal fired boiler apparatus provided with the same
KR102111226B1 (en) Pulverizer, throat and pulverized combustion boiler of pulverizer
JP4088615B2 (en) Pulverized coal fuel supply device
JP2012083016A (en) Biomass crusher and biomass-coal mixed combustion system
CA2412689C (en) Method and apparatus for uprating and controlling a solid fuel pulverizer and exhauster system for a steam generator
JP2011144943A (en) Comminution system
CN111482243B (en) Solid fuel pulverizer, power generation facility provided with same, and control method therefor
JP2008081694A (en) Apparatus for producing fuel from wood waste, method for treating wood waste and cement calcination installation
JP2742066B2 (en) Rotary classifier fine crusher
JP2011240233A (en) Vertical type crushing device, and coal burning boiler device
JPH01104355A (en) Vertical mill
JPH0263558A (en) Vertical type roller mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees