JP4080727B2 - Viscous fluid filled damper - Google Patents

Viscous fluid filled damper Download PDF

Info

Publication number
JP4080727B2
JP4080727B2 JP2001346061A JP2001346061A JP4080727B2 JP 4080727 B2 JP4080727 B2 JP 4080727B2 JP 2001346061 A JP2001346061 A JP 2001346061A JP 2001346061 A JP2001346061 A JP 2001346061A JP 4080727 B2 JP4080727 B2 JP 4080727B2
Authority
JP
Japan
Prior art keywords
shaft body
damper
mounting portion
body mounting
viscous fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001346061A
Other languages
Japanese (ja)
Other versions
JP2003148541A (en
Inventor
理恵 都澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
Original Assignee
Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd filed Critical Polymatech Co Ltd
Priority to JP2001346061A priority Critical patent/JP4080727B2/en
Publication of JP2003148541A publication Critical patent/JP2003148541A/en
Application granted granted Critical
Publication of JP4080727B2 publication Critical patent/JP4080727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)
  • Fluid-Damping Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はダンパーに関し、特にCDやDVDなどのディスク状記録媒体から非接触読取り方式で記録データの読出しを行う音響機器や情報機器等の振動減衰に好適なダンパーに関する。
【0002】
【従来の技術】
図14は、車載用CDプレーヤ1の防振構造を示す図で、その筐体2の内部には音楽用CDを再生するプレーヤ本体3(被支持体)がコイルスプリング4にて支持されている。筐体2に固定してある5はダンパーで、プレーヤ本体3の底面部から突設した樹脂や金属等の硬質材で形成した軸体6を保持しており、プレーヤ本体3に作用する振動を減衰させるものである。
【0003】
即ち、図15で示すように、ダンパー5は、例えばポリプロピレン等の硬質樹脂で形成した周壁部7を備えており、その上側開口端はスチレン系熱可塑性エラストマー等のゴム状弾性体で形成した可撓部8にて密封されている。その下側開口端は、周壁部7と同材質の蓋9にて密封されており、密封された内部空間には、シリコーンオイル等でなる粘性流体10が充填されている。なお、周壁部7、可撓部8、蓋9及び後述の軸体取付部11によって密封状の容器本体5aが構成される。
【0004】
軸体取付部11は、円筒状の周壁部11aと、外径が周壁部11aと同寸で該周壁部11aの下側開口端を閉塞する底部11bを一体形成した有底筒状として形成されており、プレーヤ本体3に作用する振動は、軸体6を保持するこの軸体取付部11を通じてダンパー5へ入力されて、可撓部8の弾性変形と、粘性流体10の流動による粘性抵抗とによって減衰される。
【0005】
【発明が解決しようとする課題】
ところで、このような従来のダンパー5にあっては、プレーヤ本体3に共振周波数付近(特に10〜30Hzの低い周波数付近)の振動入力がなされ、また悪路走行時等にプレーヤ本体3に高加速度の衝撃が加わると、プレーヤ本体3が大きく上下方向(図16(a))や左右方向(図16(b))に振幅して、ゴム状弾性体製の軸体取付部11が硬質樹脂製の周壁部7や同じく硬質樹脂製の蓋9に対して衝突し、軸体取付部11の底部11bが圧縮応力の集中によって破断することがある。そして、破断してしまうと、密封した粘性流体10が破断箇所Bpから漏出するため本来の減衰効果を発揮できなくなるだけでなく、漏れた粘性流体10により機器内部を汚してしまうことがある。
【0006】
こうした問題は、粘性流体10の流動による粘性抵抗を利用するダンパー5に限られるものではなく、粘性流体10に代えて空気の流入・流出による粘性抵抗を振動減衰に利用するエアーダンパーと称されるダンパーであっても、破断部分からの空気漏れによって本来の減衰効果を発揮できなくなる点で、同様の問題を抱えている。
【0007】
以上のような従来技術を背景になされたのが本発明であって、その目的は、振動により被支持体が大きく振幅することで被支持体の軸体を保持する軸体取付部がダンパーの内側面と衝突しても、軸体取付部が破断し難いダンパーを提供することにある。
【0008】
【課題を解決するための手段】
即ち本発明は、振動伝達路の一次側又は二次側に位置する被支持体を、この被支持体から突出する軸体の挿入を受けて保持する周壁部と底部とからなる有底筒状の軸体取付部を有し、この軸体取付部を軸体挿入開口側にて被支持体に対し追従変位可能として浮動支持する可撓部を備えるダンパーについて、軸体取付部の底部における、該軸体取付部の軸心線上を除く外側位置に、緩衝用凸部を形成したことを特徴とする。
【0009】
この発明によるダンパーは、軸体取付部の底部(底部分)における、軸体取付部の軸心線上の外側位置に緩衝用凸部を形成したので、軸体取付部がその軸心方向へ変位しても、軸体からの力が直接作用する軸体取付部底部における軸心線上の部分がダンパーの内側面(例えば硬質樹脂製の蓋)に対して強く衝突しない。つまり、その軸心線上の外側位置に形成した緩衝用凸部が先ずダンパーの内側面と衝突し、その衝撃力は肉厚で変形し易い緩衝用凸部の圧縮変形によって吸収されるので、軸体取付部底部への応力集中を分散して破断し難くすることができる。また、軸体取付部が軸交差方向(軸直方向を含む交差方向)へ変位しても、ダンパーの内側面(例えば硬質樹脂製の周壁部)に対して強く衝突しない。つまり、このダンパーの軸体取付部では、軸体の底部に緩衝用凸部を形成してあるので、まず該底部に形成した緩衝用凸部がダンパーの内側面と衝突し、その衝撃力は変形し易い緩衝用凸部の圧縮変形によって吸収されて、軸体取付部底部への応力集中を分散して破断し難くすることができる。
【0010】
このような作用を発揮する緩衝用凸部は、特に軸体取付部の軸心線方向で大きな変位が想定されるダンパーについては、軸体取付部の底部における外底面に形成するとよく、軸体取付部の軸交差方向で大きな変位が想定されるダンパーについては、軸体取付部の底部における外周面に形成するのがよい。また、例えば車両走行時の振動を減衰する場合のように全方向への変位が想定される場合には、該底部における外底面と外周面の両方に形成するのが効果的である。
【0011】
そして、以上のうち軸体取付部の底部における外底面に緩衝用凸部を形成するダンパーについては、特に軸体の軸心方向投影領域の外側位置に形成するのが好ましい。即ち、この緩衝用凸部は軸体の軸心方向投影領域と重ならないため、軸体取付部が軸心線方向に変位してダンパーの内側面(例えば硬質樹脂製の蓋)と衝突した場合に、軸体の軸心方向に伝達する力が直線的且つ直接的に緩衝用凸部に伝わらず、該投影領域の外側位置へ迂回的に伝達させることができるので緩衝用凸部への応力分散効果が更に高められる。
【0012】
また、軸体取付部の底部における外底面に緩衝用凸部を形成したダンパーについては、緩衝用凸部を、軸体取付部の周壁部の外周面よりも更に径方向外向きに延長するように突出させて形成したものとしてもよい。このダンパーであれば、軸体取付部が軸交差方向に変位してダンパーの内側面(例えば硬質樹脂製の周壁部)と衝突しても、その衝撃力は緩衝用凸部の該突出させた部分によって吸収されるので、軸体取付部底部への応力集中が分散されて破断し難くなる。
【0013】
ところで、緩衝用凸部を軸体取付部の底部における外周面上に形成する場合には軸体の軸直方向投影領域を除く外側位置に形成するのが好ましい。このようにすると軸体取付部が軸交差方向へ変位してダンパーの内側面(例えば硬質樹脂製の周壁部)と衝突しても、軸体の軸交差方向へ伝達する力が直線的且つ直接的に緩衝用凸部に伝わらず、該投影領域の外側位置へ迂回的に伝達させることができるので緩衝用凸部による応力分散効果が更に高められるためである。
【0014】
以上のような緩衝用凸部によって軸体取付部を破断し難くすることは、ダンパーの内部に封入したシリコーンオイルのような液状の粘性流体の流動抵抗を振動減衰に利用する粘性流体封入式ダンパーだけでなく、空気の流入・流出による流動抵抗を振動減衰に利用するエアーダンパーについても共通の課題である。そして、粘性流体封入式ダンパーの具体的構成としては、硬質樹脂でなる周壁部と、この周壁部の一端開口を閉塞する蓋と、を備え、該周壁部の他端開口が前記軸体取付部を有する前記可撓部にて閉塞された容器本体を備え、この容器本体内に液状の粘性流体を封入したものとして構成することができる。そして、この場合に、周壁部の一端開口を閉塞する蓋は、その全体を硬質樹脂にて形成したものであっても、全体をゴム状弾性体のような軟質樹脂にて形成したもの、あるいは周壁部に対して固着する外側部分を硬質樹脂で、軸体取付部の底部と対向する内側部分を熱可塑性エラストマーにて形成したものであってもよい。一方、エアーダンパーの具体的構成としては、硬質樹脂でなる筒状の周壁部と、この周壁部の一端開口を閉塞する蓋と、を備え、該周壁部の他端開口が前記軸体取付部を有する前記可撓部にて閉塞された容器本体を備え、該周壁部に容器本体の内外を流通する通気孔を形成したものとして構成することができる。
【0015】
【発明の実施の形態】
以下、本発明のダンパーについて、図面を参照しつつ説明する。なお、従来技術と同じ部分については同じ符号を付して重複説明を省略する。
【0016】
第1実施形態〔図1〕: 本発明の第1実施形態によるダンパー21を図1に示すが、このダンパー21は、軸体取付部22の外側面に特徴がある。一方、軸体取付部22の内側面は軸体23の形状に相応した形状とするのであって、この内側面の形状は任意である。なお、軸体取付部22以外のその他の構成は従来例のダンパー5(図15参照)と同じである。
【0017】
軸体取付部22は被支持体(図14参照)から突出する軸体23を挿入して保持するものであり、周壁部24と底部25とからなる有底筒状の形状を呈するものである。この軸体取付部22の周壁部24と底部25の境界は次のように区別される。即ち、この軸体取付部22で保持する軸体23は、図2(a)に示すようにa−a’線を境に外径が長さ方向に沿って等径の軸部26と、軸体取付部22からの抜け防止に機能する頭部27とに分かれるものとし、この軸体23が、軸体取付部22に挿入された際に軸体取付部22における軸体23の頭部27を含めそれより先に該当する部分、即ち、a−a’線より底側(図中下側)を軸体取付部22の底部25とし、a−a’線より基端側(図中上側)を周壁部24とする。なお、図2(b)に示す軸体28は、頭部を有しないため、軸体取付部22aにおける軸体28の先端より先に該当する部分、即ち、b−b’線より底側(図中下側)を底部25と規定する。
【0018】
第1実施形態におけるダンパー21は、軸体取付部22の底部25に形成された緩衝用凸部が、軸体取付部22の底部25における軸心線20上を除く外側位置であると共に、軸体取付部22の外底面25aに形成されていることに特徴がある。図1に示したこの緩衝用凸部29では、さらに、図1,図3に示すように、軸体23の軸心方向(Y)投影領域Aの直径よりも距離dだけ外側で、軸体取付部22の外径よりも距離dだけ内側となる位置に設けられている。そして、この緩衝用凸部29の部分だけ、軸体取付部22の底部25が肉厚となっている。
【0019】
このように、軸体取付部22の外底面25aに環状に緩衝用凸部29が形成されているため、例えば、軸体23の基端側に固定した防振対象物である例えば車載用CDプレーヤのプレーヤ本体(図14参照)が振動を強く受けて軸心方向(Y)に沿う図中下向きに大きく振幅すると、ゴム状弾性体でなる軸体取付部22が硬質樹脂材でなる蓋9に対して強く衝突するが(図16(a)参照)、こうした衝突が起こっても軸体取付部22の外底面25aに形成された緩衝用凸部29が、最初に蓋9と衝突するため、この緩衝用凸部29に衝突による圧縮応力が集中し、緩衝用凸部29が弾性変形することにより衝撃力が弱められる。すなわち、軸体23側からの力が直に加わる軸体取付部22の底部25における、軸体23の軸心方向(Y)投影領域Aの部分は、蓋9と衝突しないか、衝突したとしても既に衝撃が弱められているため、かかる部分に加えられる圧縮応力は軽減される。
【0020】
従って、この実施形態のダンパー21では、特に、防振対象物が軸心方向(Y)に沿って大きく振幅して軸体取付部22が蓋9と強く衝突することがあっても、軸体取付部22の底部25が破断するのを防ぐことができ、破断による粘性流体10の漏出を防止することができる。
【0021】
以上のような第1実施形態のダンパー21は、その軸体取付部22を例えば図4〜図6の拡大断面で示す変形形態の軸体取付部30,31,32としても良い。これらの軸体取付部30,31,32は、各々異なった緩衝用凸部33,34,35を有している。図4に示す緩衝用凸部33は、凸部の幅dが軸体取付部30の周壁部24の幅dと等しい。また、図5に示す緩衝用凸部34は、緩衝用凸部34の内側が軸体36の軸心方向(Y)投影領域よりも距離dだけ内側で、軸体取付部31の外径よりも距離dだけ内側となる位置に設けられている。また、図6に示す緩衝用凸部35は、先端がドーム状に削られた円柱状の凸部であり、外底面25a上に8本突出して形成されている。そして、図4〜図6に示したような形態であっても軸体取付部30,31,32の底部25の破断防止効果を発揮することができる。また、これらの変形形態についても軸体取付部30,31,32を除く他の構成は、図1に示したダンパー21と同じである。なお、図5に示す軸体取付部31のように、緩衝用凸部34が軸体36の軸心方向投影領域を含む位置(内側位置)にまで設けられ、距離dの長さが長くなるような場合には、緩衝用凸部の変形がしずらく、変形による応力緩和が抑えられる。それゆえ、図5に示した緩衝用凸部34よりは、図4に示した緩衝用凸部33の方が、凸部の変形が起きやすく好ましい。
【0022】
第2実施形態〔図7〕: 本形態のダンパー(図示せず)における軸体取付部41を図7に示す。この軸体取付部41は、軸体取付部41の外底面25aに形成された緩衝用凸部42が、さらに軸体取付部41の外周面24aよりも径方向外向きに突出していることに特徴がある。この形態の軸体取付部41は、成形後に金型からの脱型が難しいが、次に第3実施形態で示す場合のように、軸体取付部41が軸交差方向に沿う図中横向きに大きく振幅して、ダンパーの周壁部7に対して衝突した際の衝撃に対し、軸体取付部41の底部25が破断するのを防ぐことができ、破断による粘性流体10の漏出を防止することができる。
【0023】
第3実施形態〔図8〕: 本形態のダンパー(図示せず)における軸体取付部51を図8に示す。このダンパーは、軸体取付部51の底部25に形成された緩衝用凸部が、軸体取付部51の底部25における軸心線53上を除く外側位置であると共に、軸体取付部51の外周面24a部分に形成されていることに特徴がある。図8に示したこの緩衝用凸部52では、さらに、軸体取付部51の外周面24a部分における軸体54の軸直方向(X)投影領域Bを除く外側位置である領域Bの最下端よりも距離dだけ図中下側で、軸体取付部51の外底面25aよりも距離dだけ図中上側となる位置に設けられている。そして、この緩衝用凸部52の部分だけ、軸体取付部51の底部25が肉厚となっている。なお、軸体取付部51の外周面24a部分における軸体54の軸直方向(X)投影領域とは、図8(a)の右側面図である図8(c)に示した領域Bをいう。
【0024】
このように、軸体取付部51の底部25における、該軸体取付部51の軸心線53上を除く外側位置であり、且つ、軸体取付部51の外周面24a部分における軸体54の軸直方向(X)投影領域を除く外側位置に軸体取付部52が形成されているため、軸交差方向に沿う図中横向きに大きく振幅すると、ゴム状弾性体でなる軸体取付部51が硬質樹脂材でなる周壁部7に対して強く衝突するが(図16(b)参照)、こうした衝突が起こっても軸体取付部51の外周面24aに形成された緩衝用凸部52が、最初に周壁部7と衝突するため、この緩衝用凸部52に衝突による圧縮応力が集中し、緩衝用凸部52が弾性変形することにより衝撃力が弱められる。すなわち、ダンパーの周壁部7との衝突のときに軸体54側からの力が直に働く軸体取付部51底部25における軸体54の軸直方向(X)投影領域である部分は、周壁部7と衝突しないか、衝突したとしても既に衝撃が弱められているため、かかる部分に加えられる圧縮応力は弱まる。
【0025】
従って、この実施形態のダンパーでは、特に、防振対象物が軸交差方向に沿って大きく振幅して軸体取付部51が周壁部7と強く衝突することがあっても、軸体取付部51の底部25が破断するのを防ぐことができ、破断による粘性流体10の漏出を防止することができる。
【0026】
以上のような第3実施形態のダンパーは、例えば図9、図10の拡大断面で示す変形形態の軸体取付部55,56としても良い。これらの軸体取付部55,56は各々異なった形状の緩衝用凸部57,58を有する。そして、このような形態であっても破断防止効果を発揮することができる。図9に示す緩衝用凸部57は、緩衝用凸部57の軸心方向の厚みdが、軸体54の最下端から軸体取付部55の外底面25aまでの距離d10と等しくなっている。図10に示す緩衝用凸部58は、外周面24a上に8本突出して形成されている。また、この緩衝用凸部58は、軸体54の最下端の位置よりも軸心方向(Y)上側に距離d11だけ高い位置を上限として軸交差方向に突起している。そして、図9、図10に示したような形態であっても軸体取付55,56の底部25の破断防止効果を発揮することができる。また、これらの変形形態についても軸体取付部55,56を除く他の構成は、図1に示したダンパー21と同じである。
【0027】
第4実施形態〔図11〕: 本形態のダンパー(図示せず)における軸体取付部61を図11に示す。この軸体取付部61は、緩衝用凸部62が、軸体取付部61の底部25における軸体取付部61の軸心線63上を除く外側位置であって、軸体取付部61の外底面25a及び軸体取付部61の外周面24a部分に形成されていることに特徴がある。
【0028】
軸体取付部61の底部25における、軸体取付部61の外底面25a及び外周面24a上に緩衝用凸部62が設けられているため、軸心方向(Y)及び軸交差方向の振幅によって、ダンパーの蓋9又は周壁部7と衝突することがあっても、軸体取付部61底部25の破断を防止することができる。
【0029】
以上のような第4実施形態のダンパーは、例えば図12,図13の拡大断面で示す変形形態の軸体取付部64,65としても良い。図12に示した軸体取付部64には緩衝用凸部66が、図13に示した軸体取付部65には緩衝用凸部67,68がそれぞれ形成されている。このような形態であっても軸体取付部64,65の底部25の破断防止効果を発揮することができる。
【0030】
なお、第1〜第4実施形態において、軸体取付部22,30,31,32,41,51,55,56,61,64,65以外の構成は従来例と同様として説明したが、ダンパーが軸体取付部22,30,31,32,41,51,55,56,61,64,65、周壁部7、可撓部8、蓋9によって構成される形態に限られるものではなく、周壁部がなく、可撓部が直接蓋につながった構成や、周壁部と蓋が一体となって、周壁部と蓋の区別がつかないような構成などであってもよい。
【0031】
なお、第1〜第4実施形態において、軸体取付部22,30,31,32,41,51,55,56,61,64,65及び可撓部8は、ゴム状弾性体で作成され、公知の合成ゴム、熱可塑性エラストマーから適宜選択されて用いられる。合成ゴムとしては、例えば、スチレンブタジエンゴム、ブタジエンゴム、クロロプレンゴム、ニトリルブタジエンゴム、ブチルゴム、エチレンプロピレンゴム、ウレタンゴム、シリコーンゴム、フッ素ゴム、アクリルゴム等が挙げられ、熱可塑性エラストマーとしてはスチレン系、オレフィン系、ウレタン系、エステル系、塩化ビニル系等の各種エラストマーが挙げられる。
【0032】
また、以上の第1〜第4実施形態では、周壁部7や蓋9のような硬質樹脂部分(ポリプロピレン樹脂製)を含むダンパー21を例示したが、例えば粘性流体を封入したゴム状弾性体でなる袋状物を容器本体とし、その袋状物を硬質樹脂製の有底筒状のケース内に収納して成るダンパーに本発明を適用してもよい。
【0033】
さらに、以上の第1〜第4実施形態における蓋(底壁部)9は、硬質樹脂や金属等の剛性のある素材であっても、あるいは上述のようなゴム状弾性体であっても良く、それらを部分的に組合せた構造のものを用いてもかまわない。どのような素材を用いるかは、ダンパーの用いられる場所、支持体との組み付け方法等により決定され、場合により自由に変えることができる。
【0034】
【発明の効果】
本発明のダンパーによれば、軸体取付部の破断を防止できるため、振動減衰に寄与する流体が破断箇所から漏出して防振性能が低下することを防ぐことができ、また流体として液状の粘性流体を使用した場合には機器内部の汚損を防ぐこともできる。
【図面の簡単な説明】
【図1】本発明の第1実施形態によるダンパーを示し、(a)はその断面図、(b)は軸体取付部の底面図である。
【図2】軸体取付部の底部及び周壁部を説明する軸体及び軸体取付部の拡大断面図である。
【図3】本発明の第1実施形態によるダンパーの緩衝用凸部の周囲の部分の拡大断面図である。
【図4】第1実施形態によるダンパーの軸体取付部の変形形態を示し、分図(b)は底面図、分図(a)はSA−SA断面図である。
【図5】第1実施形態によるダンパーの軸体取付部の変形形態を示し、分図(b)は底面図、分図(a)はSB−SB断面図である。
【図6】第1実施形態によるダンパーの軸体取付部の変形形態を示し、分図(b)は底面図、分図(a)はSC−SC断面図である。
【図7】本発明の第2実施形態によるダンパーの軸体取付部を示し、分図(b)は底面図、分図(a)はSD−SD断面図である。
【図8】本発明の第3実施形態によるダンパーの軸体取付部を示し、分図(b)は底面図、分図(a)はSE−SE断面図、分図(c)は右側面図である。
【図9】第3実施形態によるダンパーの軸体取付部の変形形態を示し、分図(b)は底面図、分図(a)はSF−SF断面図である。
【図10】第3実施形態によるダンパーの軸体取付部の変形形態を示し、分図(b)は底面図、分図(a)はSG−SG断面図である。
【図11】本発明の第4実施形態によるダンパーの軸体取付部を示し、分図(b)は底面図、分図(a)はSH−SH断面図である。
【図12】第4実施形態によるダンパーの軸体取付部の変形形態を示し、分図(b)は底面図、分図(a)はSI−SI断面図である。
【図13】第4実施形態によるダンパーの軸体取付部の変形形態を示し、分図(b)は底面図、分図(a)はSJ−SJ断面図である。
【図14】一従来例によるダンパーの使用状態説明図。
【図15】図14のダンパーの使用状態拡大断面図。
【図16】図14のダンパーの挙動を示す説明図。
【符号の説明】
5,21 ダンパー
5a 容器本体
6,23,28,36,54 軸体
7 周壁部(ダンパーの周壁部)
8 可撓部
9 蓋
10 粘性流体
11a,24 周壁部(軸体取付部の周壁部)
11b,25 底部
24a 外周面
25a 外底面
22,22a,30,31,32,41,51,55,56,61,64,65
軸体取付部
26 軸部
27 頭部
29,33,34,35,42,52,57,58,62,66,67,68
緩衝用凸部
20,53,63 軸心線
Bp 破断箇所
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a damper, and more particularly to a damper suitable for vibration damping of an audio device or an information device that reads recorded data from a disc-shaped recording medium such as a CD or DVD by a non-contact reading method.
[0002]
[Prior art]
FIG. 14 is a diagram showing a vibration-proof structure of the in-vehicle CD player 1, and a player main body 3 (supported body) for reproducing a music CD is supported by a coil spring 4 inside the housing 2. . A damper 5 fixed to the housing 2 holds a shaft body 6 formed of a hard material such as resin or metal protruding from the bottom surface of the player main body 3, and vibrates acting on the player main body 3. Attenuate.
[0003]
That is, as shown in FIG. 15, the damper 5 is provided with a peripheral wall portion 7 made of, for example, a hard resin such as polypropylene, and the upper opening end thereof is made of a rubber-like elastic material such as a styrene thermoplastic elastomer. The flexible part 8 is sealed. The lower opening end is sealed with a lid 9 made of the same material as that of the peripheral wall 7, and the sealed internal space is filled with a viscous fluid 10 made of silicone oil or the like. A sealed container body 5a is constituted by the peripheral wall portion 7, the flexible portion 8, the lid 9, and the shaft body attaching portion 11 described later.
[0004]
The shaft body attaching portion 11 is formed as a bottomed cylindrical shape integrally formed with a cylindrical peripheral wall portion 11a and a bottom portion 11b having the same outer diameter as the peripheral wall portion 11a and closing the lower opening end of the peripheral wall portion 11a. The vibration acting on the player main body 3 is input to the damper 5 through the shaft body mounting portion 11 that holds the shaft body 6, and the elastic deformation of the flexible portion 8 and the viscous resistance due to the flow of the viscous fluid 10. Is attenuated by
[0005]
[Problems to be solved by the invention]
By the way, in such a conventional damper 5, vibration input in the vicinity of the resonance frequency (particularly in the vicinity of a low frequency of 10 to 30 Hz) is input to the player main body 3, and high acceleration is applied to the player main body 3 when traveling on a rough road. When the impact is applied, the player main body 3 greatly swings in the vertical direction (FIG. 16 (a)) or the horizontal direction (FIG. 16 (b)), and the shaft-like mounting portion 11 made of rubber-like elastic material is made of a hard resin. May collide with the peripheral wall portion 7 and the lid 9 made of the same hard resin, and the bottom portion 11b of the shaft body attaching portion 11 may be broken due to the concentration of compressive stress. And if it breaks, the sealed viscous fluid 10 leaks from the breakage point Bp, so that the original damping effect cannot be exhibited, and the inside of the device may be soiled by the leaked viscous fluid 10.
[0006]
Such a problem is not limited to the damper 5 that uses the viscous resistance caused by the flow of the viscous fluid 10, but is called an air damper that uses the viscous resistance caused by the inflow / outflow of air instead of the viscous fluid 10 for vibration damping. Even a damper has a similar problem in that it cannot exhibit its original damping effect due to air leakage from the broken part.
[0007]
The present invention is based on the background of the above-described conventional technology. The purpose of the present invention is to make the shaft body mounting portion for holding the shaft body of the supported body by the vibration of the supported body greatly caused by vibration. An object of the present invention is to provide a damper in which a shaft body attaching portion is not easily broken even when it collides with an inner side surface.
[0008]
[Means for Solving the Problems]
That is, the present invention provides a bottomed cylindrical shape comprising a peripheral wall portion and a bottom portion for holding a supported body positioned on the primary side or the secondary side of the vibration transmission path by receiving insertion of a shaft body protruding from the supported body. A damper having a flexible portion that floats and supports the shaft body mounting portion so as to be able to follow and displace relative to the supported body on the shaft body insertion opening side, at the bottom of the shaft body mounting portion, A cushioning convex portion is formed at an outer position excluding the axial center line of the shaft body mounting portion.
[0009]
In the damper according to the present invention, since the buffering convex portion is formed at the outer position on the shaft center line of the shaft body mounting portion at the bottom portion (bottom portion) of the shaft body mounting portion, the shaft body mounting portion is displaced in the axial direction. Even in this case, the portion on the shaft center line at the bottom of the shaft body mounting portion to which the force from the shaft body directly acts does not collide strongly with the inner side surface of the damper (for example, a lid made of hard resin). That is, the shock-absorbing convex portion formed at the outer position on the axial center line first collides with the inner surface of the damper, and the impact force is absorbed by the compressive deformation of the shock-absorbing convex portion that is thick and easily deformed. The stress concentration on the bottom of the body attachment portion can be dispersed to make it difficult to break. Further, even if the shaft body attaching portion is displaced in the axis crossing direction (crossing direction including the direction perpendicular to the axis), it does not strongly collide with the inner side surface of the damper (for example, the peripheral wall portion made of hard resin). In other words, in the shaft body mounting portion of the damper, since the buffering convex portion is formed at the bottom of the shaft body, the buffering convex portion formed at the bottom first collides with the inner surface of the damper, and the impact force is It is absorbed by the compressive deformation of the buffering convex portion that is easily deformed, and the stress concentration on the bottom of the shaft body attaching portion can be dispersed to make it difficult to break.
[0010]
The shock-absorbing convex portion exhibiting such an action is preferably formed on the outer bottom surface of the bottom portion of the shaft body mounting portion, particularly for a damper that is assumed to have a large displacement in the axial center line direction of the shaft body mounting portion. A damper that is assumed to have a large displacement in the crossing direction of the mounting portion is preferably formed on the outer peripheral surface of the bottom portion of the shaft body mounting portion. In addition, when displacement in all directions is assumed, for example, when the vibration during vehicle travel is attenuated, it is effective to form both the outer bottom surface and the outer peripheral surface at the bottom.
[0011]
Of the above, the damper that forms the buffering convex portion on the outer bottom surface of the bottom portion of the shaft body mounting portion is preferably formed at a position outside the axial projection region of the shaft body. That is, since this buffering convex portion does not overlap with the axial projection area of the shaft body, the shaft body mounting portion is displaced in the axial direction and collides with the inner surface of the damper (for example, a lid made of hard resin). In addition, since the force transmitted in the axial direction of the shaft body is not transmitted linearly and directly to the buffering convex portion, it can be transferred to the outer side of the projection region in a detour, so the stress on the buffering convex portion The dispersion effect is further enhanced.
[0012]
In addition, with respect to the damper in which the buffering convex portion is formed on the outer bottom surface of the bottom portion of the shaft body mounting portion, the buffering convex portion is extended further outward in the radial direction than the outer peripheral surface of the peripheral wall portion of the shaft body mounting portion. It is good also as what was made to project. With this damper, even if the shaft body mounting portion is displaced in the axis crossing direction and collides with the inner surface of the damper (for example, a peripheral wall portion made of hard resin), the impact force is caused to protrude from the buffering convex portion. Since it is absorbed by the portion, the stress concentration on the bottom of the shaft body mounting portion is dispersed and is difficult to break.
[0013]
By the way, when the buffering convex portion is formed on the outer peripheral surface of the bottom portion of the shaft body mounting portion, it is preferably formed at an outer position excluding the axial direction projection region of the shaft body. In this way, even if the shaft body mounting portion is displaced in the axis crossing direction and collides with the inner surface of the damper (for example, a peripheral wall portion made of hard resin), the force transmitted in the axis crossing direction of the shaft body is linear and direct. This is because the stress distribution effect by the buffering convex portion can be further enhanced because the signal can be transferred to the outside position of the projection region without being transmitted to the buffering convex portion.
[0014]
It is difficult to break the shaft body mounting portion by the buffering convex portion as described above. The viscous fluid-sealed damper uses the flow resistance of a liquid viscous fluid such as silicone oil sealed inside the damper for vibration damping. Not only is this a common issue for air dampers that use flow resistance caused by air inflow and outflow for vibration damping. The specific configuration of the viscous fluid-filled damper includes a peripheral wall portion made of hard resin and a lid that closes one end opening of the peripheral wall portion, and the other end opening of the peripheral wall portion is the shaft body mounting portion. The container body closed by the flexible part having the above-described structure is provided, and a liquid viscous fluid is enclosed in the container body. In this case, the lid that closes the one end opening of the peripheral wall portion is formed entirely of a hard resin, even if the entire lid is formed of a hard resin, or The outer portion fixed to the peripheral wall portion may be made of a hard resin, and the inner portion facing the bottom portion of the shaft body attaching portion may be formed of a thermoplastic elastomer. On the other hand, as a specific configuration of the air damper, a cylindrical peripheral wall portion made of a hard resin, and a lid that closes one end opening of the peripheral wall portion, the other end opening of the peripheral wall portion is the shaft body attaching portion. A container body closed by the flexible part, and a ventilation hole that circulates inside and outside the container body is formed in the peripheral wall part.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the damper of this invention is demonstrated, referring drawings. In addition, about the same part as a prior art, the same code | symbol is attached | subjected and duplication description is abbreviate | omitted.
[0016]
First Embodiment [FIG. 1] A damper 21 according to a first embodiment of the present invention is shown in FIG. 1, and this damper 21 is characterized by an outer surface of a shaft body mounting portion 22. On the other hand, the inner side surface of the shaft body mounting portion 22 has a shape corresponding to the shape of the shaft body 23, and the shape of the inner side surface is arbitrary. The rest of the configuration other than the shaft body attachment portion 22 is the same as that of the damper 5 of the conventional example (see FIG. 15).
[0017]
The shaft body mounting portion 22 is for inserting and holding the shaft body 23 protruding from the supported body (see FIG. 14), and has a bottomed cylindrical shape composed of the peripheral wall portion 24 and the bottom portion 25. . The boundary between the peripheral wall portion 24 and the bottom portion 25 of the shaft body attaching portion 22 is distinguished as follows. That is, as shown in FIG. 2A, the shaft body 23 held by the shaft body mounting portion 22 has a shaft portion 26 having an outer diameter equal to the length along the aa ′ line, The shaft body 23 is divided into a head portion 27 that functions to prevent the shaft body attachment portion 22 from coming off. When the shaft body 23 is inserted into the shaft body attachment portion 22, the head portion of the shaft body 23 in the shaft body attachment portion 22 is provided. 27, the portion corresponding to the front side, that is, the bottom side (lower side in the figure) from the line aa ′ is the bottom part 25 of the shaft body mounting portion 22, and the base side (in the figure) from the line aa ′. The upper side) is the peripheral wall portion 24. Since the shaft body 28 shown in FIG. 2 (b) does not have a head, the portion corresponding to the tip of the shaft body 28 in the shaft body mounting portion 22a, that is, the bottom side from the line bb ′ ( The lower side in the figure is defined as the bottom portion 25.
[0018]
In the damper 21 according to the first embodiment, the buffering convex portion formed on the bottom portion 25 of the shaft body mounting portion 22 is an outer position excluding the axis 20 on the bottom portion 25 of the shaft body mounting portion 22. It is characterized in that it is formed on the outer bottom surface 25a of the body mounting portion 22. In this buffering convex portion 29 shown in FIG. 1, as shown in FIGS. 1 and 3, the shaft is located outside the diameter of the projection area A in the axial direction (Y) of the shaft body 23 by a distance d 1. It is provided at a position that is on the inner side by a distance d 2 than the outer diameter of the body mounting portion 22. And only the part of this buffering convex part 29, the bottom part 25 of the shaft body attaching part 22 is thick.
[0019]
As described above, since the buffer convex portion 29 is formed in an annular shape on the outer bottom surface 25a of the shaft body mounting portion 22, for example, a vehicle-mounted CD that is a vibration-proof object fixed to the base end side of the shaft body 23, for example. When the player body (see FIG. 14) of the player receives strong vibrations and greatly swings downward in the figure along the axial direction (Y), the shaft body mounting portion 22 made of a rubber-like elastic body has a lid 9 made of a hard resin material. However, even if such a collision occurs, the buffering convex portion 29 formed on the outer bottom surface 25a of the shaft body mounting portion 22 first collides with the lid 9. The compressive stress due to the collision is concentrated on the buffering convex portion 29, and the shocking force is weakened by the elastic deformation of the buffering convex portion 29. That is, the axial center direction (Y) projection area A of the shaft body 23 in the bottom portion 25 of the shaft body mounting portion 22 to which the force from the shaft body 23 side is directly applied does not collide with the lid 9 or collides. However, since the impact is already weakened, the compressive stress applied to such a portion is reduced.
[0020]
Therefore, in the damper 21 of this embodiment, in particular, even if the vibration isolating object greatly swings along the axial direction (Y) and the shaft body mounting portion 22 strongly collides with the lid 9, the shaft body The bottom portion 25 of the attachment portion 22 can be prevented from breaking, and the viscous fluid 10 can be prevented from leaking due to the breaking.
[0021]
In the damper 21 of the first embodiment as described above, the shaft body mounting portion 22 may be changed to the shaft body mounting portions 30, 31, 32 of the modified form shown in the enlarged cross sections of FIGS. These shaft body attaching portions 30, 31, and 32 have different buffering convex portions 33, 34, and 35, respectively. In the buffering convex portion 33 shown in FIG. 4, the width d 4 of the convex portion is equal to the width d 3 of the peripheral wall portion 24 of the shaft body attaching portion 30. Further, the buffer protrusion 34 shown in FIG. 5, the inner cushioning protrusions 34 inside the distance d 5 than the axial direction (Y) the projection area of the shaft 36, the outer diameter of the shaft body mounting portion 31 provided only inside a position a distance d 6 than. Further, the buffering convex portion 35 shown in FIG. 6 is a columnar convex portion whose tip is cut into a dome shape, and is formed so as to protrude on the outer bottom surface 25a. And even if it is a form as shown in FIGS. 4-6, the fracture | rupture prevention effect of the bottom part 25 of the shaft body attaching part 30,31,32 can be exhibited. Moreover, also about these deformation | transformation forms, the structure of those other than the shaft body attaching part 30,31,32 is the same as the damper 21 shown in FIG. Note that, like the shaft body attaching portion 31 shown in FIG. 5, the buffering convex portion 34 is provided up to a position (inner position) including the axial direction projection region of the shaft body 36, and the length of the distance d 5 is long. In such a case, the deformation of the buffering convex portion is difficult, and stress relaxation due to the deformation is suppressed. Therefore, the buffer convex portion 33 shown in FIG. 4 is more preferable than the buffer convex portion 34 shown in FIG.
[0022]
Second Embodiment [FIG. 7] : A shaft body mounting portion 41 in a damper (not shown) of this embodiment is shown in FIG. In this shaft body mounting portion 41, the buffering convex portion 42 formed on the outer bottom surface 25 a of the shaft body mounting portion 41 further protrudes radially outward from the outer peripheral surface 24 a of the shaft body mounting portion 41. There are features. The shaft body mounting portion 41 of this form is difficult to be removed from the mold after molding. However, as shown in the third embodiment, the shaft body mounting portion 41 is oriented sideways in the figure along the axis crossing direction. It is possible to prevent the bottom portion 25 of the shaft body mounting portion 41 from breaking due to a large amplitude and colliding against the peripheral wall portion 7 of the damper, and to prevent the viscous fluid 10 from leaking due to the breaking. Can do.
[0023]
Third Embodiment [FIG. 8] : FIG. 8 shows a shaft body attaching portion 51 in a damper (not shown) of this embodiment. In this damper, the cushioning convex portion formed on the bottom portion 25 of the shaft body mounting portion 51 is an outer position excluding the axis line 53 on the bottom portion 25 of the shaft body mounting portion 51, and the shaft body mounting portion 51 It is characterized in that it is formed on the outer peripheral surface 24a. In the buffering convex portion 52 shown in FIG. 8, the lowermost end of the region B which is the outer position excluding the projection region B in the axial direction (X) direction of the shaft body 54 in the outer peripheral surface 24 a portion of the shaft body mounting portion 51. Further, it is provided at a position lower than the distance d 7 in the drawing by a distance d 7 and above the outer bottom surface 25 a of the shaft body mounting portion 51 by a distance d 8 in the drawing. And only the part of this convex part 52 for buffering has the bottom 25 of the shaft body attaching part 51 thick. The axial direction (X) projection region of the shaft body 54 in the outer peripheral surface 24a portion of the shaft body attaching portion 51 is the region B shown in FIG. 8C which is a right side view of FIG. Say.
[0024]
As described above, the bottom portion 25 of the shaft body mounting portion 51 is located outside the shaft center line 53 of the shaft body mounting portion 51, and the shaft body 54 in the outer peripheral surface 24 a portion of the shaft body mounting portion 51. Since the shaft body mounting portion 52 is formed at an outer position excluding the projection direction in the direction perpendicular to the axis (X), when the shaft body mounting portion 51 made of a rubber-like elastic body is greatly swung in the horizontal direction in the drawing along the axis crossing direction. Although it strongly collides with the peripheral wall portion 7 made of a hard resin material (see FIG. 16B), even if such a collision occurs, the cushioning convex portion 52 formed on the outer peripheral surface 24a of the shaft body attaching portion 51 is Since it first collides with the peripheral wall portion 7, the compressive stress due to the collision concentrates on the buffering convex portion 52, and the shocking force is weakened by the elastic deformation of the buffering convex portion 52. That is, the portion that is the axial direction (X) projection region of the shaft body 54 in the bottom body 25 of the shaft body mounting portion 51 where the force from the shaft body 54 side acts directly upon a collision with the peripheral wall portion 7 of the damper is the peripheral wall Even if it does not collide with the part 7, or even if it collides, since the impact has already been weakened, the compressive stress applied to the part is weakened.
[0025]
Therefore, in the damper of this embodiment, in particular, even if the vibration isolating object greatly swings along the axis crossing direction and the shaft body mounting portion 51 strongly collides with the peripheral wall portion 7, the shaft body mounting portion 51. Can be prevented from breaking, and leakage of the viscous fluid 10 due to breakage can be prevented.
[0026]
The damper of 3rd Embodiment as mentioned above is good also as the shaft body attaching parts 55 and 56 of the deformation | transformation form shown, for example in the expanded cross section of FIG. 9, FIG. These shaft body attaching portions 55 and 56 have buffer convex portions 57 and 58 having different shapes. And even if it is such a form, the fracture | rupture prevention effect can be exhibited. Buffer protrusion 57 shown in FIG. 9, the axis of the thickness d 9 cushioning protrusions 57, become equal to the distance d 10 from the lowermost end of the shaft 54 to the outer bottom surface 25a of the shaft mounting portion 55 ing. 10 are formed so as to protrude on the outer peripheral surface 24a. Further, the cushioning projection 58 is protruding in the axial cross-direction up to the axial direction (Y) by a distance d 11 in the upper position higher than the position of the lowermost end of the shaft 54. And even if it is a form as shown in FIG. 9, FIG. 10, the fracture | rupture prevention effect of the bottom part 25 of the shaft body attachments 55 and 56 can be exhibited. Moreover, also about these deformation | transformation forms, the structure of those other than the shaft body attaching parts 55 and 56 is the same as the damper 21 shown in FIG.
[0027]
4th Embodiment [FIG. 11] : The shaft body attaching part 61 in the damper (not shown) of this form is shown in FIG. The shaft body mounting portion 61 is configured such that the buffering convex portion 62 is an outer position of the bottom 25 of the shaft body mounting portion 61 except for the axis 63 of the shaft body mounting portion 61, and is outside the shaft body mounting portion 61. It is characterized in that it is formed on the bottom surface 25 a and the outer peripheral surface 24 a portion of the shaft body mounting portion 61.
[0028]
Since the buffering convex portions 62 are provided on the outer bottom surface 25a and the outer peripheral surface 24a of the shaft body mounting portion 61 at the bottom portion 25 of the shaft body mounting portion 61, depending on the amplitude in the axial direction (Y) and the axis crossing direction. Even if it collides with the lid 9 or the peripheral wall portion 7 of the damper, it is possible to prevent the bottom 25 of the shaft body attaching portion 61 from being broken.
[0029]
The damper of 4th Embodiment as mentioned above is good also as the shaft body attaching parts 64 and 65 of the deformation | transformation form shown, for example in the expanded cross section of FIG. 12, FIG. The shaft body mounting portion 64 shown in FIG. 12 is formed with buffering convex portions 66, and the shaft body mounting portion 65 shown in FIG. 13 is formed with buffering convex portions 67 and 68, respectively. Even if it is such a form, the fracture | rupture prevention effect of the bottom part 25 of the shaft body attaching parts 64 and 65 can be exhibited.
[0030]
In the first to fourth embodiments, the configuration other than the shaft body attaching portions 22, 30, 31, 32, 41, 51, 55, 56, 61, 64, 65 has been described as the same as the conventional example. Is not limited to the form constituted by the shaft body attaching portions 22, 30, 31, 32, 41, 51, 55, 56, 61, 64, 65, the peripheral wall portion 7, the flexible portion 8, and the lid 9. There may be a configuration in which there is no peripheral wall portion and the flexible portion is directly connected to the lid, or a configuration in which the peripheral wall portion and the lid are integrated so that the peripheral wall portion and the lid cannot be distinguished.
[0031]
In the first to fourth embodiments, the shaft body attaching portions 22, 30, 31, 32, 41, 51, 55, 56, 61, 64, 65 and the flexible portion 8 are made of a rubber-like elastic body. These are appropriately selected from known synthetic rubbers and thermoplastic elastomers. Examples of the synthetic rubber include styrene butadiene rubber, butadiene rubber, chloroprene rubber, nitrile butadiene rubber, butyl rubber, ethylene propylene rubber, urethane rubber, silicone rubber, fluorine rubber, acrylic rubber, and the like. And various elastomers such as olefin, urethane, ester, and vinyl chloride.
[0032]
In the first to fourth embodiments described above, the damper 21 including the hard resin portion (made of polypropylene resin) such as the peripheral wall portion 7 and the lid 9 is illustrated. However, for example, a rubber-like elastic body enclosing a viscous fluid is used. The present invention may be applied to a damper formed by using a bag-like product as a container body and housing the bag-like product in a bottomed cylindrical case made of hard resin.
[0033]
Further, the lid (bottom wall portion) 9 in the first to fourth embodiments described above may be a rigid material such as hard resin or metal, or may be a rubber-like elastic body as described above. A structure obtained by partially combining them may be used. The type of material used is determined by the location where the damper is used, the method of assembling with the support, and the like, and can be freely changed depending on the case.
[0034]
【The invention's effect】
According to the damper of the present invention, it is possible to prevent the shaft body mounting portion from being broken, so that it is possible to prevent the fluid contributing to vibration damping from leaking from the broken portion and reducing the vibration proof performance, and the fluid is liquid. When a viscous fluid is used, the inside of the equipment can be prevented from being damaged.
[Brief description of the drawings]
1A and 1B show a damper according to a first embodiment of the present invention, in which FIG. 1A is a sectional view thereof, and FIG. 1B is a bottom view of a shaft body attaching portion.
FIG. 2 is an enlarged cross-sectional view of a shaft body and a shaft body mounting portion for explaining a bottom portion and a peripheral wall portion of the shaft body mounting portion.
FIG. 3 is an enlarged cross-sectional view of a portion around a buffering convex portion of the damper according to the first embodiment of the present invention.
FIGS. 4A and 4B show a modified form of the shaft body attaching portion of the damper according to the first embodiment, wherein a partial view (b) is a bottom view and a partial view (a) is a cross-sectional view of SA-SA. FIGS.
FIGS. 5A and 5B show a modified form of the shaft body attaching portion of the damper according to the first embodiment, wherein a partial view (b) is a bottom view and a partial view (a) is a SB-SB cross-sectional view.
6A and 6B show a modified embodiment of the shaft body attaching portion of the damper according to the first embodiment, wherein a partial view (b) is a bottom view and a partial view (a) is an SC-SC cross-sectional view.
FIGS. 7A and 7B show a shaft body attaching portion of a damper according to a second embodiment of the present invention, in which FIG. 7B is a bottom view and FIG. 7A is an SD-SD cross-sectional view.
FIGS. 8A and 8B show a shaft body mounting portion of a damper according to a third embodiment of the present invention, wherein a partial view (b) is a bottom view, a partial view (a) is a cross-sectional view of SE-SE, and a partial view (c) is a right side view. FIG.
FIGS. 9A and 9B show a modified form of the shaft body attaching portion of the damper according to the third embodiment, wherein a partial view (b) is a bottom view and a partial view (a) is an SF-SF cross-sectional view.
FIGS. 10A and 10B show a modified form of the shaft body attaching portion of the damper according to the third embodiment, wherein a partial view (b) is a bottom view and a partial view (a) is an SG-SG sectional view. FIGS.
FIGS. 11A and 11B show a shaft body attaching portion of a damper according to a fourth embodiment of the present invention, in which FIG. 11B is a bottom view and FIG. 11A is an SH-SH cross-sectional view.
FIGS. 12A and 12B show a modified form of the shaft body attaching portion of the damper according to the fourth embodiment, wherein a partial view (b) is a bottom view, and a partial view (a) is an SI-SI cross-sectional view.
FIGS. 13A and 13B show a modification of the shaft body attaching portion of the damper according to the fourth embodiment, wherein a partial view (b) is a bottom view and a partial view (a) is an SJ-SJ cross-sectional view.
FIG. 14 is an explanatory diagram of a use state of a damper according to a conventional example.
15 is an enlarged sectional view of the damper of FIG. 14 in use.
16 is an explanatory diagram showing the behavior of the damper of FIG. 14;
[Explanation of symbols]
5, 21 Damper 5a Container body 6, 23, 28, 36, 54 Shaft body 7 peripheral wall (peripheral wall of damper)
8 Flexible part 9 Lid 10 Viscous fluid 11a, 24 Peripheral wall part (peripheral wall part of shaft body attaching part)
11b, 25 Bottom 24a Outer peripheral surface 25a Outer bottom surface 22, 22a, 30, 31, 32, 41, 51, 55, 56, 61, 64, 65
Shaft body mounting portion 26 Shaft portion 27 Head portions 29, 33, 34, 35, 42, 52, 57, 58, 62, 66, 67, 68
Buffer convex part 20, 53, 63 Axial line Bp Broken point

Claims (4)

蓋で密閉した容器本体の内部に粘性流体が封入されており、該容器本体に、振動伝達路の一次側又は二次側に位置する被支持体を、この被支持体から突出する軸体の挿入を受けて保持する周壁部と底部とからなる有底筒状の軸体取付部を有し、この軸体取付部を軸体挿入開口側にて被支持体に対し追従変位可能として浮動支持する可撓部を備える粘性流体封入ダンパーにおいて、
軸体取付部の底部における、該軸体取付部の軸心線上を除く外側位置に、該底部の外底面と外周面の双方から突出する緩衝用凸部を形成したことを特徴とする粘性流体封入ダンパー。
A viscous fluid is sealed inside the container body sealed with a lid, and a supported body positioned on the primary or secondary side of the vibration transmission path is connected to the container body with a shaft body projecting from the supported body. It has a bottomed cylindrical shaft body mounting part that consists of a peripheral wall part and a bottom part that receives and holds the insertion, and this shaft body mounting part is floating supported so that it can follow and displace relative to the supported body at the shaft body insertion opening side. In a viscous fluid-filled damper having a flexible part
A viscous fluid characterized in that a buffering convex portion that protrudes from both the outer bottom surface and the outer peripheral surface of the bottom portion is formed at an outer position of the bottom portion of the shaft body mounting portion, except on the axial center line of the shaft body mounting portion. Enclosed damper.
緩衝用凸部を、前記外底面における、軸体の軸心方向投影領域の外側位置に形成した請求項1記載の粘性流体封入ダンパー。The viscous fluid-filled damper according to claim 1 , wherein a buffering convex portion is formed on the outer bottom surface at a position outside the axial projection region of the shaft body. 緩衝用凸部を、前記外周面部分における、軸体の軸直方向投影領域を除く外側位置に形成した請求項1又は請求項2記載の粘性流体封入ダンパー。The viscous fluid-filled damper according to claim 1 , wherein the buffering convex portion is formed at an outer position of the outer peripheral surface portion excluding the axial direction projection region of the shaft body. 前記容器本体が、前記軸体取付部の軸心方向に沿って筒状であり前記可撓部と繋がった硬質樹脂からなる周壁部を備えており、
前記蓋が、該周壁部の一端開口を閉塞する硬質樹脂材、軟質樹脂材、又は軸体取付部底部と対向する中央部分が軟質樹脂材で該中央部分の外側部分が硬質樹脂材の何れかでなる蓋である請求項1〜請求項何れか1項記載の粘性流体封入ダンパー。
The container body is provided with a peripheral wall portion made of a hard resin that is cylindrical and connected to the flexible portion along the axial direction of the shaft body mounting portion ,
The lid is either one of a hard resin material, a soft resin material, or a soft resin material that closes one end opening of the peripheral wall portion, and a soft resin material and a hard resin material that is an outer portion of the central portion . The viscous fluid-filled damper according to any one of claims 1 to 3, wherein the damper is a lid made of
JP2001346061A 2001-11-12 2001-11-12 Viscous fluid filled damper Expired - Fee Related JP4080727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001346061A JP4080727B2 (en) 2001-11-12 2001-11-12 Viscous fluid filled damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001346061A JP4080727B2 (en) 2001-11-12 2001-11-12 Viscous fluid filled damper

Publications (2)

Publication Number Publication Date
JP2003148541A JP2003148541A (en) 2003-05-21
JP4080727B2 true JP4080727B2 (en) 2008-04-23

Family

ID=19159299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001346061A Expired - Fee Related JP4080727B2 (en) 2001-11-12 2001-11-12 Viscous fluid filled damper

Country Status (1)

Country Link
JP (1) JP4080727B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270915A (en) * 2003-06-19 2010-12-02 Nifco Inc Rotary damper
JP2005030550A (en) * 2003-06-19 2005-02-03 Nifco Inc Rotary damper
JP6826487B2 (en) * 2017-04-25 2021-02-03 Kybモーターサイクルサスペンション株式会社 Front fork

Also Published As

Publication number Publication date
JP2003148541A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
KR100966802B1 (en) Damper and vibration proof structure for mechnaical chassis
JP4738083B2 (en) Viscous fluid-filled damper and viscous fluid-filled damper mounting structure
JP2007064354A (en) Viscous fluid-filled damper and disk device
KR19980064397A (en) Dampers and Electronic Equipment
JP4080727B2 (en) Viscous fluid filled damper
JP4733430B2 (en) Viscous fluid filled damper and vibration damping device
JP4723775B2 (en) Damper and its mounting structure
JP4020263B2 (en) Viscous fluid filled damper
JP2006132615A (en) Vibration absorbing device
JP2007162713A (en) Viscous fluid sealing damper
JP2007139008A (en) Viscous fluid enclosed damper
JP4272380B2 (en) Anti-vibration structure of anisotropic damper and mechanical chassis
JP4119935B2 (en) Viscous fluid filled damper
JP4925869B2 (en) Damper and damper fixing structure
JP2000065120A (en) Variable decrement type viscous fluid filled damper
JP4518863B2 (en) Viscous fluid filled damper
JP4898214B2 (en) Viscous fluid filled damper
JP4431378B2 (en) Viscous fluid filled damper
JP2001349370A (en) Viscous fluid seal type damper
JP2006144937A (en) Viscose fluid filled damper and disc recording medium replay device
JP3714693B2 (en) Anti-vibration member and optical disk apparatus using the same
JP2006038218A (en) Viscous fluid enclosed damper
JP2010281425A (en) Viscous fluid-sealed damper
JP4372950B2 (en) Viscous fluid filled damper
JP2944320B2 (en) Anti-vibration device for in-vehicle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070828

A521 Written amendment

Effective date: 20070910

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080207

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120215

LAPS Cancellation because of no payment of annual fees