JP4081767B2 - Transmitting and receiving polarization antenna feeding circuit - Google Patents

Transmitting and receiving polarization antenna feeding circuit Download PDF

Info

Publication number
JP4081767B2
JP4081767B2 JP2004050439A JP2004050439A JP4081767B2 JP 4081767 B2 JP4081767 B2 JP 4081767B2 JP 2004050439 A JP2004050439 A JP 2004050439A JP 2004050439 A JP2004050439 A JP 2004050439A JP 4081767 B2 JP4081767 B2 JP 4081767B2
Authority
JP
Japan
Prior art keywords
terminal
distribution
circuit
transmission
polarization component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004050439A
Other languages
Japanese (ja)
Other versions
JP2005218071A5 (en
JP2005218071A (en
Inventor
英一 北川
Original Assignee
英一 北川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英一 北川 filed Critical 英一 北川
Priority to JP2004050439A priority Critical patent/JP4081767B2/en
Publication of JP2005218071A publication Critical patent/JP2005218071A/en
Publication of JP2005218071A5 publication Critical patent/JP2005218071A5/ja
Application granted granted Critical
Publication of JP4081767B2 publication Critical patent/JP4081767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)

Description

本発明は、電波の送信受信装置に関するものである。  The present invention relates to a radio wave transmission / reception apparatus.

従来のアンテナ給電回路のブロック図を図3に示すが、送信電波を任意の偏波角にて送信するために必要な分配合成回路と、偏波角が時間的に変化する受信偏波の垂直偏波成分と水平偏波成分を一つの端子にて合成し、その合成波の振幅を時間的に一定とするために必要な分配合成回路との両者を有するものであり、送信電波と受信電波の偏波角の同時変化に対応するためには、回路は2系統が必要となる。また、送信電波と受信電波の分岐点に送信フィルタ、受信フィルタが必要であるため、回路は複雑化、大型化するという問題点があった。
図4は従来の分配合成回路の作用を説明するブロック図であり、振幅Eなる送信電波をハイブリッド(1K)の端子AP1に入力したとき、ハイブリッド(1K)の端子BP1とハイブリッド(2K)の端子EP3との間に可変移相器Sを挿入するものであって、ハイブリッド(2K)の端子FP3の分配出力ETVと、FQ3の分配出力ETHとの比は可変移相器Sの移相の正接に比例する。また、送信偏波のベクトル絶対値√((ETV)+(ETH))は一定値Eを維持する。すなわち、図4の分配合成回路の端子FP3をアンテナの垂直偏波端子に接続し、端子FQ3をアンテナの水平偏波端子に接続すれば偏波角が可変移相器Sの移相量に比例して変化する送信偏波を発生することができる。
図5は従来の分配合成回路に関する作用の説明図である。振幅ERVなる受信波成分1をハイブリッド(2K)の端子FP3に入力し、振幅ERHなる受信波成分2をハイブリッドの端子FQ3に入力する場合において、受信波成分1と受信波成分2の位相が変化しても、端子AQ1に出力する受信合成波の振幅が一定となるように可変移相器Sの移相量を調整するものである。但し、受信波成分1と受信波成分2との関係は√((ERV)+(ERH))は一定となる条件を満たすものとする。
従来の分配合成回路を送信用の分配回路として使用すると同時に受信用の合成回路としても使用する場合は、可変移相器Sには送信波と受信波の両者が通過するため、送信偏波に関する調整と受信偏波に関する調整を同時に行うことができない。すなわち、送信偏波と受信偏波に対して同時に対応できないので実用上問題となる。このため、アンテナ給電回路において、送信偏波・受信偏波に対応するためには、従来、送信用の分配合成回路と受信用の分配合成回路の2系統を設けていた。また、この場合送信用フィルタ・受信用フィルタが必要になり、回路は複雑で大型であった。
A block diagram of a conventional antenna feeding circuit is shown in FIG. 3, and a distribution / combination circuit required for transmitting a transmission radio wave at an arbitrary polarization angle and a vertical of received polarization whose polarization angle changes with time. It combines both the polarization component and the horizontal polarization component at one terminal, and the distribution and synthesis circuit necessary to make the amplitude of the combined wave constant in time. In order to cope with simultaneous changes in the polarization angle, two circuits are required. In addition, since a transmission filter and a reception filter are required at the branch point between the transmission radio wave and the reception radio wave, there is a problem that the circuit becomes complicated and large.
FIG. 4 is a block diagram for explaining the operation of a conventional distribution / combination circuit. When a transmission radio wave having an amplitude E is input to a hybrid (1K) terminal AP1, a hybrid (1K) terminal BP1 and a hybrid (2K) terminal The variable phase shifter S is inserted between EP3 and the ratio of the distributed output ETV of the hybrid (2K) terminal FP3 to the distributed output ETH of FQ3 is the tangent of the phase shift of the variable phase shifter S. Is proportional to Further, the vector absolute value √ ((ETV) 2 + (ETH) 2 ) of the transmission polarization maintains a constant value E. That is, if the terminal FP3 of the distribution / combination circuit of FIG. 4 is connected to the vertical polarization terminal of the antenna and the terminal FQ3 is connected to the horizontal polarization terminal of the antenna, the polarization angle is proportional to the amount of phase shift of the variable phase shifter S. Thus, it is possible to generate a transmission polarization that changes.
FIG. 5 is an explanatory diagram of the operation relating to the conventional distribution and synthesis circuit. When receiving wave component 1 having amplitude ERV is input to hybrid (2K) terminal FP3 and receiving wave component 2 having amplitude ERH is input to hybrid terminal FQ3, the phases of receiving wave component 1 and receiving wave component 2 change. Even so, the amount of phase shift of the variable phase shifter S is adjusted so that the amplitude of the received composite wave output to the terminal AQ1 is constant. However, the relationship between the received wave component 1 and the received wave component 2 satisfies the condition that √ ((ERV) 2 + (ERH) 2 ) is constant.
When the conventional distribution / combination circuit is used as a transmission distribution circuit and at the same time as a reception synthesis circuit, both the transmission wave and the reception wave pass through the variable phase shifter S. Adjustment and reception polarization adjustment cannot be performed at the same time. That is, it becomes a practical problem because it cannot cope with the transmission polarization and the reception polarization at the same time. For this reason, in order to cope with transmission polarization and reception polarization in the antenna power supply circuit, conventionally, there are provided two systems, that is, a transmission distribution / combination circuit and a reception distribution / combination circuit. In this case, a transmission filter and a reception filter are required, and the circuit is complicated and large.

従来のアンテナ給電回路に対し、送信用分配合成回路と受信用分配合成回路の二つの回路系統を一つの回路系統にまとめて簡単化・小型化し、かつ、送信電波の偏波角と受信電波の偏波角の同時変化に対応することを可能にすることが本発明の課題である。  Compared to the conventional antenna power supply circuit, the transmission distribution / combination circuit and the reception distribution / combination circuit are combined into a single circuit system for simplification and miniaturization. It is an object of the present invention to make it possible to cope with simultaneous changes in the polarization angle.

本発明の請求項1は、従来のアンテナ給電回路に対し、送信用の分配回路の機能と受信用の合成回路の持つ機能を分配合成回路WPDの機能にまとめて置き換えるものであり、送受偏波共用アンテナ給電回路は大幅に小型化され、かつ、送信電波を任意の偏波角にて送信し、偏波角の変化する受信偏波を一定の振幅にて受信することができる。
図1は本発明の請求項1に示す送受偏波共用アンテナ給電回路のブロック図であり、分配合成回路WPDを使用し、回路を小型化している。
図2は分配合成回路WPDのブロック図であり、サーキュレータAとサーキュレータBの伝送方向が互いに逆になるように配置し、端子BP1に分配された送信電波成分はサーキュレータAの端子1から端子2への経路を通過し、可変移相器Aを通過しない、また、端子BQ1に分配された送信電波成分はサーキュレータBでは端子2から端子3の経路を通過し可変移相器Bを通過し、その後、短絡板Bにより電磁的に短絡され、全反射し、再度、可変位相器BおよびサーキュレータBの端子3から端子1を通過し、ハイブリッド(2)の端子EQ3に伝送する。このため可変移相器Bの移相量を調整すれば、端子FP3、端子FQ3における送信電波成分の分配比の調整ができる。この分配比の調整は、すなわち、アンテナにおける送信偏波の偏波角の調整となる。
ハイブリッド(2)の端子EP3に到来した受信電波成分はサーキュレータAの端子2から端子3への経路を通過し、可変移相器Aを通過し、短絡板Aにより電磁的に短絡され、全反射し、再度、可変移相器AおよびサーキュレータAの端子3から端子1を通過し、ハイブリッド(1)の端子BP1に伝送する。また、ハイブリッド(2)の端子EQ3に到来した受信電波成分はサーキュレータBの中では端子1から端子2を通過し可変移相器Bは通過しない。この分配合成回路WPDをアンテナ給電回路に使用するとき、可変移相器Aの移相を受信偏波の偏波角に比例して調整すれば受信偏波の偏波角変化に対し合成波ベクトル絶対値は変化しないようにすることができ受信可能となる。
受信電波成分は、可変移相器Bを通過しない、また、送信電成分は可変移相器Aを通過しないので、送信電波に関する移相量と受信電波に関する移相量は各々独立して調整可能となる。
(ハイブリッド(1)とハイブリッド(2)の間に可変移相器を挿入したときの回路の作用については、非特許文献1参照
Claim 1 of the present invention replaces the function of the distribution circuit for transmission and the function of the combination circuit for reception with the function of the distribution combination circuit WPD as a whole in comparison with the conventional antenna feeding circuit. The shared antenna power supply circuit is greatly reduced in size, and can transmit a transmission radio wave at an arbitrary polarization angle and receive a reception polarized wave whose polarization angle changes with a constant amplitude.
FIG. 1 is a block diagram of a transmission / reception dual-polarity antenna feeding circuit according to claim 1 of the present invention, and uses a distribution / synthesis circuit WPD to reduce the circuit size.
FIG. 2 is a block diagram of the distribution / synthesis circuit WPD, in which the transmission directions of the circulator A and the circulator B are arranged to be opposite to each other, and the transmission radio wave component distributed to the terminal BP1 is transmitted from the terminal 1 to the terminal 2 of the circulator A. The transmission radio wave component distributed to the terminal BQ1 passes through the path from the terminal 2 to the terminal 3 and passes through the variable phase shifter B, and then passes through the variable phase shifter A. Then, it is electromagnetically short-circuited by the short-circuit plate B, totally reflected, and again passes from the terminal 3 of the variable phase shifter B and the circulator B to the terminal EQ3 of the hybrid (2). Therefore, by adjusting the amount of phase shift of the variable phase shifter B, it is possible to adjust the distribution ratio of transmission radio wave components at the terminals FP3 and FQ3. This adjustment of the distribution ratio is an adjustment of the polarization angle of the transmission polarization in the antenna.
The received radio wave component arriving at the terminal EP3 of the hybrid (2) passes through the path from the terminal 2 to the terminal 3 of the circulator A, passes through the variable phase shifter A, is electromagnetically short-circuited by the short-circuit plate A, and is totally reflected. Then, again, the variable phase shifter A and the terminal 3 of the circulator A pass through the terminal 1 and are transmitted to the terminal BP1 of the hybrid (1). The received radio wave component that has arrived at the terminal EQ3 of the hybrid (2) passes through the terminal 2 from the terminal 1 in the circulator B and does not pass through the variable phase shifter B. When this distribution / combination circuit WPD is used in an antenna power supply circuit, if the phase shift of the variable phase shifter A is adjusted in proportion to the polarization angle of the received polarization, the combined wave vector is changed with respect to the change in the polarization angle of the received polarization. The absolute value can be kept unchanged and can be received.
Since the received radio wave component does not pass through the variable phase shifter B, and the transmit power component does not pass through the variable phase shifter A, the phase shift amount for the transmitted radio wave and the phase shift amount for the received radio wave can be adjusted independently. It becomes.
(For the operation of the circuit when a variable phase shifter is inserted between the hybrid (1) and the hybrid (2), see Non-Patent Document 1.

分配合成回路WPDでは、可変移相器Bで送信方向の移相量を調整し、送信偏波に関する調整ができるものであり、可変移相器Bの移相量を調整しても受信電波には影響を与えない。また、可変移相器Aを調整することにより受信偏波に関する調整ができ、そのとき送信電波には影響を与えない。この分配合成回路WPDを使用する本発明の送受偏波共用アンテナ給電回路では、送信用と受信用の2系統の機能を一つの回路系統にまとめて簡単化・小型化が実現できる。  In the distribution / combination circuit WPD, the phase shift amount in the transmission direction can be adjusted by the variable phase shifter B, and the transmission polarization can be adjusted. Even if the phase shift amount of the variable phase shifter B is adjusted, Has no effect. Further, adjustment of the received polarization can be performed by adjusting the variable phase shifter A, and the transmission radio wave is not affected at that time. In the transmission / reception dual-polarity antenna feeding circuit of the present invention using this distribution / combination circuit WPD, the functions of two systems for transmission and reception can be combined into one circuit system for simplification and miniaturization.

分配合成回路WPDを導波管コンポーネントにて構成する構成例を図7に示す。導波管コンポーネントとして、2個の導波管マジックT型ハイブリッド・2個の導波管サーキュレータ・2個の誘電体挿入可変移相器・2個の短絡板を用いる。
上記の分配合成回路WPDの端子FP3に同軸導波管変換器1を接続し、端子FQ3に同軸導波管変換器2を追加接続し、アンテナを円形ホーンアンテにて構成する送受偏波共用アンテナ給電回路の実施例を図6に示す。
分配合成回路WPDを同軸コンポーネントにて構成する実施例では、2個の同軸ラットレース型ハイブリッド・2個の同軸サーキュレータ・2個の同軸可変移相器・2個の同軸短絡器を用いる
FIG. 7 shows a configuration example in which the distribution / combination circuit WPD is configured with waveguide components. As waveguide components, two waveguide magic T-type hybrids, two waveguide circulators, two dielectric insertion variable phase shifters, and two short-circuit plates are used.
The coaxial waveguide converter 1 is connected to the terminal FP3 of the distribution / synthesis circuit WPD, the coaxial waveguide converter 2 is additionally connected to the terminal FQ3, and the antenna is configured by a circular horn antenna. An embodiment of the circuit is shown in FIG.
In the embodiment in which the distribution / synthesis circuit WPD is constituted by coaxial components, two coaxial rat race type hybrids, two coaxial circulators, two coaxial variable phase shifters, and two coaxial short circuits are used.

本発明は電波の送信受信装置に属し、特に送信波の偏波角と受信波の偏波角が独立して変化する場合でも回路の複雑化、大型化を招くことなくその機能を発揮することのできる送受偏波共用アンテナ給電回路に関するものである。
高速移動体衛星通信では送信波の偏波角と受信波の偏波角との同時変化に対応する必要があるため本発明の送受偏波共用アンテナ給電回路は有効である。
宮内一洋 山本平一共著 「通信用マイクロ波回路」 社団法人 電子情報通信学会発行 平成11年5月25日91ページ図2.66
The present invention belongs to a radio wave transmission / reception device, and in particular, even when the polarization angle of a transmission wave and the polarization angle of a reception wave change independently, the function is exhibited without causing a complicated circuit or an increase in size. The present invention relates to a transmission / reception dual-polarized antenna feeding circuit that can be used.
In the high-speed mobile satellite communication, it is necessary to cope with the simultaneous change of the polarization angle of the transmission wave and the polarization angle of the reception wave.
Kazuhiro Miyauchi, authored by Heiichi Yamamoto, “Microwave circuits for communication”, published by The Institute of Electronics, Information and Communication Engineers, May 25, 1999, page 91, Fig. 2.66

本発明の送受偏波共用アンテナ給電回路のブロック図である。It is a block diagram of a transmission / reception polarization sharing antenna feeding circuit of the present invention. 本発明に使用する分配合成回路WPDのブロック図である。It is a block diagram of the distribution / synthesis circuit WPD used in the present invention. 従来のアンテナ給電回路のブロック図である。It is a block diagram of the conventional antenna electric power feeding circuit. 従来の分配合成回路を送信分配回路として使用する場合の動作説明図である。It is operation | movement explanatory drawing when using the conventional distribution combination circuit as a transmission distribution circuit. 従来の分配合成回路を受信合成回路として使用する場合の動作説明図である。It is operation | movement explanatory drawing when using the conventional distribution synthetic | combination circuit as a reception synthetic | combination circuit. 本発明の送受偏波共用アンテナ給電回路に対する実施例である。It is an Example with respect to the transmission / reception polarized wave shared antenna feeding circuit of this invention. 本発明に使用する分配合成回路WPDに対する構成例である。It is a structural example with respect to the distribution synthetic | combination circuit WPD used for this invention.

符号の説明Explanation of symbols

1 分配合成回路WPD
2 分配合成回路
3 分配合成回路
4 同軸導波管変換器付分配合成回路
5 円形ホーンアンテナ
1 Distribution and synthesis circuit WPD
2 Distribution / synthesis circuit 3 Distribution / synthesis circuit 4 Distribution / synthesis circuit with coaxial waveguide converter 5 Circular horn antenna

Claims (1)

ハイブリッド(1)の端子BP1にサーキュレータAの端子1を接続し、サーキュレータAの端子2をハイブリッド(2)の端子EP3に接続し、ハイブリッド(1)の端子BQ1にサーキュレータBの端子2を接続し、サーキュレータBの端子1をハイブリッド(2)の端子EQ3に接続し、サーキュレータAの端子3は可変移相器Aの一方の端子が接続され、可変移相器Aの他方の端子は電磁的に短絡される構造であって、サーキュレータBの端子3は可変移相器Bの一方の端子に接続され、可変移相器Bの他方の端子は電磁的に短絡する構造を有するものが分配合成回路WPDであって、
垂直偏波および水平偏波を送信・受信するアンテナ給電回路において、垂直偏波端子には分配合成回路WPDの端子FP3を接続し、水平偏波端子には端子FQ3を接続するものであって、振幅Eなる送信電波を送信機端子AP1に入力するとき、端子FP3にはアンテナに対する送信垂直偏波成分ETVが分配され、端子FQ3にはアンテナに対する送信水平偏波成分ETHが分配されるものであって、送信垂直偏波成分ETVと送信水平偏波成分ETHの比は分配合成回路WPDを構成する可変移相器Bの移相量調整によって調整できるものであり、アンテナにおける送信偏波のベクトルの絶対値は一定値を維持するものであって、また、アンテナにおける受信偏波のベクトルの絶対値が一定なる受信偏波が到来した場合、受信偏波は受信垂直偏波成分ERVと受信水平偏波成分ERHに分解され、受信垂直偏波成分ERVはアンテナの垂直偏波端子を経由し分配合成回路WPDの端子FP3に伝送し、受信水平偏波成分ERHはアンテナの水平偏波端子を経由して分配合成回路WPDの端子FQ3に伝送し、受信機端子AQ1において受信水平偏波成分ERHと受信垂直偏波成分ERVとが合成され、、受信偏波の偏波角変化があっても、可変移相器Aを調整することにより端子AQ1における受信合成波を一定振幅にて受信することが可能であることを特徴とする送受偏波共用アンテナ給電回路。
Connect terminal 1 of circulator A to terminal BP1 of hybrid (1), connect terminal 2 of circulator A to terminal EP3 of hybrid (2), and connect terminal 2 of circulator B to terminal BQ1 of hybrid (1). The terminal 1 of the circulator B is connected to the terminal EQ3 of the hybrid (2), the terminal 3 of the circulator A is connected to one terminal of the variable phase shifter A, and the other terminal of the variable phase shifter A is electromagnetically connected. A distribution and synthesis circuit having a structure in which the terminal 3 of the circulator B is connected to one terminal of the variable phase shifter B and the other terminal of the variable phase shifter B is electromagnetically short-circuited is a structure that is short-circuited. WPD,
In the antenna feeding circuit for transmitting / receiving vertical polarization and horizontal polarization, the terminal FP3 of the distribution / combination circuit WPD is connected to the vertical polarization terminal, and the terminal FQ3 is connected to the horizontal polarization terminal, When a transmission radio wave having an amplitude E is input to the transmitter terminal AP1, the transmission vertical polarization component ETV for the antenna is distributed to the terminal FP3, and the transmission horizontal polarization component ETH for the antenna is distributed to the terminal FQ3. Thus, the ratio between the transmission vertical polarization component ETV and the transmission horizontal polarization component ETH can be adjusted by adjusting the amount of phase shift of the variable phase shifter B constituting the distribution and synthesis circuit WPD. The absolute value maintains a constant value, and when a received polarized wave whose absolute value of the received polarized wave vector at the antenna arrives constant, the received polarized wave is received. The vertical polarization component ERV and the reception horizontal polarization component ERH are decomposed, and the reception vertical polarization component ERV is transmitted to the terminal FP3 of the distribution combining circuit WPD via the vertical polarization terminal of the antenna, and the reception horizontal polarization component ERH is The signal is transmitted to the terminal FQ3 of the distribution / combination circuit WPD via the horizontal polarization terminal of the antenna, and the reception horizontal polarization component ERH and the reception vertical polarization component ERV are synthesized at the receiver terminal AQ1, thereby Even if there is a change in wave angle, it is possible to receive the received combined wave at the terminal AQ1 with a constant amplitude by adjusting the variable phase shifter A.
JP2004050439A 2004-01-27 2004-01-27 Transmitting and receiving polarization antenna feeding circuit Expired - Fee Related JP4081767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004050439A JP4081767B2 (en) 2004-01-27 2004-01-27 Transmitting and receiving polarization antenna feeding circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004050439A JP4081767B2 (en) 2004-01-27 2004-01-27 Transmitting and receiving polarization antenna feeding circuit

Publications (3)

Publication Number Publication Date
JP2005218071A JP2005218071A (en) 2005-08-11
JP2005218071A5 JP2005218071A5 (en) 2007-02-08
JP4081767B2 true JP4081767B2 (en) 2008-04-30

Family

ID=34908581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004050439A Expired - Fee Related JP4081767B2 (en) 2004-01-27 2004-01-27 Transmitting and receiving polarization antenna feeding circuit

Country Status (1)

Country Link
JP (1) JP4081767B2 (en)

Also Published As

Publication number Publication date
JP2005218071A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
US10530033B2 (en) Demultiplexer/multiplexer, antenna device, and fading elimination method
US9473195B2 (en) Phase-arrayed transceiver
JP5324014B2 (en) Antenna, base station, and beam processing method
US9660345B1 (en) Millimeter-wave communications on a multifunction platform
EP2090896A2 (en) Quadrature rader apparatus
US9294178B2 (en) Method and apparatus for transceiving for beam forming in wireless communication system
JP2007081646A (en) Transmitting/receiving device
US9306647B2 (en) Tracking system with orthogonal polarizations and a retro-directive array
KR910015132A (en) Polarization transducer device for contact between linearly polarized satellite and single or dual circularly polarized earth station antenna
US10560856B2 (en) Phase shifter, antenna, and base station
CN204596982U (en) A kind of low clearance antenna for satellite communication in motion electronic pole-changing gasifying device
CN107615585A (en) A kind of phased array chip, phased array beam scan method and device
US20180108995A1 (en) Millimeter-wave communications on a multifunction platform
US9490862B2 (en) Reflective-type antenna band and polarization selectable transceiver using a rotatable quarter-wave plate
JP5371841B2 (en) Antenna device
CN209119368U (en) Microwave and the polarization of millimeter wave ultra-wideband multimode are switched fast antenna
CN107733463B (en) Satellite communication transceiver duplex system and front-end feed source system
CN203166090U (en) Base station antenna capable of adjusting polarization direction
JP4081767B2 (en) Transmitting and receiving polarization antenna feeding circuit
EP3731430B1 (en) Device and method for correcting deviation between multiple transmission channels
US11862862B2 (en) Communication device
JP7319378B2 (en) dual-polarized millimeter-wave front-end integrated circuit
US10068479B2 (en) Communication device for vehicle-to-X communication
JP2013021406A (en) Antenna device
JPS63238726A (en) Microwave transmitter/receiver

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070116

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070415

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees