JP4084581B2 - Manufacturing method of high impact steel pipe and high impact steel pipe manufactured by the method - Google Patents

Manufacturing method of high impact steel pipe and high impact steel pipe manufactured by the method Download PDF

Info

Publication number
JP4084581B2
JP4084581B2 JP2002062216A JP2002062216A JP4084581B2 JP 4084581 B2 JP4084581 B2 JP 4084581B2 JP 2002062216 A JP2002062216 A JP 2002062216A JP 2002062216 A JP2002062216 A JP 2002062216A JP 4084581 B2 JP4084581 B2 JP 4084581B2
Authority
JP
Japan
Prior art keywords
steel pipe
high impact
less
tensile strength
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002062216A
Other languages
Japanese (ja)
Other versions
JP2003129170A (en
Inventor
功 穴井
逸朗 弘重
弘人 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002062216A priority Critical patent/JP4084581B2/en
Publication of JP2003129170A publication Critical patent/JP2003129170A/en
Priority to US10/658,062 priority patent/US20050034795A1/en
Application granted granted Critical
Publication of JP4084581B2 publication Critical patent/JP4084581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のドアインパクトビーム、バンパー用材料、バンパー補強用材料等の衝撃吸収エネルギーを必要とされる部材として用いられる高耐衝撃性鋼管の製造方法およびその方法により製造された高耐衝撃性鋼管に関するものである。
【0002】
【従来の技術】
自動車の側面衝突時の衝撃吸収を目的とするドアインパクトビーム用の鋼管には、引張強度が大きく、かつ耐力(降伏応力)が小さいことが求められる。この衝撃吸収特性は、耐力と引張強度との比として定義される降伏比で表現される。ところが一般に鋼管の引張強度を上げると耐力も大きくなり、従来品では引張強度1500〜1600MPa、降伏比70〜80%が限界となっていた。このため更に軽量化を図り、衝突安全性を高めるために、一段と高強度、低降伏比の鋼管が求められていた。
【0003】
なお従来一般に耐力は、JISに規定されている通り試験片に0.2%の永久歪みを生ずる応力を測定する方法により求められ、この0.2%耐力に基づいて降伏比が算出されている。図1は鋼の応力-歪み曲線を模式的に示した図であり、衝突時に衝撃吸収部材が変形することにより吸収できる衝撃エネルギーはハッチング部分の面積で表される。上記のように従来は0.2%耐力による評価がなされていたため、右下がりのハッチング部分の面積を衝撃エネルギーの吸収能力として設計がなされていた。ところが本発明者の研究によれば、降伏点が明確に現れないいわばなで肩の応力-歪み曲線を持つ鋼材の場合には、図1に示すように衝突時に鋼管は0.2%の永久歪みを生ずるまでにかなりの衝撃エネルギーを吸収するため、このJISに規定される0.2%耐力を用いた降伏比は、衝撃吸収特性を過小評価していたことが判明した。
【0004】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決し、従来品よりも更に高強度、低降伏比の材料特性を備え、超軽量と高衝突安全性を兼ね備えた新規な高耐衝撃性鋼管及びその製造方法を提供するためになされたものである。
【0005】
【課題を解決するための手段】
上記の課題を解決するためになされた請求項1の発明の高耐衝撃性鋼管の製造方法は、質量比で、C:0.19〜0 . 35%、Si:0.1〜0.3%、Mn:1.0〜1.6%、P:0.025%以下、S:0.02%以下、Al:0.010〜0.050%、B:2〜35ppm、Ti:0.005〜0 . 05%を必須成分として含有し、さらにNb:0 . 005〜0 . 050%、V:0 . 005〜0 . 070%、Cu:0 . 005〜0 . 5%、Cr:0 . 005〜0 . 5%、Mo:0 . 1〜0 . 5%、Ni:0 . 1〜0 . 5%、Ca:0 . 01%以下、希土類元素(REM):0 . 1%以下のグループ中から選択された1種以上の選択成分を含有し、残部が不可避的不純物およびFeからなる組成を有する電縫鋼管を、900℃以上に加熱したうえで、冷却速度100℃/sec以上、冷却水温35℃以下の条件で水冷焼入することを特徴とするものである。
【0006】
また本発明の高耐衝撃性鋼管は、何れも請求項1の方法によって製造されたものであり、請求項2の高耐衝撃性鋼管は、引張強度TSが1700MPa以上であり、0.1%耐力YSと引張強度TSとの比(YS/TS)である降伏比YRが72%以下であることを特徴とする。また請求項3の高耐衝撃性鋼管は、引張強度TSが1800MPa以上であり、0.1%耐力YSと引張強度TSとの比(YS/TS)である降伏比YRが70%以下であることを特徴とする。また請求項4の高耐衝撃性鋼管は、引張強度TSが1900MPa以上であり、0.1%耐力YSと引張強度TSとの比(YS/TS)である降伏比YRが68%以下であることを特徴とする。また請求項5の高耐衝撃性鋼管は、引張強度TSが2000MPa以上であり、0.1%耐力YSと引張強度TSとの比(YS/TS)である降伏比YRが66%以下であることを特徴とする。
【0007】
さらに請求項6の高耐衝撃性鋼管は、請求項2〜5の何れかに記載の高耐衝撃性鋼管であって、転位密度が101014mm-2であることを特徴とするものである。
【0008】
上記のように本発明は、従来品に比較して一段と高TS、低YRの材料特性を狙って開発されたものである。一般にこのような高TSの材料は、加熱後に水冷焼入を施し組織をマルテンサイト化することによって得られる。従来は硬質のマルテンサイト組織中に、軟質のオーステナイトやフェライトを一部残留させることによって耐力を低下させ、低降伏比の材料特性を得ていた。しかしこのような従来の手法では、前記したように強度が1500〜1600MPa、降伏比が70〜80%が限界であった。
【0009】
これに対して本発明では、マルテンサイト組織中の残留オーステナイトや残留フェライトをなくして従来品に比較して一段と高TSを実現する一方、硬質のマルテンサイト組織中の転位密度を従来品よりも格段に高め、応力下における変形を生じ易くしてYS,YRを低減させている。本発明品の転位密度は101014mm-2であり、従来品の転位密度が1089mm-2であるのに比べて、極めて高密度となっている。このような高転位密度を実現したことにより、本発明の高耐衝撃性鋼管は従来品に比較して一段と高TSでありながら、低YRとなる。しかもYRを算出するためのYS値として従来は用いられていなかった0.1%耐力を採用したため、材料特性が衝撃吸収特性をより正しく反映したものとなり、ドアインパクトビームの設計に際しては限界付近までの軽量化を図ることが可能となる。
【0010】
【発明の実施の形態】
以下に本発明の内容について詳細に説明する。
本発明の高耐衝撃性鋼管は、請求項1に記載したように、鋼中に質量比で、C:0.19〜0.35%、Si:0.1〜0.3%、Mn:1.0〜1.6%、P:0.025%以下、S:0.02%以下、Al:0.010〜0.050%、B:2〜35ppm、Ti:0.005〜0.05%を必須成分として含有し、Nb:0.005〜0.050%、V:0.005〜0.070%、Cu:0.005〜0.5%、Cr:0.005〜0.5%、Mo:0.1〜0.5%、Ni:0.1〜0.5%、Ca:0.01%以下、希土類元素(REM):0.1%以下のグループ中から選択された選択成分を含有させた電縫鋼管を誘導加熱したうえ、水冷焼入することにより製造される。各成分の数値限定の理由は次のとおりである。
【0011】
Cはマルテンサイト自体を強化して硬さを向上させるための必須成分であり、1700MPa以上のTSを得るためには少なくとも0.19%が必要である。しかしCが過剰になるとマルテンサイト組織が脆くなり焼入れの際に破壊する焼割れを招くので、0.35%以下とする。なお請求項2のTSが1700MPa以上でYRが72%以下である鋼管を得るためにはCを0.21%程度とし、請求項3のTSが1800MPa以上、YRが70%以下である鋼管を得るためにはCを0.24%程度とし、請求項4のTSが1900MPa以上、YRが68%以下である鋼管を得るためにはCを0.28%程度とし、請求項5のTSが2000MPa以上、YRが66%以下である鋼管を得るためにはCを0.30%程度とすることが好ましい。
【0012】
Si、Mn、Tiは何れも焼入れ時におけるオーステナイトからのマルテンサイト変態を促進する成分であり、Si:0.1〜0.3%、Mn:1.0〜1.6%、Ti:0.005〜0.05%の各数値限定範囲よりも少ないと焼入れ性が低下して残留オーステナイトや残留フェライトを生じ、所期の材料特性を得られない。逆に上記の数値限定範囲を超えると、焼割れや偏析の原因となるので好ましくない。なおTiはNを固定することにより、焼入れ性を向上させる作用を持つ。
【0013】
Bはフェライトの析出を抑制する成分であるが、鋼中にガス成分として含まれるNと結合してBNとなるとその効果が失われるため、2ppm以上とする。しかし35ppmを超えると偏析介在物となる。PとSは偏析介在物となりマルテンサイト組織を脆くするため、P:0.025%以下、S:0.02%以下とする必要がある。Alは脱酸剤であり0.010%未満では脱酸効果が不十分となり、0.050%を超えるとその酸化物が結晶間介在物となるので好ましくない。
【0014】
NbとVはマルテンサイト組織中に析出物を生じて転位の通過を妨げることにより、強度を向上させる析出強化成分である。Cu、Cr、Mo、Niはマルテンサイト結晶中に固溶されて転位の通過を妨げることにより、強度を向上させる固溶強化成分である。なおCr、Moは析出強化成分としても作用する。これらの成分は強度増加に寄与するが、コストアップ要因となるうえ過剰の添加は偏析介在物となるため、Nb:0.005〜0.050%、V:0.005〜0.070%、Cu:0.005〜0.5%、Cr:0.005〜0.5%、Mo:0.1〜0.5%、Ni:0.1〜0.5%が適当である。
【0015】
Caと希土類元素(REM)は介在物の形態制御に寄与する成分であるが、過剰の添加はマルテンサイト組織の破壊につながる有害な偏析を招くので、Ca:0.01%以下、REM:0.1%以下が適当である。なおこれらのNb、V、Cu、Cr、Mo、Ni、Ca、希土類元素(REM)は必須成分ではなく、必要に応じて添加される選択成分である。希土類元素(REM)としては例えばY、La、Ce、Smを用いることができる。
【0016】
本発明では、上記組成の鋼からなる鋼管を電縫溶接により製造したのち、高周波加熱用のワークコイルに通して900℃以上に誘導加熱し、オーステナイト状態から水冷焼入する。このとき鋼管をコンベヤ上で連続搬送しながら固定されたワークコイル及び水冷焼入装置に通しても、鋼管を固定しておきワークコイル及び水冷焼入装置を移動させる方法を採用してもよい。
【0017】
この水冷焼入によりオーステナイトからマルテンサイトへの変態が瞬時に生ずると同時に、変態歪みに伴い7〜8%程度の膨張が発生し、マルテンサイト組織中の転位密度が急激に増加する。なお転位密度の測定は、JISによる引張試験を行なった後の試験片を透過電子顕微鏡により観察し、1μm×1μmの視野当たりの転位数を10視野で測定し、その平均値を取る方法で行なわれる。転位密度は単位体積当たりの転位長さで表すので、その単位はmm-2となる。
【0018】
前記したように本発明品の転位密度は101014mm-2であり、従来品の転位密度が1089mm-2であるのに比べて、極めて高密度となっている。このような高転位密度を実現したことにより降伏点が低下し、本発明の高耐衝撃性鋼管は従来品に比較して高TSでありながら、低YRとなる。
【0019】
このように高TS、低YRの高耐衝撃性鋼管を得るためには、水冷焼入の冷却速度を100℃/sec以上とすることが好ましい。図2は冷却速度とYRとの関係を示すグラフであり、100℃/sec以上とすることによってYRの急激な低下が見られる。これは急冷によって急激に変態歪みが発生し、転位密度を増加させるためと考えられる。
【0020】
また高TS、低YRの高耐衝撃性鋼管を得るためには、水冷焼入の冷却水温を35℃以下とすることが好ましい。図3に示すように、冷却水温が上昇するとYRが上昇する。これは冷却水温の上昇とともに焼入れが不十分となり、理想的なマルテンサイト変態が実現できなくなるためと考えられる。
【0021】
このようにして得られた本発明の高耐衝撃性鋼管は、従来品に比較してはるかに高強度でありながら低YRであるから、自動車のドアインパクトビーム、バンパー用材料、バンパー補強用材料等の衝撃吸収エネルギーを必要とされる部材として用いれば、優れた衝撃吸収性能を発揮することができる。また従来品とは異なり0.1%耐力を採用したため、0.2%耐力に基づいて算出されていた衝撃吸収能力に比較して、図1に水平ハッチングで示す面積分だけ衝撃吸収能力が増加することとなり、実際の衝突時における衝撃吸収性能との相関がより的確になる。このため高強度であることとあいまって、限界付近までの軽量化を図ることができる。このため超軽量、高衝突安全性を兼ね備えた衝撃吸収部材を提供することが可能となる。
以下に本発明の実施例を示す。
【0022】
【実施例】
表1に示す各組成の鋼からなる電縫鋼管を製造し、コンベヤ上を一定速度で移動させてワークコイルに通すことにより誘導加熱したうえ隣接する水冷焼入装置で常温まで急冷した。冷却速度と冷却水温は表2に示した。切り出した試験片を引張試験機にかけて0.1%耐力と破断強度を測定した。また引張試験後の試験片を透過電子顕微鏡により観察し、転位密度を測定した結果も表2に示した。
【0023】
【表1】

Figure 0004084581
【0024】
【表2】
Figure 0004084581
【0025】
【発明の効果】
以上に説明したように、本発明の高耐衝撃性鋼管は従来品よりも高強度、低降伏比の材料特性を備えたものであるうえ、0.1%耐力を採用したことにより衝撃吸収特性を正しく反映したものとなるから、限界付近までの軽量化を図った超軽量、高衝突安全性のドアインパクトビーム、バンパー用材料、バンパー補強用材料等の衝撃吸収エネルギーを必要とされる部材に適したものとなる。また本発明の製造方法によれば、このような高耐衝撃性鋼管を安定して製造することが可能となる。
【図面の簡単な説明】
【図1】鋼の応力-歪み曲線を示す模式図である。
【図2】冷却速度とYRとの関係を示すグラフである。
【図3】冷却水温とYRとの関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a high impact steel pipe used as a member that requires impact absorption energy, such as an automobile door impact beam, a bumper material, and a bumper reinforcing material, and a high impact resistance manufactured by the method. This is related to the steel pipe .
[0002]
[Prior art]
Steel pipes for door impact beams intended to absorb shocks during side impacts of automobiles are required to have high tensile strength and low yield strength (yield stress). This shock absorption characteristic is expressed by a yield ratio defined as a ratio of proof stress and tensile strength. However, in general, when the tensile strength of the steel pipe is increased, the proof stress is increased, and in the conventional product, the tensile strength is 1500 to 1600 MPa and the yield ratio is 70 to 80%. For this reason, in order to further reduce the weight and increase the collision safety, a steel pipe with higher strength and lower yield ratio has been demanded.
[0003]
In general, the yield strength is generally determined by a method of measuring a stress that causes a permanent strain of 0.2% on a test piece as defined in JIS, and the yield ratio is calculated based on the 0.2% yield strength. . FIG. 1 is a diagram schematically showing a stress-strain curve of steel, and the impact energy that can be absorbed by the deformation of the impact absorbing member at the time of collision is represented by the area of the hatched portion. As described above, since the evaluation was conventionally performed with the 0.2% proof stress, the design was made with the area of the hatched portion that descends to the right as the ability to absorb impact energy. However, according to the study of the present inventor, in the case of a steel material having a stress-strain curve of the shoulder where the yield point does not appear clearly, the steel pipe has a permanent strain of 0.2% at the time of collision as shown in FIG. It was found that the yield ratio using the 0.2% proof stress specified in JIS underestimated the impact absorption characteristics in order to absorb considerable impact energy until it occurred.
[0004]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems, and has a new high impact resistant steel pipe having material properties of higher strength and lower yield ratio than conventional products, and having both ultralight weight and high collision safety, and its manufacture It was made to provide a method.
[0005]
[Means for Solving the Problems]
Process for producing a high impact resistance steel of the invention of claim 1 has been made in order to solve the aforementioned problem, the mass ratio, C:. 0.19~0 35%, Si: 0.1~0.3 %, Mn: 1.0 to 1.6%, P: 0.025% or less, S: 0.02% or less, Al: 0.010 to 0.050%, B: 2 to 35 ppm, Ti: 0.0. . 005-0 0.05% was contained as essential components, further Nb:.. 0 005~0 050% , V:.. 0 005~0 070%, Cu:.. 0 005~0 5%, Cr: 0 .. 005~0 5%, Mo: .. 0 1~0 5%, Ni:.. 0 1~0 5%, Ca:. 0 01% or less, rare earth element (REM):. 0 1% or less of An ERW steel pipe containing at least one selected component selected from the group and having the balance consisting of inevitable impurities and Fe, at 900 ° C. or higher After having heated, cooling rate 100 ° C. / sec or higher, and is characterized in that the water cooling quenching under the following conditions the cooling water temperature 35 ° C..
[0006]
The high impact resistant steel pipe of the present invention is manufactured by the method of claim 1 , and the high impact resistant steel pipe of claim 2 has a tensile strength TS of 1700 MPa or more and 0.1%. The yield ratio YR, which is the ratio between the proof stress YS and the tensile strength TS (YS / TS), is 72% or less. The high impact steel pipe according to claim 3 has a tensile strength TS of 1800 MPa or more, and a yield ratio YR which is a ratio (YS / TS) of 0.1% proof stress YS to tensile strength TS is 70% or less. It is characterized by that. Further, the high impact steel pipe of claim 4 has a tensile strength TS of 1900 MPa or more, and a yield ratio YR which is a ratio (YS / TS) of 0.1% proof stress YS to tensile strength TS is 68% or less. It is characterized by that. The high impact steel pipe according to claim 5 has a tensile strength TS of 2000 MPa or more, and a yield ratio YR which is a ratio of 0.1% proof stress YS to tensile strength TS (YS / TS) is 66% or less. It is characterized by that.
[0007]
Furthermore, a high impact resistant steel pipe according to claim 6 is the high impact resistant steel pipe according to any one of claims 2 to 5 , wherein the dislocation density is 10 10 to 14 mm -2. It is.
[0008]
As described above, the present invention has been developed with the aim of further improving the material properties of high TS and low YR compared to conventional products. In general, such a high TS material can be obtained by subjecting the structure to martensite by water-cooling quenching after heating. Conventionally, a part of soft austenite or ferrite remains in a hard martensite structure, thereby reducing the yield strength and obtaining material characteristics of a low yield ratio. However, in such a conventional method, as described above, the strength is 1500 to 1600 MPa and the yield ratio is 70 to 80%.
[0009]
In contrast, the present invention eliminates residual austenite and residual ferrite in the martensite structure and achieves a higher TS compared to the conventional product, while the dislocation density in the hard martensite structure is much higher than that of the conventional product. YS and YR are reduced by facilitating deformation under stress. The dislocation density of the product of the present invention is 10 10 to 14 mm −2, which is extremely high compared to the dislocation density of the conventional product of 10 8 to 9 mm −2 . By realizing such a high dislocation density, the high impact resistant steel pipe of the present invention has a lower YR while having a higher TS than the conventional product. In addition, the YS value used to calculate YR is 0.1% proof stress, which has not been used in the past, so the material characteristics more accurately reflect the impact absorption characteristics, and the door impact beam is designed to reach the limit. The weight can be reduced.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The contents of the present invention will be described in detail below.
As described in claim 1 , the high impact steel pipe of the present invention has a mass ratio of C: 0.19 to 0.35%, Si: 0.1 to 0.3%, Mn: 1.0 to 1.6%, P: 0.025% or less, S: 0.02% or less, Al: 0.010 to 0.050%, B: 2 to 35 ppm, Ti: 0.005 to 0.5. Containing 05% as an essential component, Nb: 0.005 to 0.050%, V: 0.005 to 0.070%, Cu: 0.005 to 0.5%, Cr: 0.005 to 0.00. 5%, Mo: 0.1-0.5%, Ni: 0.1-0.5%, Ca: 0.01% or less, rare earth element (REM): selected from the group of 0.1% or less It is manufactured by induction heating an ERW steel pipe containing the selected components and then water-cooling and quenching. The reason for the numerical limitation of each component is as follows.
[0011]
C is an essential component for strengthening martensite itself and improving hardness, and at least 0.19% is necessary to obtain TS of 1700 MPa or more. However, if C is excessive, the martensite structure becomes brittle and causes cracking that breaks during quenching, so the content is made 0.35% or less. In order to obtain a steel pipe with TS of 1700 MPa or more and YR of 72% or less according to claim 2 , C is set to about 0.21%, and a steel pipe with TS of 1800 MPa or more and YR of 70% or less is claimed in claim 3. In order to obtain a steel pipe in which C is about 0.24%, TS of claim 4 is 1900 MPa or more, and YR is 68% or less, C is about 0.28%, and TS of claim 5 is In order to obtain a steel pipe having 2000 MPa or more and YR of 66% or less, C is preferably about 0.30%.
[0012]
Si, Mn, and Ti are all components that promote martensitic transformation from austenite during quenching, and Si: 0.1 to 0.3%, Mn: 1.0 to 1.6%, Ti: 0.00. If it is less than each numerical limit range of 005 to 0.05%, the hardenability is lowered to produce retained austenite and retained ferrite, and the desired material properties cannot be obtained. On the other hand, exceeding the numerical limit range is not preferable because it causes burning cracking and segregation. In addition, Ti has the effect | action which improves hardenability by fixing N.
[0013]
B is a component that suppresses the precipitation of ferrite, but when it is combined with N contained as a gas component in the steel and becomes BN, its effect is lost, so the content is made 2 ppm or more. However, if it exceeds 35 ppm, segregated inclusions are formed. P and S become segregated inclusions and make the martensite structure brittle, so P: 0.025% or less and S: 0.02% or less are required. Al is a deoxidizing agent, and if it is less than 0.010%, the deoxidizing effect is insufficient, and if it exceeds 0.050%, the oxide becomes an intercrystalline inclusion, which is not preferable.
[0014]
Nb and V are precipitation strengthening components that improve the strength by forming precipitates in the martensite structure and preventing the passage of dislocations. Cu, Cr, Mo, and Ni are solid solution strengthening components that improve the strength by being dissolved in the martensite crystal and preventing the passage of dislocations. Cr and Mo also act as precipitation strengthening components. These components contribute to an increase in strength, but increase the cost and add excessive segregation inclusions. Therefore, Nb: 0.005 to 0.050%, V: 0.005 to 0.070%, Cu: 0.005-0.5%, Cr: 0.005-0.5%, Mo: 0.1-0.5%, Ni: 0.1-0.5% are suitable.
[0015]
Ca and rare earth elements (REM) are components that contribute to the control of the morphology of inclusions. However, excessive addition causes harmful segregation leading to destruction of the martensite structure, so Ca: 0.01% or less, REM: 0 Less than 0.1% is appropriate. These Nb, V, Cu, Cr, Mo, Ni, Ca, and rare earth elements (REM) are not essential components, but are optional components that are added as necessary. For example, Y, La, Ce, or Sm can be used as the rare earth element (REM).
[0016]
In this invention, after manufacturing the steel pipe which consists of steel of the said composition by electric-welding welding, it is induction-heated to 900 degreeC or more through the work coil for high frequency heating, and is water-cooled and hardened from an austenite state. At this time, even if the steel pipe is passed through the work coil and the water-cooled quenching apparatus fixed while being continuously conveyed on the conveyor, a method of moving the work coil and the water-cooled quenching apparatus while fixing the steel pipe may be adopted.
[0017]
This water cooling quenching instantaneously causes transformation from austenite to martensite, and at the same time, expansion of about 7 to 8% occurs due to transformation strain, and the dislocation density in the martensite structure increases rapidly. The dislocation density is measured by observing the specimen after a tensile test according to JIS with a transmission electron microscope, measuring the number of dislocations per field of 1 μm × 1 μm in 10 fields, and taking the average value. It is. Since the dislocation density is represented by the dislocation length per unit volume, the unit is mm −2 .
[0018]
As described above, the dislocation density of the product of the present invention is 10 10 to 14 mm -2, which is extremely high compared to the dislocation density of the conventional product of 10 8 to 9 mm -2 . By realizing such a high dislocation density, the yield point is lowered, and the high impact-resistant steel pipe of the present invention has a low YR while having a higher TS than the conventional product.
[0019]
Thus, in order to obtain a high-impact steel pipe having high TS and low YR, it is preferable to set the cooling rate of water-cooling quenching to 100 ° C./sec or more. FIG. 2 is a graph showing the relationship between the cooling rate and YR, and when Y is 100 ° C./sec or more, a rapid decrease in YR is observed. This is presumably because transformation strain is suddenly generated by rapid cooling and the dislocation density is increased.
[0020]
In order to obtain a high TS and low YR high impact resistant steel pipe, it is preferable that the cooling water temperature of water cooling and quenching is 35 ° C. or lower. As shown in FIG. 3, YR rises when the cooling water temperature rises. This is thought to be because quenching becomes insufficient as the cooling water temperature rises and ideal martensitic transformation cannot be realized.
[0021]
The high impact-resistant steel pipe of the present invention thus obtained has a much lower strength and a lower YR than the conventional product, so it can be used for automobile door impact beams, bumper materials, and bumper reinforcement materials. If it is used as a member that requires shock absorbing energy such as the above, excellent shock absorbing performance can be exhibited. Also, unlike conventional products, 0.1% proof stress was adopted, so the impact absorption capacity increased by the area shown by horizontal hatching in Fig. 1 compared to the shock absorption capacity calculated based on 0.2% proof stress. Therefore, the correlation with the shock absorbing performance at the time of actual collision becomes more accurate. For this reason, combined with the high strength, the weight can be reduced to near the limit. For this reason, it is possible to provide an impact absorbing member having both ultralight weight and high collision safety.
Examples of the present invention are shown below.
[0022]
【Example】
ERW steel pipes made of steels having the respective compositions shown in Table 1 were produced, moved on a conveyor at a constant speed, passed through a work coil, induction-heated, and rapidly cooled to room temperature with an adjacent water-cooled quenching apparatus. The cooling rate and cooling water temperature are shown in Table 2. The cut specimen was subjected to a tensile tester to measure 0.1% yield strength and breaking strength. Table 2 also shows the results of observing the specimen after the tensile test with a transmission electron microscope and measuring the dislocation density.
[0023]
[Table 1]
Figure 0004084581
[0024]
[Table 2]
Figure 0004084581
[0025]
【The invention's effect】
As explained above, the high impact resistant steel pipe of the present invention has material properties of higher strength and lower yield ratio than conventional products, and also has a shock absorbing property by adopting 0.1% proof stress. Therefore, it is suitable for members that require shock absorption energy such as ultra-lightweight, high impact safety door impact beams, bumper materials, bumper reinforcement materials, etc. It will be suitable. Moreover, according to the manufacturing method of this invention, it becomes possible to manufacture such a high impact-resistant steel pipe stably.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a stress-strain curve of steel.
FIG. 2 is a graph showing a relationship between a cooling rate and YR.
FIG. 3 is a graph showing the relationship between cooling water temperature and YR.

Claims (6)

質量比で、C:0.19〜0.35%、Si:0.1〜0.3%、Mn:1.0〜1.6%、P:0.025%以下、S:0.02%以下、Al:0.010〜0.050%、B:2〜35ppm、Ti:0.005〜0.05%を必須成分として含有し、さらにNb:0.005〜0.050%、V:0.005〜0.070%、Cu:0.005〜0.5%、Cr:0.005〜0.5%、Mo:0.1〜0.5%、Ni:0.1〜0.5%、Ca:0.01%以下、希土類元素(REM):0.1%以下のグループ中から選択された1種以上の選択成分を含有し、残部が不可避的不純物およびFeからなる組成を有する電縫鋼管を、900℃以上に加熱したうえで、冷却速度100℃/sec以上、冷却水温35℃以下の条件で水冷焼入することを特徴とする高耐衝撃性鋼管の製造方法。  By mass ratio, C: 0.19 to 0.35%, Si: 0.1 to 0.3%, Mn: 1.0 to 1.6%, P: 0.025% or less, S: 0.02 %: Al: 0.010 to 0.050%, B: 2 to 35 ppm, Ti: 0.005 to 0.05% as essential components, Nb: 0.005 to 0.050%, V : 0.005 to 0.070%, Cu: 0.005 to 0.5%, Cr: 0.005 to 0.5%, Mo: 0.1 to 0.5%, Ni: 0.1 to 0 A composition comprising at least one selected component selected from the group of 0.5%, Ca: 0.01% or less, and rare earth element (REM): 0.1% or less, with the balance being inevitable impurities and Fe A water-welded steel tube having a cooling rate of 100 ° C./sec or higher and a cooling water temperature of 35 ° C. or lower is heated after heating to 900 ° C. or higher. Manufacturing method of high impact steel pipe. 請求項1の方法によって製造され、引張強度TSが1700MPa以上であり、0.1%耐力YSと引張強度TSとの比(YS/TS)である降伏比YRが72%以下であることを特徴とする高耐衝撃性鋼管。  It is manufactured by the method of claim 1 and has a tensile strength TS of 1700 MPa or more, and a yield ratio YR which is a ratio (YS / TS) of 0.1% proof stress YS to tensile strength TS is 72% or less. High impact resistant steel pipe. 請求項1の方法によって製造され、引張強度TSが1800MPa以上であり、0.1%耐力YSと引張強度TSとの比(YS/TS)である降伏比YRが70%以下であることを特徴とする高耐衝撃性鋼管。  It is manufactured by the method according to claim 1, wherein the tensile strength TS is 1800 MPa or more, and the yield ratio YR, which is the ratio of the 0.1% proof stress YS to the tensile strength TS (YS / TS), is 70% or less. High impact resistant steel pipe. 請求項1の方法によって製造され、引張強度TSが1900MPa以上であり、0.1%耐力YSと引張強度TSとの比(YS/TS)である降伏比YRが68%以下であることを特徴とする高耐衝撃性鋼管。  It is manufactured by the method of claim 1 and has a tensile strength TS of 1900 MPa or more and a yield ratio YR which is a ratio of the 0.1% proof stress YS to the tensile strength TS (YS / TS) is 68% or less. High impact resistant steel pipe. 請求項1の方法によって製造され、引張強度TSが2000MPa以上であり、0.1%耐力YSと引張強度TSとの比(YS/TS)である降伏比YRが66%以下であることを特徴とする高耐衝撃性鋼管。  It is manufactured by the method of claim 1, wherein the tensile strength TS is 2000 MPa or more, and the yield ratio YR, which is the ratio of the 0.1% proof stress YS to the tensile strength TS (YS / TS), is 66% or less. High impact resistant steel pipe. 転位密度が101014mm-2である請求項2〜5の何れかに記載の高耐衝撃性鋼管。High impact steel pipe according to any one of claims 2-5 dislocation density of 10 10 ~ 14 mm -2.
JP2002062216A 2001-08-17 2002-03-07 Manufacturing method of high impact steel pipe and high impact steel pipe manufactured by the method Expired - Fee Related JP4084581B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002062216A JP4084581B2 (en) 2001-08-17 2002-03-07 Manufacturing method of high impact steel pipe and high impact steel pipe manufactured by the method
US10/658,062 US20050034795A1 (en) 2001-08-17 2003-11-10 Highly impact-resistant steel pipe and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001247615 2001-08-17
JP2001-247615 2001-08-17
JP2002062216A JP4084581B2 (en) 2001-08-17 2002-03-07 Manufacturing method of high impact steel pipe and high impact steel pipe manufactured by the method

Publications (2)

Publication Number Publication Date
JP2003129170A JP2003129170A (en) 2003-05-08
JP4084581B2 true JP4084581B2 (en) 2008-04-30

Family

ID=26620607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002062216A Expired - Fee Related JP4084581B2 (en) 2001-08-17 2002-03-07 Manufacturing method of high impact steel pipe and high impact steel pipe manufactured by the method

Country Status (1)

Country Link
JP (1) JP4084581B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436783A (en) * 2013-08-28 2013-12-11 济钢集团有限公司 Manufacture method of quenching high-strength steel plate for heavy truck body structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4621123B2 (en) * 2005-12-08 2011-01-26 新日本製鐵株式会社 Method for producing a high impact resistant steel pipe excellent in delayed fracture characteristics with a tensile strength of 1700 MPa or more
CN101514433A (en) 2007-03-16 2009-08-26 株式会社神户制钢所 Automobile high-strength electric resistance welded steel pipe with excellent low-temperature impact property and method of manufacturing the same
CN103205634B (en) 2013-03-28 2016-06-01 宝山钢铁股份有限公司 A kind of low-alloy high hardness wear-resisting steel plate and manufacture method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436783A (en) * 2013-08-28 2013-12-11 济钢集团有限公司 Manufacture method of quenching high-strength steel plate for heavy truck body structure
CN103436783B (en) * 2013-08-28 2016-04-13 济钢集团有限公司 A kind of manufacture method of large truck body construction quenching High Strength Steel Plate

Also Published As

Publication number Publication date
JP2003129170A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
US8323560B2 (en) Automobile high-strength electric resistance welded steel pipe with excellent low-temperature impact properties and method of manufacturing the same
JP4529901B2 (en) Steel pipe for airbag system and manufacturing method thereof
US7846274B2 (en) High strength steel pipe for an air bag
US6183573B1 (en) High-toughness, high-tensile-strength steel and method of manufacturing the same
US8216400B2 (en) High-strength steel plate and producing method therefor
JP4542624B2 (en) High strength thick steel plate and manufacturing method thereof
WO2006046503A1 (en) Steel pipe for air bag inflator and method for production thereof
KR20190037680A (en) Steel wire rod and steel wire for spring having corrosion fatigue resistance and method of manufacturing thereof
WO2008126910A1 (en) Steel material having excellent high temperature properties and excellent toughness, and method for production thereof
JP2010132945A (en) High-strength thick steel plate having excellent delayed fracture resistance and weldability, and method for producing the same
JP3401427B2 (en) High-strength steel sheet with excellent impact resistance
JP3678147B2 (en) Steel tube for high strength and toughness airbag and its manufacturing method
JP6277679B2 (en) High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness
JP4084581B2 (en) Manufacturing method of high impact steel pipe and high impact steel pipe manufactured by the method
EP0738784B1 (en) High chromium martensitic steel pipe having excellent pitting resistance and method of manufacturing
JP3352938B2 (en) High-strength hot-rolled steel sheet excellent in impact resistance and method for producing the same
CN1312006C (en) High-impact electric welding steel pipe
US20050034795A1 (en) Highly impact-resistant steel pipe and method for producing the same
JP2004204286A (en) High impact resistant square steel pipe, and production method therefor
JPH108188A (en) Steel sheet for working excellent in high speed destruction resistance in heated zone
JP6369003B2 (en) Steel material and manufacturing method thereof
JP4396852B2 (en) High tensile strength steel for building structure with excellent strength and soundness after fire
JP7160235B1 (en) Hot shrinking ERW pipe
JP2605171B2 (en) ERW steel pipe for high toughness heat treatment
JPH07316744A (en) Martensitic stainless steel wire rod excellent in cold workability and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080215

R151 Written notification of patent or utility model registration

Ref document number: 4084581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees