JP4083998B2 - Vacuum camera - Google Patents

Vacuum camera Download PDF

Info

Publication number
JP4083998B2
JP4083998B2 JP2001119045A JP2001119045A JP4083998B2 JP 4083998 B2 JP4083998 B2 JP 4083998B2 JP 2001119045 A JP2001119045 A JP 2001119045A JP 2001119045 A JP2001119045 A JP 2001119045A JP 4083998 B2 JP4083998 B2 JP 4083998B2
Authority
JP
Japan
Prior art keywords
vacuum
sample
container
camera
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001119045A
Other languages
Japanese (ja)
Other versions
JP2002310951A (en
Inventor
清明 田中
裕 稲荷
和高 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001119045A priority Critical patent/JP4083998B2/en
Publication of JP2002310951A publication Critical patent/JP2002310951A/en
Application granted granted Critical
Publication of JP4083998B2 publication Critical patent/JP4083998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)
  • Radiography Using Non-Light Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、真空容器内に設置され、真空下に置かれて所望の温度に加熱または冷却される被測定試料へX線を照射し、試料より発生する回折X線を前記真空容器内に設置されたイメージングプレート(以下、IPと記載する。)にて検出する真空カメラに関する。
【0002】
【従来の技術】
真空カメラは、真空容器内に設置された被測定試料へX線を照射し、試料より発生する回折X線を、同じく真空容器内において、試料を取り囲んで設置されたX線検出手段により測定するもので、試料を構成する原子、分子の電子雲の存在分布を観測するのに適した装置である。
さらに前記回折X線の検出手段として、例えば近年開発改良の進んだIPを用いることで、装置の観測精度や作業の容易性も飛躍的に向上し、今後各分野での応用が大いに期待されている。
【0003】
【発明が解決しようとする課題】
しかし、真空カメラにおいて、試料を加熱または冷却した状態、特に数Kといった極低温に冷却した状態で測定を実施しようとすると、次のような問題が発生する。
すなわち、試料を冷却して1回目の測定が完了し、続いて同じく冷却状態にて2回目の測定をおこなう際に、真空容器内に設置された感光済みのIPを未感光のものに交換する必要があるのだが、この交換作業のために真空容器の真空を破ると外界の湿気が直ちに霜となって試料に付着し、試料を変質させてしまう可能性がある。
これを避けるためには、前記真空を破る前に、試料を室温まで加温する必要がある。しかし、これではIP交換作業に時間がかかるばかりでなく、試料の冷却、加温を繰り返すことになり、やはり試料の変質原因となる可能性がある。
一方、試料が加熱された状態で真空が破られても、やはり試料を変質させてしまう可能性がある。何となれば、一般に試料の反応性は温度と共に上昇するため、加熱された試料は大気中の酸素等と反応し、変質してしまうことが考えられるからである。
これを避けるためには、前記真空を破る前に、試料を室温まで冷却する必要がある。しかし、これではIP交換作業に時間がかかるばかりでなく、試料の冷却、加温を繰り返すことになり、やはり試料の変質原因となる可能性がある。
【0004】
本発明は上述の背景のもとでなされたものであり、試料が加熱または冷却されたままであっても、IP交換作業を容易且つ迅速に実施できる真空カメラを提供する。
【0005】
【課題を解決するための手段】
上述の課題を解決するために、本発明者らが試行錯誤を重ねた結果、真空容器内に設置されたIP交換作業のためには、真空容器内の真空を破らざるを得ないが、その際、試料の近傍の真空を保つことができれば、試料を加熱または冷却したままでもIP交換作業を容易且つ迅速に実施できることに想達した。
【0006】
すなわち第1の発明は、被測定試料を真空下に置く真空容器と、前記真空下に置かれた試料へX線を照射するX線発生装置と、前記試料より発生する回折X線を検出するIPとを有し、
前記試料は、真空下においてX線を照射され、試料より発生する回折X線は、前記真空容器内に設置されたIPにより検出される真空カメラにおいて、
前記試料を気密容器で覆い、試料近傍の真空を保ったまま、前記真空容器の真空を破り、前記真空容器内に設置されたIPの取り出しまたは交換をおこなうことを特徴とする真空カメラである。
【0007】
上記の構成を採ることにより、真空容器の真空が破れても、試料近傍は気密容器内に覆われ真空を保っているので、冷却された試料に霜が付くことはなく、加熱された試料が酸素等に曝されることもない。さらに好ましいことには、冷却された試料に対し真空容器内に侵入してきた外気の熱は対流によって試料へ伝わることがなく、加熱された試料の熱が対流によって失われることもない。この結果、既設の加熱冷却手段により試料の温度を容易に保持することができる。
【0008】
第2の発明は、第1発明に記載の真空カメラにおいて、
前記気密容器は、前記真空容器壁を真空シールを介して外界より貫通した制御棒に接続され、
当該制御棒の外界での操作により、真空容器内の真空を破ることなく、
試料へのX線照射の際には、照射X線および回折X線を妨害しない位置へ移動し、
IPの取り出しまたは交換の際には、試料近傍を真空に保つことのできる位置へ移動することを特徴とする真空カメラである。
【0009】
上記の構成を採ることにより、気密容器の移動および試料台への着脱は外界からの制御棒操作で可能となり、IP交換作業の容易性、迅速性が大きく向上する。
【0010】
【発明の実施の形態】
以下図面を参照しながら本発明の実施の形態について説明する。尚、各図面において対応する部分には同一の番号を付して示した。
図1は本発明の実施に係る真空カメラ1の縦部断面図であり、
図2は気密容器10、制御棒11、ハンドル12および真空容器蓋33の模式的な斜視図であり、
図3は真空カメラ1より後述するIPカセット21を引き出した際の模式的な斜視図である。
図4は気密容器10と、気密容器嵌合部39との嵌合構造の断面拡大図である。
【0011】
まず図1に示すように、真空カメラ1の構造の概要は、定盤40の上に真空容器30が設置され、真空容器30には真空容器蓋33、試料台移動装置37、照射されるX線を導入するBe窓36等が取り付けられ、真空排気装置(図示していない。)により真空容器30内を真空に保つことができるものである。
この真空容器30内には、試料台38が前記試料台移動装置37に接続されて設置されており、さらに試料台38には試料の加熱冷却装置32、気密容器嵌合部39が設けられている。そして試料の加熱冷却装置32の先端には試料ホルダー31が設けられ、そこへ試料Sが設置される。尚、試料Sの位置は、X線発生装置(図示していない。)にて発生し、前記Be窓36より真空容器30内に導入されたX線に照射されるように調整される。
【0012】
一方、図1、2に示すように、真空容器30内には制御棒11に着脱自在に接続された気密容器10が設置される。気密容器10は試料台38に設けられた気密容器嵌合部39と嵌合する構造を有し、試料S近傍の真空を保つことのできる強度および気密性を有している。ここで気密容器10の材質としては前記強度および気密性、さらに操作性等を考慮してアルミニウム、アルミ合金等が好ましい。
【0013】
ここで、気密容器10と、試料台38との嵌合部、すなわち気密容器嵌合部39における嵌合構造の一例の断面拡大図を図4に示す。
試料台38において気密容器10と嵌合する部分にはOリング43が設置されており、一方、このOリング43が設置された試料台38と嵌合する気密容器10の端部にはテーパー42が設けられている。このOリング43は通常の真空仕様のものである。さらに気密容器10の外周上には、後述する凸部41が設けられている。
図4の状態は真空容器30内の真空を破る直前に、制御棒11を用いて気密容器10を気密容器嵌合部39に嵌合させ、この状態の断面を拡大して図示したものである。この状態では気密容器10の内側および外側とも真空である。
真空容器30の真空が破られ、気密容器10の外側に大気が入ってくると大気圧により気密容器10は試料台38側へ押し込まれ、試料台38とOリング43と気密容器10との間で気密状態が保たれる。そしてこのとき、前記凸部41が試料台38に衝突し、大気圧によって気密容器10が必要以上に試料台38側へ押し込まれるのを防止する。
前記凸部41の作用により、真空容器30内が再び真空になった際、制御棒11を用いて、気密容器嵌合部39より気密容器10を容易に引き抜くことが可能になる。
凸部41の位置は、上述の試料台38とOリング43と気密容器10との間で気密状態と、気密容器嵌合部39より気密容器10を引き抜く際の容易さとを考慮して適宜設定すればよい。
気密容器10の大きさは、IP交換作業時には試料S近傍の真空を保ち、試料SへのX線照射時には、照射および回折の両X線を妨害しない位置まで後退する必要があることより、真空容器30の内容積を考慮して適宜設定する。
【0014】
そして気密容器10に接続される制御棒11は、真空容器蓋33をドライベアリング34、オイルシール35等の真空シールを介し外界へ貫通し、さらにハンドル12が設置されてオペレータの操作を容易にしている。
この制御棒11と気密容器10との着脱自在な接続方法として、例えば図2に示すように、気密容器10の底部背面に十字型の窪み13を設け、制御棒11側には十字型の突起14を設けておき、両者を接続する際は十字型の突起14を十字型の窪み13に挿入して約45°回転して嵌合させる、両者を分離する際はさらに45°回転して十字型の窪み13より十字型の突起14を抜き取る構成等が考えられる。
【0015】
さらに図1、3に示すように、真空容器30内には円筒形のIPカセット21に装填されたIP20が設置され、試料Sより発生する回折X線を検出する。
【0016】
ここで、本発明の実施の形態にかかる真空カメラ1を用いた試料Sの回折X線の測定手順について、4Kに冷却した試料Sにおいて照射X線の角度を変え、複数回の回折X線を測定する場合を例として説明する。
まず真空容器蓋33を開放し試料ホルダー31に試料Sを設置する。次に真空容器30内にIP20が装填されたIPカセット21を設置し、真空容器蓋33を閉める。このとき気密容器10は制御棒11に接続され(B)の位置に保持される。
ここで気密容器10は(B)の位置に保持されることにより、試料SへのX線照射時に、照射および回折の両X線を妨害することがない。
そして真空排気装置により真空容器30内を真空にし、試料加熱冷却装置により試料Sを4K程度の極低温へ向けて冷却開始する。
次に試料台の移動装置37を作動させて、試料Sの位置、角度を所望の値に設定する。
そして試料Sの温度、位置、角度等が所望の値となったら、X線源よりのX線をBe窓36を通して真空容器30内へ導入し試料Sを照射する。そして試料Sより発生する回折X線により試料Sを筒状に囲んでいるIP20を感光させる。
【0017】
IP20の感光が完了したら、X線の照射を停止する。そして制御棒11を真空容器30側へ挿入して気密容器10を(A)の位置へ移動し、気密容器嵌合部39と嵌合させ、次に気密容器10と制御棒11との接続を解く。
ここで真空容器蓋33を開放すると真空容器30内の真空は破れるが、気密容器10は大気圧により気密容器嵌合部39としっかり嵌合し、試料S近傍は真空に保たれるので、試料Sに霜が付くことはなく且つ温度上昇も殆どない。
次に、感光したIP20をIPカセット21ごと真空容器30より取り出し、続けて未感光のIP20を装填したIPカセット21を再び真空容器30内に設置し、再び真空容器蓋33を閉じた後、真空排気装置により真空容器30内を真空に戻す。
真空容器30内が真空に戻ったら、気密容器10と制御棒11とを接続し、制御棒11を外界側へ引き出すことで、再び、気密容器10を位置(B)へ保持する。
【0018】
ここで再び試料台の移動装置37、試料の加熱冷却装置32を作動させて、試料Sの温度、位置、角度等を所望の値へ設定したら、試料SへX線を照射し試料Sより発生する回折X線によりIP20を感光させる。
以下、同様の操作を所望の回数実施することで、試料Sに関し、所望の温度、位置、角度等における回折X線のデータを、迅速、容易に測定することができるとともに、試料Sの変質劣化も抑制することが可能になった。
以上、本発明の実施の形態にかかる真空カメラを用いた測定手順について、4Kに冷却した試料の回折X線を測定する場合を例として説明したが、試料を加熱した場合も同様の操作手順で試料の回折X線を測定することができる。
この結果、真空カメラにおけるIP交換作業の容易性、迅速性が大きく向上し、試料Sの変質劣化も抑制できることより、回折X線の測定装置としての真空カメラの利便性向上、応用範囲の拡大が可能となった。
【0019】
【発明の効果】
以上詳述したように、被測定試料を真空下に置く真空容器と、前記真空下に置かれた試料へX線を照射するX線発生装置と、前記試料より発生する回折X線を検出するイメージングプレートとを有し、前記試料は真空下においてX線を照射され、試料より発生する回折X線は、前記真空容器内に設置されたイメージングプレートにより検出される真空カメラにおいて、前記試料を気密容器で覆い、試料近傍の真空を保ったまま、前記真空容器の真空を破り、前記真空容器内に設置されたイメージングプレートの取り出しまたは交換をおこなうことを特徴とする真空カメラを発明したことで、試料の変質劣化を抑制すると同時に、IP交換作業の容易性、迅速性を向上させることが可能となった。
【図面の簡単な説明】
【図1】本発明の実施に係る真空カメラの縦部断面図である。
【図2】気密容器、制御棒、ハンドルおよび真空容器蓋の模式的な斜視図である。
【図3】真空カメラよりIPカセットを引き出した際の模式的な斜視図である。
【図4】気密容器と、試料台との嵌合部における嵌合構造の断面拡大図である。
【符号の説明】
1.真空カメラ
S.試料
10.気密容器
11.制御棒
20.IP(イメージングプレート)
30.真空容器
31.試料ホルダー
32.試料加熱冷却装置
39.気密容器嵌合部
[0001]
BACKGROUND OF THE INVENTION
The present invention is placed in a vacuum vessel, irradiates a sample to be measured that is placed under vacuum and heated or cooled to a desired temperature, and diffracted X-rays generated from the sample are placed in the vacuum vessel. The present invention relates to a vacuum camera that detects with an imaging plate (hereinafter referred to as IP).
[0002]
[Prior art]
The vacuum camera irradiates the sample to be measured installed in the vacuum container with X-rays, and measures the diffracted X-rays generated from the sample by the X-ray detection means installed in the vacuum container surrounding the sample. It is a device suitable for observing the distribution of electron clouds of atoms and molecules that make up a sample.
Furthermore, the use of, for example, an IP that has been developed and improved in recent years as the means for detecting the diffracted X-ray dramatically improves the observation accuracy of the apparatus and the ease of work, and is expected to be applied in various fields in the future. Yes.
[0003]
[Problems to be solved by the invention]
However, in the vacuum camera, when the measurement is performed in a state where the sample is heated or cooled, particularly in a state where the sample is cooled to an extremely low temperature of several K, the following problem occurs.
That is, when the sample is cooled and the first measurement is completed, and then the second measurement is performed in the same cooling state, the exposed IP installed in the vacuum vessel is replaced with an unexposed one. Although it is necessary, if the vacuum of the vacuum container is broken for this replacement work, the moisture in the outside world immediately becomes frost and adheres to the sample, and the sample may be altered.
In order to avoid this, it is necessary to warm the sample to room temperature before breaking the vacuum. However, this not only takes time for the IP replacement work, but also repeatedly cools and heats the sample, which may cause the sample to deteriorate.
On the other hand, even if the vacuum is broken while the sample is heated, the sample may still be altered. This is because, since the reactivity of the sample generally increases with temperature, the heated sample may react with oxygen in the atmosphere and change in quality.
In order to avoid this, it is necessary to cool the sample to room temperature before breaking the vacuum. However, this not only takes time for the IP replacement work, but also repeatedly cools and heats the sample, which may cause the sample to deteriorate.
[0004]
The present invention has been made under the above-described background, and provides a vacuum camera capable of easily and quickly performing an IP exchange operation even when a sample remains heated or cooled.
[0005]
[Means for Solving the Problems]
As a result of repeated trial and error by the present inventors in order to solve the above-mentioned problems, for the IP exchange work installed in the vacuum vessel, the vacuum inside the vacuum vessel has to be broken, At this time, it was conceived that if the vacuum in the vicinity of the sample can be maintained, the IP exchange operation can be easily and rapidly performed even while the sample is heated or cooled.
[0006]
That is, the first invention detects a diffracted X-ray generated from the sample, a vacuum container that places the sample to be measured under vacuum, an X-ray generator that irradiates the sample placed under vacuum with X-rays, and the like. IP and
The sample is irradiated with X-rays under vacuum, and diffracted X-rays generated from the sample are detected by an IP camera installed in the vacuum vessel.
The vacuum camera is characterized in that the sample is covered with an airtight container, the vacuum in the vicinity of the sample is maintained, the vacuum in the vacuum container is broken, and the IP installed in the vacuum container is taken out or replaced.
[0007]
By adopting the above configuration, even if the vacuum of the vacuum vessel is broken, the vicinity of the sample is covered with the hermetic vessel and keeps the vacuum, so that the cooled sample does not form frost, and the heated sample There is no exposure to oxygen. More preferably, the heat of the outside air that has entered the vacuum vessel with respect to the cooled sample is not transferred to the sample by convection, and the heat of the heated sample is not lost by convection. As a result, the temperature of the sample can be easily maintained by the existing heating / cooling means.
[0008]
2nd invention is the vacuum camera as described in 1st invention,
The airtight container is connected to a control rod penetrating the vacuum container wall from the outside through a vacuum seal,
By operating the control rod outside, without breaking the vacuum inside the vacuum vessel,
When the sample is irradiated with X-rays, it moves to a position that does not interfere with the irradiated X-rays and diffracted X-rays,
When taking out or exchanging the IP, the vacuum camera is characterized in that the vicinity of the sample is moved to a position where vacuum can be maintained.
[0009]
By adopting the above-described configuration, the airtight container can be moved and attached to and detached from the sample stage by operating the control rod from the outside, and the ease and speed of the IP exchange work can be greatly improved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In addition, the same number was attached | subjected and shown to the corresponding part in each drawing.
FIG. 1 is a vertical sectional view of a vacuum camera 1 according to an embodiment of the present invention.
FIG. 2 is a schematic perspective view of the airtight container 10, the control rod 11, the handle 12, and the vacuum container lid 33.
FIG. 3 is a schematic perspective view when an IP cassette 21 described later is pulled out from the vacuum camera 1.
FIG. 4 is an enlarged cross-sectional view of a fitting structure between the airtight container 10 and the airtight container fitting portion 39.
[0011]
First, as shown in FIG. 1, the outline of the structure of the vacuum camera 1 is as follows. A vacuum vessel 30 is installed on a surface plate 40, and the vacuum vessel 30 has a vacuum vessel lid 33, a sample stage moving device 37, and an irradiated X. A Be window 36 or the like for introducing a wire is attached, and the inside of the vacuum vessel 30 can be kept in a vacuum by a vacuum exhaust device (not shown).
A sample stage 38 is connected to the sample stage moving device 37 in the vacuum container 30, and a sample heating / cooling device 32 and an airtight container fitting unit 39 are provided on the sample stage 38. Yes. A sample holder 31 is provided at the tip of the sample heating / cooling device 32, and the sample S is placed there. The position of the sample S is adjusted so as to be generated by an X-ray generator (not shown) and irradiated to the X-ray introduced into the vacuum container 30 through the Be window 36.
[0012]
On the other hand, as shown in FIGS. 1 and 2, an airtight container 10 detachably connected to the control rod 11 is installed in the vacuum container 30. The airtight container 10 has a structure that fits with an airtight container fitting portion 39 provided on the sample stage 38, and has strength and airtightness capable of maintaining a vacuum in the vicinity of the sample S. Here, the material of the airtight container 10 is preferably aluminum, an aluminum alloy or the like in consideration of the strength, airtightness, and operability.
[0013]
Here, FIG. 4 shows an enlarged cross-sectional view of an example of the fitting structure in the fitting portion between the hermetic container 10 and the sample stage 38, that is, the hermetic container fitting portion 39.
An O-ring 43 is installed at a portion of the sample table 38 that fits the hermetic container 10, while a taper 42 is provided at the end of the hermetic container 10 that fits the sample table 38 on which the O-ring 43 is installed. Is provided. The O-ring 43 has a normal vacuum specification. Furthermore, a convex portion 41 described later is provided on the outer periphery of the airtight container 10.
The state shown in FIG. 4 is illustrated by enlarging the cross section in this state by fitting the airtight container 10 to the airtight container fitting portion 39 using the control rod 11 immediately before breaking the vacuum in the vacuum container 30. . In this state, the inside and outside of the hermetic container 10 are in vacuum.
When the vacuum of the vacuum container 30 is broken and the atmosphere enters the outside of the hermetic container 10, the hermetic container 10 is pushed toward the sample stage 38 by the atmospheric pressure, and the space between the sample stage 38, the O-ring 43, and the hermetic container 10. The airtight state is maintained. At this time, the convex portion 41 collides with the sample table 38, and the atmospheric pressure prevents the airtight container 10 from being pushed into the sample table 38 side more than necessary.
By the action of the convex portion 41, the airtight container 10 can be easily pulled out from the airtight container fitting portion 39 using the control rod 11 when the inside of the vacuum container 30 is evacuated again.
The position of the convex portion 41 is appropriately set in consideration of the airtight state among the sample stage 38, the O-ring 43 and the airtight container 10 and the ease of pulling out the airtight container 10 from the airtight container fitting portion 39. do it.
The size of the hermetic container 10 is such that the vacuum in the vicinity of the sample S is maintained during the IP exchange operation, and the X-ray irradiation to the sample S requires that the sample S be retracted to a position that does not interfere with both irradiation and diffraction X-rays. It sets suitably in consideration of the internal volume of the container 30.
[0014]
The control rod 11 connected to the airtight container 10 penetrates the vacuum container lid 33 to the outside through a vacuum seal such as a dry bearing 34 and an oil seal 35, and a handle 12 is installed to facilitate the operation of the operator. Yes.
As a method for detachably connecting the control rod 11 and the airtight container 10, for example, as shown in FIG. 2, a cross-shaped recess 13 is provided on the back of the bottom of the airtight container 10, and a cross-shaped protrusion is formed on the control rod 11 side. 14 is provided. When connecting the two, the cruciform protrusion 14 is inserted into the cruciform recess 13 and rotated by about 45 ° to be fitted. A configuration in which the cross-shaped protrusion 14 is extracted from the mold recess 13 is conceivable.
[0015]
Further, as shown in FIGS. 1 and 3, an IP 20 loaded in a cylindrical IP cassette 21 is installed in the vacuum container 30, and diffracted X-rays generated from the sample S are detected.
[0016]
Here, regarding the measurement procedure of the diffracted X-ray of the sample S using the vacuum camera 1 according to the embodiment of the present invention, the angle of the irradiated X-ray is changed in the sample S cooled to 4K, and a plurality of times of diffracted X-rays are obtained. A case of measurement will be described as an example.
First, the vacuum vessel lid 33 is opened, and the sample S is placed in the sample holder 31. Next, the IP cassette 21 loaded with IP20 is installed in the vacuum container 30 and the vacuum container lid 33 is closed. At this time, the airtight container 10 is connected to the control rod 11 and held at the position (B).
Here, since the hermetic container 10 is held at the position (B), both irradiation and diffraction X-rays are not disturbed when the sample S is irradiated with X-rays.
Then, the inside of the vacuum vessel 30 is evacuated by the evacuation device, and the sample S is started to be cooled to an extremely low temperature of about 4K by the sample heating and cooling device.
Next, the sample stage moving device 37 is operated to set the position and angle of the sample S to desired values.
When the temperature, position, angle, etc. of the sample S reach desired values, X-rays from the X-ray source are introduced into the vacuum container 30 through the Be window 36 and the sample S is irradiated. The IP 20 surrounding the sample S in a cylindrical shape is exposed to light by diffracted X-rays generated from the sample S.
[0017]
When the exposure of IP20 is completed, X-ray irradiation is stopped. Then, the control rod 11 is inserted into the vacuum container 30 side, and the hermetic container 10 is moved to the position (A), fitted with the hermetic container fitting portion 39, and then the connection between the hermetic container 10 and the control rod 11 is established. solve.
If the vacuum container lid 33 is opened here, the vacuum in the vacuum container 30 is broken, but the hermetic container 10 is firmly fitted to the hermetic container fitting part 39 by the atmospheric pressure, and the vicinity of the sample S is kept in vacuum. S is not frosted and there is almost no temperature rise.
Next, the exposed IP 20 is taken out together with the IP cassette 21 from the vacuum container 30, and then the IP cassette 21 loaded with the unexposed IP 20 is placed in the vacuum container 30 again, the vacuum container lid 33 is closed again, and the vacuum The inside of the vacuum container 30 is returned to a vacuum by the exhaust device.
When the inside of the vacuum container 30 returns to vacuum, the hermetic container 10 and the control rod 11 are connected, and the control rod 11 is pulled out to the outside, whereby the hermetic container 10 is held again at the position (B).
[0018]
When the sample stage moving device 37 and the sample heating / cooling device 32 are operated again to set the temperature, position, angle, etc. of the sample S to desired values, the sample S is irradiated with X-rays and generated from the sample S. The IP20 is exposed to diffracted X-rays.
Thereafter, by performing the same operation a desired number of times, the X-ray diffraction data at the desired temperature, position, angle, etc. can be quickly and easily measured with respect to the sample S, and the sample S is deteriorated and deteriorated. It became possible to suppress even.
As described above, the measurement procedure using the vacuum camera according to the embodiment of the present invention has been described by taking as an example the case of measuring the diffraction X-ray of the sample cooled to 4K, but the same operation procedure is used when the sample is heated. The diffracted X-ray of the sample can be measured.
As a result, the ease and speed of the IP exchange work in the vacuum camera are greatly improved, and the deterioration of the sample S can be suppressed, thereby improving the convenience of the vacuum camera as a diffraction X-ray measuring device and expanding the application range. It has become possible.
[0019]
【The invention's effect】
As described above in detail, a vacuum container in which a sample to be measured is placed under vacuum, an X-ray generator that irradiates the sample placed under vacuum with X-rays, and diffracted X-rays generated from the sample are detected. An imaging plate, wherein the sample is irradiated with X-rays in a vacuum, and diffracted X-rays generated from the sample are detected by an imaging plate installed in the vacuum vessel, and the sample is hermetically sealed By inventing a vacuum camera that is covered with a container and breaks the vacuum of the vacuum container while keeping the vacuum in the vicinity of the sample, and takes out or replaces the imaging plate installed in the vacuum container, It is possible to improve the ease and speed of the IP exchange operation while suppressing the deterioration of the sample.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view of a vacuum camera according to an embodiment of the present invention.
FIG. 2 is a schematic perspective view of an airtight container, a control rod, a handle, and a vacuum container lid.
FIG. 3 is a schematic perspective view when an IP cassette is pulled out from a vacuum camera.
FIG. 4 is an enlarged cross-sectional view of a fitting structure in a fitting portion between an airtight container and a sample table.
[Explanation of symbols]
1. Vacuum camera Sample 10. Airtight container 11. Control rod 20. IP (imaging plate)
30. Vacuum container 31. Sample holder 32. Sample heating / cooling device 39. Airtight container fitting

Claims (3)

被測定試料を真空下に置く真空容器と、前記真空下に置かれた試料へX線を照射するX線発生装置と、前記試料より発生する回折X線を検出するイメージングプレートとを有し、前記試料は、真空下においてX線を照射され、試料より発生する回折X線は、前記真空容器内に設置されたイメージングプレートにより検出される真空カメラにおいて、前記試料を気密容器で覆い、試料近傍の真空を保ったまま、前記真空容器の真空を破り、前記真空容器内に設置されたイメージングプレートの取り出しまたは交換をおこなうことを特徴とする真空カメラ。  A vacuum container for placing a sample to be measured under vacuum, an X-ray generator for irradiating the sample placed under vacuum with X-rays, and an imaging plate for detecting diffracted X-rays generated from the sample, The sample is irradiated with X-rays in a vacuum, and diffracted X-rays generated from the sample are detected by an imaging plate installed in the vacuum vessel. A vacuum camera that breaks the vacuum of the vacuum container while keeping the vacuum of and removes or replaces the imaging plate installed in the vacuum container. 請求項1に記載の真空カメラにおいて、前記気密容器は、前記真空容器壁を真空シールを介して外界より貫通した制御棒に接続され、当該制御棒の外界での操作により、真空容器内の真空を破ることなく、試料へのX線照射の際には、照射X線および回折X線を妨害しない位置へ移動し、イメージングプレートの取り出しまたは交換の際には、試料近傍を真空に保つことのできる位置へ移動することを特徴とする真空カメラ。  2. The vacuum camera according to claim 1, wherein the airtight container is connected to a control rod penetrating the vacuum vessel wall from the outside through a vacuum seal, and the vacuum inside the vacuum vessel is operated by the operation of the control rod in the outside world. When X-ray irradiation is applied to the sample, the sample is moved to a position that does not interfere with the irradiated X-ray and diffraction X-ray, and when the imaging plate is taken out or replaced, the vicinity of the sample is kept in a vacuum. A vacuum camera characterized by moving to a position where it can be made. 請求項1又は2に記載の真空カメラにおいて、前記真空容器の真空が破れた際に前記気密容器と嵌合する試料台を有し、前記気密容器には、真空容器内の真空が破られ大気圧により気密容器が試料台側へ押し込まれた際に試料台と衝突して前記気密容器が必要以上に押し込まれるのを防止するための凸部が設けられていることを特徴とする真空カメラ。The vacuum camera according to claim 1 or 2, further comprising a sample stage that fits into the hermetic container when the vacuum of the vacuum container is broken, and the vacuum in the vacuum container is largely broken in the hermetic container. A vacuum camera comprising a convex portion for preventing the airtight container from being pushed more than necessary by colliding with the sample base when the airtight container is pushed toward the sample stage by atmospheric pressure.
JP2001119045A 2001-04-18 2001-04-18 Vacuum camera Expired - Fee Related JP4083998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001119045A JP4083998B2 (en) 2001-04-18 2001-04-18 Vacuum camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001119045A JP4083998B2 (en) 2001-04-18 2001-04-18 Vacuum camera

Publications (2)

Publication Number Publication Date
JP2002310951A JP2002310951A (en) 2002-10-23
JP4083998B2 true JP4083998B2 (en) 2008-04-30

Family

ID=18969330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001119045A Expired - Fee Related JP4083998B2 (en) 2001-04-18 2001-04-18 Vacuum camera

Country Status (1)

Country Link
JP (1) JP4083998B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9063234B2 (en) * 2013-06-26 2015-06-23 General Electric Company Gas-tight packaging of detectors
JP6140298B2 (en) * 2013-12-05 2017-05-31 株式会社日立製作所 Sample holder and vacuum analyzer

Also Published As

Publication number Publication date
JP2002310951A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
JP5422416B2 (en) Sample transport device
JP5738980B2 (en) Ion beam sample preparation apparatus and method
JP6084822B2 (en) Ion beam processing apparatus, sample processing method, and sample container
JP5732006B2 (en) Sample cooling holder and cooling source container
EP1305814B1 (en) Single tilt rotation cryotransfer holder for electron microscopes
EP2878008B1 (en) Ion beam sample preparation apparatus and methods
US8791438B2 (en) Ion beam sample preparation apparatus and methods
JP6312811B2 (en) Cryo station system
JP4083998B2 (en) Vacuum camera
JP2010055988A (en) Thin film sample observation system, cooling sample holder, and thin film sample observation method
EP3351923B1 (en) Reduction in dew formation by preparing specimen for investigation
JPH0374036A (en) Sample replacing device for electron microscope
US20230045321A1 (en) System for loading and/or manipulating a sample in a sample transfer device
WO2015198968A1 (en) Sample introduction method, sample stage, and charged particle beam device
JPH11201920A (en) Sample observing and analyzing method by vacuum system observing and analyzing device, and sample box for same device
JP7208271B2 (en) Sample introduction method and charged particle beam device
JP2009139314A (en) Three-dimensional x-ray ct apparatus
JP4302722B2 (en) Sample cooling apparatus and electron beam irradiation type analysis / observation apparatus provided with the same
JPH0548358Y2 (en)
JPH05128988A (en) Electron beam device
JP3635339B2 (en) X-ray fluorescence analyzer
JP2633022B2 (en) Frozen sample preparation device
JPH05258701A (en) Electron beam device
JP2024147220A (en) X-ray fluorescence analyzer
JP2005207908A (en) Fluorescent x-ray analyzer

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050928

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees