JP4085621B2 - Manufacturing method of endless metal belt - Google Patents

Manufacturing method of endless metal belt Download PDF

Info

Publication number
JP4085621B2
JP4085621B2 JP2001353243A JP2001353243A JP4085621B2 JP 4085621 B2 JP4085621 B2 JP 4085621B2 JP 2001353243 A JP2001353243 A JP 2001353243A JP 2001353243 A JP2001353243 A JP 2001353243A JP 4085621 B2 JP4085621 B2 JP 4085621B2
Authority
JP
Japan
Prior art keywords
metal belt
endless metal
shot
circumference
surface hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001353243A
Other languages
Japanese (ja)
Other versions
JP2003145427A (en
Inventor
雅彦 三林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001353243A priority Critical patent/JP4085621B2/en
Publication of JP2003145427A publication Critical patent/JP2003145427A/en
Application granted granted Critical
Publication of JP4085621B2 publication Critical patent/JP4085621B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無端金属ベルトの周長調整を行うようにした無端金属ベルトの製造方法に関する。本発明は、たとえばCVT(Continuously Variable Transmission) ベルト等の製造における周長調整に利用できる。
【0002】
【従来の技術】
無端金属ベルトは、ローラに巻き掛けられて輪転されるので、ローラを通過するときの曲げ応力と直線部位での曲げ応力の消滅との間で繰り返し応力がかかり、疲労強度を向上させることが望まれる。
疲労強度の向上は、通常、無端金属ベルトの表面部にショットピーニングを施すことで行われる。さらに疲労強度を向上させるには、特開2000−225567に提案されているように、無端金属ベルトの表面に表面硬化処理を施した後にショットピーニングを施すようにする。
ショットピーニングによる疲労強度向上では、無端金属ベルトが薄板からなり、表面部のショットピーニングによる塑性変形層の厚さが板厚に比して無視できないレベルとなるため、ショットピーニング処理により全体の形状変化を起こし、周長が増加したりする。ショットピーニング処理により周長が変化すると製品機能のうえで問題となり、とくにリング状ベルトを積層して多層として用いる場合に問題となる。従来は、多数のベルトを生産し、その中から周長が互いに近似しているものを選択し、積層するという方法がとられていたが、極めて非効率な生産方法であった。
本出願人は、無端金属ベルトの周長はショットの投射時間とともに増加し、周長の増加率が時間とともに漸減傾向を示すが、付与される圧縮残留応力は早期に飽和することを見出し、特願2000−312829において、ショットピーニング処理により無端金属ベルトの周長調整を行うことを提案した。そこでは、ショットピーニング処理前の無端金属ベルトの周長を測定し、その測定結果に基づきショット投射時間などのショット条件を設定することで、無端金属ベルトの周長調整を行うことを提案した。
【0003】
【発明が解決しようとする課題】
しかし、特願2000−312829の提案には、無端金属ベルトの表面に表面硬化処理を施した後にショットピーニングを施した場合、ショットピーニングによる無端金属ベルトの周長の伸び特性が表面硬化処理の影響を受けるため、ショットピーニングを利用して調整された周長の精度が悪化するという問題があることがわかった。
本発明の目的は、表面硬化処理後にショットピーニングし疲労強度を向上させた無端金属ベルトの製造方法において、ショットピーニングを利用した無端金属ベルトの周長調整の精度を上げることにある。
【0004】
【課題を解決するための手段】
上記目的を達成する本発明はつぎの通りである。
(1) 無端金属ベルトの表面に表面硬化処理を施した後ショットピーニング処理を施す無端金属ベルトの製造方法であって、
表面硬化処理前後の前記無端金属ベルトの周長をそれぞれ測定し、測定された結果から表面硬化処理伸び量を演算するとともに、前記表面硬化処理の後でかつショットピーニング処理前の前記無端金属ベルトの周長からショットピーニング処理での無端金属ベルトの必要伸び量を演算し、前記表面硬化処理伸び量と前記必要伸び量とに基づいてショットピーニング処理のショット条件を設定し、前記無端金属ベルトの周長調整を行うようにした無端金属ベルトの製造方法。
(2) 前記ショット条件がショット投射時間を含む(1)記載の無端金属ベルトの製造方法。
(3) 前記ショット条件が投射エア圧を含む(1)記載の無端金属ベルトの製造方法。
(4) 前記ショット条件が投射粒径を含む(1)記載の無端金属ベルトの製造方法。
(5) 前記ショット条件がショット粒硬度を含む(1)記載の無端金属ベルトの製造方法。
【0005】
上記(1)−(5)の本発明の無端金属ベルトの製造方法では、表面硬化処理において無端金属ベルト表面部の硬化にばらつきが生じると、表面部の塑性変形抵抗が変化し、ショットーニング処理時の無端金属ベルトの周長伸び特性が変化する。表面硬化処理における上述したばらつきは表面硬化処理前後の周長変化量に強い相関があるため、周長変化量からショットピーニング処理時の無端金属ベルトの周長伸び特性を予測することができる。したがって、ショットピーニング処理前の周長に加え、上記周長変化量に基づきショットピーニング処理のショット条件を設定することで、無端金属ベルトの周長調整を精度よく行うことができる。
【0006】
【発明の実施の形態】
以下に、本発明実施例の無端金属ベルトの製造方法を、図1〜図5を参照して、説明する。
本発明の無端金属ベルトの製造方法では、図1に示すように、薄板金属ベルトの始端と終端を溶接して無端金属ベルト1とする。無端金属ベルト1の疲労強度を向上させるために、無端金属ベルト1に表面硬化処理(たとえば、窒化処理または軟窒化処理)を施し、その後ショットピーニングを施す。
ショットピーニング処理では無端金属ベルト1の周長が延びるので、ショットピーニング処理を疲労強度の向上ばかりでなく周長調整にも利用する。
【0007】
ただし、ショットピーニング処理前に実行される表面硬化処理(たとえば、窒化処理または軟窒化処理)によってショットピーニング処理時の伸びが変化するので、その変化を、表面硬化処理前後の周長の変化から予測して、ショット条件(たとえば、ショット投射時間)を設定し、周長調整の精度を上げるようにした。
【0008】
さらに詳しくは、ショット投射時間Tとショット伸び量ΔLS との間には、図2に示すように、無端金属ベルト周長はショットの投射時間とともに増加し、したがって周長変化量は投射時間とともに増加し、周長の増加率は時間とともに漸減するという関係がある。無端金属ベルトの表面部の圧縮残留応力は時間とともに増加するが早期に(ショット投射開始後約12秒で)飽和し、それ以上ショット投射しても残留応力は変わらない。そして、飽和応力に達すると、それ以上ショット投射しても(ショット投射開始後18秒、36秒ショットを続けても)、疲労強度向上効果は変わらない(SN線図は一致。図3参照)。したがって、ショット投射開始後12秒以後のショット投射は、耐久性向上ではなく、周長調整として働く。
【0009】
また、表面硬化処理深さと表面硬化処理伸び量ΔLH (=L2 −L1 )との間には強い相関があり、表面処理深さが深いと表面処理伸びが多くなり、表面処理深さが大になるほどショットでの塑性変形抵抗が大きくなって、必要なショット伸び量を得るに必要なショット投射時間Tが長くなる。そのため、表面硬化処理伸び量ΔLH (=L2 −L1 )とショット投射時間Tとの間には、表面処理伸び量ΔLH (=L2 −L1 )が大きいほどショット投射時間Tは長くなるという関係がある。
これらの関係を統計的に調査して、ショット伸び量ΔLS と表面硬化処理伸び量ΔLH (=L2 −L1 )とショット投射時間Tとの関係を、図4に示すような三次元特性の関係に、予め、まとめた。
【0010】
表面硬化処理の前に、各無端金属ベルト1の周長L1 を測定した。
ついで、無端金属ベルト1に窒化処理または軟窒化処理からなる表面硬化処理を施す。
表面硬化処理後で、ショットピーニング処理の前に、各無端金属ベルト1の周長L2 を測定した。
【0011】
表面硬化処理前後で各無端金属ベルト1の周長を測定して、各無端金属ベルト1に対して、ショットピーニング処理前の無端金属ベルト1の周長L2 と表面硬化処理前後での前記無端金属ベルトの周長変化量(L2 −L1 )とをそれぞれ求めた。
さらに詳しくは、表面硬化処理後の無端金属ベルト1の周長L2 から無端金属ベルト1の必要なショット伸び量ΔLS を演算するとともに、表面硬化処理による無端金属ベルト1の伸び量ΔLH を演算した。必要なショット伸び量ΔLS は、互いに積層されるベルトの最も長いものの長さに合わせるための他のベルトの伸び量として求まる。また、表面硬化処理時による無端金属ベルト1の伸び量ΔLH は、表面硬化処理前後の無端金属ベルトの周長の差(L2 −L1 )から求まる。
【0012】
ついで、周長L2 および周長変化量(ΔLH =L2 −L1 )に基づいてショットピーニング処理のショット条件(ショット時間Tを含む条件)を設定した。
さらに詳しくは、図4のショット伸び量と表面硬化処理伸び量とショット投射時間との関係から、無端金属ベルト1の必要なショット伸び量ΔLS と表面硬化処理による無端金属ベルトの伸び量ΔLH (=L2 −L1 )とに対応するショット投射時間Tを求めた。
【0013】
ついで、上記で求めたショット投射時間Tだけのショットピーニング処理を無端金属ベルト1に施した。12秒以後のショットピーニング処理は主に周長調整に働いており、表面硬化処理による無端金属ベルトの伸び量ΔLH によって、投射時間は表面硬化処理を施さない場合に比べて、長くなっている。
【0014】
上記において設定した、ショット投射時間Tを含むショット条件は、窒化処理または軟窒化処理の前後での周長測定結果であるからショットピーニング機外での測定結果に基づいて設定されたものであり、ショット機内での周長測定によって設定されたものではない。したがって、ショット機内での周長測定における、ローラとベルト間へのショット粒のかみこみ、ローラ面の経時摩耗、およびローラ軸受へのショット粒のかみこみ、等による測定誤差が発生するという問題を伴わなず、周長調整の精度を上げるものである。
【0015】
具体的な実施例を示すと、つぎの通りである。
使用した無端金属ベルト1は、板厚が約0.2mm、板幅が約12mm、周長が約720mmのマルエージング鋼、30個用いた。
ショットピーニング処理に先立ち、表面硬化処理(窒化処理とした)を施した。窒化層の深さは、約20〜30μmであった。
【0016】
ついで、図5に示すように、ショットピーニング処理を施した。ショットピーニングは、ベルト外周面と内周面の両方に施してショットピーニングを施した時に無端金属ベルトが多重化変形を生じないようにした。ショットピーニングは、表面に予引張応力を付与しておいて行う、いわゆるストレスピーニングとした。ただし、ストレスピーニングに限らなくてもよい。
ショットピーニング処理においては、無端金属ベルト1を、無端金属ベルト1の内周面に予引張応力(予負荷)を付与する第1のローラ2と、無端金属ベルト1の外周面に予引張応力(予負荷)を付与する第2のローラ3とを含む、3つ以上のローラ2、3、4に巻掛け、無端金属ベルト1の内周側から投射ノズル5より無端金属ベルト1の第1のローラ2への巻掛け部分に向けてショット粒6を投射し、無端金属ベルト1の外周側から投射ノズル7より無端金属ベルト1の第2のローラ3への巻掛け部分に向けてショット粒8を投射した。内周側の投射位置で、外周側の投射位置とは逆方向の予負荷曲率を与えた。9、10はシャッタで、シャッタを開閉させて投射時間をコントロールした。
予負荷曲率半径Rは20mm、投射エア圧は0.3MPa、投射粒径Φ70μm、ショット粒硬度はHV700で、内外周の投射処理を同一条件で行った。
【0017】
表面硬化処理後のショットピーニング処理による、無端金属ベルト1の周長調整と、その結果はつぎの通りであった。
ショットピーニング処理前の無端金属ベルト1の周長は、約±150μm(周長値に対し0.021%、標準偏差50μm)のばらつきを有していたが、予め測定した値に対し、そのばらつきを打ち消す方向に投射時間を12秒〜36秒の間で調整した。
【0018】
その結果、ばらつき量は約±25μm(周長値に対し約±0.0035%、標準偏差9μm)となり、ばらつき量を従来の約1/6、また表面硬化処理伸びを考慮しないで時間推定した場合(ばらつき量:約±51μm)と比較しても1/2に抑制することができた。さらに、この結果は機内で直接測定を行った場合(ばらつき量:約±30μm)と比較しても優れた精度となった。これは機外で測定することにより、前述のショット粒のかみこみ等に起因する測定誤差要因を排除できたためと考えられる。
【0019】
【発明の効果】
請求項1−5の本発明の無端金属ベルトの製造方法によれば、表面硬化処理前後で周長を測定して、その周長の変化量からショットピーニング時の周長伸び特性を予測し、これに基づいてショット時間を含むショット条件を設定するようにしたので、無端金属ベルトの表面に表面硬化処理を施した後ショットピーニング処理を施すにかかわらず、周長調整の精度を上げることができる。
また、表面硬化処理前後での周長測定により、機外測定結果からショット条件を設定することができ、ショット粒のかみこみなどの誤差要因を除去でき、機内直接測定と同等以上の周長調整精度を確保できる。
【図面の簡単な説明】
【図1】本発明の無端金属ベルトの製造方法によって製造された無端金属ベルトの斜視図とその一部断面図である。
【図2】本発明の無端金属ベルトの製造方法における、投射時間に対する、周長変化量と残留応力の変化を示すグラフである。
【図3】本発明の無端金属ベルトの製造方法における、ショット時間を変化させた時の応力振幅−繰り返し数図(S−N線図)である。
【図4】本発明の無端金属ベルトの製造方法で用いられる、必要なショット伸び量(mm)と表面硬化処理伸び量(mm)とショット投射時間(sec)間の関係を三次元にまとめた特性図である。
【図5】ショットピーニング実行中のショットピーニング機の側面図である。
【符号の説明】
1 無端金属ベルト
2、3、4 ローラ
5、7 投射ノズル
6、8 ショット粒
9、10 シャッタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an endless metal belt in which the circumference of the endless metal belt is adjusted. The present invention can be used for peripheral length adjustment in the manufacture of, for example, a CVT (Continuously Variable Transmission) belt.
[0002]
[Prior art]
Since the endless metal belt is wound around a roller and is rotated, it is desirable that a repeated stress is applied between the bending stress when passing through the roller and the disappearance of the bending stress at the linear portion to improve the fatigue strength. It is.
Fatigue strength is usually improved by performing shot peening on the surface portion of the endless metal belt. In order to further improve the fatigue strength, as proposed in JP-A-2000-225567, the surface of the endless metal belt is subjected to surface hardening treatment and then shot peened.
In improving fatigue strength by shot peening, the endless metal belt is made of a thin plate, and the thickness of the plastic deformation layer due to shot peening on the surface becomes a level that cannot be ignored compared to the plate thickness. Cause the circumference to increase. If the circumference is changed by the shot peening process, there is a problem in terms of product function, particularly when a ring belt is laminated and used as a multilayer. Conventionally, a method has been adopted in which a large number of belts are produced, and ones having circumferential lengths similar to each other are selected and stacked, but this is an extremely inefficient production method.
The present applicant has found that the circumference of the endless metal belt increases with the shot projection time and the increase rate of the circumference shows a gradual decrease with time, but the applied compressive residual stress is saturated early. In Japanese Patent Application No. 2000-312829, it has been proposed to adjust the circumference of an endless metal belt by shot peening. There, the circumference of the endless metal belt before the shot peening process was measured, and the circumference of the endless metal belt was adjusted by setting shot conditions such as shot projection time based on the measurement result.
[0003]
[Problems to be solved by the invention]
However, in the proposal of Japanese Patent Application No. 2000-312829, when shot peening is performed after the surface of the endless metal belt is subjected to surface hardening treatment, the elongation characteristic of the peripheral length of the endless metal belt by shot peening is influenced by the surface hardening treatment. Therefore, it has been found that there is a problem that accuracy of the circumference adjusted using shot peening deteriorates.
An object of the present invention is to improve the accuracy of adjusting the peripheral length of an endless metal belt using shot peening in a method for manufacturing an endless metal belt that is shot peened after surface hardening treatment to improve fatigue strength.
[0004]
[Means for Solving the Problems]
The present invention for achieving the above object is as follows.
(1) A method for producing an endless metal belt in which a surface hardening process is performed on the surface of an endless metal belt and then a shot peening process is performed,
Measure the circumferential length of the endless metal belt before and after the surface hardening treatment, calculate the amount of elongation of the surface hardening treatment from the measured results, and the endless metal belt after the surface hardening treatment and before the shot peening treatment. The required elongation amount of the endless metal belt in the shot peening process is calculated from the circumference, and the shot condition of the shot peening process is set based on the surface hardening process elongation amount and the required elongation amount, and the circumference of the endless metal belt is determined. A method of manufacturing an endless metal belt in which the length is adjusted.
(2) The method for manufacturing an endless metal belt according to (1), wherein the shot condition includes a shot projection time.
(3) The method for manufacturing an endless metal belt according to (1), wherein the shot condition includes a projection air pressure.
(4) The method for producing an endless metal belt according to (1), wherein the shot condition includes a projected particle diameter.
(5) The method for producing an endless metal belt according to (1), wherein the shot condition includes shot grain hardness.
[0005]
In the method for producing an endless metal belt of the present invention of the above (1)-(5), when variation occurs in the curing of the surface part of the endless metal belt in the surface hardening process, the plastic deformation resistance of the surface part changes, and the shotning process is performed. The circumferential elongation characteristics of the endless metal belt change. Since the above-described variation in the surface hardening process has a strong correlation with the circumferential length change amount before and after the surface hardening process, the circumferential elongation characteristic of the endless metal belt during the shot peening process can be predicted from the circumferential length change amount. Therefore, by setting the shot condition of the shot peening process based on the above-described circumference change amount in addition to the circumference before the shot peening process, the circumference of the endless metal belt can be adjusted with high accuracy.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Below, the manufacturing method of the endless metal belt of this invention Example is demonstrated with reference to FIGS.
In the endless metal belt manufacturing method of the present invention, as shown in FIG. 1, the start and end of a thin metal belt are welded to form an endless metal belt 1. In order to improve the fatigue strength of the endless metal belt 1, the endless metal belt 1 is subjected to surface hardening treatment (for example, nitriding treatment or soft nitriding treatment), and then shot peening is performed.
In the shot peening process, the circumference of the endless metal belt 1 is extended. Therefore, the shot peening process is used not only for improving the fatigue strength but also for adjusting the circumference.
[0007]
However, since the elongation during shot peening changes depending on the surface hardening process (for example, nitriding or soft nitriding) that is performed before shot peening, the change is predicted from the change in circumference before and after surface hardening. Thus, shot conditions (for example, shot projection time) are set to improve the accuracy of circumference adjustment.
[0008]
More specifically, between the shot projection time T and the shot elongation amount ΔL S , as shown in FIG. 2, the endless metal belt circumference increases with the shot projection time, and therefore the circumference change amount increases with the projection time. There is a relationship that the rate of increase in circumference increases gradually with time. Although the compressive residual stress of the surface portion of the endless metal belt increases with time, it is saturated early (about 12 seconds after the start of shot projection), and the residual stress does not change even if shots are further projected. When the saturation stress is reached, the effect of improving fatigue strength does not change even if more shots are projected (18 seconds and 36 seconds are continued after the start of shot projection) (the SN diagrams match, see FIG. 3). . Therefore, the shot projection after 12 seconds after the start of the shot projection works not as an improvement in durability but as a circumference adjustment.
[0009]
Further, there is a strong correlation between the surface hardening treatment depth and the surface hardening treatment elongation amount ΔL H (= L 2 −L 1 ). When the surface treatment depth is deep, the surface treatment elongation increases, and the surface treatment depth. The larger the is, the greater the plastic deformation resistance in the shot, and the longer the shot projection time T required to obtain the required shot elongation. Therefore, between the surface hardening treatment elongation amount ΔL H (= L 2 −L 1 ) and the shot projection time T, the larger the surface treatment elongation amount ΔL H (= L 2 −L 1 ), the longer the shot projection time T is. There is a relationship of becoming longer.
By statistically examining these relationships, the relationship between the shot elongation amount ΔL S , the surface hardening treatment elongation amount ΔL H (= L 2 −L 1 ) and the shot projection time T is three-dimensional as shown in FIG. The relationship of characteristics is summarized in advance.
[0010]
Before the surface hardening treatment, the circumferential length L 1 of each endless metal belt 1 was measured.
Next, the endless metal belt 1 is subjected to a surface hardening process including nitriding or soft nitriding.
After the surface hardening treatment and before the shot peening treatment, the circumferential length L 2 of each endless metal belt 1 was measured.
[0011]
By measuring the circumference of each endless metal belt 1 with a surface hardening treatment before and after the endless in respective endless metal belt 1, the circumferential length L 2 and the surface hardening treatment before and after the endless metal belt 1 before the shot peening The amount of change in the circumferential length of the metal belt (L 2 −L 1 ) was determined.
More specifically, the required shot elongation ΔL S of the endless metal belt 1 is calculated from the circumferential length L 2 of the endless metal belt 1 after the surface hardening treatment, and the elongation amount ΔL H of the endless metal belt 1 by the surface hardening treatment is calculated. Calculated. The required shot elongation amount ΔL S is obtained as the elongation amount of the other belt to match the length of the longest belts laminated together. Further, the elongation amount ΔL H of the endless metal belt 1 during the surface hardening process is obtained from the difference in the circumferential length of the endless metal belt before and after the surface hardening process (L 2 −L 1 ).
[0012]
Next, shot conditions (conditions including shot time T) for the shot peening process were set based on the circumference L 2 and the circumference change amount (ΔL H = L 2 −L 1 ).
More specifically, from the relationship between the shot elongation amount, the surface hardening treatment elongation amount and the shot projection time in FIG. 4, the required shot elongation amount ΔL S of the endless metal belt 1 and the elongation amount ΔL H of the endless metal belt by the surface hardening treatment are obtained. A shot projection time T corresponding to (= L 2 −L 1 ) was obtained.
[0013]
Next, the endless metal belt 1 was subjected to shot peening treatment for the shot projection time T obtained above. The shot peening process after 12 seconds mainly works for adjusting the circumference, and the projection time is longer than that when the surface hardening process is not performed due to the amount of elongation ΔL H of the endless metal belt by the surface hardening process. .
[0014]
The shot conditions including the shot projection time T set above are set based on the measurement results outside the shot peening machine because they are the circumference measurement results before and after nitriding or soft nitriding, It is not set by circumference measurement in the shot machine. Therefore, there is no problem in measuring the circumference in the shot machine due to the measurement error caused by the engagement of the shot grains between the roller and the belt, the wear of the roller surface over time, and the engagement of the shot grains on the roller bearing. Therefore, the accuracy of the circumference adjustment is increased.
[0015]
A specific example is as follows.
The endless metal belt 1 used was 30 maraging steels having a plate thickness of about 0.2 mm, a plate width of about 12 mm, and a circumferential length of about 720 mm.
Prior to the shot peening treatment, surface hardening treatment (referred to as nitriding treatment) was performed. The depth of the nitride layer was about 20-30 μm.
[0016]
Next, as shown in FIG. 5, a shot peening process was performed. Shot peening is applied to both the outer peripheral surface and the inner peripheral surface of the belt so that the endless metal belt does not undergo multiple deformation when shot peening is performed. The shot peening was so-called stress peening performed by applying a pre-tension stress to the surface. However, it is not limited to stress peening.
In the shot peening process, the endless metal belt 1 is subjected to a pre-tension stress (a first roller 2 that applies a pretension stress (preload) to the inner peripheral surface of the endless metal belt 1 and a pretension stress ( The first end of the endless metal belt 1 from the projection nozzle 5 from the inner peripheral side of the endless metal belt 1. The shot grain 6 is projected toward the winding part around the roller 2, and the shot grain 8 is directed from the outer peripheral side of the endless metal belt 1 toward the part where the endless metal belt 1 is wound around the second roller 3 from the projection nozzle 7. Projected. A preload curvature in the direction opposite to the projection position on the outer peripheral side was given at the projection position on the inner peripheral side. Reference numerals 9 and 10 are shutters which control the projection time by opening and closing the shutters.
The preload radius of curvature R was 20 mm, the projection air pressure was 0.3 MPa, the projection particle diameter Φ70 μm, the shot grain hardness was HV700, and the inner and outer projection processes were performed under the same conditions.
[0017]
The peripheral length adjustment of the endless metal belt 1 by the shot peening treatment after the surface hardening treatment and the results were as follows.
The peripheral length of the endless metal belt 1 before the shot peening treatment has a variation of about ± 150 μm (0.021% relative to the peripheral length value, the standard deviation is 50 μm). The projection time was adjusted between 12 seconds and 36 seconds in the direction of canceling out.
[0018]
As a result, the variation amount is about ± 25 μm (about ± 0.0035% with respect to the circumference value, standard deviation 9 μm), and the variation amount is estimated by about 1/6 of the conventional time without considering the surface hardening treatment elongation. Even when compared with the case (variation amount: about ± 51 μm), it could be suppressed to ½. Furthermore, this result was superior in accuracy compared with the case where the measurement was performed directly in the machine (variation amount: about ± 30 μm). This is considered to be because the measurement error factor caused by the above-described shot particle entrapment or the like could be eliminated by measuring outside the apparatus.
[0019]
【The invention's effect】
According to the manufacturing method of the endless metal belt of the present invention of claim 1-5 , the circumference is measured before and after the surface hardening treatment, and the circumference elongation characteristic at the time of shot peening is predicted from the amount of change in the circumference, Since the shot conditions including the shot time are set based on this, it is possible to improve the accuracy of the circumferential length adjustment regardless of the shot peening process after the surface hardening process is applied to the surface of the endless metal belt. .
In addition, by measuring the circumference before and after the surface hardening treatment, it is possible to set shot conditions from the measurement results outside the machine, eliminate error factors such as biting of shot grains, and the circumference adjustment accuracy equal to or better than direct measurement inside the machine Can be secured.
[Brief description of the drawings]
FIG. 1 is a perspective view of an endless metal belt manufactured by the method of manufacturing an endless metal belt of the present invention and a partial cross-sectional view thereof.
FIG. 2 is a graph showing changes in circumferential length and residual stress with respect to projection time in an endless metal belt manufacturing method of the present invention.
FIG. 3 is a stress amplitude-repetition number diagram (SN diagram) when the shot time is changed in the method of manufacturing an endless metal belt of the present invention.
FIG. 4 is a three-dimensional summary of the relationship between the required shot elongation (mm), surface hardening treatment elongation (mm) and shot projection time (sec) used in the endless metal belt manufacturing method of the present invention. FIG.
FIG. 5 is a side view of a shot peening machine during execution of shot peening.
[Explanation of symbols]
1 Endless metal belt 2, 3, 4 Roller 5, 7 Projection nozzle 6, 8 Shot grain 9, 10 Shutter

Claims (5)

無端金属ベルトの表面に表面硬化処理を施した後ショットピーニング処理を施す無端金属ベルトの製造方法であって、
表面硬化処理前後の前記無端金属ベルトの周長をそれぞれ測定し、測定された結果から表面硬化処理伸び量を演算するとともに、前記表面硬化処理の後でかつショットピーニング処理前の前記無端金属ベルトの周長からショットピーニング処理での無端金属ベルトの必要伸び量を演算し、前記表面硬化処理伸び量と前記必要伸び量とに基づいてショットピーニング処理のショット条件を設定し、前記無端金属ベルトの周長調整を行うようにした無端金属ベルトの製造方法。
A method for producing an endless metal belt that is subjected to surface peening after the surface of the endless metal belt is subjected to surface hardening treatment,
Measure the circumference of the endless metal belt before and after the surface hardening treatment, calculate the amount of elongation of the surface hardening treatment from the measured results, and The necessary elongation amount of the endless metal belt in the shot peening process is calculated from the circumference, and the shot condition of the shot peening process is set based on the surface hardening treatment elongation amount and the necessary elongation amount, and the circumference of the endless metal belt is determined. A method of manufacturing an endless metal belt that is adjusted in length.
前記ショット条件がショット投射時間を含む請求項1記載の無端金属ベルトの製造方法。The method of manufacturing an endless metal belt according to claim 1, wherein the shot condition includes a shot projection time. 前記ショット条件が投射エア圧を含む請求項1記載の無端金属ベルトの製造方法。The method for manufacturing an endless metal belt according to claim 1, wherein the shot condition includes a projection air pressure. 前記ショット条件が投射粒径を含む請求項1記載の無端金属ベルトの製造方法。The method for manufacturing an endless metal belt according to claim 1, wherein the shot condition includes a projected particle diameter. 前記ショット条件がショット粒硬度を含む請求項1記載の無端金属ベルトの製造方法。The method for manufacturing an endless metal belt according to claim 1, wherein the shot condition includes shot grain hardness.
JP2001353243A 2001-11-19 2001-11-19 Manufacturing method of endless metal belt Expired - Lifetime JP4085621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001353243A JP4085621B2 (en) 2001-11-19 2001-11-19 Manufacturing method of endless metal belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001353243A JP4085621B2 (en) 2001-11-19 2001-11-19 Manufacturing method of endless metal belt

Publications (2)

Publication Number Publication Date
JP2003145427A JP2003145427A (en) 2003-05-20
JP4085621B2 true JP4085621B2 (en) 2008-05-14

Family

ID=19165295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001353243A Expired - Lifetime JP4085621B2 (en) 2001-11-19 2001-11-19 Manufacturing method of endless metal belt

Country Status (1)

Country Link
JP (1) JP4085621B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256870A (en) * 2004-03-09 2005-09-22 Toyota Motor Corp Method for manufacturing endless metal belt
CN104736885B (en) * 2013-05-28 2016-08-24 京瓷办公信息系统株式会社 Drive mechanism

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142402A (en) * 1984-08-06 1986-02-28 Nhk Spring Co Ltd Apparatus for producing endless metallic belt
NL8403388A (en) * 1984-11-07 1986-06-02 Gayliene Investments Ltd ENDLESS METAL TAPE.
JPH02154834A (en) * 1988-12-06 1990-06-14 Sumitomo Metal Ind Ltd Manufacture of metal belt for power transmission
JP4075187B2 (en) * 1999-02-05 2008-04-16 トヨタ自動車株式会社 Shot peening method for metal plate

Also Published As

Publication number Publication date
JP2003145427A (en) 2003-05-20

Similar Documents

Publication Publication Date Title
US6631542B1 (en) Method of manufacturing laminated ring and heat treatment apparatus for use in such method
JP3804412B2 (en) Manufacturing method of endless metal belt
JP2008520437A (en) Push belt and its manufacturing method
JP4085621B2 (en) Manufacturing method of endless metal belt
JP3630299B2 (en) Method for manufacturing endless ring for metal belt of continuously variable transmission
US7013691B2 (en) Peripheral length adjusting apparatus and peripheral length adjusting method for endless metallic ring
US6651299B2 (en) Method and apparatus for manufacturing endless metallic belt, and the endless metallic belt manufactured by the method
JP3622663B2 (en) Manufacturing method of endless metal belt
JP4483778B2 (en) Manufacturing method of endless metal belt
JP5784144B2 (en) Heat treatment process for manufacturing process of drive belt metal ring components
CN102667235B (en) Transmission belt and method for producing same
JP3925206B2 (en) Manufacturing method of endless metal belt
JPS6142402A (en) Apparatus for producing endless metallic belt
JPH11200010A (en) Surface treatment of metallic multilayered belt for automobile
JP6008976B2 (en) Heat treatment process in manufacturing method of drive belt metal ring element
JP2539521B2 (en) Coin passage of coin processing machine
JP2005256870A (en) Method for manufacturing endless metal belt
JP2004315869A (en) Method for nitriding metallic ring
NL1039971C2 (en) Heat treatment process in a manufacturing method of a ring set for a drive belt.
JP2001317594A (en) Thin metallic ring of metallic belt type continuous variable transmission
JP2024506781A (en) Calibration process of ring circumferential length in ring set assembly method for drive belt
JP2021507997A (en) Metal ring components of drive belts for continuously variable transmissions and their manufacturing methods
JP3622669B2 (en) Endless metal belt manufacturing equipment
JP2000199546A (en) Metal belt for continuously variable transmission and manufacture thereof
JP3860105B2 (en) Soft nitriding / oxidizing layer surface treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4085621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

EXPY Cancellation because of completion of term