JP4084595B2 - Manufacturing method of high frequency flexible multi-core coaxial cable and its applied electronic equipment - Google Patents

Manufacturing method of high frequency flexible multi-core coaxial cable and its applied electronic equipment Download PDF

Info

Publication number
JP4084595B2
JP4084595B2 JP2002131353A JP2002131353A JP4084595B2 JP 4084595 B2 JP4084595 B2 JP 4084595B2 JP 2002131353 A JP2002131353 A JP 2002131353A JP 2002131353 A JP2002131353 A JP 2002131353A JP 4084595 B2 JP4084595 B2 JP 4084595B2
Authority
JP
Japan
Prior art keywords
flexible multi
coaxial cable
frequency flexible
core
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002131353A
Other languages
Japanese (ja)
Other versions
JP2003323824A5 (en
JP2003323824A (en
Inventor
聡 越牟田
輝生 小野
喜市 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuchigami Micro Co Ltd
Original Assignee
Fuchigami Micro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuchigami Micro Co Ltd filed Critical Fuchigami Micro Co Ltd
Priority to JP2002131353A priority Critical patent/JP4084595B2/en
Publication of JP2003323824A publication Critical patent/JP2003323824A/en
Publication of JP2003323824A5 publication Critical patent/JP2003323824A5/ja
Application granted granted Critical
Publication of JP4084595B2 publication Critical patent/JP4084595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
本発明は電子機器、医療機器等で使われる高周波フレキシブル多芯同軸ケーブルの製造方法に係わり、特に、1GHz以上の高周波特性を有し、且つ、従来の大略1/2のコストで実現できるフレキシブル多芯角型同軸ケーブルの製造方法に関するものである。
【0002】
【従来の技術】
最近、動画や高速・大容量の広帯域サービスの要請が強まっており、パーソナルコンピュータ(以降、パソコンと略す)、デジタルカメラ、8ミリカメラ、情報通信携帯端末等の電子機器や医療機器の高速化が必須になっている。既に、これらの機器においては、表示画面を提供する液晶ディスプレイと制御回路とを接続するケーブルの信号授受速度が1GHzを超えるものも出始めており、この高速化の傾向は今後も続くものと考えられている。ノートパソコン市場では、2000年度の年間出荷台数は2400万台であり、それらの60〜70%に細線同軸ケーブルが使用され、残りはフレキシブル多芯ケーブルが使用されている。
【0003】
従来、これらの機器においては、表示画面を提供する液晶ディスプレイと制御回路とを接続するケーブルとして、フレキシブル多芯ケーブルやフレキシブル多芯細線同軸ケーブル等が使用されてきた。図6に、フレキシブル多芯ケーブルの従来構造例を示す。このケーブルは、図6に示すようにポリイミドやエポキシ樹脂などの絶縁フィルム1の上に信号を伝達するための中心導体2を複数本並列配線し、その後、絶縁フィルム3で中心導体2を被覆したマイクロストリップ構造をしている。図7に、フレキシブル多芯細線同軸ケーブルの従来構造例を示す。このケーブルは、信号を伝達する中心導体5を第1の絶縁フィルム6で取囲み、さらに、その外側を接地面となる外部導体7と第2の絶縁フィルム8で覆った細線同軸ケーブルを複数本並列配線した構造9をしている。前者は絶縁フィルム1上に中心導体2を形成する簡易な構造のため、安価であり、100MHz以下の信号授受速度を要する電子機器に多く用いられている。後者は、主として、信号の授受速度が300〜400MHzを要する医療機器のような電子機器のケーブル接続システムに使われており、高速の信号授受が可能である。
【0004】
【発明が解決しようとする課題】
前述した電子機器や医療機器には、高速化と同時に小型・薄型化、低コスト化も要求されており、これに伴い使用されるケーブルにも細径・薄型化、コスト低減が必須となっている。しかし、ケーブルの細径・薄型化は伝送路の伝播損失や帯域劣化、伝送路間クロストークや外来雑音による伝送品質劣化等を招来するので、高品質、且つ、高速伝送を実現するには、これらの課題を克服することが必要不可欠となっている。図6に示すフレキシブル多芯ケーブルはマイクロストリップ構造をしているため、接地面と反対側に形成される中心導体2が開放されているため、中心導体間、即ち、信号伝送路間のクロストークや外来雑音の影響を受け易い上に、ケーブルが屈曲するとインピーダンスが変動するので、信号の伝送品質の劣化防止は難しい。また、ノートパソコンのヒンジ部におけるケーブルの可撓性が劣っており(半径2.5mmの屈曲試験にて、2,000回にて破断:目標の約十分の一)、伝送帯域として約100MHzまでしか対応していない。図7に示す細線同軸ケーブルは、図6のフレキシブルケーブル構造で問題となった高速伝送や高い雑音耐性、ケーブル屈曲時に生じるインピーダンス変動の抑圧を実現するために開発されたもので、広帯域サービス対応のパソコンや医療機器に広く用いられてきた。しかし、細線同軸ケーブルの価格は、フレキシブルケーブルの価格の約4倍であり、非常に高価であるという問題がある。
【0005】
本発明の目的は、上記従来技術および先行技術の問題点を解決し、高速伝送が可能であり、且つ、安価で耐雑音特性に優れ、ケーブル屈曲時のインピーダンス変動の小さい高周波フレキシブル多芯同軸ケーブルの製造方法を提供することにある。
【0006】
本発明の高周波フレキシブル多芯同軸ケーブルの製造方法は、第1の絶縁フィルムを覆っている上下面の外部導体の内、上面の外部導体のみをエッチングして、一定幅並びに間隙を有する複数本並列配線された中心導体を一括形成することによって、角型高周波フレキシブル多芯同軸ケーブル基本部分を作成し、
次に、作成された角型高周波フレキシブル多芯同軸ケーブル基本部分を、第2の絶縁フィルムを挟んで多段に積層し、最上部に外部導体を重ねて各々の層を接着し、
次に、プレスを用いて上下に加圧して各層間を圧着し、
次に、この圧着したものを、前記中心導体が上下方向に並列するように切断して、複数の角型高周波フレキシブル多芯同軸ケーブルを切り出すことを特徴とする。
すなわち、第1の絶縁フィルムの上に並列に形成された複数本の中心導体を第2の絶縁
フィルムで埋込み、その絶縁フィルムをさらに接地面となる外部導体で一括被覆した角型同軸構造を持つフレキシブル多芯ケーブルの製造方法を提供する。その製造方法は以下の通りである。最初に、上下面の全面を外部導体で被覆された絶縁フィルムの上面導体のみをエッチングにより、信号が伝達される一定幅並びに間隙を有する複数本の中心導体を一括形成する。この時、中心導体の幅および間隙は使用されるケーブルの所定インピーダンス、例えば、50Ωとなるように決められる。次に、外部導体が形成されていない第2の絶縁フィルムを上記中心導体が形成されている面に貼り合わせて、一層に相当するフレキシケーブルを形成する。従って、この一層のフレキシブルケーブルを多数積層した後、プレス機によって加圧し、各層を圧着してから縦方向にスライスすれば、所望の角型高周波フレキシブル多芯同軸ケーブルを得ることができる。この時点では、まだ、側面は絶縁フィルムが剥き出しの状態であるので、次に鍍金等の手段を用いて側面に外部導体を形成すれば角型のフレキシブル多芯同軸ケーブルを実現できる。本発明が提供する手段によるフレキシブル多芯同軸ケーブルは、従来の丸型細線同軸ケーブルと基本的には同じ構造をしており、信号が伝達される中心導体が接地面を形成する外部導体で周囲を囲まれている。このため、任意の線路インピーダンスを設定でき、高速伝送が可能あり、ケーブル屈曲時のインピーダンス変動も小さく抑えることが可能となる。また、本発明は、外部導体により中心導体から放射される電磁界を絶縁フィルム内に閉じ込められるので、伝送路間のクロストークを防止できる、外部から飛び込んで来る種々の雑音に対する影響を遮断できる等、耐雑音特性の向上が可能となる。さらに、本発明は従来のフレキシブルケーブルと同様な性質を持つため、可撓性があり、且つ、従来の細線同軸ケーブルの約1/2の価格で実現できることであり、安価な高周波フレキシブル多芯ケーブルの実現手段の提供が可能となる。
また、上記の高周波フレキシブル多芯同軸ケーブルを製造方法において、複数の前記角型高周波フレキシブル多芯同軸ケーブル基本部分を積層、圧着する際に該角型高周波フレキシブル多芯同軸ケーブル基本部分の各々に中心導体の位置合わせを行うためのアライメントホールを設けると共に、アライメント用ピンを前記アライメントホールに挿通してもよい。
本発明の電子機器は、表示画面を提供する液晶ディスプレイと制御回路とを接続するケーブルとの間を請求項1または2に記載の高周波フレキシブル多芯同軸ケーブルの製造方法を用いて製造した高周波フレキシブル多芯同軸ケーブルで接続したことを特徴とする。
【0007】
【発明の実施の形態】
図1に一実施例として、本発明の製造方法による高周波フレキシブル多芯同軸ケーブルの構造を、図2にその製造方法の基本フローを示す。本実施例の高周波フレキシブル多芯同軸ケーブル15は図1(a)に示すように、中心導体10を絶縁フィルム11で埋込み、さらにその絶縁フィルム11を外部導体12で被覆した角型同軸構造を持ち、それらを複数本並列に束ねることにより形成される。この構造では、信号電流は中心導体10と接地面として機能する外部導体12を介して伝達される。本発明によるケーブルは、従来の同軸ケーブルと基本的には同じシングルストリップライン構造をしており、任意の線路インピーダンスを設定でき、高速伝送が可能ある。例えば、伝送路の特性インピーダンスZoは図1(b)に示す角型同軸ケーブルの基本的なシングルストリップライン構造の断面図を使って、次式で計算できる。
Zo=60/√εr*ln{2*(2H+T)/(0.8W+T)} (1)
ここで、εrは絶縁フィルム11の比誘電率、Hは絶縁フィルム11の厚さ、TとWは中心導体10の厚さと幅である。式(1)より、中心導体10と絶縁フィルム11の幅や厚さ、比誘電率を適当に選べば、任意のインピーダンスを実現できることが分かる。ちなみに、Zoを50Ω、εrを3.4、Tを25μm、Wを30μmとして絶縁フィルム11の厚さHを求めると47.5μmとなる。従って、外部導体12の厚さを30μmとしてもケーブル一本の幅を150μmで構成できることになる。この構造におけるシミュレーション結果によれば、線路インピーダンス50Ωにおいて、3GHzまで定在波比1.1以下を実現できることを確認している。なお、図1(a)で示されている外部被覆絶縁フィルム13は同軸ケーブルの保護のためのもので、高周波伝送特性には影響しないため、本質的には無くても良い。
【0008】
次に、図2の実施例を用いて、本発明による角型高周波フレキシブル多芯同軸ケーブルの製造方法を説明する。最初に、図2(a)に示す素材として用意された第1の絶縁フィルム23を覆っている上下面の外部導体21、22の内、上面の外部導体21のみをエッチングによって、ケーブルの所定インピーダンスより決定される一定幅並びに間隙を有する複数本並列配線された中心導体24を一括形成する。この時の加工断面を図2(b)に示すが、同図より角型高周波フレキシブル多芯同軸ケーブルの基本部分25を形成していることが分かる。エッチング方法としては、ドライエッチング、若しくは、ウエットエッチングの何れの方法を用いても良い。また、中心導体24の電極材料としては銅、或いは、銅―ニッケル―金等を、絶縁フィルムとしてエポシキ系やポリイミド系フィルム等を用いることができる。なお、中心導体24と絶縁フィルム23との接着力を強化するために間に接着層を挟んでも良い。次に、図2(c)に示すように、作成された角型高周波フレキシブル多芯同軸ケーブル基本部分25を上面の外部導体を形成するための第2の絶縁フィルム26−1〜26−5を挟んで多段に積層し、最上部に外部導体27を重ねて各々の層を接着する。この状態で、図2(d)に示すように、プレスを用いて上下に加圧して各層間を圧着する。この時、プレスが場所によって不均一になると気泡が混入するため、完全な同軸ケーブルを実現できなくなる。それ故、気泡の混入を避けるには、真空ホットプレス技術の導入などが有効である。また、プレスに要する時間や温度等の最適化も重要なファクターとなる。次に、図2(d)の状態で、
図2(e)に示すように、スライサーなどを用いて縦方向に切断すれば、多数の角型高周波フレキシブル多芯同軸ケーブル28を切り出すことができるが、まだ、この時点では、絶縁フィルム23の側面が剥き出しの状態である。従って、角型高周波フレキシブル多芯同軸ケーブル28の側面に鍍金等によって外部導体29−1、29−2を形成すれば、図2(f)で示す角型高周波フレキシブル多芯同軸ケーブル15を実現できる。図2(g)は、以上のように作製された角型高周波フレキシブル多芯同軸ケーブル28を保護するために絶縁フィルム30で被覆したものであるが、絶縁フィルム30の被覆による高周波特性への影響はない。なお、図2で説明した本発明の実施例では同軸構造の層数を5層としたが、層数には制限が無いことは自明である。
【0009】
図3に角型高周波フレキシブル多芯同軸ケーブル31の一実施例を示す。同図は、図2(e)において作製された角型高周波フレキシブル多芯同軸ケーブル28と同じ構造を持つ。式(1)で定義された絶縁フィルム32、33の厚さHが幅方向の約1/3になるような場合には側面の外部導体を省いても良い。これは、中心導体34から放射される電磁界が外部導体35で殆ど吸収されるため、隣接する中心導体に与える影響、即ち、クロストーク量を大きく軽減できることによる。また、外部から飛来してくる外部雑音電波もその殆どが外部導体35に吸収されるので、信号伝送品質に与える影響は小さい。図3の実施例におけるケーブルの寸法は、ちなみに、中心導体34と外部導体35間の幅比を3倍に設定したとすると厚さは345μmとなり、従来の細線同軸ケーブルの厚さの約70%で実現できることになる。なお、本実施例では側面の外部導体を被着する工程を省略できるので、工程の簡略化による製造期間の短縮やコスト削減に有効となる。
【0010】
ところで、図2(c)で、各層における中心導体間の位置がずれると、図2(e)の工程でケーブルを切り出す時に中心導体が絶縁フィルム23、26の中心よりずれるため、層によってインピーダンスが所定値とは異なる値をとる。このため、各層によって伝送特性に若干の差異を生じる。これを回避するために、本発明によって作製された角型高周波フレキシブル多芯同軸ケーブル15の中心導体間位置合わせ方法の一実施例を図4に示す。本発明では各層の中心導体24間の位置合わせを行うために、各層毎に2〜4箇所程度のアライメントホールを形成して、その夫々に位置決めピン41を立て、中心導体24間のアライメントを行いながらプレス加工を行う。この方法を用いれば、数μmオーダーの位置合わせは可能である。
【0011】
図5に本発明により作製された角型高周波フレキシブル多芯同軸ケーブルを搭載したパソコン51の一実施例を示す。パソコンはキーボード52の叩打によって入力される情報に従ってデータの読み出し、書き込み、演算、制御等を行う信号処理部53とその処理結果を表示する液晶ディスプレイ54から成り、両者間を接続し、多数の並列データの一括授受に本発明によるケーブル55が用いられる。なお、図5ではパソコンの例を適用例として説明したが、液晶ディスプレイと信号処理部、制御回路を具備する電子機器であれば、本発明を適用できることは明らかである。
【0012】
【発明の効果】
本発明によるケーブル部は従来の同軸ケーブルと基本的には同じ構造をしており、信号が伝送される中心導体が絶縁フィルムを挟んで接地面を形成する外部導体で囲まれている。このため、任意の線路インピーダンスを設定でき、高速伝送が可能ある上、ケーブル屈曲時のインピーダンス変動を抑えることもできる。また、中心導体から放射される電磁波は外部導体により絶縁フィルム内に閉じ込めることができるので伝送路間のクロストークの防止が可能となる上、外部から飛び込んで来る種々の雑音に対する影響を遮断できる等耐雑音特性の向上が可能となる。さらに、本発明のもう一つの利点は従来のフレキシブルケーブルと同様な性質を持つため、可撓性があり、且つ、安価に実現できることである。それ故、高速化の要請が強まっているパソコン、デジタルカメラ、ハンディカム、広帯域サービス対応の情報通信携帯端末等の電子機器や医療機器に広く適用され、システムの高速化や小型化、低コスト化に寄与できる。また、本発明によれば、現在、高速伝送路として主に使われている細線同軸ケーブルもコスト競争力の点で、本発明による角型高周波フレキシブル多芯同軸ケーブルに置き換わって行くものと思われる。
【図面の簡単な説明】
【図1】本発明によって製造される高周波フレキシブル多芯同軸ケーブルの基本構造の一実施例を示す図である。
【図2】本発明における高周波フレキシブル多芯同軸ケーブルの製造方法を示す基本製造フロー図である。
【図3】本発明の一実施例を示す図である。
【図4】本発明による高周波フレキシブル多芯同軸ケーブルの製造方法の内、中心導体間の位置をアライメントする方法の一実施例を示す図である。
【図5】本発明を適用した電子機器の一実施例を示す図である。
【図6】フレキシブル多芯ケーブルの従来例を示す図である。
【図7】フレキシブル多芯ケーブルの他の従来例を示す図である。
【符号の説明】
1、3、6、8:絶縁フィルム
2、5:中心導体
7:外部導体
9:高周波フレキシブル多芯同軸ケーブル
10:中心導体
11、13:絶縁フィルム
12:外部導体
15:角型高周波フレキシブル多芯同軸ケーブル
21、22:外部導体
23:絶縁フィルム
24:中心導体
25:角型高周波フレキシブル多芯同軸ケーブル
26−1〜26−5:絶縁フィルム
27:外部導体
28:角型高周波フレキシブル多芯同軸ケーブル
29−1、29−2:外部導体
30:絶縁フィルム
31:角型高周波フレキシブル多芯同軸ケーブル
32、33:絶縁フィルム
34:中心導体
35:外部導体
41:アライメントピン
51:パソコン
52:キーボード
53:信号処理部
54:液晶ディスプレイ
55:角型高周波フレキシブル多芯同軸ケーブル
[0001]
[Technical field to which the invention belongs]
The present invention relates to a method for manufacturing a high-frequency flexible multi-core coaxial cable used in electronic equipment, medical equipment, etc., and in particular, has a high-frequency characteristic of 1 GHz or more and can be realized at a cost approximately half that of a conventional flexible multi-wire. The present invention relates to a method for manufacturing a core-type coaxial cable.
[0002]
[Prior art]
Recently, there has been an increasing demand for video and high-speed, large-capacity broadband services, and the speedup of electronic devices and medical devices such as personal computers (hereinafter abbreviated as personal computers), digital cameras, 8 mm cameras, and portable information and communication terminals. It is mandatory. Already, in these devices, some of the cables that connect the liquid crystal display that provides the display screen and the control circuit have a signal transmission speed exceeding 1 GHz, and this high-speed trend is expected to continue in the future. ing. In the notebook computer market, the annual shipment volume in FY2000 is 24 million units, of which 60 to 70% are fine-coaxial cables and the rest are flexible multi-core cables.
[0003]
Conventionally, in these devices, a flexible multi-core cable, a flexible multi-core thin wire coaxial cable, or the like has been used as a cable for connecting a liquid crystal display providing a display screen and a control circuit. FIG. 6 shows a conventional structure example of a flexible multicore cable. In this cable, as shown in FIG. 6, a plurality of central conductors 2 for transmitting signals are arranged in parallel on an insulating film 1 such as polyimide or epoxy resin, and then the central conductor 2 is covered with the insulating film 3. Has a microstrip structure. FIG. 7 shows an example of a conventional structure of a flexible multi-core thin wire coaxial cable. In this cable, a plurality of fine coaxial cables, in which a central conductor 5 for transmitting a signal is surrounded by a first insulating film 6 and the outside thereof is covered with an outer conductor 7 serving as a ground plane and a second insulating film 8. The structure 9 is connected in parallel. The former is a simple structure in which the central conductor 2 is formed on the insulating film 1 and is therefore inexpensive and is often used in electronic devices that require a signal transmission / reception speed of 100 MHz or less. The latter is mainly used in a cable connection system of an electronic device such as a medical device that requires a signal transmission / reception speed of 300 to 400 MHz, and can perform high-speed signal transmission / reception.
[0004]
[Problems to be solved by the invention]
The electronic devices and medical devices described above are required to be faster, smaller, thinner, and lower cost, and the cables used are also required to be thinner, thinner, and cost-reduced. Yes. However, narrowing and thinning of cables leads to transmission loss and band degradation of transmission lines, transmission quality deterioration due to crosstalk between transmission lines and external noise, etc., so to realize high quality and high speed transmission, Overcoming these challenges is essential. Since the flexible multi-core cable shown in FIG. 6 has a microstrip structure, the center conductor 2 formed on the side opposite to the ground plane is open, so that the crosstalk between the center conductors, that is, between the signal transmission paths. In addition to being easily affected by external noise and the impedance of the cable when the cable is bent, it is difficult to prevent deterioration in signal transmission quality. In addition, the flexibility of the cable at the hinge part of the notebook PC is inferior (breaking at 2,000 times in a bending test with a radius of 2.5 mm: about one tenth of the target), and the transmission band can only be up to about 100 MHz. Not. The thin coaxial cable shown in FIG. 7 was developed to realize high-speed transmission, high noise resistance, and suppression of impedance fluctuations that occur when the cable is bent, which was a problem in the flexible cable structure of FIG. Widely used in personal computers and medical equipment. However, the price of the thin coaxial cable is about four times the price of the flexible cable, which is very expensive.
[0005]
An object of the present invention is to solve the problems of the above prior art and the prior art, enable high-speed transmission, be inexpensive, have excellent noise resistance, and have low impedance fluctuation when bending the cable. It is in providing the manufacturing method of.
[0006]
In the method for manufacturing a high-frequency flexible multi-core coaxial cable according to the present invention, only a plurality of upper and lower outer conductors covering the first insulating film are etched, and a plurality of parallel conductors having a constant width and a gap are etched. By forming the wired central conductor at once, the basic part of the rectangular high-frequency flexible multi-core coaxial cable is created,
Next, the created rectangular high-frequency flexible multi-core coaxial cable basic portion is laminated in multiple stages with the second insulating film sandwiched between them, and the outer conductors are stacked on the top to adhere each layer.
Next, press the top and bottom using a press to crimp each layer,
Next, the crimped product is cut so that the central conductors are aligned in the vertical direction, and a plurality of rectangular high-frequency flexible multicore coaxial cables are cut out.
That is, it has a rectangular coaxial structure in which a plurality of central conductors formed in parallel on a first insulating film are embedded with a second insulating film, and the insulating film is further covered with an outer conductor serving as a ground plane. A method for manufacturing a flexible multicore cable is provided. The manufacturing method is as follows. First, only the upper surface conductor of the insulating film whose upper and lower surfaces are entirely covered with an external conductor is etched to form a plurality of central conductors having a constant width and a gap through which signals are transmitted. At this time, the width and gap of the center conductor are determined so as to be a predetermined impedance of the cable used, for example, 50Ω. Next, the second insulating film on which the outer conductor is not formed is bonded to the surface on which the central conductor is formed to form a flexible cable corresponding to one layer. Therefore, a desired rectangular high-frequency flexible multi-core coaxial cable can be obtained by laminating a large number of the single layer flexible cables, pressurizing them with a press machine, pressing the layers, and slicing them in the vertical direction. At this time, since the insulating film is still exposed on the side surface, a rectangular flexible multi-core cable can be realized by forming an external conductor on the side surface using means such as plating. The flexible multi-core coaxial cable according to the means provided by the present invention has basically the same structure as a conventional round thin coaxial cable, and the central conductor through which a signal is transmitted is an outer conductor that forms a ground plane. Is surrounded. For this reason, an arbitrary line impedance can be set, high-speed transmission is possible, and impedance fluctuation at the time of cable bending can be suppressed to be small. In addition, since the electromagnetic field radiated from the central conductor is confined in the insulating film by the external conductor, the crosstalk between the transmission paths can be prevented, and the influence on various noises jumping from the outside can be blocked. It is possible to improve noise resistance. Furthermore, since the present invention has the same properties as the conventional flexible cable, it is flexible and can be realized at about half the price of the conventional thin coaxial cable. Can be provided.
Further, in the method for manufacturing a high-frequency flexible multi-core coaxial cable described above, when a plurality of the rectangular high-frequency flexible multi-core coaxial cable basic portions are stacked and bonded together, An alignment hole for aligning the conductor may be provided, and an alignment pin may be inserted through the alignment hole.
The electronic device of the present invention is a high-frequency flexible manufactured using the method for manufacturing a high-frequency flexible multi-core coaxial cable according to claim 1 or 2 between a liquid crystal display providing a display screen and a cable connecting a control circuit. It is connected by a multi-core coaxial cable.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a structure of a high-frequency flexible multicore coaxial cable according to the manufacturing method of the present invention as an embodiment, and FIG. 2 shows a basic flow of the manufacturing method. As shown in FIG. 1A, the high-frequency flexible multicore coaxial cable 15 of this embodiment has a rectangular coaxial structure in which a central conductor 10 is embedded with an insulating film 11 and the insulating film 11 is covered with an outer conductor 12. , They are formed by bundling them in parallel. In this structure, the signal current is transmitted through the center conductor 10 and the outer conductor 12 functioning as a ground plane. The cable according to the present invention has basically the same single strip line structure as a conventional coaxial cable, can set an arbitrary line impedance, and can perform high-speed transmission. For example, the characteristic impedance Zo of the transmission line can be calculated by the following equation using the sectional view of the basic single strip line structure of the rectangular coaxial cable shown in FIG.
Zo = 60 / √εr * ln {2 * (2H + T) / (0.8W + T)} (1)
Here, εr is the relative dielectric constant of the insulating film 11, H is the thickness of the insulating film 11, and T and W are the thickness and width of the central conductor 10. From the equation (1), it can be seen that an arbitrary impedance can be realized if the width and thickness of the central conductor 10 and the insulating film 11 and the relative dielectric constant are appropriately selected. Incidentally, the thickness H of the insulating film 11 is 47.5 μm when Zo is 50Ω, εr is 3.4, T is 25 μm, and W is 30 μm. Therefore, even if the thickness of the outer conductor 12 is 30 μm, the width of one cable can be configured as 150 μm. According to the simulation result in this structure, it has been confirmed that a standing wave ratio of 1.1 or less can be realized up to 3 GHz at a line impedance of 50Ω. Note that the outer covering insulating film 13 shown in FIG. 1A is for protecting the coaxial cable and does not affect the high-frequency transmission characteristics, so it may be essentially omitted.
[0008]
Next, a method for manufacturing a rectangular high-frequency flexible multi-core coaxial cable according to the present invention will be described using the embodiment of FIG. First, of the upper and lower outer conductors 21 and 22 covering the first insulating film 23 prepared as a material shown in FIG. 2A, only the upper outer conductor 21 is etched to obtain a predetermined impedance of the cable. A plurality of centrally-wired central conductors 24 having a constant width and a gap determined by the above are collectively formed. The processed cross section at this time is shown in FIG. 2B, and it can be seen that the basic portion 25 of the rectangular high-frequency flexible multicore coaxial cable is formed. As an etching method, either dry etching or wet etching may be used. Further, copper or copper-nickel-gold or the like can be used as the electrode material of the center conductor 24, and epoxy or polyimide film or the like can be used as the insulating film. An adhesive layer may be sandwiched between the central conductor 24 and the insulating film 23 in order to strengthen the adhesive force. Next, as shown in FIG. 2 (c), second rectangular insulating films 26-1 to 26-5 for forming the outer conductor on the upper surface of the prepared rectangular high-frequency flexible multi-core coaxial cable basic portion 25 are provided. The layers are stacked in multiple layers, and the outer conductors 27 are stacked on the top to bond the layers. In this state, as shown in FIG.2 (d), it pressurizes up and down using a press, and each layer is crimped | bonded. At this time, if the press is uneven depending on the location, air bubbles are mixed in, and a complete coaxial cable cannot be realized. Therefore, the introduction of a vacuum hot press technique or the like is effective for avoiding the mixing of bubbles. In addition, optimization of time and temperature required for pressing is also an important factor. Next, in the state of FIG.
As shown in FIG. 2 (e), a large number of rectangular high-frequency flexible multi-core coaxial cables 28 can be cut out by cutting in the vertical direction using a slicer or the like. The side is bare. Therefore, if the outer conductors 29-1 and 29-2 are formed on the side surface of the rectangular high-frequency flexible multi-core coaxial cable 28 by plating or the like, the rectangular high-frequency flexible multi-core coaxial cable 15 shown in FIG. . FIG. 2G shows a case where the rectangular high-frequency flexible multi-core coaxial cable 28 manufactured as described above is covered with an insulating film 30. The influence of the covering of the insulating film 30 on the high-frequency characteristics is shown in FIG. There is no. In the embodiment of the present invention described with reference to FIG. 2, the number of layers of the coaxial structure is five, but it is obvious that the number of layers is not limited.
[0009]
FIG. 3 shows an embodiment of the rectangular high-frequency flexible multi-core coaxial cable 31. This figure has the same structure as the rectangular high-frequency flexible multi-core coaxial cable 28 produced in FIG. When the thickness H of the insulating films 32 and 33 defined by the expression (1) is about 1/3 in the width direction, the side external conductors may be omitted. This is because the electromagnetic field radiated from the center conductor 34 is almost absorbed by the outer conductor 35, so that the influence on the adjacent center conductor, that is, the amount of crosstalk can be greatly reduced. Also, most of the external noise radio waves coming from the outside are absorbed by the external conductor 35, so the influence on the signal transmission quality is small. As for the dimensions of the cable in the embodiment of FIG. 3, if the width ratio between the center conductor 34 and the outer conductor 35 is set to 3 times, the thickness becomes 345 μm, which is about 70% of the thickness of the conventional thin coaxial cable. Can be realized. In this embodiment, the step of attaching the outer conductor on the side surface can be omitted, which is effective for shortening the manufacturing period and reducing costs by simplifying the steps.
[0010]
By the way, if the position between the center conductors in each layer is shifted in FIG. 2C, the center conductor is shifted from the center of the insulating films 23 and 26 when the cable is cut out in the process of FIG. A value different from the predetermined value is taken. For this reason, there is a slight difference in transmission characteristics depending on each layer. In order to avoid this, FIG. 4 shows an embodiment of a method for aligning the center conductors of the rectangular high-frequency flexible multicore coaxial cable 15 manufactured according to the present invention. In the present invention, in order to perform alignment between the center conductors 24 of each layer, about 2 to 4 alignment holes are formed for each layer, and positioning pins 41 are set up in each of the holes to perform alignment between the center conductors 24. While pressing. If this method is used, alignment on the order of several μm is possible.
[0011]
FIG. 5 shows an embodiment of a personal computer 51 equipped with a rectangular high-frequency flexible multi-core coaxial cable manufactured according to the present invention. The personal computer includes a signal processing unit 53 that reads, writes, calculates, and controls data according to information input by tapping the keyboard 52, and a liquid crystal display 54 that displays the processing results. The cable 55 according to the present invention is used for batch data transfer. Note that although the example of a personal computer is described as an application example in FIG. 5, it is obvious that the present invention can be applied to any electronic device including a liquid crystal display, a signal processing unit, and a control circuit.
[0012]
【The invention's effect】
The cable portion according to the present invention has basically the same structure as a conventional coaxial cable, and a central conductor through which a signal is transmitted is surrounded by an outer conductor that forms a ground plane with an insulating film interposed therebetween. Therefore, an arbitrary line impedance can be set, high-speed transmission is possible, and impedance fluctuation at the time of cable bending can be suppressed. In addition, since the electromagnetic wave radiated from the central conductor can be confined in the insulating film by the external conductor, it is possible to prevent the crosstalk between the transmission lines, and to block the influence on various noises entering from the outside. Noise resistance can be improved. Furthermore, another advantage of the present invention is that it has the same properties as a conventional flexible cable, so that it is flexible and can be realized at low cost. Therefore, it is widely applied to electronic devices and medical devices such as personal computers, digital cameras, handy cams, broadband communication compatible information communication portable terminals, etc., where the demand for high speed is increasing, and to increase the speed, size and cost of the system. Can contribute. In addition, according to the present invention, the thin coaxial cable mainly used as a high-speed transmission line at present is considered to be replaced with the rectangular high-frequency flexible multi-core coaxial cable according to the present invention in terms of cost competitiveness. .
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a basic structure of a high-frequency flexible multicore coaxial cable manufactured according to the present invention.
FIG. 2 is a basic production flow diagram showing a method for producing a high-frequency flexible multicore coaxial cable according to the present invention.
FIG. 3 is a diagram showing an embodiment of the present invention.
FIG. 4 is a diagram showing an embodiment of a method for aligning positions between central conductors in a method for manufacturing a high-frequency flexible multicore coaxial cable according to the present invention.
FIG. 5 is a diagram showing an example of an electronic apparatus to which the present invention is applied.
FIG. 6 is a view showing a conventional example of a flexible multicore cable.
FIG. 7 is a view showing another conventional example of a flexible multi-core cable.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 3, 6, 8: Insulating film 2, 5: Center conductor 7: Outer conductor 9: High frequency flexible multi-core coaxial cable 10: Center conductor 11, 13: Insulating film 12: Outer conductor 15: Square type high frequency flexible multi-core Coaxial cables 21, 22: outer conductor 23: insulating film 24: center conductor 25: square high-frequency flexible multi-core coaxial cable 26-1 to 26-5: insulating film 27: outer conductor 28: square high-frequency flexible multi-core coaxial cable 29-1, 29-2: External conductor 30: Insulating film 31: Square high-frequency flexible multi-core coaxial cable 32, 33: Insulating film 34: Center conductor 35: External conductor 41: Alignment pin 51: Personal computer 52: Keyboard 53: Signal processor 54: Liquid crystal display 55: Square high-frequency flexible multi-core coaxial cable

Claims (3)

第1の絶縁フィルムを覆っている上下面の外部導体の内、上面の外部導体のみをエッチングして、一定幅並びに間隙を有する複数本並列配線された中心導体を一括形成することによって、角型高周波フレキシブル多芯同軸ケーブル基本部分を作成し、
次に、作成された角型高周波フレキシブル多芯同軸ケーブル基本部分を、第2の絶縁フィルムを挟んで多段に積層し、最上部に外部導体を重ねて各々の層を接着し、
次に、プレスを用いて上下に加圧して各層間を圧着し、
次に、この圧着したものを、前記中心導体が上下方向に並列するように切断して、複数の角型高周波フレキシブル多芯同軸ケーブルを切り出すことを特徴とする高周波フレキシブル多芯同軸ケーブルの製造方法。
By etching only the upper outer conductors of the upper and lower outer conductors covering the first insulating film to form a plurality of parallel conductors having a constant width and gap, the square conductors are formed in a square shape. Create a high-frequency flexible multicore coaxial cable basic part,
Next, the created rectangular high-frequency flexible multi-core coaxial cable basic portion is laminated in multiple stages with the second insulating film sandwiched between them, and the outer conductors are stacked on the top to adhere each layer.
Next, press the top and bottom using a press to crimp each layer,
Next, the crimped product is cut so that the central conductors are arranged in parallel in the vertical direction, and a plurality of rectangular high-frequency flexible multi-core coaxial cables are cut out. .
請求項の高周波フレキシブル多芯同軸ケーブル製造方法において
、複数の前記角型高周波フレキシブル多芯同軸ケーブル基本部分を積層、圧着する際に該角型高周波フレキシブル多芯同軸ケーブル基本部分の各々に中心導体の位置合わせを行うためのアライメントホールを設けると共に、アライメント用ピンを前記アライメントホールに挿通することを特徴とする高周波フレキシブル多芯同軸ケーブルの製造方法。
2. The method of manufacturing a high-frequency flexible multi-core coaxial cable according to claim 1 , wherein a plurality of the square high-frequency flexible multi-core coaxial cable basic portions are stacked and crimped to each of the square high-frequency flexible multi-core coaxial cable basic portions. A method of manufacturing a high-frequency flexible multi-core cable, wherein an alignment hole for aligning conductors is provided, and an alignment pin is inserted through the alignment hole.
表示画面を提供する液晶ディスプレイと制御回路とを接続するケーブルとの間を請求項1または2に記載の高周波フレキシブル多芯同軸ケーブルの製造方法を用いて製造した高周波フレキシブル多芯同軸ケーブルで接続したことを特徴とする電子機器。A liquid crystal display providing a display screen and a cable connecting the control circuit are connected by a high frequency flexible multi-core cable manufactured using the method for manufacturing a high-frequency flexible multi-core cable according to claim 1 or 2 . An electronic device characterized by that.
JP2002131353A 2002-05-07 2002-05-07 Manufacturing method of high frequency flexible multi-core coaxial cable and its applied electronic equipment Expired - Fee Related JP4084595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002131353A JP4084595B2 (en) 2002-05-07 2002-05-07 Manufacturing method of high frequency flexible multi-core coaxial cable and its applied electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002131353A JP4084595B2 (en) 2002-05-07 2002-05-07 Manufacturing method of high frequency flexible multi-core coaxial cable and its applied electronic equipment

Publications (3)

Publication Number Publication Date
JP2003323824A JP2003323824A (en) 2003-11-14
JP2003323824A5 JP2003323824A5 (en) 2005-09-15
JP4084595B2 true JP4084595B2 (en) 2008-04-30

Family

ID=29544022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002131353A Expired - Fee Related JP4084595B2 (en) 2002-05-07 2002-05-07 Manufacturing method of high frequency flexible multi-core coaxial cable and its applied electronic equipment

Country Status (1)

Country Link
JP (1) JP4084595B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4168079B2 (en) * 2007-02-05 2008-10-22 株式会社フジクラ Electronic device and wiring method of harness in electronic device
EP1953768A3 (en) 2007-02-05 2010-12-22 Fujikura, Ltd. Electronic device and harness for wiring electronic device
KR20160010469A (en) 2013-04-24 2016-01-27 가부시키가이샤 쇼난 고세이쥬시 세이사쿠쇼 Signal transmission flat cable

Also Published As

Publication number Publication date
JP2003323824A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
JP3851075B2 (en) Computer systems, electronic circuit boards and cards
EP1575062A2 (en) Flat cable, flat cable sheet, and flat cable sheet producing method
US8440911B2 (en) Flat cable
US9748664B2 (en) Semiconductor device, transmission system, method for manufacturing semiconductor device, and method for manufacturing transmission system
WO2005114676A1 (en) Flexible flat cable
JP2001320208A (en) High frequency circuit, module and communication equipment using the same
US11888245B2 (en) Flexible substrate and antenna module including flexible substrate
CN111599302B (en) Display panel and display device
US11374299B2 (en) Transmission line cable including an unbendable superimposed layer part and a bendable non-superimposed layer part
US20060082422A1 (en) Connection structure of high frequency lines and optical transmission module using the connection structure
JP2003332830A (en) Planar antenna, radio terminal device and radio base station
CN114144945A (en) Flexible cable
JP4084595B2 (en) Manufacturing method of high frequency flexible multi-core coaxial cable and its applied electronic equipment
CN105845222B (en) A kind of soft strip transmission line
US10080277B1 (en) Attenuation reduction structure for flexible circuit board
US20220028578A1 (en) Multilayered substrate
US20220216591A1 (en) Antenna substrate, antenna module, and method of manufacturing antenna substrate
CN116014434A (en) Display device and preparation method thereof
US20200083594A1 (en) Antenna assembly
CN114267937A (en) Antenna device
TWI243511B (en) Antenna device and method for forming the same
JP2000183099A (en) Ribbon for bonding
JP2011258473A (en) Pseudo coaxial flat cable and plug structure
JP2003203694A (en) High-frequency flexible multiconductor cable connecting system and applied electronic equipment
US20230171877A1 (en) Circuit board and method of manufacturing thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees