JP4086257B2 - Tower-type crystallizer with inclined refining section - Google Patents

Tower-type crystallizer with inclined refining section Download PDF

Info

Publication number
JP4086257B2
JP4086257B2 JP03301895A JP3301895A JP4086257B2 JP 4086257 B2 JP4086257 B2 JP 4086257B2 JP 03301895 A JP03301895 A JP 03301895A JP 3301895 A JP3301895 A JP 3301895A JP 4086257 B2 JP4086257 B2 JP 4086257B2
Authority
JP
Japan
Prior art keywords
crystallization
hollow housing
purification
crystallizer
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03301895A
Other languages
Japanese (ja)
Other versions
JPH08196802A (en
Inventor
正邦 松岡
Original Assignee
正邦 松岡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正邦 松岡 filed Critical 正邦 松岡
Priority to JP03301895A priority Critical patent/JP4086257B2/en
Publication of JPH08196802A publication Critical patent/JPH08196802A/en
Application granted granted Critical
Publication of JP4086257B2 publication Critical patent/JP4086257B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は新規な晶析装置に関するものであり、特に、高度な分離・精製が要求される分野で使用可能な傾斜精製部を有する塔型晶析装置に関するものである。
【0002】
【従来の技術】
近年、高度分離・精製の要求は高まっており、そのための晶析操作による精製が工業規模で求められている。
精製を目的とする晶析塔(装置内で軸方向に濃度および温度の分布を有する塔型の晶析装置)は種々公知である。これらの晶析塔では重力沈降する結晶粒子を還流液と向流接触させて精製効率を高くするものが多い。従って、固液間の密度差が小さい系では分離精製は困難であるとされてきた。
晶析塔は有機物の精製を目的として開発されてきたが、有機物溶液の場合には一般に固液間の密度差が小さいため、晶析塔の利用は限られており、また、良好な結晶粒子(球状かつ大粒径の粒子)を得るの困難である。
【0003】
【発明が解決しようとする課題】
本発明の目的は、従来の晶析塔とは全く異なる原理に基づいた高度精製に適した塔型晶析装置を提供することにある。
【0004】
【課題を解決するための手段】
本発明は、少なくとも精製部と結晶化部とを有する晶析装置において、少なくとも精製部を鉛直線に対して傾斜させたことを特徴とする有する晶析装置を提供する。
【0005】
精製部は鉛直線から最大で60度傾斜させるのが好ましい。この傾斜角度が60度を越えると結晶粒子の沈降速度の増加が期待できないので好ましくない。本発明では鉛直線からの傾斜角度θがゼロであってはならない。傾斜角度θは被処理液の種類および装置の寸法に応じて20〜60度の間で選択するのが好ましい。
【0006】
本発明の一実施例では、精製部は底部に結晶回収部を有する中空ハウジングで構成される。中空ハウジングの内側断面形状は円形にするのが好ましいが、四角形等の多角形でもよい。
【0007】
中空ハウジング内部にはその内壁に付着した結晶を掻き取る手段を設けるのが好ましい。円形断面の中空ハウジングの場合には掻き取り手段として回転スクレイパーを用いることができる。この回転スクレイパーは結晶化操作に悪影響を与えないような低速度で回転させなければならない。掻き取り手段としては回転スクレイパー以外の公知の任意の機構を用いることができる。
【0008】
本発明の好ましい実施例では、精製部と結晶化部とが連続した単一の中空ハウジングで構成され、精製部と結晶化部との間に被処理液の供給部が設けられる。本発明の別の実施例では結晶化部を別体に設け、結晶化部から来るスラリーを精製部の上部に供給する。
【0009】
【作用】
沈降速度が遅い結晶粒子群(低密度差、小粒径、非粒状)は結晶粒子群の密な層を形成させることが難しい。このことは上昇する還流液の存在によって一層困難になっている。本発明者は、晶析装置の壁を鉛直線に対して傾斜させることによって、いわば傾斜板沈澱槽の原理を利用し、沈降する粒子群と上昇する排除液の流れとを区分して上記の欠点を解決することを考えた。
【0010】
一方、傾斜した塔は沈降速度を増すが、固液間の向流接触作用は低下する。そのため、本発明では塔内のスラリーを穏やかに攪拌して良好な接触を維持するのが好ましい。このための攪拌を内壁の掻き取り動作を行う回転スクレイパーによって同時に行わせることもできる。
【0011】
本発明の晶析装置では、晶析塔全体またはその精製部を傾斜させることによって結晶粒子群の沈降を促し、液と結晶群とを穏やかに混合させることによって固液間が良好に接触される。その結果、効率の良い精製が行われる。
【0012】
以下、添付図面を参照して本発明を説明する。
図1は本発明の原理図で、この晶析装置はハウジング1を鉛直線に対してθだけ傾斜して配置される。このθは最大で60度である。ハウジング1の略下半分2が精製部となり、その略上半分3が結晶化部を構成する。被処理液4は精製部2と結晶化部3との中間部から供給され、得られた結晶5はハウジング1の底から抜き出され、排除液6はハウジング1の上端縁から溢流する。
【0013】
図2は本発明の効果を確認するために行った予備実験で用いた晶析装置の概念的断面図である。この予備実験は透明なガラス管1を用いて全還流操作(供給・排出無し)で結晶の成長を外部から観察するためのもので、ガラス管1の底は栓26で塞がれ、この栓26の内側中心に形成した突起にはヒーター25が巻付けられている。また、ガラス管1の上部には冷却ジャケット3aを巻付けられ、回転スクレイパー7はガラス管1内部に回転自在に支持されている。
【0014】
図3は本発明の晶析装置の一つの実施例の概念的断面図で、この晶析装置では結晶化部を構成するハウジング1の上側部分には温度制御用のジャケット3aが取り付けられ、精製部2を構成するハウジング1の下端部には溶融用のヒーター2aが取付けられている。また、ハウジング1の内壁に付着した結晶を掻き取るための回転スクレイパー7は適当な手段(図示せず)によってハウジング1内で回転自在に支持されている。液体の供給・排出(4, 5, 6) は図1の本発明原理図に従って行われる。なお、回転スクレイパー7は供給管4と衝突しないようになっている。図示した回転スクレイパー7は回転シャフトから放射方向へ延びたロッドの回転シャフトの軸線方向に沿って互い違いに取付け、各ロッドの先端にハウジング1の内壁全体を掻き取るへらを取付けたものである。
【0015】
回転スクレイパー7の形状はこれに限定されるものではなく、被処理液の種類や晶析装置の寸法等によって種々選択することができる。例えば、螺旋リボンまたは螺旋ワイヤーを各ロッドの先端で順次支持した螺旋スクレイパーにすることもできる。いずれにせよ、回転スクレイパー7によってハウジング1内での結晶粒子の沈降と還流液の上昇に悪影響がでないようにすることが重要である。
【0016】
図4は図3の変形例で、図3の結晶化部を結晶化槽8に代えたものである。この場合には、簡単な攪拌器を備えた任意の結晶化槽8に被処理液4"を供給し、結晶化槽8中で発生 (成長) した結晶粒子群を含む溶液10を供給管4'を介してハウジング1の上部に供給する。排除液6はこの供給管4'位置より上方に設ける。
【0017】
図5は図3の別の変形例で、この実施例では被処理液23を回転シャフト21と同軸な内部供給管を介して供給し、供給口22を介してハウジング11内へ送る。図の24は回転スクレイパーを構成する回転シャフト21に取付けた翼であり、40は結晶の回収口、50は排除液の溢流口である。
図6は図5の単位ユニットを並列に並べた場合の概念図である。
【0018】
【実施例】
実施例1
εカプロラクタム−水系からεカプロラクタム結晶を回収する実験を図2に示した予備実験装置を用いて行った。
直径5cm、高さ 100cmのガラス円筒を晶析塔として用いた。このガラス円筒の上半分には温度制御用のジャケットを付け、恒温槽から水を供給して一定の温度に維持した(結晶化部になる)。ガラス円筒の下端部には溶融用のヒーターを挿入した。ガラス円筒の略下半分が精製部になる。ガラス円筒の中にはその内壁に付着した結晶を掻き取るための翼を有する回転スクレイパーを入れ、所定の速度で低速回転させた。
ガラス円筒は鉛直線に対して27°傾けて設置した。
【0019】
εカプロラクタム濃度が96重量%のεカプロラクタム−水混合物をガラス円筒の略中間部分に仕込み、下記条件下で全還流操作をして観察をした:
温度制御用の水の温度 45 ℃
ヒーター部の液温 65 ℃
回転シャフトの回転速度 0.05 回転/秒
【0020】
ガラス円筒の外から観察すると、結晶粒子群の沈降が見られ、下端から還流液がガラス円筒の上側表面に沿って上昇するのが観察された。約10時間全還流した後に得られた結晶をガラス円筒下端部から抜き出して顕微鏡で観察すると、球状かつ大径の良好な結晶粒子であった。
【0021】
比較例1
実施例を繰り返したが、ガラス円筒は鉛直線に対して0°にした(すなわち傾けなかった)。
この場合には、上端で発生(成長)した結晶粒子が細かく、ほとんど沈降しない。また、還流液が結晶粒子を同伴して上昇する様子が観察され、良好な分離は行われなかった。
実施例1と同じ時間連続操作した後に得られた結晶は細かく、量も少ない。
【0022】
【発明の効果】
本発明の晶析装置では、晶析塔全体またはその精製部を傾斜させることによって結晶粒子群の沈降を促し、液と結晶群とを穏やかに混合させることによって固液間が良好に接触される。その結果、効率の良い精製が行われる。
【図面の簡単な説明】
【図1】 本発明の原理を示す図。
【図2】 予備実験で使った晶析装置の概念的断面図。
【図3】 本発明の晶析装置の一つの実施例の概念的断面図。
【図4】 図3の変形例を示す概念的断面図。
【図5】 図3の別の変形例の概念的斜視図。
【図6】 図5のユニットを並べた変形例の概念的斜視図。
【符号の説明】
1 晶析装置のハウジング 2 精製部
3 結晶化部 4 被処理液
5 結晶 6 排除液
7 回転シャフト 8 結晶化槽
[0001]
[Industrial application fields]
The present invention relates to a novel crystallizer, and more particularly to a columnar crystallizer having a gradient purification unit that can be used in a field where a high degree of separation and purification is required.
[0002]
[Prior art]
In recent years, the demand for advanced separation / purification has increased, and purification by crystallization for that purpose has been demanded on an industrial scale.
Various crystallization towers for purification purposes (column-type crystallization apparatuses having a concentration and temperature distribution in the axial direction in the apparatus) are known. In many of these crystallization towers, the gravity settled crystal particles are brought into countercurrent contact with the reflux liquid to increase the purification efficiency. Therefore, separation and purification has been considered difficult in systems where the density difference between solid and liquid is small.
Crystallization towers have been developed for the purpose of purifying organic substances, but in the case of organic substance solutions, the difference in density between solid and liquid is generally small, so the use of crystallization towers is limited and good crystal particles It is difficult to obtain (spherical and large particle size particles).
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a column type crystallization apparatus suitable for high-purification based on a completely different principle from a conventional crystallization column.
[0004]
[Means for Solving the Problems]
The present invention provides a crystallization apparatus having at least a purification section and a crystallization section, wherein at least the purification section is inclined with respect to a vertical line.
[0005]
The refining section is preferably inclined at a maximum of 60 degrees from the vertical line. If the inclination angle exceeds 60 degrees, an increase in the sedimentation rate of the crystal particles cannot be expected, which is not preferable. In the present invention, the inclination angle θ from the vertical line must not be zero. The inclination angle θ is preferably selected from 20 to 60 degrees depending on the type of liquid to be treated and the dimensions of the apparatus.
[0006]
In one embodiment of the present invention, the purification section comprises a hollow housing having a crystal recovery section at the bottom. The inner cross-sectional shape of the hollow housing is preferably circular, but may be a polygon such as a quadrangle.
[0007]
It is preferable to provide means for scraping off crystals adhering to the inner wall of the hollow housing. In the case of a hollow housing having a circular cross section, a rotary scraper can be used as scraping means. The rotating scraper must be rotated at a low speed that does not adversely affect the crystallization operation. As the scraping means, any known mechanism other than the rotary scraper can be used.
[0008]
In a preferred embodiment of the present invention, the purification section and the crystallization section are constituted by a single hollow housing, and a supply portion for the liquid to be treated is provided between the purification section and the crystallization section. In another embodiment of the present invention, the crystallization part is provided separately, and the slurry coming from the crystallization part is supplied to the upper part of the purification part.
[0009]
[Action]
A crystal particle group (low density difference, small particle size, non-granularity) having a slow sedimentation rate is difficult to form a dense layer of crystal particle groups. This is made more difficult by the presence of rising reflux. By inclining the crystallizer wall with respect to the vertical line, the present inventor uses the so-called principle of the inclined plate settling tank, and separates the settling particles from the rising flow of the exclusion liquid as described above. I thought about solving the shortcomings.
[0010]
On the other hand, the inclined tower increases the sedimentation speed, but the countercurrent contact action between the solid and the liquid decreases. Therefore, in the present invention, it is preferable to maintain good contact by gently stirring the slurry in the tower. Stirring for this purpose can be simultaneously performed by a rotary scraper that performs a scraping operation of the inner wall.
[0011]
In the crystallization apparatus of the present invention, the entire crystallization tower or the refined part thereof is inclined to promote the precipitation of the crystal particle group, and the liquid and the crystal group are gently mixed to make good contact between the solid and the liquid. . As a result, efficient purification is performed.
[0012]
Hereinafter, the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a diagram showing the principle of the present invention. In this crystallizing apparatus, a housing 1 is disposed with an inclination of θ with respect to a vertical line. This θ is 60 degrees at the maximum. The substantially lower half 2 of the housing 1 serves as a purification part, and the substantially upper half 3 constitutes a crystallization part. The liquid to be treated 4 is supplied from an intermediate part between the purification unit 2 and the crystallization unit 3, and the obtained crystal 5 is extracted from the bottom of the housing 1, and the exclusion liquid 6 overflows from the upper edge of the housing 1.
[0013]
FIG. 2 is a conceptual cross-sectional view of a crystallization apparatus used in a preliminary experiment conducted to confirm the effect of the present invention. This preliminary experiment is for observing crystal growth from the outside by using a transparent glass tube 1 in total reflux operation (no supply / discharge). The bottom of the glass tube 1 is closed with a plug 26. A heater 25 is wound around the protrusion formed at the inner center of 26. A cooling jacket 3 a is wound around the upper portion of the glass tube 1, and the rotating scraper 7 is rotatably supported inside the glass tube 1.
[0014]
FIG. 3 is a conceptual cross-sectional view of one embodiment of the crystallization apparatus of the present invention. In this crystallization apparatus, a temperature control jacket 3a is attached to the upper portion of the housing 1 constituting the crystallization section, and the purification is performed. A melting heater 2 a is attached to the lower end portion of the housing 1 constituting the portion 2. A rotating scraper 7 for scraping off crystals adhering to the inner wall of the housing 1 is rotatably supported in the housing 1 by appropriate means (not shown). The supply / discharge (4, 5, 6) of the liquid is performed according to the principle diagram of the present invention shown in FIG. The rotating scraper 7 does not collide with the supply pipe 4. The illustrated rotary scraper 7 is attached in a staggered manner along the axial direction of the rotating shaft of the rod extending radially from the rotating shaft, and a spatula for scraping the entire inner wall of the housing 1 is attached to the tip of each rod.
[0015]
The shape of the rotary scraper 7 is not limited to this, and can be variously selected depending on the type of liquid to be treated, the size of the crystallizer, and the like. For example, a spiral scraper in which a spiral ribbon or a spiral wire is sequentially supported at the tip of each rod can be used. In any case, it is important that the rotating scraper 7 does not adversely affect the precipitation of crystal particles and the rise of the reflux liquid in the housing 1.
[0016]
FIG. 4 is a modification of FIG. 3 in which the crystallization part of FIG. In this case, the liquid to be treated 4 "is supplied to an arbitrary crystallization tank 8 equipped with a simple stirrer, and a solution 10 containing crystal particles generated (grown) in the crystallization tank 8 is supplied to the supply pipe 4 It is supplied to the upper part of the housing 1 through “.” The exclusion liquid 6 is provided above the position of this supply pipe 4 ′.
[0017]
FIG. 5 shows another modification of FIG. 3. In this embodiment, the liquid to be treated 23 is supplied through an internal supply pipe coaxial with the rotary shaft 21 and sent into the housing 11 through the supply port 22. In the figure, reference numeral 24 denotes a blade attached to the rotary shaft 21 constituting the rotary scraper, 40 is a crystal recovery port, and 50 is a drainage overflow port.
FIG. 6 is a conceptual diagram when the unit units of FIG. 5 are arranged in parallel.
[0018]
【Example】
Example 1
An experiment for recovering ε-caprolactam crystals from the ε-caprolactam-water system was performed using the preliminary experimental apparatus shown in FIG.
A glass cylinder having a diameter of 5 cm and a height of 100 cm was used as a crystallization tower. A temperature control jacket was attached to the upper half of the glass cylinder, and water was supplied from a thermostatic bath to maintain a constant temperature (becomes a crystallization part). A melting heater was inserted into the lower end of the glass cylinder. The lower half of the glass cylinder is the purification section. A rotating scraper having wings for scraping off crystals adhering to the inner wall was placed in the glass cylinder and rotated at a low speed at a predetermined speed.
The glass cylinder was installed with an inclination of 27 ° with respect to the vertical line.
[0019]
An ε-caprolactam-water mixture having an ε-caprolactam concentration of 96% by weight was charged in a substantially middle portion of a glass cylinder and observed under the following conditions under total reflux:
Water temperature for temperature control 45 ℃
Liquid temperature of heater section 65 ℃
Rotating shaft rotation speed 0.05 rev / sec 【0020】
When observed from outside the glass cylinder, sedimentation of the crystal particles was observed, and the reflux liquid was observed to rise along the upper surface of the glass cylinder from the lower end. When the crystals obtained after the total reflux for about 10 hours were extracted from the lower end of the glass cylinder and observed with a microscope, the crystals were good spherical and large-diameter crystal particles.
[0021]
Comparative Example 1
The example was repeated but the glass cylinder was 0 ° (ie not tilted) with respect to the vertical line.
In this case, the crystal particles generated (grown) at the upper end are fine and hardly settle. In addition, the reflux liquid was observed to rise with crystal particles, and good separation was not performed.
The crystals obtained after continuous operation for the same time as in Example 1 are fine and small in quantity.
[0022]
【The invention's effect】
In the crystallization apparatus of the present invention, the entire crystallization tower or the refined part thereof is inclined to promote the precipitation of the crystal particle group, and the liquid and the crystal group are gently mixed to make good contact between the solid and the liquid. . As a result, efficient purification is performed.
[Brief description of the drawings]
FIG. 1 is a diagram showing the principle of the present invention.
FIG. 2 is a conceptual cross-sectional view of a crystallization apparatus used in a preliminary experiment.
FIG. 3 is a conceptual cross-sectional view of one embodiment of the crystallizer of the present invention.
4 is a conceptual cross-sectional view showing a modification of FIG.
FIG. 5 is a conceptual perspective view of another modification of FIG. 3;
6 is a conceptual perspective view of a modified example in which the units of FIG. 5 are arranged.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Housing of crystallizer 2 Refinement | purification part 3 Crystallization part 4 Processed liquid 5 Crystal 6 Exclusion liquid 7 Rotating shaft 8 Crystallization tank

Claims (6)

精製部と結晶化部とを有する中空ハウジングで構成され、この中空ハウジングの底部に結晶回収部を有する晶析装置において、
上記中空ハウジングは回転せず且つ鉛直線に対して傾斜して配置され上記精製部と上記結晶化部との間に被処理液の供給部を有することを特徴とする晶析装置。
In a crystallization apparatus comprising a hollow housing having a purification part and a crystallization part, and having a crystal recovery part at the bottom of the hollow housing ,
The hollow housing is disposed inclined with respect to and the vertical line does not rotate, crystallizer, characterized in that it comprises a supply of the liquid to be treated between the purification unit and the crystallization unit.
上記中空ハウジングを鉛直線から最大で60度の角度だけ傾斜した請求項1に記載の晶析装置。 The crystallizer according to claim 1, wherein the hollow housing is inclined at an angle of 60 degrees at the maximum from the vertical line. 上記中空ハウジング内壁に付着した結晶を掻き取る手段を上記中空ハウジング内部にさらに有する請求項1または2に記載の晶析装置。 Crystallizer according to means for scraping crystals adhering to the inner wall of the hollow housing to claim 1 or 2 further comprising in the interior of the hollow housing. 精製部と結晶化部とが連続した単一の中空ハウジングで構成される請求項1〜3のいずれか一項に記載の晶析装置。The crystallizer as described in any one of Claims 1-3 comprised by the single hollow housing in which the refinement | purification part and the crystallization part continued. 結晶化部と精製部とを有する晶析装置において、
上記精製部が中空ハウジングで構成され、この中空ハウジングは回転せず且つ鉛直線に対して傾斜して配置され、上記中空ハウジングの底部に結晶回収部を有し、別体に設けた結晶化部から来るスラリーが上記精製部の上部に供給されることを特徴とする晶析装置。
In a crystallization apparatus having a crystallization part and a purification part ,
The refining part is composed of a hollow housing, the hollow housing is not rotated and is arranged to be inclined with respect to the vertical line, has a crystal recovery part at the bottom of the hollow housing, and is provided as a separate crystallization part. crystallizer slurry, characterized in that it is supplied to the top of the refining section coming from.
上記中空ハウジング内壁に付着した結晶を掻き取る手段を上記中空ハウジング内部に有する請求項5に記載の晶析装置。 Crystallizer according to means for scraping crystals adhering to the inner wall of the hollow housing to Claim 5 having in the interior of the hollow housing.
JP03301895A 1995-01-30 1995-01-30 Tower-type crystallizer with inclined refining section Expired - Lifetime JP4086257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03301895A JP4086257B2 (en) 1995-01-30 1995-01-30 Tower-type crystallizer with inclined refining section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03301895A JP4086257B2 (en) 1995-01-30 1995-01-30 Tower-type crystallizer with inclined refining section

Publications (2)

Publication Number Publication Date
JPH08196802A JPH08196802A (en) 1996-08-06
JP4086257B2 true JP4086257B2 (en) 2008-05-14

Family

ID=12375071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03301895A Expired - Lifetime JP4086257B2 (en) 1995-01-30 1995-01-30 Tower-type crystallizer with inclined refining section

Country Status (1)

Country Link
JP (1) JP4086257B2 (en)

Also Published As

Publication number Publication date
JPH08196802A (en) 1996-08-06

Similar Documents

Publication Publication Date Title
KR100382122B1 (en) Method for producing high purity terephthalic acid
KR101440208B1 (en) Vertical countercurrent solid-liquid contact method, method for washing solid particles, method for producing polyarylene sulfide, and device therefor
ES2228298T3 (en) PROCEDURE AND DEVICE FOR CLARIFICATION OF LIQUIDS, PARTICULARLY OF WATER, CHARGED WITH SUSPENSION MATTERS.
US6758978B1 (en) Deep bed thickener/clarifiers with enhanced liquid removal
US3531944A (en) Crystallisation process
JPH0680177B2 (en) Liquid treatment method
CN103028271B (en) Multi-stage countercurrent crystallizer provided with sieve plates
JP2012158614A (en) Process for producing high-purity terephthalic acid
JP3731681B2 (en) Method for producing high purity terephthalic acid
US5394827A (en) Draft tube, direct contact cryogenic crystallizer
JP4086257B2 (en) Tower-type crystallizer with inclined refining section
US3645699A (en) Solid-liquid continuous countercurrent purifier method and apparatus
JPH09286758A (en) Production of highly purified terephthalic acid
ES2614928T3 (en) Method of replacing a dispersion medium
US1559703A (en) Process and apparatus for crystallization
CA2378330C (en) Deep bed thickener/clarifiers with enhanced liquid removal
US2164111A (en) Apparatus and method for treating granular materials with flowing liquids
Atwood Developments in melt crystallization
EP0167401A2 (en) Procedure and means for separating or purifying organic substances
ES2615125T3 (en) Method of dispersion medium replacement
US2377545A (en) Liquid treatment
JP4731980B2 (en) Method and system for crystallizing sterols
JPS5846322B2 (en) Method for purifying crystalline components
JP4223651B2 (en) Coagulation sedimentation equipment
JPS6082Y2 (en) crystallizer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term