JP4078680B2 - Corrosion-resistant colored fluororesin coating - Google Patents

Corrosion-resistant colored fluororesin coating Download PDF

Info

Publication number
JP4078680B2
JP4078680B2 JP18154996A JP18154996A JP4078680B2 JP 4078680 B2 JP4078680 B2 JP 4078680B2 JP 18154996 A JP18154996 A JP 18154996A JP 18154996 A JP18154996 A JP 18154996A JP 4078680 B2 JP4078680 B2 JP 4078680B2
Authority
JP
Japan
Prior art keywords
fluororesin
coating
corrosion
coating film
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18154996A
Other languages
Japanese (ja)
Other versions
JPH107973A (en
Inventor
▲琢▼磨 吉坂
克弥 山田
昭 西村
真弘 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP18154996A priority Critical patent/JP4078680B2/en
Publication of JPH107973A publication Critical patent/JPH107973A/en
Application granted granted Critical
Publication of JP4078680B2 publication Critical patent/JP4078680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐蝕性着色フッ素樹脂被覆物に関し、さらに詳しくは、金属基材上に無機顔料により着色されたフッ素樹脂塗膜を形成したフッ素樹脂被覆物であって、塗膜の剥離強度に優れ、ピンホール等の塗膜欠陥の少ない耐蝕性着色フッ素樹脂被覆物に関する。本発明の耐蝕性着色フッ素樹脂被覆物は、炊飯ジャーの内釜、鍋、グリルパン等の調理器具の分野で好適に使用される。
【0002】
【従来の技術】
金属製の炊飯ジャーの内釜、鍋、グリルパン等の調理器具には、耐蝕性、こびりつき防止などの目的で、フッ素樹脂の塗膜が形成されていることが多い。フッ素樹脂としては、一般にポリテトラフルオロエチレン(PTFE)が用いられている。より具体的には、金属基材上に、フッ素樹脂塗料を塗布し、燒結してフッ素樹脂被覆物を作製する。フッ素樹脂被覆物は、通常、プレス成形により、炊飯ジャーの内釜等の所望の形状に2次加工される。場合によっては、金属基材をプレス成形した後、フッ素樹脂塗料を塗布し、燒結することがある。
耐蝕性に優れたフッ素樹脂被覆物を得るには、ピンホールなどの塗膜欠陥が少ないことに加えて、金属基材に対する塗膜の接着力も充分であることが求められる。従来、塗膜の接着力を向上させるために、例えば、金属基材の表面に、化学的または電気化学的エッチングにより微細な凹凸を設けている。しかしながら、着色塗膜を形成するために、無機顔料を配合したフッ素樹脂組成物を用いると、金属基材に対する塗膜の接着力が低下し、ピンホール等の塗膜欠陥も多くなる。したがって、所望の色調に着色した耐蝕性のフッ素樹脂塗膜を形成することは困難な課題であった。
【0003】
本願発明者らは、耐蝕性に優れた着色フッ素樹脂被覆物を得るために検討した結果、表面に微細な凹凸を形成した金属基板上に、PTFEに熱溶融性フッ素樹脂を少量成分として配合したフッ素樹脂成分に無機顔料を配合したフッ素樹脂組成物の塗膜を形成することにより、金属基材に対する接着性が改善され、しかもピンホールの少ないフッ素樹脂被覆物の得られることを見いだし、先に特許出願を行った(特開平5−39451号公報)。このフッ素樹脂被覆物は、フッ素樹脂層と金属基材との間の接着力が良好であり、被覆後の後加工としてプレス成形により炊飯ジャー内釜等を成形しても、被覆層が塑性変形に追随し、剥離することはない。しかしながら、耐蝕性に関しては、改善が見られるものの、充分に満足できるものではなく、ピンホール部分からの微細な腐食が起こったり、それに伴う塗膜剥離等が起こる問題が依然として残っていた。このフッ素樹脂被覆物の上に、実質的に顔料を含まないフッ素樹脂、特にPTFEと熱溶融性フッ素樹脂との混合物を被覆すると、ピンホールを減少させることができるが、それでも、高度の耐蝕性が要求される分野での用途には、いまだ充分ではなかった。
【0004】
【発明が解決しようとする課題】
本発明の目的は、金属基材上に無機顔料により着色されたフッ素樹脂の塗膜を形成したフッ素樹脂被覆物であって、塗膜の剥離強度に優れ、ピンホール等の塗膜欠陥の少ない耐蝕性着色フッ素樹脂被覆物を提供することにある。
フッ素樹脂成分として、PTFEに熱溶融性フッ素樹脂を少量成分として配合したものを用いた場合、PTFEを単独で用いた場合に比べて、無機顔料を配合しても、金属基材に対する塗膜の接着性が良好で、ピンホール等の塗膜欠陥も少なくすることができる。しかしながら、金属基材に対する塗膜の剥離強度を充分に高め、しかも、ピンホール等の塗膜欠陥を充分に小さくすることが困難であった。本発明者らは、その原因について検討したところ、無機顔料を含有するフッ素樹脂組成物の塗料を調製する際に、フッ素樹脂成分として、好ましくはPTFEディスパージョンと熱溶融性フッ素樹脂ディスパージョンを用いるが、粒子が2次凝集し難いPTFEディスパージョンに比べて、熱溶融性フッ素樹脂ディスパージョンは、粒子が2次凝集を起こしやすいため、均一に微分散し難く、微視的に見て、塗膜中に熱溶融フッ素樹脂の密な部分と粗な部分が存在したり、粗大粒子が存在することにより、ピンホールが発生したり、金属基材への接着力が低下することを見いだした。
【0005】
そこで、熱溶融性フッ素樹脂として、粒子径が小さく、かつ、微分散させたものを用いることにより、高い剥離強度を有し、ピンホール等の塗膜欠陥が小さい着色フッ素樹脂塗膜の得られることを見いだした。フッ素樹脂成分として、粉末を用いても、同様に、原料レベルで粒子径が小さく、しかも微分散しやすいものを用いることが必要である。また、このフッ素樹脂塗膜の上に、実質的にフッ素樹脂のみからなるフッ素樹脂層をトップコートとして形成すると、ピンホール等の塗膜欠陥をさらに小さくすることができ、耐蝕性に優れた着色フッ素樹脂被覆物を得ることができる。さらには、熱溶融性フッ素樹脂の配合割合、無機顔料の配合割合、塗膜の膜厚などを好適な範囲とすることにより、ピンホールが低減されたフッ素樹脂被覆物を工業的に安定して供給することができ、しかもそのピンホールレベルを所定の範囲内に抑え、同時に高度の剥離強度を達成できる。
本発明は、これらの知見に基づいて完成するに至ったものである。
【0006】
【課題を解決するための手段】
本発明によれば、化学的または電気化学的エッチングにより設けられた微細な凹凸を有する金属基材上に、フッ素樹脂及び無機顔料を含有するフッ素樹脂組成物の塗膜を形成してなるフッ素樹脂被覆物において、
(1)フッ素樹脂組成物を構成するフッ素樹脂成分がポリテトラフルオロエチレン(PTFE)90重量%超過98重量%以下と熱溶融性フッ素樹脂2重量%以上10重量%未満とを含有し、
(2)該熱溶融性フッ素樹脂が、0.1〜1μmの平均1次粒子径を有し、1次粒子が2次凝集した粗粒子を含む熱溶融性フッ素樹脂ディスパージョンの微粒子化により、粒径5μm以上の粗粒子の含有率を10重量%以下とした微粒子であり、
)無機顔料の配合割合がフッ素樹脂組成物全量基準(固形分基準)で2〜15重量%であり、
)塗膜の平均膜厚が5〜50μmであり
)塗膜の180°剥離強度が1.5kg/cm以上であり、並びに
)10V/5秒間の電圧印加時の塗膜のピンホール通電量が0.12mA/cm以下である
ことを特徴とする耐蝕性着色フッ素樹脂被覆物が提供される。
【0007】
また、本発明によれば、典型的には、以下のような実施態様が提供される。
1.フッ素樹脂成分中の熱溶融性フッ素樹脂の割合が3重量%以上10重量%未満である前記耐蝕性着色フッ素樹脂被覆物。
2.フッ素樹脂成分中の熱溶融性フッ素樹脂の割合が5重量%以上10重量%未満である前記耐蝕性着色フッ素樹脂被覆物。
3.無機顔料の割合が固形分基準で3〜12重量%である前記耐蝕性着色フッ素樹脂被覆物。
4.無機顔料の割合が固形分基準で4〜10重量%である前記耐蝕性着色フッ素樹脂被覆物。
5.塗膜の平均膜厚が10〜40μmである前記耐蝕性着色フッ素樹脂被覆物。
6.塗膜の180°剥離強度が2.0kg/cm以上で、10V/5秒間の電圧印加時の塗膜のピンホール通電量が0.08mA/cm2以下である前記耐蝕性着色フッ素樹脂被覆物。
7.塗膜の180°剥離強度が2.5kg/cm以上で、10V/5秒間の電圧印加時のピンホール通電量が0.04mA/cm2以下である前記耐蝕性着色フッ素樹脂被覆物。
8.熱溶融性フッ素樹脂が、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、及びテロラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)からなる群より選ばれる少なくとも1種であって、その平均1次粒子径が0.1〜1μmである前記耐蝕性着色フッ素樹脂被覆物。
【0008】
.フッ素樹脂組成物の塗膜の上に、さらに最外層として、実質的にフッ素樹脂のみからなる平均膜厚5〜40μmのフッ素樹脂層が被覆され、かつ、10V/5秒間の電圧印加時の全被覆層のピンホール通電量が0.04mA/cm以下である前記耐蝕性着色フッ素樹脂被覆物。
10.最外層として、実質的にフッ素樹脂のみからなる平均膜厚5〜40μmのフッ素樹脂層が被覆され、かつ、10V/5秒間の電圧印加時の全被覆層のピンホール通電量が8×10−3mA/cm以下である前記耐蝕性着色フッ素樹脂被覆物。
11.最外層として、実質的にフッ素樹脂のみからなる平均膜厚5〜40μmのフッ素樹脂層が被覆され、かつ、10V/5秒間の電圧印加時の全被覆層のピンホール通電量が4×10−3mA/cm以下である前記耐蝕性着色フッ素樹脂被覆物。
12.最外層のフッ素樹脂がPFAである前記耐蝕性着色フッ素樹脂被覆物。
【0009】
【発明の実施の形態】
フッ素樹脂成分
本発明で用いる各フッ素樹脂は、水性ディスパージョン、粉末等いずれの形態でもよいが、特に水性ディスパージョンであることが望ましい。熱溶融性フッ素樹脂としては、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テロラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−エチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(CTFE)、これらの2種以上の混合物が用いられる。これらの中でも、PFA、FEP、及びこれらの混合物が好ましい。
【0010】
フッ素樹脂に無機顔料を配合すると、エッチング等により粗面化した金属基材を用いても、フッ素樹脂塗膜の物理的接着力が弱まる。その理由は、PTFEの粘度が340℃において1011〜1013ポイズと高く、溶融流動しにくい上、無機顔料の配合によりエッチング面(特に凹部)へのフッ素樹脂組成物の入り込みが阻害されて、物理的接着が不充分になるからである。これに対して、熱溶融性フッ素樹脂の粘度は、PFAが380℃において104〜105ポイズ、FEPが380℃において4×104〜105ポイズ、ETFEが300〜330℃において104〜105ポイズ、CTFEが230℃において107ポイズと極めて低い。また、これらの熱溶融性フッ素樹脂は、同種のフッ素系ポリマーであるPTFEとの相溶性も良好である。そこで、PTFEに熱溶融性フッ素樹脂を配合すると、フッ素樹脂組成物全体の溶融粘度が下がり、フッ素樹脂組成物が金属基材のエッチング面へ入りやすくなり、物理的接着力の向上効果が促進されるため塗膜の接着力が向上する。
【0011】
また、熱溶融性フッ素樹脂を配合すると、ピンホールも低減させることができる。ピンホール低減のメカニズムは、必ずしも明確ではないが、以下のように推定される。すなわち、PTFEは、非常に溶融粘度が高く、加熱・燒結後でも粒子形状が幾分かは保持される場合があり、粒子間の間隙が融着しきらずに孔として残り得る上、無機顔料が配合されていると、この孔が連続しやすくなってピンホールの発生が助長されると推定される。これに対して、PTFEよりも著しく溶融粘度が低い熱溶融性フッ素樹脂を配合すると、それによって、PTFEによって生じた孔を埋めることができると推測される。
【0012】
本発明のフッ素樹脂被覆物は、通常、平板上の金属基材上にフッ素樹脂塗料をコーティング後、得られたフッ素樹脂被覆物を炊飯ジャー内釜等の形状にプレス成形加工する、いわゆる後加工を行う用途において、特に効果を発揮することができる。プレス成形後のピンホールの多寡、及び塗膜の破断伸度が、耐蝕性及びプレス成形加工性の重要な因子となる。熱溶融性フッ素樹脂の全フッ素樹脂中の配合割合は、PTFE単独使用の場合と比較して、接着力の向上効果が明らかに見られる2重量%以上とする必要がある。熱溶融性フッ素樹脂を全フッ素樹脂に対して3重量%以上配合すると、ピンホール低減効果が現れるとともに、顔料等を全く配合していないPTFE単独の塗膜よりも高い接着力が得られるので、好ましい。さらに、熱溶融性フッ素樹脂を全フッ素樹脂に対して5重量%以上配合すると、ピンホール低減効果が顕著になり、しかも強い接着力が得られるのでより好ましい。熱溶融性フッ素樹脂の配合割合が大きすぎると、塗膜の平滑性が悪くなり製膜性が低下するとともに、破断伸度が急激に低下するので、コーティング後にプレス成形などの後加工する際に、塗膜が塑性変形に追随できずに剥離等の欠陥を生じやすくなる。
【0013】
本発明でフッ素樹脂成分の原料として用いられるPTFEと熱溶融成フッ素樹脂の粒子は、互いに均一に微分散していることが非常に重要である。微視的に見て、熱溶融性フッ素樹脂が密な部分と粗な部分が存在すると、粗な部分では被覆物とした後に、PTFEによる孔が埋まりきらずにピンホールが多発したり、金属基材表面の微細な凹凸にフッ素樹脂成分が流れ込まないために、局部的に接着力が小さい個所が生じて、塗膜の剥離を引き起こす可能性が高くなる。つまり、本願発明の目的である工業的に安定して耐蝕性に優れた着色フッ素樹脂被覆物が得られなくなる。したがって、PTFEと熱溶融性フッ素樹脂は、いずれも原料レベルで粒子径が小さくかつ良く微分散したものを用いる必要がある。
【0014】
PTFEに関しては、乳化重合粒子径である約0.1〜0.2μmの粒子があまり2次凝集していないものが市販のディスパージョンとして比較的容易に入手できるので、特に問題はない。これに対して、熱溶融性フッ素樹脂の粒子は、粒子径の小さいディスパージョンにおいても2次凝集を起こしやすく、微細な粒子のディスパージョンを得ることが困難である。そこで、熱溶融性フッ素樹脂としては、平均1次粒子径が0.1〜1μmのものを用い、かつ、粗大粒子の含有率を減少させるように、高剪断力を有する攪拌機で攪拌して、微粒子化してから使用することが好ましい。すなわち、本発明では、原料の熱溶融性フッ素樹脂として、粒径5μm以上の粗粒子の含有率が10重量%以下の微粒子を使用する。粒径5μm以上の粗粒子の割合が大きくなると、ピンホール等の塗膜欠陥を減少させることが困難になる。
【0015】
なお、特公昭63−33511号公報には、PFAが10〜50重量%という特定の比率で含まれるフッ素樹脂コーティング組成物を用いることにより、燒結後の再結晶化が進みにくく、アモルファス部分が多くなって塗膜の弾性が上がることを利用し、表面の引っかきに対する抵抗性を高めることが知られている。形式的には、PTFEとPFAとのブレンド物を用いる点で共通しているように見えるが、本発明は、これとは技術思想を異にするもので、PFAなどの熱溶融性フッ素樹脂の低溶融粘度を利用し、フッ素樹脂成分中に2重量%以上10重量%未満の限定された割合で配合することにより、PTFE粒子の間隔を埋めてピンホールを低減するとともに、フッ素樹脂成分を金属基材表面の微細な凹凸中に入り込ませて、投錨効果により接着力を向上させるという全く別の目的・効果を有する発明であり、特公昭63−33511号公報に開示されている発明において好適とされているPFAの配合割合の範囲は、本発明では適切でないとする範囲であるなど、組成物としても異なるものである。PFAなどの熱溶融性フッ素樹脂の配合割合を高めると、塗膜の破断伸度が急激に低下し、プレス成形加工性が劣化する。
【0016】
本願発明に用いる無機顔料としては、特に限定されず市販の顔料が広く用いられるが、具体例としては、酸化チタン、カーボンブラック、群青、ベンガラ等一般の無機顔料;マイカ、顔料被覆マイカ、窒化ホウ素(BN)、鱗片状酸化鉄、グラファイト、フッ化グラファイト、鱗片金属片等の鱗片状無機顔料;等が代表的なものとして挙げられる。これらの無機顔料は、それぞれ単独で使用してもよいが、所望の色調に調整するために、2種以上を組み合わせて用いることができる。無機顔料の配合割合は、得ようとする色調や隠蔽力に応じて適宜決定されるるが、少なすぎると所望の色調が得られなかったり、充分な隠蔽力が得られにくくなり、多すぎると塗膜の接着力を著しく低下させ、熱溶融性フッ素樹脂の配合によっても向上できなくなったり、塗膜の破断伸度が低下したり、さらには、ピンホールが増大する等の悪影響があり好ましくない。このような問題の生じにくい範囲としては、2〜15重量%とすることが必要であり、好ましくは3〜12重量%、より好ましくは4〜10重量%である。
【0017】
本発明において、金属基材上に形成するフッ素樹脂組成物の塗膜の膜厚は、平均5〜50μmの範囲とする。塗膜の平均膜厚が5μm未満では、所望の色調や隠蔽力が得られなかったり、耐蝕性の観点から要求されるピンホール通電量の範囲を満たせなくなるためである。また、50μmを越える平均膜厚を1回のコーティングで得ようとすると、成膜性が悪くなってクラック等を発生し、かえってピンホール通電量を増大させて耐蝕性を悪化させる。膜厚を大きくするために、2回、3回と繰り返しコーティングを行うと、加工コストが増大し工業的に不利になる。塗膜の平均膜厚は、好ましくは10〜40μmである。
【0018】
本発明では、フッ素樹脂組成物の塗膜の金属基材への接着力を向上させるとともに、金属基材にまで貫通するピンホール等の塗膜欠陥を大幅に減少させることにより、実用上問題のないレベルでの耐蝕性を工業的に安定して達成することができる。金属基材にまで貫通するピンホール等の塗膜欠陥は、ピンホール通電量により定量化することができる。ピンホール通電量の測定法は、平板上のフッ素樹脂被覆物上に円筒容器を乗せ、その円筒容器の中に、あるいは、塗膜面を内側にして釜状に形成した被覆物容器の中に、2重量%NaCl水溶液を満たし、片方の電極を液中に入れ、他方を成形品の外壁に付けて、所定の電圧を一定時間印加したときの通電量(mA)を測定するものである。本発明では、10Vの電圧を5秒間印加した時の通電量をピンホール通電量と規定する。
【0019】
塗膜の接着力については、180°剥離強度で定量化することができる。接着力の測定方法は、塗膜面にFEPテープの一端を融着させた後、融着した部分に幅1.5cmの金属基材にまで貫通する切り込みを入れ、融着していない他端を180°方向に引っ張って剥離するときの強度を求める方法である。本発明ではこれを180°剥離強度と規定する。
本発明のフッ素樹脂被覆物において、塗膜の接着力とピンホール通電量の具体的な数値の組み合せは、塗膜の180°剥離強度が1.5kg/cm以上であって、10V/5秒間の電圧印加時の塗膜のピンホール通電量が0.12mA/cm2以下であることが必要であり、これにより実用上優れた耐蝕性を得ることができる。好ましくは、180°剥離強度が2.0kg/cm以上でピンホール通電量が0.08mA/cm2以下であり、さらに好ましくは、180°剥離強度が2.5kg/cm以上で、ピンホール通電量が0.04mA/cm2以下であり、これらのレベルであれば、実質的にほとんど腐蝕の起こらないフッ素樹脂被覆物が得られる。
【0020】
フッ素樹脂被覆物を得るには、通常、固形分として、PTFE、熱溶融性フッ素樹脂、及び無機顔料を水性分散媒体中に分散したフッ素樹脂塗料を調製する。固形分の分散性を高めるために、界面活性剤を適宜添加することが好ましい。一般に、PTFE及び熱溶融性フッ素樹脂としては、それぞれのディスパージョンを用いる。熱溶融性フッ素樹脂のディスパージョンは、通常、樹脂粒子が2次凝集しているので、使用に際し、攪拌機(ミキサー)により攪拌して、凝集粒子を粉砕して微細化しておく。金属基材の表面には、化学的または電気化学的エッチングにより、予め微細な凹凸を形成しておくことが好ましい。金属基材上に、フッ素樹脂組成物を含有する塗料を塗布し、乾燥した後、燒結すれば、着色したフッ素樹脂被覆物を得ることができる。微細な各フッ素樹脂粉末を用いて、粉体塗料として塗装してもよい。あるいはフッ素樹脂粉末を水性媒体中に分散し、攪拌機により凝集粒子を粉砕して用いてもよい。
【0021】
本発明の耐蝕性着色フッ素樹脂被覆物の最外層として、さらにフッ素樹脂を被覆することにより、ピンホール等の塗膜欠陥をより効果的に低減することができる。最外層として被覆するフッ素樹脂としては、特に限定されないが、ピンホールを低減する目的から、実質的に顔料や接着剤(例えば、ポリアミドイミド、ポリエーテルスルホン)を実質的に含まないフッ素樹脂であることが好ましい。また、耐熱性や着色フッ素樹脂塗膜との相溶性の点から、PTFE、PFA、FEP等が好ましく、これらは各々単独で用いてもよいし、混合物として用いてもよい。
これらの中でも、ピンホールを生じにくく、無欠陥の膜厚を形成しやすいという観点から、PFAを単独で用いるのが特に好ましい。実質的にフッ素樹脂のみからなる最外層のフッ素樹脂層の平均膜厚を5〜40μmとし、全被覆層のピンホール通電量を0.04mA/cm2以下に低減することが好ましい。ピンホール通電量を8×10-3mA/cm2以下に低減するのがより好ましく、ピンホール通電量を4×10-3mA/cm2以下に低減するのがさらに好ましい。このレベルのピンホール通電量は、ほぼ検出限界にまで達するものであり、実使用では通常あり得ないような強酸浸漬等の過酷な腐蝕条件下においても、金属基材の腐蝕の起こらないフッ素樹脂被覆物を得ることができる。
【0022】
本発明では、金属基材のフッ素樹脂組成物の塗膜を形成する側の表面に、化学的または電気化学的エッチングにより微細な凹凸を設ける。金属基材表面の微細な凹凸とは、サンドブラスト、グリッドブラスト等の通常行われる金属面等の物理的粗面化による比較的粗い凹凸ではなく、これらを併用してもかまわないが、主として化学的または電気化学的、あるいはこれらを組み合せて行われるエッチングにより形成される凹凸のことを意味している。
凹凸を有する金属基材の表面は、顕微鏡的には、スポンジ状あるいは金属の結晶粒が部分的に溶け残っている複雑な凹凸を形成している。その凹凸とフッ素樹脂組成物の塗膜との組み合せによって、形成された塗膜に1.5kg/cm程度の剥離強度が得られる粗面であれば、本発明に適用することができる。通常のサンドブラスト、グリッドブラスト等単独では、1.5kg/cm程度の剥離強度を有する塗膜を形成することができない。また、このような微細な凹凸は、アルミニウムまたはアルミニウム合金を電気化学的エッチングすることにより得られやすいため、このような材質、方法が特に好適に用いられる。ただし、化学的エッチングや電気化学的エッチングと機械的粗面化を効果的に組み合せると、ステンレス等においても微細な凹凸を形成し、良好な物理的接着力を達成することができる。
【0023】
【実施例】
以下に、実施例及び比較例を挙げて本発明についてより具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。
なお、物性の測定方法は、次のとおりである。
(1)接着力(180°剥離強度)
塗膜面にFEPテープの一端を融着させた後、融着した部分に幅1.5cmの金属基材にまで貫通する切り込みを入れ、融着していない他端を180°方向に引っ張って剥離するときの強度を求めた。幅1cm当りの引き剥しに要する力を塗膜の180°剥離強度(kg/cm)とする。
(2)ピンホール度(ピンホール通電量)
塗膜面を内側にして釜状に形成した被覆物容器の中に、2重量%NaCl水溶液を満たし、片方の電極を液中に入れ、他方を成形品の外壁に付けて、所定の電圧を一定時間印加したときの通電量(mA)を測定する。10Vの電圧を5秒間印加した時の通電量をピンホール通電量(mA/cm2)とした。
(3)実炊飯試験
実炊飯試験500回を行い腐蝕の有無を評価した。目視により腐食個所が観察された場合を腐食あり(×)とし、観察されなかった場合を腐食なし(○)と評価した。
【0024】
[実施例1]
金属基材としてアルミニウム板〔神戸製鋼(株)製ABS材、板厚1.0mm〕を用いた。このアルミニウム板を陽極にして、塩化アンモニウム水溶液中にて電気化学的エッチング処理を行い、表面に微細な凹凸を形成させた。
一方、PTFE〔ダイキン工業(株)製ディスパージョン(D−1F)〕30重量部、PFA〔ダイキン工業(株)製ディスパージョン(AD−2CR);1次粒子の平均粒径=0.35μm〕3重量部、マイカ〔メルクジャパン(株)製顔料被覆マイカ、イリオジン♯100;マイカ〕1.7重量部、カーボンブラック〔東海カーボン(株)製トーカブラック4400F〕0.3重量部、界面活性剤〔三洋化成(株)製の非イオン型界面活性剤(オクタポール80)〕6重量部を水59重量部中に分散させた。
【0025】
ただし、PFAディスパージョンは、予めミキサーにて8000rpmで1時間、ミキサーの容器外部を冷却しながら攪拌し、2次凝集を砕いて分散させたものを用いた。この微細化物を表1中に「細」と表示した。PFAの粒子径をレーザー式粒度分布計(島津製作所製SALD1100)にて測定したところ、5μm以上のPFA粒子の体積分率は5%程度以下、すなわち5重量%以下と判定された。なお、表1中、PFA粒子の2次凝集を砕かずに、そのまま使用したものは「粗」と表示した。2次凝集を砕かなかったものは、5μm以上の凝集粒子がPFA粒子中60重量%以上を占めると判定された。
アルミニウム板のエッチングを施した表面に、上記で配合した塗料を被覆厚みが20μmとなるようにコーティングし、焼き付けた。このようにして得られたコーティング板をプレス成形によって深絞り加工し、炊飯ジャーの内釜を作製した。得られたコーティング板プレス加工品の接着力(180°剥離強度)及びピンホール通電量を測定し、さらに、実炊飯試験500回を行い、腐蝕の有無を評価した。結果を表1に示す。
【0026】
[実施例2]
実施例1と同じ方法により作製したコーティング板の被覆層(第1層)上に、さらに最外層(第2層目)としてPFA層を形成した。具体的には、三井・デュポン(株)製PFA粒子(MP102)とダイキン工業(株)製PFAディスパージョン(AD−2CR)を樹脂成分比(重量比)で70:30となるように混合し、これに界面活性剤を加えて安定化させた後、被覆厚みが20μmとなるように、前記コーティング板の被覆面上にコーティングし、焼き付けた。得られたコーティング板を用い、実施例1と同様にして、プレス成形により炊飯ジャーの内釜を作製し、評価した。結果を表1に示す。
【0027】
[比較例1]
PFAの配合割合を3重量部から0.5重量部に、水の割合を59重量部から61.5重量部にそれぞれ変更したこと以外は、実施例2と同様にして、最外層にPFA層を形成したコーティング板を作製し、プレス成形により炊飯ジャーの内釜を作製して、評価した。結果を表1に示す。
【0028】
[比較例2]
PFAとして、ダイキン工業(株)製PFAディスパージョン(AD−2CR)(粒径5μm以上の凝集粒子がPFA粒子中60重量%以上)をそのまま用いて、予め2次凝集を粉砕しなかったこと以外は、実施例1と同様して、コーティング板を作製し、プレス成形により炊飯ジャーの内釜を作製して、評価した。結果を表1に示す。
【0029】
[比較例3]
マイカの配合割合を1.7重量部から11.7重量部に、水の割合を59重量部から49重量部にそれぞれ変更したこと以外は、実施例1と同様して、コーティング板を作製し、プレス成形により炊飯ジャーの内釜を作製して、評価した。結果を表1に示す。
【0030】
【表1】

Figure 0004078680
【0031】
【発明の効果】
本発明によれば、塗膜の剥離強度に優れ、ピンホール等の塗膜欠陥の少ない耐蝕性着色フッ素樹脂被覆物が工業的に安定に提供することができる。本発明の耐蝕性着色フッ素樹脂被覆物は、実用的な耐蝕性に優れており、特に、炊飯ジャーの内釜、鍋、グリルパン等の調理時に液体と接触して腐食しやすい条件で使用される食品調理容器にした場合、著しい耐久性向上効果を発揮する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a corrosion-resistant colored fluororesin coating, and more specifically, a fluororesin coating in which a fluororesin coating film colored with an inorganic pigment is formed on a metal substrate, and having excellent peeling strength of the coating film The present invention relates to a corrosion-resistant colored fluororesin coating with few coating film defects such as pinholes. The corrosion-resistant colored fluororesin coating of the present invention is suitably used in the field of cooking utensils such as inner pots, pans, and grill pans of rice cookers.
[0002]
[Prior art]
Fluorine resin coatings are often formed on cooking utensils such as inner pots, pans, and grill pans of metal rice cookers for the purpose of corrosion resistance and prevention of sticking. As the fluororesin, polytetrafluoroethylene (PTFE) is generally used. More specifically, a fluororesin coating material is applied on a metal substrate and sintered to produce a fluororesin coating. The fluororesin coating is usually secondarily processed by press molding into a desired shape such as an inner pot of a rice cooker. In some cases, after the metal substrate is press-molded, a fluororesin paint is applied and sintered.
In order to obtain a fluororesin coating excellent in corrosion resistance, it is required that the adhesion of the coating film to the metal substrate is sufficient in addition to the small number of coating film defects such as pinholes. Conventionally, in order to improve the adhesive force of a coating film, for example, fine irregularities are provided on the surface of a metal substrate by chemical or electrochemical etching. However, when a fluororesin composition containing an inorganic pigment is used to form a colored coating film, the adhesion of the coating film to the metal substrate is reduced and coating film defects such as pinholes are increased. Therefore, it has been a difficult task to form a corrosion-resistant fluororesin coating film colored in a desired color tone.
[0003]
As a result of studying to obtain a colored fluororesin coating excellent in corrosion resistance, the inventors of the present application blended PTFE with a heat-meltable fluororesin as a minor component on a metal substrate having fine irregularities formed on the surface. It has been found that by forming a coating film of a fluororesin composition in which an inorganic pigment is blended with a fluororesin component, adhesion to a metal substrate is improved and a fluororesin coating with few pinholes can be obtained. A patent application was filed (JP-A-5-39451). This fluororesin coating has good adhesion between the fluororesin layer and the metal substrate, and the coating layer is plastically deformed even if a rice cooker inner pot is formed by press molding as post-processing after coating. Will follow and will not peel off. However, although corrosion resistance has been improved, it is not fully satisfactory, and there still remains a problem in that fine corrosion from the pinhole portion or accompanying film peeling occurs. When this fluororesin coating is coated with a fluororesin substantially free of pigment, particularly a mixture of PTFE and a heat-meltable fluororesin, pinholes can be reduced, but still a high degree of corrosion resistance. However, it has not been sufficient for applications in fields where demands are required.
[0004]
[Problems to be solved by the invention]
An object of the present invention is a fluororesin coating in which a fluororesin coating film colored with an inorganic pigment is formed on a metal substrate, which has excellent peeling strength of the coating film and few coating film defects such as pinholes. It is to provide a corrosion-resistant colored fluororesin coating.
As a fluororesin component, when PTFE is blended with PTFE as a small component, even if an inorganic pigment is blended compared to when PTFE is used alone, the coating film on the metal substrate Adhesiveness is good, and coating film defects such as pinholes can be reduced. However, it has been difficult to sufficiently enhance the peel strength of the coating film on the metal substrate and to sufficiently reduce coating film defects such as pinholes. When the present inventors examined the cause, when preparing the coating material of the fluororesin composition containing an inorganic pigment, preferably a PTFE dispersion and a heat-meltable fluororesin dispersion are used as the fluororesin component. However, compared to PTFE dispersion, where particles are less likely to agglomerate, the heat-meltable fluororesin dispersion is more difficult to uniformly disperse because the particles are more likely to agglomerate. It has been found that the presence of dense and rough portions of the hot-melt fluororesin in the film and the presence of coarse particles cause pinholes and decreases the adhesion to the metal substrate.
[0005]
Therefore, by using a thermally fusible fluororesin having a small particle diameter and finely dispersed, a colored fluororesin coating film having high peel strength and small coating film defects such as pinholes can be obtained. I found out. Even when powder is used as the fluororesin component, it is necessary to use a material that has a small particle size at the raw material level and is easily finely dispersed. In addition, when a fluororesin layer consisting essentially of a fluororesin is formed on the fluororesin coating as a top coat, coating defects such as pinholes can be further reduced, and coloring with excellent corrosion resistance A fluororesin coating can be obtained. Furthermore, by adjusting the blending ratio of the heat-meltable fluororesin, the blending ratio of the inorganic pigment, the film thickness of the coating film, etc., the fluororesin coating with reduced pinholes can be industrially stabilized. In addition, the pinhole level can be suppressed within a predetermined range, and at the same time, a high peel strength can be achieved.
The present invention has been completed based on these findings.
[0006]
[Means for Solving the Problems]
  According to the present invention,Has fine irregularities provided by chemical or electrochemical etchingIn a fluororesin coating formed by forming a coating film of a fluororesin composition containing a fluororesin and an inorganic pigment on a metal substrate,
(1) The fluororesin component constituting the fluororesin composition,Polytetrafluoroethylene (PTFE) 90% by weight over 98% by weight and heat-meltable fluororesin 2% by weight to less than 10% by weight,
(2) TheHot-melt fluoropolymer, By making the heat-meltable fluororesin dispersion fine particles containing coarse particles having an average primary particle diameter of 0.1 to 1 μm and primary particles secondary-aggregated,Content of coarse particles with a particle size of 5μm or more10% By weightWasFine particles,
(3) Inorganic pigment blending ratio,2 to 15% by weight based on the total amount of fluororesin composition (based on solid content),
(4) The average film thickness is,5-50μmAnd,
(5) 180 ° peel strength of the coating,1.5kg / cm or moreAs well as
(6) The amount of pinhole energization of the coating when a voltage of 10 V / 5 seconds is applied,0.12 mA / cm2Is
A corrosion-resistant colored fluororesin coating is provided.
[0007]
Further, according to the present invention, typically, the following embodiments are provided.
1. The said corrosion-resistant coloring fluororesin coating | coated material whose ratio of the heat-meltable fluororesin in a fluororesin component is 3 to 10 weight%.
2. The said corrosion-resistant coloring fluororesin coating | coated material whose ratio of the heat-meltable fluororesin in a fluororesin component is 5 to less than 10 weight%.
3. The said corrosion-resistant coloring fluororesin coating | coated material whose ratio of an inorganic pigment is 3 to 12 weight% on solid content basis.
4). The said corrosion-resistant coloring fluororesin coating | coated material whose ratio of an inorganic pigment is 4-10 weight% on solid content basis.
5. The said corrosion-resistant coloring fluororesin coating material whose average film thickness of a coating film is 10-40 micrometers.
6). The 180 ° peel strength of the coating is 2.0 kg / cm or more, and the pinhole energization amount of the coating when a voltage of 10 V / 5 seconds is applied is 0.08 mA / cm.2The said corrosion-resistant coloring fluororesin coating which is the following.
7. The 180 ° peel strength of the coating is 2.5 kg / cm or more, and the pinhole energization amount is 0.04 mA / cm when a voltage of 10 V / 5 seconds is applied.2The said corrosion-resistant coloring fluororesin coating which is the following.
8). The heat-meltable fluororesin is at least one selected from the group consisting of tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) and terafluoroethylene-hexafluoropropylene copolymer (FEP), The said corrosion-resistant coloring fluororesin coating | coated with an average primary particle diameter of 0.1-1 micrometer.
[0008]
  9. On the coating film of the fluororesin composition, a fluororesin layer having an average film thickness of 5 to 40 μm consisting essentially of only the fluororesin is further coated as the outermost layer, and the entire coating when a voltage of 10 V / 5 seconds is applied. The pinhole energization amount of the coating layer is 0.04 mA / cm2The said corrosion-resistant coloring fluororesin coating which is the following.
  10. As the outermost layer, a fluororesin layer having an average film thickness of 5 to 40 μm substantially consisting of only a fluororesin is coated, and the pinhole energization amount of all the coating layers when a voltage of 10 V / 5 seconds is applied is 8 × 10.-3mA / cm2The said corrosion-resistant coloring fluororesin coating which is the following.
  11. As the outermost layer, a fluororesin layer having an average film thickness of 5 to 40 μm substantially consisting of only a fluororesin is coated, and the pinhole energization amount of all coating layers when a voltage of 10 V / 5 seconds is applied is 4 × 10.-3mA / cm2The said corrosion-resistant coloring fluororesin coating which is the following.
  12. The corrosion-resistant colored fluororesin coating, wherein the outermost fluororesin is PFA.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Fluorine resin component
Each fluororesin used in the present invention may be in any form such as aqueous dispersion or powder, but is particularly preferably an aqueous dispersion. Examples of the heat-meltable fluororesin include tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), terafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-ethylene copolymer (ETFE), poly Chlorotrifluoroethylene (CTFE) or a mixture of two or more of these is used. Among these, PFA, FEP, and a mixture thereof are preferable.
[0010]
When an inorganic pigment is blended with a fluororesin, the physical adhesive force of the fluororesin coating film is weakened even when a metal substrate roughened by etching or the like is used. The reason is that the viscosity of PTFE is 10 at 340 ° C.11-1013This is because it is high in poise and difficult to melt and flow, and the inorganic pigment blending impedes the penetration of the fluororesin composition into the etched surface (particularly the recesses), resulting in insufficient physical adhesion. In contrast, the viscosity of the heat-meltable fluororesin is 10 at PFA of 380 ° C.Four-10FivePoise, FEP 4 × 10 at 380 ° CFour-10FivePoise, ETFE 10 at 300-330 ° CFour-10FivePoise, CTFE 10 at 230 ° C7Poise and extremely low. Moreover, these heat-meltable fluororesins have good compatibility with PTFE, which is the same type of fluoropolymer. Therefore, when a heat-meltable fluororesin is blended with PTFE, the melt viscosity of the entire fluororesin composition is lowered, and the fluororesin composition is likely to enter the etched surface of the metal substrate, thereby promoting the effect of improving physical adhesion. Therefore, the adhesive force of the coating film is improved.
[0011]
Moreover, pinholes can also be reduced by blending a heat-meltable fluororesin. The pinhole reduction mechanism is not necessarily clear, but is estimated as follows. In other words, PTFE has a very high melt viscosity, and some of the particle shape may be retained even after heating and sintering, and the gaps between the particles may not remain fused and remain as pores. If mixed, it is presumed that the holes are easily continuous and the generation of pinholes is promoted. On the other hand, when a heat-meltable fluororesin having a significantly lower melt viscosity than PTFE is blended, it is presumed that pores generated by PTFE can be filled thereby.
[0012]
  The fluororesin coating of the present invention is usually a so-called post-processing, in which after a fluororesin coating is coated on a metal substrate on a flat plate, the obtained fluororesin coating is press-molded into a shape such as a rice cooker inner pot. In particular, the effect can be exerted in applications where The number of pinholes after press molding and the elongation at break of the coating film are important factors for corrosion resistance and press molding processability. The blending ratio of the heat-meltable fluororesin in the total fluororesin needs to be 2% by weight or more where the effect of improving the adhesive force is clearly seen as compared with the case of using PTFE alone. When 3% by weight or more of the heat-meltable fluororesin is blended with respect to the total fluororesin, the pinhole reduction effect appears, and higher adhesive strength can be obtained than a coating film of PTFE alone that does not contain any pigment, preferable. Furthermore, the heat-meltable fluororesin is 5% by weight or more based on the total fluororesinFormulationThen, since the pinhole reduction effect becomes remarkable and strong adhesive force is obtained, it is more preferable. If the blending ratio of the heat-meltable fluororesin is too large, the smoothness of the coating film will deteriorate and the film-forming property will decrease, and the elongation at break will decrease drastically. The coating film cannot follow the plastic deformation and easily causes defects such as peeling.
[0013]
In the present invention, it is very important that the PTFE and the hot-melt fluororesin particles used as the raw material for the fluororesin component are uniformly and finely dispersed with each other. Microscopically, if there are a dense part and a rough part of the heat-meltable fluororesin, after forming a coating in the rough part, the holes due to PTFE are not completely filled, and pinholes frequently occur, Since the fluororesin component does not flow into the fine irregularities on the surface of the material, there is a high possibility that a part having a small adhesive force is locally generated and the coating film is peeled off. That is, it is impossible to obtain a colored fluororesin coating that is industrially stable and excellent in corrosion resistance, which is the object of the present invention. Therefore, it is necessary to use PTFE and a heat-meltable fluororesin that are both finely dispersed with a small particle size at the raw material level.
[0014]
  With respect to PTFE, there is no particular problem because particles having an emulsion polymerization particle size of about 0.1 to 0.2 μm, which are not sufficiently agglomerated, can be obtained relatively easily as a commercially available dispersion. In contrast, heat-meltable fluororesin particles tend to cause secondary agglomeration even in dispersions with small particle diameters.No diIt is difficult to get sparging. Therefore, as the heat-meltable fluororesin, use one having an average primary particle size of 0.1 to 1 μm, and stir with a stirrer having a high shear force so as to reduce the content of coarse particles, It is preferable to use after making into fine particles. That is, in the present invention, as the raw material meltable fluororesin, coarse particles having a particle size of 5 μm or moreOf childContent is10Use fine particles of less than wt%. When the ratio of coarse particles having a particle size of 5 μm or more increases, it becomes difficult to reduce coating film defects such as pinholes.The
[0015]
In Japanese Examined Patent Publication No. 63-33511, by using a fluororesin coating composition containing PFA in a specific ratio of 10 to 50% by weight, recrystallization after sintering is difficult to proceed and there are many amorphous parts. It is known that the resistance to scratching of the surface is enhanced by utilizing the increase in elasticity of the coating film. Formally, it seems to be common in that a blend of PTFE and PFA is used, but the present invention is different from this in technical idea. By using a low melt viscosity and blending in the fluororesin component in a limited ratio of 2 wt% or more and less than 10 wt%, the gap between PTFE particles is filled to reduce pinholes and the fluororesin component is made of metal It is an invention having a completely different object / effect of entering the fine irregularities on the surface of the base material and improving the adhesive force by the anchoring effect, which is preferable in the invention disclosed in Japanese Patent Publication No. 63-33511. The range of the proportion of PFA used is different from the composition, such as a range that is not appropriate in the present invention. When the blending ratio of the heat-meltable fluororesin such as PFA is increased, the breaking elongation of the coating film is rapidly lowered, and the press moldability is deteriorated.
[0016]
The inorganic pigment used in the present invention is not particularly limited, and commercially available pigments are widely used. Specific examples thereof include general inorganic pigments such as titanium oxide, carbon black, ultramarine blue, and bengara; mica, pigment-coated mica, boron nitride Typical examples include (BN), scaly iron oxide, graphite, fluorinated graphite, scaly inorganic pigments such as scaly metal pieces, and the like. These inorganic pigments may be used alone or in combination of two or more in order to adjust to a desired color tone. The blending ratio of the inorganic pigment is appropriately determined according to the color tone and hiding power to be obtained. However, if the amount is too small, a desired color tone cannot be obtained or sufficient hiding power cannot be obtained. It is not preferable because the adhesive strength of the film is remarkably lowered and cannot be improved even by blending a heat-meltable fluororesin, the breaking elongation of the coating film is lowered, and further, pinholes are increased. The range in which such a problem hardly occurs is required to be 2 to 15% by weight, preferably 3 to 12% by weight, and more preferably 4 to 10% by weight.
[0017]
In this invention, the film thickness of the coating film of the fluororesin composition formed on a metal base material shall be an average range of 5-50 micrometers. This is because if the average film thickness of the coating film is less than 5 μm, the desired color tone and hiding power cannot be obtained, or the pinhole energization range required from the viewpoint of corrosion resistance cannot be satisfied. On the other hand, if it is attempted to obtain an average film thickness exceeding 50 μm by one coating, the film formability deteriorates and cracks and the like are generated. On the contrary, the pinhole energization amount is increased to deteriorate the corrosion resistance. If coating is repeated twice or three times in order to increase the film thickness, the processing cost increases, which is industrially disadvantageous. The average film thickness of the coating film is preferably 10 to 40 μm.
[0018]
In the present invention, the adhesion of the coating film of the fluororesin composition to the metal substrate is improved, and coating defects such as pinholes penetrating to the metal substrate are greatly reduced. Corrosion resistance at a non-standard level can be achieved industrially stably. Coating film defects such as pinholes penetrating to the metal substrate can be quantified by the amount of pinhole energization. The pinhole energization is measured by placing a cylindrical container on a fluororesin coating on a flat plate and placing it in the cylindrical container, or in a coating container formed in a pot shape with the coating surface inside. A 2 wt% NaCl aqueous solution is filled, one electrode is placed in the solution, the other is attached to the outer wall of the molded product, and the amount of current (mA) is measured when a predetermined voltage is applied for a certain period of time. In the present invention, the energization amount when a voltage of 10 V is applied for 5 seconds is defined as the pinhole energization amount.
[0019]
About the adhesive force of a coating film, it can quantify by 180 degree peeling strength. The adhesive strength is measured by fusing one end of the FEP tape to the coating surface and then making a notch penetrating to the metal substrate with a width of 1.5 cm in the fused portion. This is a method for obtaining the strength when the film is peeled by pulling in a 180 ° direction. In the present invention, this is defined as 180 ° peel strength.
In the fluororesin coating of the present invention, the combination of the specific values of the adhesive strength of the coating film and the pinhole energization amount is such that the 180 ° peel strength of the coating film is 1.5 kg / cm or more and 10 V / 5 seconds. The pinhole energization amount of the coating film when applying a voltage of 0.12 mA / cm2It is necessary to be the following, and thereby, practically excellent corrosion resistance can be obtained. Preferably, the 180 ° peel strength is 2.0 kg / cm or more and the pinhole energization amount is 0.08 mA / cm.2More preferably, the 180 ° peel strength is 2.5 kg / cm or more, and the pinhole energization amount is 0.04 mA / cm.2If it is below and these levels, the fluororesin coating material which hardly hardly corrodes will be obtained.
[0020]
In order to obtain a fluororesin coating, a fluororesin paint in which PTFE, a heat-meltable fluororesin, and an inorganic pigment are dispersed as a solid content in an aqueous dispersion medium is usually prepared. In order to enhance the dispersibility of the solid content, it is preferable to add a surfactant as appropriate. Generally, each dispersion is used as PTFE and a heat-meltable fluororesin. In the dispersion of the heat-meltable fluororesin, since the resin particles are usually secondary agglomerated, the agglomerated particles are pulverized and refined by stirring with a stirrer (mixer) during use. It is preferable to form fine irregularities in advance on the surface of the metal substrate by chemical or electrochemical etching. A colored fluororesin coating can be obtained by applying a paint containing a fluororesin composition on a metal substrate, drying and then sintering. Each fine fluororesin powder may be used as a powder coating. Alternatively, the fluororesin powder may be dispersed in an aqueous medium and the aggregated particles may be pulverized with a stirrer.
[0021]
By further coating the fluororesin as the outermost layer of the corrosion-resistant colored fluororesin coating of the present invention, coating film defects such as pinholes can be more effectively reduced. Although it does not specifically limit as a fluororesin coat | covered as an outermost layer, From the objective of reducing a pinhole, it is a fluororesin which does not contain a pigment and adhesives substantially (for example, polyamide imide, polyether sulfone). It is preferable. Moreover, PTFE, PFA, FEP, etc. are preferable from the point of heat resistance and compatibility with a colored fluororesin coating film, and these may be used singly or as a mixture.
Among these, it is particularly preferable to use PFA alone from the viewpoint that pinholes are hardly generated and a defect-free film thickness is easily formed. The average film thickness of the outermost fluororesin layer consisting essentially of fluororesin is 5 to 40 μm, and the pinhole energization of all coating layers is 0.04 mA / cm2It is preferable to reduce to the following. Pinhole energization amount is 8 × 10-3mA / cm2It is more preferable to reduce to the following, and the pinhole energization amount is 4 × 10-3mA / cm2More preferably, it is reduced to the following. This level of pinhole energization almost reaches the detection limit, and even under severe corrosion conditions such as strong acid immersion, which is not normally possible in actual use, a fluororesin that does not cause corrosion of the metal substrate A coating can be obtained.
[0022]
  In the present invention, fine unevenness is provided by chemical or electrochemical etching on the surface of the metal substrate on which the coating film of the fluororesin composition is formed.TheThe fine unevenness on the surface of the metal substrate is not a relatively rough unevenness caused by physical roughening such as sandblasting, grid blasting, etc., which is usually performed. Or it means the unevenness | corrugation formed by the etching performed electrochemically or combining these.
  Microscopically, the surface of the metal substrate having irregularities forms complex irregularities in which sponge-like or metal crystal grains remain partially dissolved.. SoWith unevennessCoating film of fluororesin compositionAny rough surface can be applied to the present invention as long as it provides a peel strength of about 1.5 kg / cm to the formed coating film. Ordinary sandblasting, grid blasting, etc. alone1. A coating film having a peel strength of about 5 kg / cm cannot be formed. In addition, since such fine irregularities are easily obtained by electrochemical etching of aluminum or aluminum alloy, such materials and methods are particularly preferably used. However, if chemical etching or electrochemical etching and mechanical roughening are combined effectively, fine irregularities can be formed even in stainless steel and the like, and good physical adhesion can be achieved.
[0023]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to only these examples.
In addition, the measuring method of a physical property is as follows.
(1) Adhesive strength (180 ° peel strength)
After fusing one end of the FEP tape to the coating surface, make a notch penetrating to the metal base with a width of 1.5 cm in the fused part, and pull the other end not fused in the direction of 180 ° The strength at the time of peeling was determined. The force required for peeling off per 1 cm width is defined as the 180 ° peel strength (kg / cm) of the coating film.
(2) Pinhole degree (Pinhole energization)
Filled with a 2% by weight NaCl aqueous solution in a coating container formed in a pot shape with the coating surface on the inside, put one electrode in the solution, and attach the other to the outer wall of the molded product, and apply a predetermined voltage. The energization amount (mA) when applied for a certain time is measured. The energization amount when a voltage of 10 V is applied for 5 seconds is the pinhole energization amount (mA / cm2).
(3) Real cooking rice test
The actual cooking rice test was conducted 500 times to evaluate the presence or absence of corrosion. The case where corrosion sites were observed by visual observation was evaluated as corrosion (x), and the case where corrosion sites were not observed was evaluated as no corrosion (◯).
[0024]
[Example 1]
An aluminum plate [ABS material manufactured by Kobe Steel, plate thickness: 1.0 mm] was used as the metal substrate. Using this aluminum plate as an anode, electrochemical etching was performed in an aqueous ammonium chloride solution to form fine irregularities on the surface.
On the other hand, PTFE [Daikin Kogyo Co., Ltd. dispersion (D-1F)] 30 parts by weight, PFA [Daikin Kogyo Co., Ltd. dispersion (AD-2CR); average particle size of primary particles = 0.35 μm] 3 parts by weight, 1.7 parts by weight of mica (Merck Japan Co., Ltd., pigment-coated mica, Iriodin # 100; mica), 0.3 parts by weight of carbon black [Toka Black 4400F, manufactured by Tokai Carbon Co., Ltd.], surfactant 6 parts by weight of non-ionic surfactant (Octapol 80) manufactured by Sanyo Chemical Co., Ltd. was dispersed in 59 parts by weight of water.
[0025]
However, the PFA dispersion used was a mixture prepared by crushing and dispersing secondary agglomeration by stirring the mixture outside the mixer at 8000 rpm for 1 hour in advance. This refined product is indicated as “thin” in Table 1. When the particle size of PFA was measured with a laser type particle size distribution analyzer (SALD1100 manufactured by Shimadzu Corporation), the volume fraction of PFA particles of 5 μm or more was determined to be about 5% or less, that is, 5% by weight or less. In Table 1, those that were used as they were without crushing the secondary aggregation of the PFA particles were indicated as “coarse”. In the case where the secondary aggregation was not crushed, it was determined that aggregated particles of 5 μm or more accounted for 60% by weight or more in the PFA particles.
The surface of the aluminum plate that had been etched was coated with the paint blended so as to have a coating thickness of 20 μm and baked. The coating plate thus obtained was deep-drawn by press molding to produce an inner pot for a rice cooker. The adhesive strength (180 ° peel strength) and pinhole energization amount of the obtained coated plate press-processed product were measured, and the actual cooking rice test was conducted 500 times to evaluate the presence or absence of corrosion. The results are shown in Table 1.
[0026]
[Example 2]
A PFA layer was further formed as the outermost layer (second layer) on the coating layer (first layer) of the coating plate produced by the same method as in Example 1. Specifically, PFA particles (MP102) manufactured by Mitsui DuPont Co., Ltd. and PFA dispersion (AD-2CR) manufactured by Daikin Industries, Ltd. are mixed so that the resin component ratio (weight ratio) is 70:30. Then, a surfactant was added thereto for stabilization, and then the coated surface of the coated plate was coated and baked so that the coated thickness became 20 μm. Using the obtained coating plate, an inner pot of a rice cooker was produced by press molding in the same manner as in Example 1 and evaluated. The results are shown in Table 1.
[0027]
[Comparative Example 1]
The PFA layer was used as the outermost layer in the same manner as in Example 2 except that the blending ratio of PFA was changed from 3 parts by weight to 0.5 parts by weight and the ratio of water was changed from 59 parts by weight to 61.5 parts by weight. A coating plate having a shape was prepared, and an inner pot of a rice cooker was prepared by press molding and evaluated. The results are shown in Table 1.
[0028]
[Comparative Example 2]
Except that PFA dispersion (AD-2CR) manufactured by Daikin Industries, Ltd. (aggregated particles having a particle size of 5 μm or more is 60% by weight or more in the PFA particles) was used as PFA as it was, and secondary agglomeration was not pulverized in advance. In the same manner as in Example 1, a coated plate was produced, and an inner pot of a rice cooker was produced by press molding and evaluated. The results are shown in Table 1.
[0029]
[Comparative Example 3]
A coating plate was prepared in the same manner as in Example 1 except that the mixing ratio of mica was changed from 1.7 parts by weight to 11.7 parts by weight and the ratio of water was changed from 59 parts by weight to 49 parts by weight. A rice cooker inner pot was produced by press molding and evaluated. The results are shown in Table 1.
[0030]
[Table 1]
Figure 0004078680
[0031]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the corrosion resistance coloring fluororesin coating material which is excellent in the peeling strength of a coating film and has few coating film defects, such as a pinhole, can be provided industrially stably. The corrosion-resistant colored fluororesin coating of the present invention is excellent in practical corrosion resistance, and is particularly used under conditions where it is easily corroded by contact with liquid during cooking of a rice cooker inner pot, pan, grill pan, etc. When used as a food cooking container, it exerts a remarkable durability improvement effect.

Claims (4)

化学的または電気化学的エッチングにより設けられた微細な凹凸を有する金属基材上に、フッ素樹脂及び無機顔料を含有するフッ素樹脂組成物の塗膜を形成してなるフッ素樹脂被覆物において、
(1)フッ素樹脂組成物を構成するフッ素樹脂成分がポリテトラフルオロエチレン(PTFE)90重量%超過98重量%以下と熱溶融性フッ素樹脂2重量%以上10重量%未満とを含有し、
(2)該熱溶融性フッ素樹脂が、0.1〜1μmの平均1次粒子径を有し、1次粒子が2次凝集した粗粒子を含む熱溶融性フッ素樹脂ディスパージョンの微粒子化により、粒径5μm以上の粗粒子の含有率を10重量%以下とした微粒子であり、
)無機顔料の配合割合がフッ素樹脂組成物全量基準(固形分基準)で2〜15重量%であり、
)塗膜の平均膜厚が5〜50μmであり
)塗膜の180°剥離強度が1.5kg/cm以上であり、並びに
)10V/5秒間の電圧印加時の塗膜のピンホール通電量が0.12mA/cm以下である
ことを特徴とする耐蝕性着色フッ素樹脂被覆物。
In a fluororesin coating formed by forming a coating film of a fluororesin composition containing a fluororesin and an inorganic pigment on a metal substrate having fine irregularities provided by chemical or electrochemical etching ,
(1) Fluorine Fluorine resin component constituting the resin composition contains a polytetrafluoroethylene (PTFE) less than 90 wt.% Excess 98 wt% and melt processible fluoropolymer 2 wt% to 10 wt%,
(2) said heat-fusible fluororesin has an average primary particle diameter of 0.1 to 1 [mu] m, the heat melting particles of fluororesin dispersion containing primary particles secondary agglomerated coarse particles, the content of the particle size 5μm or more coarse particles are fine particles was 10 wt% or less,
( 3 ) The blending ratio of the inorganic pigment is 2 to 15% by weight based on the total amount of the fluororesin composition (solid content basis),
(4) the average thickness of the coating film is a 5 to 50 [mu] m,
(5) 180 ° peel strength of the coating film is at 1.5 kg / cm or more, and (6) pinhole energization amount of the coating film when a voltage is applied 10V / 5 seconds, 0.12 mA / cm 2 or less Corrosion-resistant colored fluororesin coating,
熱溶融性フッ素樹脂が、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、及びテロラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)からなる群より選ばれる少なくとも1種である請求項1記載の耐蝕性着色フッ素樹脂被覆物。Melt processible fluoropolymer is a tetrafluoroethylene - perfluoroalkyl vinyl ether copolymer (PFA), and terrorism La fluoroethylene - claim 1 is at least one selected from the group consisting of hexafluoropropylene copolymer (FEP) The coating of corrosion-resistant colored fluororesin as described. フッ素樹脂組成物の塗膜の上に、さらに最外層として、実質的にフッ素樹脂のみからなる平均膜厚5〜40μmのフッ素樹脂層が被覆され、かつ、10V/5秒間の電圧印加時の全被覆層のピンホール通電量が0.04mA/cm以下である請求項1または2記載の耐蝕性着色フッ素樹脂被覆物。On the coating film of the fluororesin composition, a fluororesin layer having an average film thickness of 5 to 40 μm consisting essentially of only the fluororesin is further coated as the outermost layer, and the entire coating when a voltage of 10 V / 5 seconds is applied. The corrosion-resistant colored fluororesin coating according to claim 1 or 2, wherein the coating layer has a pinhole energization amount of 0.04 mA / cm 2 or less. 最外層を形成するフッ素樹脂が、PFAである請求項3記載の耐蝕性着色フッ素樹脂被覆物。  The corrosion-resistant colored fluororesin coating according to claim 3, wherein the fluororesin forming the outermost layer is PFA.
JP18154996A 1996-06-22 1996-06-22 Corrosion-resistant colored fluororesin coating Expired - Fee Related JP4078680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18154996A JP4078680B2 (en) 1996-06-22 1996-06-22 Corrosion-resistant colored fluororesin coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18154996A JP4078680B2 (en) 1996-06-22 1996-06-22 Corrosion-resistant colored fluororesin coating

Publications (2)

Publication Number Publication Date
JPH107973A JPH107973A (en) 1998-01-13
JP4078680B2 true JP4078680B2 (en) 2008-04-23

Family

ID=16102735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18154996A Expired - Fee Related JP4078680B2 (en) 1996-06-22 1996-06-22 Corrosion-resistant colored fluororesin coating

Country Status (1)

Country Link
JP (1) JP4078680B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7729639B2 (en) 2006-03-20 2010-06-01 Sharp Kabushiki Kaisha Charging apparatus and image forming apparatus
KR100972721B1 (en) 2007-04-12 2010-07-27 다이킨 고교 가부시키가이샤 Method for producing aqueous dispersion, aqueous dispersion, fluororesin coating composition and coated article
TW201016800A (en) * 2008-09-26 2010-05-01 Whitford Corp Blended fluoropolymer coatings for rigid substrates
US8673449B2 (en) 2009-12-18 2014-03-18 Saint-Gobain Performance Plastics Corporation Cooking release sheet materials and release surfaces
US11230648B2 (en) 2016-10-24 2022-01-25 Saint-Gobain Performance Plastics Corporation Polymer compositions, materials, and methods of making

Also Published As

Publication number Publication date
JPH107973A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
KR970001405B1 (en) Polyfluoride coatings
EP1103582B1 (en) Water-based primer composition for fluororesin coating
US7811664B2 (en) Fluororesin coating film
US4177320A (en) Article coated with fluorocarbon polymer
US8642171B2 (en) Non-stick coating having improved abrasion resistance, hardness and corrosion on a substrate
JP3660951B2 (en) Fluoropolymer coating composition and painted article
JP3198542B2 (en) Composition for coating modified polytetrafluoroethylene
KR100346796B1 (en) fluorin resin coated product and process for producing the same
KR20150036301A (en) Cooking utensil
EP3804582B1 (en) Cooking apparatus
EP0483760B1 (en) Fluororesin coating composition
JP4078680B2 (en) Corrosion-resistant colored fluororesin coating
JPH07252447A (en) Fluororesin coating compound composition
JPH08322732A (en) Cooking pot
CN114981374B (en) Heat resistant coating composition
JP3367508B2 (en) Fluororesin coating and manufacturing method thereof
JP3104310B2 (en) Fluororesin coating
JP2006130743A (en) Fluoroplastic coating material, cooking utensil, electromagnetic induction heating container and formation method of electromagnetic induction heating container
JP4348752B2 (en) Coating composition and coated product formed by applying the same
JP3487907B2 (en) Cooker pot
JPH07233345A (en) Fluororesin coating composition, production of fluororesin coated plate and production of fluororesin coated product
JP2567481B2 (en) Chromatic colorable fluororesin coating
JP4945851B2 (en) Non-adhesive wear-resistant paint composition and non-adhesive wear-resistant coated article
JPH0691805A (en) Coated metal plate
JP2004175015A (en) Fluoroplastic coating material and cooking vessel comprising the fluoroplastic coating material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050721

A131 Notification of reasons for refusal

Effective date: 20060131

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080115

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20080128

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110215

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120215

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120215

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20130215

LAPS Cancellation because of no payment of annual fees