JP4078380B2 - Nitride semiconductor device manufacturing method - Google Patents

Nitride semiconductor device manufacturing method Download PDF

Info

Publication number
JP4078380B2
JP4078380B2 JP2006348164A JP2006348164A JP4078380B2 JP 4078380 B2 JP4078380 B2 JP 4078380B2 JP 2006348164 A JP2006348164 A JP 2006348164A JP 2006348164 A JP2006348164 A JP 2006348164A JP 4078380 B2 JP4078380 B2 JP 4078380B2
Authority
JP
Japan
Prior art keywords
etching
back surface
nitride
semiconductor layer
type gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006348164A
Other languages
Japanese (ja)
Other versions
JP2007081446A (en
Inventor
忠夫 戸田
雅幸 畑
勤 山口
康彦 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006348164A priority Critical patent/JP4078380B2/en
Publication of JP2007081446A publication Critical patent/JP2007081446A/en
Application granted granted Critical
Publication of JP4078380B2 publication Critical patent/JP4078380B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、窒化物系半導体素子の製造方法に関し、特に、電極を有する窒化物系半導体素子の製造方法に関する。   The present invention relates to a method for manufacturing a nitride semiconductor device, and more particularly to a method for manufacturing a nitride semiconductor device having an electrode.

近年、窒化物系半導体レーザ素子は、次世代の大容量光ディスク用光源としての利用が期待され、その開発が盛んに行われている。   In recent years, nitride-based semiconductor laser devices are expected to be used as light sources for next-generation large-capacity optical disks, and their development is actively performed.

通常、窒化物系半導体レーザ素子を形成する場合、絶縁性のサファイア基板が用いられる。しかし、サファイア基板上に、窒化物系半導体層を形成する場合、サファイア基板と窒化物系半導体層との格子定数の差が大きいので、窒化物系半導体層内に格子定数の差に起因した多数の結晶欠陥(転位)が発生するという不都合があった。その結果、窒化物系半導体レーザ素子の特性が低下するという問題点があった。   Usually, when forming a nitride semiconductor laser element, an insulating sapphire substrate is used. However, when a nitride based semiconductor layer is formed on a sapphire substrate, the difference in lattice constant between the sapphire substrate and the nitride based semiconductor layer is large. Inconveniently, crystal defects (dislocations) occur. As a result, there has been a problem that the characteristics of the nitride-based semiconductor laser device are deteriorated.

そこで、従来、窒化物系半導体層との格子定数の差が小さいGaN基板などの窒化物系半導体基板を用いた窒化物系半導体レーザ素子が提案されている。   Thus, conventionally, a nitride semiconductor laser element using a nitride semiconductor substrate such as a GaN substrate having a small difference in lattice constant from the nitride semiconductor layer has been proposed.

図7は、n型GaN基板を用いて形成された従来の窒化物系半導体レーザ素子を示した断面図である。図7を参照して、従来の窒化物系半導体レーザ素子の製造プロセスでは、n型GaN基板101上に成長される窒化物系半導体層(102〜110)の結晶性を向上させるため、窒化物系半導体層(102〜110)は、ウルツ鉱構造を有するn型GaN基板1のGa面((HKLM)面:Mは正の整数)上に成長される。また、ウルツ鉱構造を有するn型GaN基板101の窒素面((HKL−M)面:Mは正の整数)は、裏面として用いられるとともに、このn型GaN基板101の裏面上にn側電極112が形成される。以下、従来の窒化物系半導体レーザ素子の製造プロセスを詳細に説明する。   FIG. 7 is a cross-sectional view showing a conventional nitride-based semiconductor laser device formed using an n-type GaN substrate. Referring to FIG. 7, in the conventional nitride semiconductor laser device manufacturing process, the nitride semiconductor layer (102 to 110) grown on n-type GaN substrate 101 is improved in crystallinity. The system semiconductor layers (102 to 110) are grown on the Ga face ((HKLM) face: M is a positive integer) of the n-type GaN substrate 1 having a wurtzite structure. The nitrogen surface ((HKL-M) surface: M is a positive integer) of the n-type GaN substrate 101 having a wurtzite structure is used as the back surface, and an n-side electrode is formed on the back surface of the n-type GaN substrate 101. 112 is formed. Hereinafter, a manufacturing process of a conventional nitride semiconductor laser device will be described in detail.

図7に示すように、約300μm〜約500μmの厚みを有するn型GaN基板101の上面(Ga面)上に、MOCVD法(Metal Organic Chemical Vapor Deposition;有機金属化学気相成長法)などを用いて、約3μmの厚みを有するn型GaNからなるn型層102と、約100nmの厚みを有するn型In0.05Ga0.95Nからなるn型バッファ層103と、約400nmの厚みを有するn型Al0.05Ga0.95Nからなるn型クラッド層104と、約70nmの厚みを有するn型GaNからなるn型光ガイド層105と、MQW(Multiple Quantum Well;多重量子井戸)構造を有するMQW活性層106と、約200nmの厚みを有するp型Al0.2Ga0.8Nからなるp型層107と、約70nmの厚みを有するp型GaNからなるp型光ガイド層108と、約400nmの厚みを有するp型Al0.05Ga0.95Nからなるp型クラッド層109と、約100nmの厚みを有するp型GaNからなるp型コンタクト層110とを順次形成する。 As shown in FIG. 7, MOCVD (Metal Organic Chemical Vapor Deposition) or the like is used on the upper surface (Ga surface) of an n-type GaN substrate 101 having a thickness of about 300 μm to about 500 μm. An n-type layer 102 made of n-type GaN having a thickness of about 3 μm, an n-type buffer layer 103 made of n-type In 0.05 Ga 0.95 N having a thickness of about 100 nm, and an n-type Al having a thickness of about 400 nm. An n-type cladding layer 104 made of 0.05 Ga 0.95 N, an n-type light guide layer 105 made of n-type GaN having a thickness of about 70 nm, and an MQW active layer 106 having an MQW (Multiple Quantum Well) structure; P-type layer 1 made of p-type Al 0.2 Ga 0.8 N having a thickness of about 200 nm 07, a p-type light guide layer 108 made of p-type GaN having a thickness of about 70 nm, a p-type cladding layer 109 made of p-type Al 0.05 Ga 0.95 N having a thickness of about 400 nm, and a thickness of about 100 nm. A p-type contact layer 110 made of p-type GaN is sequentially formed.

次に、p型コンタクト層110の上面上の所定領域に、p側電極111を形成する。そして、n型GaN基板101の裏面をn型GaN基板101が所定の厚み(100μm程度)になるまで研磨した後、n型GaN基板101の裏面(窒素面)上に、n側電極112を形成する。最後に、n型GaN基板101および各層102〜110を劈開することにより、素子分離および共振器端面の形成を行う。これにより、図7に示した従来の窒化物系半導体レーザ素子が完成される。   Next, the p-side electrode 111 is formed in a predetermined region on the upper surface of the p-type contact layer 110. Then, after polishing the back surface of the n-type GaN substrate 101 until the n-type GaN substrate 101 has a predetermined thickness (about 100 μm), the n-side electrode 112 is formed on the back surface (nitrogen surface) of the n-type GaN substrate 101. To do. Finally, the n-type GaN substrate 101 and each of the layers 102 to 110 are cleaved to perform element isolation and resonator end face formation. Thereby, the conventional nitride-based semiconductor laser device shown in FIG. 7 is completed.

図7に示した従来の窒化物系半導体レーザ素子では、n型GaN基板101の硬度が非常に大きいので、劈開により素子分離および共振器端面の形成を良好に行うのが困難であるという不都合がある。このような不都合に対処するため、劈開工程の前にn型GaN基板の裏面を機械研磨して、n型GaN基板の裏面の凹凸の大きさを小さくすることによって、素子分離および共振器端面の形成を良好に行う方法が提案されている(たとえば、特許文献1参照)。
特開2002−26438号公報
In the conventional nitride semiconductor laser device shown in FIG. 7, since the hardness of the n-type GaN substrate 101 is very high, it is difficult to perform element isolation and formation of the resonator end face by cleavage. is there. In order to deal with such an inconvenience, the back surface of the n-type GaN substrate is mechanically polished before the cleaving process to reduce the size of the unevenness on the back surface of the n-type GaN substrate, thereby separating the elements and the resonator end faces. There has been proposed a method for performing good formation (see, for example, Patent Document 1).
JP 2002-26438 A

しかしながら、上記特許文献1に開示された従来の方法では、n型GaN基板の裏面を機械研磨する際に、n型GaN基板の裏面近傍に応力が加わる。このため、n型GaN基板の裏面近傍にクラックなどの微細な結晶欠陥が発生するという不都合がある。その結果、n型GaN基板と、n型GaN基板の裏面(窒素面)上に形成されたn側電極とのコンタクト抵抗が増加するという問題点があった。   However, in the conventional method disclosed in Patent Document 1, stress is applied to the vicinity of the back surface of the n-type GaN substrate when the back surface of the n-type GaN substrate is mechanically polished. For this reason, there is a disadvantage that fine crystal defects such as cracks are generated in the vicinity of the back surface of the n-type GaN substrate. As a result, there is a problem that the contact resistance between the n-type GaN substrate and the n-side electrode formed on the back surface (nitrogen surface) of the n-type GaN substrate increases.

また、n型GaN基板の窒素面は、酸化されやすいので、これによっても、n型GaN基板の裏面(窒素面)上に形成されたn側電極とのコンタクト抵抗が増加するという問題点があった。   In addition, since the nitrogen surface of the n-type GaN substrate is easily oxidized, this also increases the contact resistance with the n-side electrode formed on the back surface (nitrogen surface) of the n-type GaN substrate. It was.

この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、窒化物系半導体基板などの窒素面と電極とのコンタクト抵抗を低減することが可能な窒化物系半導体素子の製造方法を提供することである。   The present invention has been made to solve the above problems, and one object of the present invention is to reduce the contact resistance between a nitrogen surface of a nitride-based semiconductor substrate or the like and an electrode. It is to provide a method for manufacturing a nitride semiconductor device.

この発明のもう1つの目的は、上記の窒化物系半導体素子の製造方法において、窒化物系半導体基板などの窒素面近傍の結晶欠陥を低減することである。   Another object of the present invention is to reduce crystal defects in the vicinity of a nitrogen surface of a nitride semiconductor substrate or the like in the method for manufacturing a nitride semiconductor device.

上記目的を達成するために、この発明窒化物系半導体素子の製造方法は、n型の窒化物系半導体層および窒化物系半導体基板のいずれかからなる第1半導体層の裏面を研磨する工程と、研磨する工程により発生した転位を含む第1半導体層の裏面近傍の領域をエッチング除去して第1半導体層の裏面の転位密度を1×10 cm −2 以下とする工程と、その後、エッチング除去された第1半導体層の裏面上に、n側電極を形成する工程とを備えることにより、第1半導体層とn側電極とのコンタクト抵抗を0.05Ωcm 以下とするIn order to achieve the above object, a method for manufacturing a nitride semiconductor device according to the present invention includes a step of polishing the back surface of a first semiconductor layer made of either an n-type nitride semiconductor layer or a nitride semiconductor substrate. And etching the region near the back surface of the first semiconductor layer including dislocations generated by the polishing step so that the dislocation density on the back surface of the first semiconductor layer is 1 × 10 9 cm −2 or less, and then A contact resistance between the first semiconductor layer and the n-side electrode is 0.05 Ωcm 2 or less by providing an n-side electrode on the etched back surface of the first semiconductor layer .

の窒化物系半導体素子の製造方法では、上記のように、ウルツ鉱構造を有するn型の窒化物系半導体層および窒化物系半導体基板のいずれかからなる第1半導体層の裏面を、エッチングすることによって、研磨工程などに起因して発生した第1半導体層の裏面近傍の結晶欠陥を含む領域を除去することができるので、第1半導体層の裏面近傍の結晶欠陥を低減することができる。これにより、結晶欠陥による電子キャリアのトラップなどに起因する電子キャリア濃度の低下を抑制することができるので、第1半導体層の裏面の電子キャリア濃度を大きくすることができる。その結果、第1半導体層とn側電極とのコンタクト抵抗を低減することができる。また、第1半導体層の裏面をエッチングすることによって、機械研磨の場合に比べて、第1半導体層の裏面の平坦性を向上させることができる。これにより、第1半導体層の裏面上に形成されるn側電極の平坦性を向上させることができるので、n側電極を放熱基台に取り付ける構造の場合には、n側電極と放熱基台との密着性を向上させることができる。その結果、良好な放熱特性を得ることができる。また、第1半導体層の裏面上に形成されるn側電極の平坦性を向上させることができるので、n側電極にワイヤボンディングを行う構造の場合には、n側電極に対するワイヤボンディングのボンディング特性を向上させることができる。 In the manufacturing method of this nitrogen compound-based semiconductor device, as described above, the back surface of the first semiconductor layer consisting of either n-type nitride semiconductor layer and a nitride-based semiconductor substrate having a wurtzite structure, etching By doing so, it is possible to remove a region including crystal defects in the vicinity of the back surface of the first semiconductor layer generated due to a polishing process or the like, so that crystal defects in the vicinity of the back surface of the first semiconductor layer can be reduced. . As a result, it is possible to suppress a decrease in the electron carrier concentration due to trapping of electron carriers due to crystal defects, etc., so that the electron carrier concentration on the back surface of the first semiconductor layer can be increased. As a result, the contact resistance between the first semiconductor layer and the n-side electrode can be reduced. Further, by etching the back surface of the first semiconductor layer, the flatness of the back surface of the first semiconductor layer can be improved as compared with the case of mechanical polishing. Thereby, since the flatness of the n-side electrode formed on the back surface of the first semiconductor layer can be improved, in the case of a structure in which the n-side electrode is attached to the heat dissipation base, the n-side electrode and the heat dissipation base Adhesiveness can be improved. As a result, good heat dissipation characteristics can be obtained. In addition, since the flatness of the n-side electrode formed on the back surface of the first semiconductor layer can be improved, in the case of a structure in which wire bonding is performed on the n-side electrode, bonding characteristics of wire bonding to the n-side electrode Can be improved.

上記窒化物系半導体素子の製造方法において、好ましくは、第1半導体層の裏面は、第1半導体層の窒素面を含む。ここで、窒素面とは、全て窒素面である場合のみならず、窒素面が主体の面である場合を含む広い概念である。具体的には、窒素面が50%以上ある面は、本発明の窒素面に含まれる。このように第1半導体層の裏面が窒素面である場合には、裏面が酸化されやすいので、裏面の酸化された部分をエッチングにより除去することができる。これにより、第1半導体層とn側電極とのコンタクト抵抗をより低減することができる。 In the above-described method for manufacturing a nitride semiconductor device, preferably, the back surface of the first semiconductor layer includes the nitrogen surface of the first semiconductor layer. Here, the nitrogen surface is a wide concept including not only the case where all of the surfaces are nitrogen surfaces but also the case where the nitrogen surfaces are main surfaces. Specifically, a surface having a nitrogen surface of 50% or more is included in the nitrogen surface of the present invention. Thus, when the back surface of the first semiconductor layer is a nitrogen surface, the back surface is easily oxidized, so that the oxidized portion of the back surface can be removed by etching. Thereby, the contact resistance between the first semiconductor layer and the n-side electrode can be further reduced.

上記窒化物系半導体素子の製造方法において、好ましくは、エッチングする工程は、第1半導体層の裏面を反応性エッチングによりエッチングする工程を含む。このように構成すれば、反応性エッチングにより、容易に、第1半導体層の裏面の平坦性を向上させることができるとともに、裏面近傍の結晶欠陥を低減することができる。なお、本発明の反応性エッチングは、ドライエッチングとほぼ同じ意味を有する。 In the method for manufacturing a nitride-based semiconductor element, preferably, the etching step includes a step of etching the back surface of the first semiconductor layer by reactive etching. With this configuration, the flatness of the back surface of the first semiconductor layer can be easily improved by reactive etching, and crystal defects near the back surface can be reduced. The reactive etching of the present invention has almost the same meaning as dry etching.

上記反応性エッチングによりエッチングする工程を含む窒化物系半導体素子の製造方法において、好ましくは、反応性エッチングによりエッチングする工程は、Cl2ガスとBCl3ガスとを用いて反応性エッチングによりエッチングする工程を含む。このように構成すれば、容易に、第1半導体層の裏面の平坦性を向上させることができるとともに、裏面近傍の結晶欠陥を低減することができる。この場合、反応性エッチングによりエッチングする工程におけるCl2ガスに対するBCl3ガスの流量比は、30%以上70%以下であるのが好ましい。このCl2ガスに対するBCl3ガスの流量比の範囲は、実験により第1半導体層の裏面の平坦性を向上させることができることが確認された範囲であるので、この範囲の流量比を用いれば、確実に第1半導体層の裏面の平坦性を向上させることができる。 In the method of manufacturing a nitride semiconductor device including the step of etching by reactive etching, preferably, the step of etching by reactive etching is a step of etching by reactive etching using Cl 2 gas and BCl 3 gas. including. With this configuration, the flatness of the back surface of the first semiconductor layer can be easily improved, and crystal defects near the back surface can be reduced. In this case, the flow rate ratio of BCl 3 gas to Cl 2 gas in the step of etching by reactive etching is preferably 30% or more and 70% or less. Since the range of the flow rate ratio of the BCl 3 gas to the Cl 2 gas is a range in which the flatness of the back surface of the first semiconductor layer can be improved by experiments, if the flow rate ratio in this range is used, The flatness of the back surface of the first semiconductor layer can be surely improved.

上記窒化物系半導体素子の製造方法において、好ましくは、n側電極を形成する工程に先立って、エッチングされた第1半導体層の窒素面を、塩素、フッ素、臭素、ヨウ素、イオウおよびアンモニウムの少なくとも1つを含む溶液に浸す工程をさらに備える。このように構成すれば、第1半導体層の窒素面のエッチングによる残留物を容易に除去することができる。これにより、第1半導体層とn側電極とのコンタクト抵抗をより低減することができる。この場合、n側電極を形成する工程に先立って、第1半導体層の裏面をHCl溶液により塩酸処理する工程をさらに備える。このように構成すれば、第1半導体層の裏面のエッチングにより裏面に付着した塩素系残留物を容易に除去することができる。 In the above method for manufacturing a nitride semiconductor device, preferably, prior to the step of forming the n-side electrode, the nitrogen surface of the etched first semiconductor layer is made of chlorine, fluorine, bromine, iodine, sulfur and ammonium. The method further includes the step of immersing in a solution containing at least one. If comprised in this way, the residue by the etching of the nitrogen surface of a 1st semiconductor layer can be removed easily. Thereby, the contact resistance between the first semiconductor layer and the n-side electrode can be further reduced. In this case, prior to the step of forming the n-side electrode, the method further includes a step of treating the back surface of the first semiconductor layer with hydrochloric acid with an HCl solution. If comprised in this way, the chlorine-type residue adhering to the back surface can be easily removed by the etching of the back surface of a 1st semiconductor layer.

上記窒化物系半導体素子の製造方法において、好ましくは、エッチングする工程に先立って、第1半導体層の裏面を研磨する工程をさらに備える。このように第1半導体層の裏面を研磨した場合にも、研磨後のエッチング工程により、第1半導体層の裏面の平坦性を向上することができるとともに、研磨に起因して発生した裏面近傍の結晶欠陥を低減することができる。 Preferably, the method for manufacturing a nitride semiconductor device further includes a step of polishing the back surface of the first semiconductor layer prior to the step of etching. Thus, even when the back surface of the first semiconductor layer is polished, the flatness of the back surface of the first semiconductor layer can be improved by the etching process after polishing, and the vicinity of the back surface generated due to the polishing can be improved. Crystal defects can be reduced.

上記窒化物系半導体素子の製造方法において、好ましくは、エッチングする工程は、第1半導体層の裏面をウェットエッチングによりエッチングする工程を含む。このように構成すれば、ウェットエッチングにより、容易に、第1半導体層の裏面の平坦性を向上させることができるとともに、裏面近傍の結晶欠陥を低減することができる。この場合、ウェットエッチングによりエッチングする工程は、王水、KOHおよびK228からなるグループから選択される少なくとも1つのエッチング液を用いてエッチングする工程を含むのが好ましい。また、ウェットエッチングによりエッチングする工程は、約120℃に昇温した状態でエッチングする工程を含むのが好ましい。このように構成すれば、ウェットエッチングを室温で行う場合の約10倍のエッチングレートを得ることができる。 In the method for manufacturing a nitride semiconductor device, preferably, the etching step includes a step of etching the back surface of the first semiconductor layer by wet etching. If comprised in this way, while the flatness of the back surface of a 1st semiconductor layer can be improved easily by wet etching, the crystal defect of the back surface vicinity can be reduced. In this case, the step of etching by wet etching preferably includes a step of etching using at least one etchant selected from the group consisting of aqua regia, KOH and K 2 S 2 O 8 . The step of etching by wet etching preferably includes a step of etching in a state where the temperature is raised to about 120 ° C. If comprised in this way, about 10 times as many etching rates as the case where wet etching is performed at room temperature can be obtained.

この発明窒化物系半導体素子の製造方法は、ウルツ鉱構造を有するn型の窒化物系半導体層および窒化物系半導体基板のいずれかからなる第1半導体層の窒素面を、反応性エッチングによりエッチングする工程と、その後、エッチングされた第1半導体層の窒素面上に、n側電極を形成する工程とを備えている。 According to the method for manufacturing a nitride semiconductor device of the present invention , the nitrogen surface of the first semiconductor layer made of any one of an n-type nitride semiconductor layer and a nitride semiconductor substrate having a wurtzite structure is formed by reactive etching. Etching and thereafter forming an n-side electrode on the nitrogen surface of the etched first semiconductor layer.

の窒化物系半導体素子の製造方法では、上記のように、ウルツ鉱構造を有するn型の窒化物系半導体層および窒化物系半導体基板のいずれかからなる第1半導体層の窒素面を、反応性エッチングによりエッチングすることによって、研磨工程などに起因して発生した第1半導体層の窒素面近傍の結晶欠陥を含む領域を除去することができるので、第1半導体層の窒素面近傍の結晶欠陥を低減することができる。これにより、結晶欠陥による電子キャリアのトラップなどに起因する電子キャリア濃度の低下を抑制することができるので、第1半導体層の窒素面の電子キャリア濃度を大きくすることができる。その結果、第1半導体層とn側電極とのコンタクト抵抗を低減することができる。また、第1半導体層の窒素面を反応性エッチングによりエッチングすることによって、機械研磨の場合に比べて、第1半導体層の窒素面の平坦性を向上させることができる。これにより、第1半導体層の窒素面上に形成されるn側電極の平坦性を向上させることができるので、n側電極を放熱基台に取り付ける構造の場合には、n側電極と放熱基台との密着性を向上させることができる。その結果、良好な放熱特性を得ることができる。また、第1半導体層の窒素面上に形成されるn側電極の平坦性を向上させることができるので、n側電極にワイヤボンディングを行う構造の場合には、n側電極に対するワイヤボンディングのボンディング特性を向上させることができる。 In the manufacturing method of this nitrogen compound-based semiconductor device, as described above, the nitrogen face of the first semiconductor layer consisting of either n-type nitride semiconductor layer and a nitride-based semiconductor substrate having a wurtzite structure, By etching by reactive etching, a region containing crystal defects near the nitrogen surface of the first semiconductor layer generated due to a polishing process or the like can be removed, so that crystals near the nitrogen surface of the first semiconductor layer can be removed. Defects can be reduced. As a result, it is possible to suppress a decrease in the electron carrier concentration due to trapping of electron carriers due to crystal defects, etc., so that the electron carrier concentration on the nitrogen surface of the first semiconductor layer can be increased. As a result, the contact resistance between the first semiconductor layer and the n-side electrode can be reduced. Further, by etching the nitrogen surface of the first semiconductor layer by reactive etching, the flatness of the nitrogen surface of the first semiconductor layer can be improved as compared with the case of mechanical polishing. Thereby, since the flatness of the n-side electrode formed on the nitrogen surface of the first semiconductor layer can be improved, in the case of a structure in which the n-side electrode is attached to the heat dissipation base, the n-side electrode and the heat dissipation base Adhesion with the table can be improved. As a result, good heat dissipation characteristics can be obtained. In addition, since the flatness of the n-side electrode formed on the nitrogen surface of the first semiconductor layer can be improved, in the case of a structure in which wire bonding is performed on the n-side electrode, bonding of wire bonding to the n-side electrode is performed. Characteristics can be improved.

この発明の製造方法により製造される窒化物系半導体素子は、ウルツ鉱構造を有するn型の窒化物系半導体層および窒化物系半導体基板のいずれかからなる第1半導体層と、第1半導体層の裏面上に形成されたn側電極とを備え、n側電極と第1半導体層とのコンタクト抵抗は、0.05Ωcm2以下である。 A nitride-based semiconductor device manufactured by the manufacturing method of the present invention includes a first semiconductor layer formed of any one of an n-type nitride-based semiconductor layer and a nitride-based semiconductor substrate having a wurtzite structure, and a first semiconductor layer The contact resistance between the n-side electrode and the first semiconductor layer is 0.05 Ωcm 2 or less.

の窒化物系半導体素子では、n側電極と第1半導体層とのコンタクト抵抗を、0.05Ωcm2以下にすることによって、n側電極と第1半導体層とのコンタクト抵抗が低減された良好な素子特性を有する窒化物系半導体素子を得ることができる。 The nitrogen compound-based semiconductor device of this, the contact resistance between the n-side electrode and the first semiconductor layer, by the 0.05Omucm 2 below, satisfactory contact resistance between the n-side electrode and the first semiconductor layer is reduced A nitride-based semiconductor device having excellent device characteristics can be obtained.

上記窒化物系半導体素子において、好ましくは、第1半導体層のn側電極との界面近傍における電子キャリア濃度は、1×1017cm-3以上である。このように構成すれば、容易に、n側電極と第1半導体層とのコンタクト抵抗が低減された窒化物系半導体素子を得ることができる。 In the nitride-based semiconductor device, preferably, the electron carrier concentration in the vicinity of the interface between the n-side electrode of the first semiconductor layer is 1 × 10 17 cm -3 or more. If comprised in this way, the nitride-type semiconductor element with which the contact resistance of an n side electrode and a 1st semiconductor layer was reduced can be obtained easily.

上記窒化物系半導体素子において、好ましくは、第1半導体層のn側電極との界面近傍における転位密度は、1×109cm-2以下である。このように構成すれば、第1半導体層のn側電極との界面近傍における結晶欠陥(転位)を低減することができるので、第1半導体層のn側電極との界面におけるコンタクト抵抗を低減することができる。 In the nitride semiconductor device described above, the dislocation density in the vicinity of the interface between the first semiconductor layer and the n-side electrode is preferably 1 × 10 9 cm −2 or less. With this configuration, crystal defects (dislocations) in the vicinity of the interface between the first semiconductor layer and the n-side electrode can be reduced, so that the contact resistance at the interface between the first semiconductor layer and the n-side electrode is reduced. be able to.

上記窒化物系半導体素子において、好ましくは、第1半導体層の裏面は、第1半導体層の窒素面を含む。 In the nitride semiconductor device described above, preferably, the back surface of the first semiconductor layer includes the nitrogen surface of the first semiconductor layer.

上記反応性エッチングによりエッチングする工程を含む窒化物系半導体素子の製造方法において、好ましくは、反応性エッチングによりエッチングする工程におけるエッチング深さとエッチング時間とは、比例関係にある。このように構成すれば、エッチング時間を調整することにより、エッチング深さを精度よく制御することができる。   In the method for manufacturing a nitride semiconductor device including the step of etching by reactive etching, the etching depth and the etching time in the step of etching by reactive etching are preferably in a proportional relationship. With this configuration, the etching depth can be accurately controlled by adjusting the etching time.

上記窒化物系半導体素子の製造方法において、好ましくは、エッチングする工程は、第1半導体層の裏面をエッチングすることにより、第1半導体層の裏面を鏡面にする工程を含む。このように構成すれば、より良好な第1半導体層の裏面の平坦性を得ることができる。 In the method for manufacturing a nitride-based semiconductor element, preferably, the etching step includes a step of making the back surface of the first semiconductor layer a mirror surface by etching the back surface of the first semiconductor layer. With this configuration, better flatness of the back surface of the first semiconductor layer can be obtained.

上記窒化物系半導体素子の製造方法において、好ましくは、n側電極の形成工程の後、熱処理を施す工程をさらに備える。このように構成すれば、第1半導体層とn側電極とのコンタクト抵抗をより低減することができる。 Preferably, the method for manufacturing a nitride semiconductor device further includes a step of performing a heat treatment after the step of forming the n-side electrode. With this configuration, the contact resistance between the first semiconductor layer and the n-side electrode can be further reduced.

上記窒化物系半導体素子の製造方法において、好ましくは、エッチングする工程は、第1半導体層の裏面を約1μm以上の厚み分エッチングする工程を含む。このように構成すれば、研磨工程などに起因して発生した第1半導体層の裏面近傍の結晶欠陥を含む領域を十分に除去することができるので、第1半導体層の裏面近傍の結晶欠陥をより低減することができる。 In the method for manufacturing a nitride semiconductor device, the etching step preferably includes a step of etching the back surface of the first semiconductor layer by a thickness of about 1 μm or more. According to this structure, the region including the crystal defect near the back surface of the first semiconductor layer generated due to the polishing process or the like can be sufficiently removed, so that the crystal defect near the back surface of the first semiconductor layer can be removed. It can be further reduced.

上記窒化物系半導体素子の製造方法において、第1半導体層は、GaN、BN、AlN、InNおよびTlNからなるグループより選択される少なくとも1つの材料からなるn型の窒化物系半導体層および窒化物系半導体基板を含んでいてもよい。また、n側電極は、Al膜を含んでいてもよい。 In the nitride semiconductor device manufacturing method, the first semiconductor layer includes an n-type nitride semiconductor layer made of at least one material selected from the group consisting of GaN, BN, AlN, InN, and TlN, and nitrided. A physical semiconductor substrate may be included. The n-side electrode may include an Al film.

上記窒化物系半導体素子の製造方法において、好ましくは、窒化物系半導体素子は、窒化物系半導体発光素子である。このように構成すれば、窒化物系半導体発光素子において、第1半導体層とn側電極とのコンタクト抵抗を低減することができるので、良好な発光特性を有する窒化物系半導体発光素子を得ることができる。 In the method for manufacturing the nitride-based semiconductor device, preferably, the nitride-based semiconductor device is a nitride-based semiconductor light-emitting device. With this configuration, in the nitride-based semiconductor light-emitting device, the contact resistance between the first semiconductor layer and the n-side electrode can be reduced, and thus a nitride-based semiconductor light-emitting device having good light-emitting characteristics can be obtained. Can do.

上記窒化物系半導体素子において、第1半導体層は、GaN、BN、AlN、InNおよびTlNからなるグループより選択される少なくとも1つの材料からなるn型の窒化物系半導体層および窒化物系半導体基板を含んでいてもよい。また、n側電極は、Al膜を含んでいてもよい。 In the nitride semiconductor device, the first semiconductor layer is an n-type nitride semiconductor layer and nitride semiconductor made of at least one material selected from the group consisting of GaN, BN, AlN, InN, and TlN. A substrate may be included. The n-side electrode may include an Al film.

上記窒化物系半導体素子において、好ましくは、窒化物系半導体素子は、窒化物系半導体発光素子である。このように構成すれば、窒化物系半導体発光素子において、第1半導体層とn側電極とのコンタクト抵抗を低減することができるので、良好な発光特性を有する窒化物系半導体発光素子を得ることができる。 In the nitride semiconductor device described above, the nitride semiconductor device is preferably a nitride semiconductor light emitting device. With this configuration, in the nitride-based semiconductor light-emitting device, the contact resistance between the first semiconductor layer and the n-side electrode can be reduced, and thus a nitride-based semiconductor light-emitting device having good light-emitting characteristics can be obtained. Can do.

本発明によると、窒化物系半導体基板などの窒素面と電極とのコンタクト抵抗を低減することが可能な窒化物系半導体素子の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the nitride-type semiconductor element which can reduce the contact resistance of nitrogen surfaces, such as a nitride-type semiconductor substrate, and an electrode can be provided.

また、本発明によると、上記の窒化物系半導体素子の製造方法において、窒化物系半導体基板などの窒素面近傍の結晶欠陥を低減することができる。   In addition, according to the present invention, crystal defects in the vicinity of the nitrogen surface of a nitride-based semiconductor substrate or the like can be reduced in the above-described method for manufacturing a nitride-based semiconductor device.

さらに、本発明によると、窒化物系半導体基板などの窒素面と電極とのコンタクト抵抗を低減することが可能な窒化物系半導体素子を提供することができる。   Furthermore, according to the present invention, it is possible to provide a nitride semiconductor device capable of reducing the contact resistance between a nitrogen surface of a nitride semiconductor substrate or the like and an electrode.

以下、本発明を具体化した実施形態を図面に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the drawings.

図1〜図5は、本発明の一実施形態による窒化物系半導体レ−ザ素子の製造プロセスを説明するための断面図および斜視図である。   1 to 5 are a cross-sectional view and a perspective view for explaining a manufacturing process of a nitride-based semiconductor laser device according to an embodiment of the present invention.

図1〜図5を参照して、本発明の一実施形態による窒化物系半導体レーザ素子の製造プロセスについて説明する。まず、本実施形態では、たとえば、特開2000−44400号公報に開示された方法によりウルツ鉱構造を有する酸素ドープのn型GaN基板1を形成する。具体的には、HVPE法を用いてGaAs基板(図示せず)上に、酸素ドープのn型GaN層を約120μm〜約400μmの厚みで形成する。その後、GaAs基板を除去することによって、図1に示されるようなn型GaN基板1を得る。このn型GaN基板1のホール効果測定による基板キャリア濃度は、5×1018cm-3である。また、n型GaN基板1のSIMS(Secondary Ion Mass Spectroscopy)分析による不純物濃度は、1×1019cm-3である。なお、n型GaN基板1は、本発明の「第1半導体層」の一例である。 With reference to FIGS. 1-5, the manufacturing process of the nitride-type semiconductor laser element by one Embodiment of this invention is demonstrated. First, in this embodiment, for example, the oxygen-doped n-type GaN substrate 1 having a wurtzite structure is formed by the method disclosed in Japanese Patent Application Laid-Open No. 2000-44400. Specifically, an oxygen-doped n-type GaN layer is formed with a thickness of about 120 μm to about 400 μm on a GaAs substrate (not shown) using HVPE. Thereafter, the n-type GaN substrate 1 as shown in FIG. 1 is obtained by removing the GaAs substrate. The substrate carrier concentration of the n-type GaN substrate 1 measured by the Hall effect is 5 × 10 18 cm −3 . The impurity concentration of the n-type GaN substrate 1 according to SIMS (Secondary Ion Mass Spectroscopy) analysis is 1 × 10 19 cm −3 . The n-type GaN substrate 1 is an example of the “first semiconductor layer” in the present invention.

そして、n型GaN基板1の(0001)面である上面(Ga面)上に、常圧MOCVD法を用いて、約1気圧(約100kPa)の圧力下で、約5μmの厚みを有するn型GaNからなるn型バッファ層2と、約1μmの厚みを有するn型Al0.08Ga0.92Nからなるn型クラッド層3と、InGaNからなるMQW活性層4と、約0.28μmの厚みを有するp型Al0.08Ga0.92Nからなるp型クラッド層5と、約70nmの厚みを有するp型GaNからなるp型コンタクト層6とを順次形成する。 Then, an n-type having a thickness of about 5 μm on the upper surface (Ga surface), which is the (0001) surface of the n-type GaN substrate 1, using a normal pressure MOCVD method under a pressure of about 1 atm (about 100 kPa). N-type buffer layer 2 made of GaN, n-type cladding layer 3 made of n-type Al 0.08 Ga 0.92 N having a thickness of about 1 μm, MQW active layer 4 made of InGaN, and p having a thickness of about 0.28 μm A p-type cladding layer 5 made of type Al 0.08 Ga 0.92 N and a p-type contact layer 6 made of p-type GaN having a thickness of about 70 nm are sequentially formed.

なお、MQW活性層4は、約20nmの厚みのGaNからなる4層のバリア層と、約3.5nmの厚みのIn0.15Ga0.85Nからなる3層の井戸層とを交互に積層することにより形成する。また、原料ガスとしては、Ga(CH33と、In(CH33と、Al(CH33と、NH3とを用い、キャリアガスとしては、H2とN2とを用いる。本実施形態では、これらの原料ガスの供給量を変化させることにより、各層2〜6の組成を調整している。また、n型バッファ層2およびn型クラッド層3のn型ドーパントとしては、SiH4ガス(Si)を用いる。p型クラッド層5およびp型コンタクト層6のp型ドーパントとしては、Cp2Mgガス(Mg)を用いる。 The MQW active layer 4 is formed by alternately laminating four barrier layers made of GaN having a thickness of about 20 nm and three well layers made of In 0.15 Ga 0.85 N having a thickness of about 3.5 nm. Form. Further, Ga (CH 3 ) 3 , In (CH 3 ) 3 , Al (CH 3 ) 3 , and NH 3 are used as source gases, and H 2 and N 2 are used as carrier gases. . In this embodiment, the composition of each layer 2-6 is adjusted by changing the supply amount of these source gases. Further, SiH 4 gas (Si) is used as the n-type dopant for the n-type buffer layer 2 and the n-type cladding layer 3. Cp 2 Mg gas (Mg) is used as a p-type dopant for the p-type cladding layer 5 and the p-type contact layer 6.

次に、フォトリソグラフィ技術およびエッチング技術を用いて、p型コンタクト層6およびp型クラッド層5の一部の領域をエッチングする。これにより、図2に示すように、p型クラッド層5の凸部とp型コンタクト層6とからなる約2μmの幅を有する凸部(リッジ部)を形成する。次に、p型コンタクト層6の上面上に、下から上に向かって、約1nmの厚みを有するPt膜と、約10nmの厚みを有するPd膜と、約300nmの厚みを有するNi膜とからなるp側電極7を形成する。これにより、図2に示したような複数の素子が形成される領域を含む窒化物系半導体レーザ素子構造20が形成される。   Next, a partial region of the p-type contact layer 6 and the p-type cladding layer 5 is etched using a photolithography technique and an etching technique. As a result, as shown in FIG. 2, a convex portion (ridge portion) having a width of about 2 μm composed of the convex portion of the p-type cladding layer 5 and the p-type contact layer 6 is formed. Next, a Pt film having a thickness of about 1 nm, a Pd film having a thickness of about 10 nm, and a Ni film having a thickness of about 300 nm are formed on the upper surface of the p-type contact layer 6 from bottom to top. A p-side electrode 7 is formed. Thereby, a nitride-based semiconductor laser device structure 20 including a region where a plurality of devices are formed as shown in FIG. 2 is formed.

この後、図3および図4に示すように、n型GaN基板1の(000−1)面である裏面(窒素面)を機械研磨する。この研磨工程に用いる機械研磨装置30は、図3に示すように、平坦な表面を有するガラス基板11と、上下に移動可能で、かつ、R方向に回転可能に支持されたホルダ12と、バフ13とから構成されている。バフ13上には、約0.2μm〜約1μmの粒子粗さのダイヤモンド、酸化ケイ素またはアルミナなどからなる研磨剤(図示せず)が配置されている。この研磨剤の粒子粗さは、約0.2μm〜約0.5μmの範囲であれば、特に良好に裏面研磨を行うことができる。また、ホルダ12の下面には、図3および図4に示すように、窒化物系半導体レーザ素子構造20が、ワックス14により、ホルダ12と直接接触することのないように間隔を隔てて取り付けられている。これにより、機械研磨に際して、窒化物系半導体レーザ素子構造20が破損するのを防止する。なお、ガラス基板11などに代えて、金属などからなる平坦な研磨盤を用いてもよい。   Thereafter, as shown in FIGS. 3 and 4, the back surface (nitrogen surface) which is the (000-1) surface of the n-type GaN substrate 1 is mechanically polished. As shown in FIG. 3, a mechanical polishing apparatus 30 used in this polishing step includes a glass substrate 11 having a flat surface, a holder 12 that can be moved up and down, and supported so as to be rotatable in the R direction, 13. On the buff 13, an abrasive (not shown) made of diamond, silicon oxide or alumina having a particle roughness of about 0.2 μm to about 1 μm is disposed. If the particle roughness of this abrasive is in the range of about 0.2 μm to about 0.5 μm, the back surface polishing can be performed particularly well. Further, as shown in FIGS. 3 and 4, the nitride-based semiconductor laser device structure 20 is attached to the lower surface of the holder 12 by a wax 14 at an interval so as not to directly contact the holder 12. ing. This prevents the nitride-based semiconductor laser device structure 20 from being damaged during mechanical polishing. Instead of the glass substrate 11 or the like, a flat polishing disk made of metal or the like may be used.

図3に示した機械研磨装置30を用いて、n型GaN基板1の裏面(窒素面)をn型GaN基板1の厚みが約120μm〜約180μmになるまで研磨する。具体的には、ホルダ12の下面に取り付けられた窒化物系半導体レーザ素子構造20のn型GaN基板1の裏面(図4参照)を、研磨剤が配置されているバフ13の上面に、一定の負荷で押圧する。そして、バフ13(図3参照)に水またはオイルを流しながら、ホルダ12をR方向に回転する。このようにして、n型GaN基板1の厚みが約120μm〜約180μmになるまで機械研磨を行う。なお、n型GaN基板1の厚みを、約120μm〜約180μmの範囲に加工するのは、この範囲の厚みであれば、後述する劈開工程を良好に行うことができるためである。   Using the mechanical polishing apparatus 30 shown in FIG. 3, the back surface (nitrogen surface) of the n-type GaN substrate 1 is polished until the thickness of the n-type GaN substrate 1 becomes about 120 μm to about 180 μm. Specifically, the back surface (see FIG. 4) of the n-type GaN substrate 1 of the nitride-based semiconductor laser device structure 20 attached to the lower surface of the holder 12 is fixed on the upper surface of the buff 13 on which the abrasive is disposed. Press with a load of. Then, the holder 12 is rotated in the R direction while flowing water or oil through the buff 13 (see FIG. 3). In this way, mechanical polishing is performed until the thickness of the n-type GaN substrate 1 becomes about 120 μm to about 180 μm. The reason why the thickness of the n-type GaN substrate 1 is processed in the range of about 120 μm to about 180 μm is that the cleavage step described later can be performed satisfactorily within the thickness range.

この後、本実施形態では、反応性イオンエッチング(RIE)法により、n型GaN基板1の裏面(窒素面)を、約20分間エッチングする。このエッチングは、ガス流量、Cl2ガス:10sccm、BCl3ガス:5sccm、エッチング圧力:約3.3Pa、RFパワー:200W(0.63W/cm2)、エッチング温度:常温の条件下で行った。これにより、n型GaN基板1の裏面(窒素面)を約1μmの厚み分だけ除去する。その結果、上記機械研磨に起因して発生した結晶欠陥を含むn型GaN基板1の裏面近傍の領域を除去することができる。また、n型GaN基板1の裏面を、機械研磨のみで加工した場合と比べて、より平坦な鏡面にすることができる。なお、n型GaN基板1の裏面の反射像を目視により良好に確認することができる表面状態を鏡面とする。 Thereafter, in this embodiment, the back surface (nitrogen surface) of the n-type GaN substrate 1 is etched for about 20 minutes by reactive ion etching (RIE). This etching was performed under the conditions of gas flow rate, Cl 2 gas: 10 sccm, BCl 3 gas: 5 sccm, etching pressure: about 3.3 Pa, RF power: 200 W (0.63 W / cm 2 ), etching temperature: room temperature. . Thereby, the back surface (nitrogen surface) of the n-type GaN substrate 1 is removed by a thickness of about 1 μm. As a result, the region in the vicinity of the back surface of the n-type GaN substrate 1 including crystal defects generated due to the mechanical polishing can be removed. In addition, the back surface of the n-type GaN substrate 1 can be made a flatter mirror surface as compared with a case where the back surface is processed only by mechanical polishing. In addition, let the surface state which can confirm the reflected image of the back surface of the n-type GaN board | substrate 1 visually visually be a mirror surface.

ここで、上記したエッチングによる効果を確認するために、エッチング前後におけるn型GaN基板1の裏面の結晶欠陥(転位)密度を、TEM(Transmission Electron Microscope)分析により測定した。その結果、エッチング前には、結晶欠陥密度は、1×1010cm-2以上であったのに対して、エッチング後には、結晶欠陥密度は、1×106cm-2以下にまで減少していることが判明した。また、エッチング後のn型GaN基板1の裏面近傍の電子キャリア濃度を、エレクトロケミカルC−V測定濃度プロファイラーにより測定した。その結果、n型GaN基板1の裏面近傍の電子キャリア濃度は、1.0×1018cm-3以上であった。これにより、RIE法によるエッチングによって、裏面近傍の電子キャリア濃度を、n型GaN基板1の基板キャリア濃度(5×1018cm-3)と同程度にできることがわかった。 Here, in order to confirm the effect of the above-described etching, the crystal defect (dislocation) density on the back surface of the n-type GaN substrate 1 before and after the etching was measured by TEM (Transmission Electron Microscope) analysis. As a result, the crystal defect density was 1 × 10 10 cm −2 or more before etching, whereas the crystal defect density decreased to 1 × 10 6 cm −2 or less after etching. Turned out to be. In addition, the electron carrier concentration in the vicinity of the back surface of the n-type GaN substrate 1 after etching was measured with an electrochemical CV measurement concentration profiler. As a result, the electron carrier concentration in the vicinity of the back surface of the n-type GaN substrate 1 was 1.0 × 10 18 cm −3 or more. As a result, it was found that the electron carrier concentration in the vicinity of the back surface can be made comparable to the substrate carrier concentration (5 × 10 18 cm −3 ) of the n-type GaN substrate 1 by etching by the RIE method.

また、上記したエッチング条件では、エッチング時間とエッチング深さとは比例関係になる。したがって、エッチング時間を調整することにより、エッチング深さを精度よく制御することができる。また、エッチングガスの組成により、エッチングレートおよび表面状態は変化する。図6は、RIE法のエッチングガスを変化させた場合のエッチングレートの変化を示したグラフである。この場合、Cl2ガス流量を10sccmに固定するとともに、BCl3ガス流量を変化させた場合のエッチングレートを測定した。その結果、図6に示すように、Cl2ガスに対するBCl3ガスの流量比が、30%以上70%以下の範囲であれば、エッチングされた面が平坦な鏡面になることが判明した。なお、Cl2ガスに対するBCl3ガスの流量比が、5%未満の場合または85%を越える場合には、エッチングされた面の平坦性が損なわれるとともに、白濁した面となった。 Further, under the above etching conditions, the etching time and the etching depth are in a proportional relationship. Therefore, the etching depth can be accurately controlled by adjusting the etching time. Further, the etching rate and the surface state change depending on the composition of the etching gas. FIG. 6 is a graph showing changes in the etching rate when the etching gas of the RIE method is changed. In this case, the Cl 2 gas flow rate was fixed at 10 sccm, and the etching rate when the BCl 3 gas flow rate was changed was measured. As a result, as shown in FIG. 6, when the flow ratio of BCl 3 gas to Cl 2 gas is in the range of 30% to 70%, the etched surface becomes a flat mirror surface. When the flow rate ratio of BCl 3 gas to Cl 2 gas was less than 5% or more than 85%, the flatness of the etched surface was impaired and the surface became cloudy.

上記のようなエッチング工程を行った後、窒化物系半導体レーザ素子構造20を、室温のHCl溶液(濃度10%)に1分間浸漬することにより塩酸処理を行う。これにより、RIE法によるエッチング時に、n型GaN基板1の裏面に付着した塩素系残留物が除去される。   After performing the etching process as described above, the nitride-based semiconductor laser device structure 20 is immersed in a room temperature HCl solution (concentration 10%) for 1 minute to perform hydrochloric acid treatment. Thereby, at the time of etching by the RIE method, chlorine-based residues attached to the back surface of the n-type GaN substrate 1 are removed.

この後、スパッタリング法または真空蒸着法などを用いて、窒化物系半導体レーザ素子構造20のn型GaN基板1の裏面(窒素面)上に、n型GaN基板1の裏面に近い方から順に、6nmの厚みを有するAl膜と、2nmの厚みを有するSi膜と、10nmの厚みを有するNi膜と、300nmの厚みを有するAu膜とからなるn側電極8を形成する。   Thereafter, using a sputtering method, a vacuum deposition method, or the like, on the back surface (nitrogen surface) of the n-type GaN substrate 1 of the nitride-based semiconductor laser device structure 20, in order from the side closer to the back surface of the n-type GaN substrate 1, An n-side electrode 8 composed of an Al film having a thickness of 6 nm, a Si film having a thickness of 2 nm, a Ni film having a thickness of 10 nm, and an Au film having a thickness of 300 nm is formed.

最後に、劈開により、素子分離および共振器端面の形成を行うことによって、図5に示すような本実施形態による窒化物系半導体レーザ素子が完成される。   Finally, the nitride semiconductor laser device according to the present embodiment as shown in FIG. 5 is completed by cleaving the element and forming the cavity end face.

本実施形態による窒化物系半導体レーザ素子の製造プロセスでは、上記したように、n型GaN基板1の裏面(窒素面)を、RIE法によりエッチングすることによって、研磨工程に起因して発生したn型GaN基板1の裏面近傍の結晶欠陥を含む領域を除去することができる。これにより、結晶欠陥による電子キャリアのトラップなどに起因する電子キャリア濃度の低下を抑制することができる。また、n型GaN基板1の裏面が窒素面である場合には、n型GaN基板1の裏面が酸化されやすいので、その酸化された部分をエッチングにより除去することができる。これらの結果、n型GaN基板1とn側電極8とのコンタクト抵抗を低減することができる。なお、本実施形態に沿って作製された窒化物系半導体レーザ素子におけるn型GaN基板1とn側電極8とのコンタクト抵抗をTLM法(Transmission Line Model)により測定したところ、コンタクト抵抗は、2.0×10-4Ωcm2以下であった。また、n型GaN基板1の裏面(窒素面)上にn側電極8を形成した後、さらに500℃の窒素ガス雰囲気中で10分間の熱処理を行った場合には、コンタクト抵抗はさらに低い1.0×10-5Ωcm2であった。 In the manufacturing process of the nitride-based semiconductor laser device according to the present embodiment, as described above, the back surface (nitrogen surface) of the n-type GaN substrate 1 is etched by the RIE method, thereby generating n generated due to the polishing process. A region including crystal defects in the vicinity of the back surface of the type GaN substrate 1 can be removed. Thereby, the fall of the electron carrier concentration resulting from the trap of the electron carrier by a crystal defect, etc. can be suppressed. Further, when the back surface of the n-type GaN substrate 1 is a nitrogen surface, the back surface of the n-type GaN substrate 1 is easily oxidized, so that the oxidized portion can be removed by etching. As a result, the contact resistance between the n-type GaN substrate 1 and the n-side electrode 8 can be reduced. When the contact resistance between the n-type GaN substrate 1 and the n-side electrode 8 in the nitride-based semiconductor laser device manufactured according to the present embodiment was measured by the TLM method (Transmission Line Model), the contact resistance was 2 0.0 × 10 −4 Ωcm 2 or less. In addition, when the n-side electrode 8 is formed on the back surface (nitrogen surface) of the n-type GaN substrate 1 and then heat-treated for 10 minutes in a nitrogen gas atmosphere at 500 ° C., the contact resistance is even lower. It was 0.0 × 10 −5 Ωcm 2 .

また、本実施形態による窒化物系半導体レーザ素子の製造プロセスでは、上記したように、n型GaN基板1の裏面を、RIE法によりエッチングすることによって、機械研磨の場合に比べて、n型GaN基板1の裏面の平坦性をより向上させることができる。これにより、n型GaN基板1の裏面上に形成されたn側電極8の平坦性を向上させることができる。その結果、窒化物系半導体レーザ素子をジャンクションダウンで取り付ける構造の場合には、n側電極8に対するワイヤボンディングのボンディング特性を向上させることができる。また、n側電極8を放熱基台(サブマウント)に取り付ける構造の場合には、n側電極8と放熱基台との密着性を向上させることができるので、良好な放熱特性を得ることができる。   In the manufacturing process of the nitride-based semiconductor laser device according to the present embodiment, as described above, the back surface of the n-type GaN substrate 1 is etched by the RIE method, so that the n-type GaN is compared with the case of mechanical polishing. The flatness of the back surface of the substrate 1 can be further improved. Thereby, the flatness of the n-side electrode 8 formed on the back surface of the n-type GaN substrate 1 can be improved. As a result, in the case of a structure in which the nitride-based semiconductor laser element is attached by junction down, the bonding characteristics of wire bonding to the n-side electrode 8 can be improved. Further, in the case of the structure in which the n-side electrode 8 is attached to the heat dissipation base (submount), the adhesion between the n-side electrode 8 and the heat dissipation base can be improved, so that good heat dissipation characteristics can be obtained. it can.

次に、RIE法を用いてn型GaN基板の裏面(窒素面)のエッチングを行う本発明の効果をより詳細に確認するため、以下の表1に示すような実験を行った。

Figure 0004078380
Next, in order to confirm the effect of the present invention in which the back surface (nitrogen surface) of the n-type GaN substrate is etched using the RIE method, an experiment as shown in Table 1 below was performed.
Figure 0004078380

上記表1を参照して、ウルツ鉱構造を有するn型GaN基板からなる試料1〜7に、種々の窒素面(裏面)処理を施した後、n型GaN基板の裏面近傍の電子キャリア濃度を、エレクトロケミカルC−V測定濃度プロファイラーにより測定した。また、電子キャリア濃度測定後の試料1〜7のn型GaN基板の裏面上に、n側電極を形成した後、n型GaN基板とn側電極とのコンタクト抵抗を、TLM法により測定した。   Referring to Table 1 above, samples 1 to 7 made of an n-type GaN substrate having a wurtzite structure were subjected to various nitrogen surface (back surface) treatments, and then the electron carrier concentration in the vicinity of the back surface of the n-type GaN substrate was determined. , Measured by an electrochemical CV measurement concentration profiler. Moreover, after forming the n-side electrode on the back surface of the n-type GaN substrate of Samples 1 to 7 after the electron carrier concentration measurement, the contact resistance between the n-type GaN substrate and the n-side electrode was measured by the TLM method.

なお、試料1〜7のn側電極は、上記した一実施形態と同様、Al膜とSi膜とNi膜とAu膜とにより形成した。また、基板研磨、RIE法によるエッチングおよび塩酸処理のその他の条件は、上記した一実施形態と同様である。なお、試料6は、上記した一実施形態の製造プロセスを用いて作製した。   The n-side electrodes of Samples 1 to 7 were formed of an Al film, a Si film, a Ni film, and an Au film, as in the above-described embodiment. The other conditions for substrate polishing, RIE etching, and hydrochloric acid treatment are the same as in the above-described embodiment. Sample 6 was produced using the manufacturing process of the above-described embodiment.

結果としては、RIE法を用いてn型GaN基板の裏面のエッチングを行った本発明による試料3〜7では、従来と同様の方法により作製された試料1よりもコンタクト抵抗が大きく低減された。具体的には、試料1のコンタクト抵抗は、20Ωcm2であったのに対して、本発明による試料3〜7のコンタクト抵抗は、0.05Ωcm2以下であった。これは以下の理由によると考えられる。すなわち、本発明による試料3〜7では、機械研磨により発生した結晶欠陥を含むn型GaN基板の裏面近傍の領域が、RIE法によるエッチングにより除去されたと考えられる。このため、n型GaN基板の裏面近傍における結晶欠陥に起因して電子キャリア濃度が低下するのが抑制されたためであると考えられる。 As a result, in the samples 3 to 7 according to the present invention in which the back surface of the n-type GaN substrate was etched using the RIE method, the contact resistance was greatly reduced as compared with the sample 1 manufactured by the same method as the conventional method. Specifically, the contact resistance of sample 1 was 20 Ωcm 2 , whereas the contact resistance of samples 3 to 7 according to the present invention was 0.05 Ωcm 2 or less. This is considered to be due to the following reason. That is, in Samples 3 to 7 according to the present invention, it is considered that the region in the vicinity of the back surface of the n-type GaN substrate containing crystal defects generated by mechanical polishing was removed by etching by the RIE method. For this reason, it is considered that the decrease in the electron carrier concentration due to crystal defects in the vicinity of the back surface of the n-type GaN substrate is suppressed.

また、本発明による試料3〜7では、従来例に対応する試料1よりも、n型GaN基板の裏面近傍の電子キャリア濃度が高かった。具体的には、従来例に対応する試料1の電子キャリア濃度は、2.0×1016cm-3であったのに対して、本発明による試料3〜7の電子キャリア濃度は、1.0×1017cm-3以上であった。 In Samples 3 to 7 according to the present invention, the electron carrier concentration in the vicinity of the back surface of the n-type GaN substrate was higher than that of Sample 1 corresponding to the conventional example. Specifically, the electron carrier concentration of Sample 1 corresponding to the conventional example was 2.0 × 10 16 cm −3 , whereas the electron carrier concentration of Samples 3 to 7 according to the present invention was 1. It was 0 × 10 17 cm −3 or more.

また、Cl2ガスを用いたRIE法により、n型GaN基板の裏面を約1μmの厚み分だけ除去した試料4では、Cl2ガスを用いたRIE法により、n型GaN基板の裏面を約0.5μmの厚み分だけ除去した試料3よりも、低いコンタクト抵抗を得ることができた。これは、約0.5μmの厚み分の除去では、機械研磨により発生した結晶欠陥を含むn型GaN基板の裏面近傍の領域を十分に除去することができなかったためであると考えられる。これらの試料において、n型GaN基板の裏面の結晶欠陥(転位)密度を、TEM分析により測定したところ、試料3の結晶欠陥密度は1×109cm-2であった。一方、試料4では、観察した視野中に結晶欠陥は観察されず、結晶欠陥密度は1×106cm-2以下であった。したがって、RIE法によりn型GaN基板の裏面を約1.0μm以上の厚み分除去するのが好ましい。 Further, by the RIE method using a Cl 2 gas, in Sample 4 was removed back surface of the n-type GaN substrate by about 1μm thickness of the, by the RIE method using a Cl 2 gas, about the rear surface of the n-type GaN substrate 0 A contact resistance lower than that of the sample 3 removed by a thickness of 0.5 μm could be obtained. This is presumably because the removal of the thickness of about 0.5 μm did not sufficiently remove the region near the back surface of the n-type GaN substrate containing crystal defects generated by mechanical polishing. In these samples, when the crystal defect (dislocation) density on the back surface of the n-type GaN substrate was measured by TEM analysis, the crystal defect density of Sample 3 was 1 × 10 9 cm −2 . On the other hand, in sample 4, no crystal defects were observed in the observed visual field, and the crystal defect density was 1 × 10 6 cm −2 or less. Therefore, it is preferable to remove the back surface of the n-type GaN substrate by a thickness of about 1.0 μm or more by the RIE method.

また、Cl2ガスおよびBCl3ガスを用いたRIE法によるエッチングを行った試料5では、Cl2ガスのみを用いたRIE法によってn型GaN基板の裏面のエッチングを行った試料4に比べて、さらに低いコンタクト抵抗を得ることができた。 Further, in the sample 5 etched by the RIE method using Cl 2 gas and BCl 3 gas, as compared with the sample 4 in which the back surface of the n-type GaN substrate was etched by the RIE method using only Cl 2 gas, Furthermore, a low contact resistance could be obtained.

また、Cl2ガスおよびBCl3ガスを用いたRIE法によりn型GaN基板の裏面をエッチングした後、塩酸処理を行った上記一実施形態に対応する試料6、および、さらに500℃の窒素雰囲気中で10分間の熱処理を行った試料7では、塩酸処理および熱処理を行わない試料5に比べて、さらに低いコンタクト抵抗を得ることができた。また、試料6と試料7との比較から、熱処理によって、n型GaN基板とn側電極とのコンタクト抵抗をさらに減少することができるとともに、n型GaN基板の裏面近傍の電子キャリア濃度をさらに向上させることが判明した。 Further, after etching the back surface of the n-type GaN substrate by RIE using Cl 2 gas and BCl 3 gas, the sample 6 corresponding to the above-described embodiment in which hydrochloric acid treatment was performed, and further in a nitrogen atmosphere at 500 ° C. Sample 7 that was subjected to heat treatment for 10 minutes at a lower contact resistance than Sample 5 that was not subjected to hydrochloric acid treatment and heat treatment could be obtained. In addition, the comparison between sample 6 and sample 7 can further reduce the contact resistance between the n-type GaN substrate and the n-side electrode by heat treatment, and further improve the electron carrier concentration in the vicinity of the back surface of the n-type GaN substrate. Turned out to be.

なお、RIE法によるエッチングを行わずに、10%の濃度のHCl溶液による約10分間の浸漬処理(塩酸処理)を行った試料2では、塩酸処理を行わなかった従来例に対応する試料1よりも、低いコンタクト抵抗を得ることができた。具体的には、試料1のコンタクト抵抗は、20Ωcm2であったのに対して、試料2のコンタクト抵抗は、0.1Ωcm2であった。これは、塩酸処理により、n型GaN基板の裏面が清浄化されたためであると考えられる。 Note that, in the sample 2 that was subjected to the immersion treatment (hydrochloric acid treatment) for about 10 minutes with the HCl solution of 10% concentration without performing the etching by the RIE method, compared with the sample 1 corresponding to the conventional example in which the hydrochloric acid treatment was not performed. In addition, a low contact resistance could be obtained. Specifically, the contact resistance of sample 1 was 20 Ωcm 2 , while the contact resistance of sample 2 was 0.1 Ωcm 2 . This is considered to be because the back surface of the n-type GaN substrate was cleaned by the hydrochloric acid treatment.

また、n型GaN基板のn型ドーパントとして酸素を用いた場合、コンタクト抵抗を低くするために酸素のドーピング量を多くしてキャリア濃度を上げると結晶性が低下する。しかし、本発明により、上記一実施形態によるn型GaN基板1の酸素ドープ量(基板キャリア濃度:5×1018cm-3)においてもコンタクト抵抗を低くすることができる。 Further, when oxygen is used as the n-type dopant of the n-type GaN substrate, the crystallinity is lowered when the carrier concentration is increased by increasing the oxygen doping amount in order to reduce the contact resistance. However, according to the present invention, the contact resistance can be lowered even in the oxygen doping amount (substrate carrier concentration: 5 × 10 18 cm −3 ) of the n-type GaN substrate 1 according to the embodiment.

なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

たとえば、上記一実施形態では、n型GaN基板1を用いて窒化物系半導体レーザ素子を形成した場合について説明したが、本発明はこれに限らず、ウルツ鉱構造を有するn型の窒化物系半導体基板または窒化物系半導体層を用いた場合であってもよい。たとえば、BN(窒化ホウ素)、AlN(窒化アルミニウム)、InN(窒化インジウム)またはTlN(窒化タリウム)などからなる窒化物系半導体基板または窒化物系半導体層が考えられる。また、これらの混晶からなる窒化物系半導体基板または窒化物系半導体層であってもよい。   For example, in the above-described embodiment, the case where the nitride semiconductor laser element is formed using the n-type GaN substrate 1 has been described. However, the present invention is not limited thereto, and the n-type nitride system having a wurtzite structure is used. A semiconductor substrate or a nitride semiconductor layer may be used. For example, a nitride semiconductor substrate or a nitride semiconductor layer made of BN (boron nitride), AlN (aluminum nitride), InN (indium nitride), TlN (thallium nitride), or the like can be considered. Further, it may be a nitride-based semiconductor substrate or a nitride-based semiconductor layer made of these mixed crystals.

また、上記一実施形態では、n型GaN基板1の裏面(窒素面)をRIE法によりエッチングしたが、本発明はこれに限らず、他のドライエッチング(反応性エッチング)を用いてもよい。たとえば、反応性イオンビームエッチングや、ラジカルエッチングや、プラズマエッチングを用いてもよい。   In the above embodiment, the back surface (nitrogen surface) of the n-type GaN substrate 1 is etched by the RIE method. However, the present invention is not limited to this, and other dry etching (reactive etching) may be used. For example, reactive ion beam etching, radical etching, or plasma etching may be used.

また、上記一実施形態では、n型GaN基板1の裏面(窒素面)を、Cl2ガスとBCl3ガスとを用いて、RIE法によりエッチングを行ったが、本発明はこれに限らず、他のエッチングガスを用いてもよい。たとえば、Cl2とSiCl4との混合ガスやCl2とCF4との混合ガスやCl2ガスを用いてもよい。 In the above embodiment, the back surface (nitrogen surface) of the n-type GaN substrate 1 is etched by the RIE method using Cl 2 gas and BCl 3 gas. However, the present invention is not limited to this. Other etching gases may be used. For example, a mixed gas of Cl 2 and SiCl 4 , a mixed gas of Cl 2 and CF 4 , or Cl 2 gas may be used.

また、上記一実施形態では、RIE法によるエッチング後、窒化物系半導体レーザ素子構造20をHCl溶液に浸漬(塩酸処理)することにより、n型GaN基板1の裏面に付着した塩素系残留物を除去したが、本発明はこれに限らず、塩素、フッ素、臭素、ヨウ素、イオウおよびアンモニアの少なくとも1つを含む溶液に浸漬してもよい。   In the above embodiment, after etching by the RIE method, the nitride-based semiconductor laser device structure 20 is immersed in an HCl solution (hydrochloric acid treatment), thereby removing chlorine-based residues attached to the back surface of the n-type GaN substrate 1. Although it removed, this invention is not restricted to this, You may immerse in the solution containing at least 1 of chlorine, a fluorine, a bromine, an iodine, sulfur, and ammonia.

また、上記一実施形態では、n型GaN基板1の上面(Ga面)上に各層2〜6を成長した後、n型GaN基板1の裏面(窒素面)を機械研磨した場合について説明したが、本発明はこれに限らず、n型GaN基板1の裏面(窒素面)をあらかじめ所定の厚みに機械研磨した後、n型GaN基板1の上面(Ga面)上に各層2〜6を形成する場合であってもよい。また、n型GaN基板1の窒素面の機械研磨を行わない場合であってもよい。   In the above embodiment, the case where the layers 2 to 6 are grown on the upper surface (Ga surface) of the n-type GaN substrate 1 and then the back surface (nitrogen surface) of the n-type GaN substrate 1 is mechanically polished has been described. The present invention is not limited to this, and after mechanically polishing the back surface (nitrogen surface) of the n-type GaN substrate 1 to a predetermined thickness, the layers 2 to 6 are formed on the upper surface (Ga surface) of the n-type GaN substrate 1. It may be the case. Moreover, the case where the mechanical polishing of the nitrogen surface of the n-type GaN substrate 1 is not performed may be used.

また、上記一実施形態では、各層2〜6を形成する際のn型ドーパントおよびp型ドーパントとして、それぞれ、SiおよびMgを用いたが、本発明はこれに限らず、他のn型またはp型のドーパントを用いてもよい。たとえば、n型ドーパントして、SeやGeなどを用いてもよい。また、p型ドーパントして、BeやZnなどを用いてもよい。また、上記一実施形態では、常圧MOCVD法により、n型GaN基板1上に各層2〜6を形成したが、本発明はこれに限らず、他の成長法により、各層2〜6を形成してもよい。たとえば、減圧MOCVD法により、各層2〜6を形成してもよい。   In the above embodiment, Si and Mg are used as the n-type dopant and the p-type dopant in forming each of the layers 2 to 6, respectively. However, the present invention is not limited to this, and other n-type or p-type dopants are used. A type of dopant may be used. For example, Se or Ge may be used as the n-type dopant. Further, Be or Zn may be used as the p-type dopant. In the above embodiment, the layers 2 to 6 are formed on the n-type GaN substrate 1 by atmospheric pressure MOCVD. However, the present invention is not limited to this, and the layers 2 to 6 are formed by other growth methods. May be. For example, the layers 2 to 6 may be formed by a low pressure MOCVD method.

また、上記一実施形態では、n型GaN基板1上に、n型バッファ層2を形成した場合について説明したが、本発明はこれに限らず、n型バッファ層2を形成しない場合であってもよい。この場合、各層3〜6の結晶性は若干低下するが、製造プロセスを簡略化することができる。   In the above embodiment, the case where the n-type buffer layer 2 is formed on the n-type GaN substrate 1 has been described. However, the present invention is not limited to this, and the n-type buffer layer 2 is not formed. Also good. In this case, the crystallinity of each of the layers 3 to 6 is slightly lowered, but the manufacturing process can be simplified.

また、上記一実施形態では、n側電極8材料としてAl/Si/Ni/Au膜を用いたが、本発明はこれに限らず、10nmの厚みを有するTi膜と500nmの厚みを有するAl膜とからなるn側電極、6nmの厚みを有するAl膜と10nmの厚みを有するNi膜と300nmの厚みを有するAu膜とからなるn側電極、または、10nmの厚みを有するAlSi膜と300nmの厚みを有するZn膜と100nmの厚みを有するAu膜とからなるn側電極などのAlを含む他の電極構造を用いてもよい。   In the above embodiment, the Al / Si / Ni / Au film is used as the n-side electrode 8 material. However, the present invention is not limited to this, and a Ti film having a thickness of 10 nm and an Al film having a thickness of 500 nm. An n-side electrode composed of an Al film having a thickness of 6 nm, an Ni film having a thickness of 10 nm and an Au film having a thickness of 300 nm, or an AlSi film having a thickness of 10 nm and a thickness of 300 nm Other electrode structures containing Al, such as an n-side electrode made of a Zn film having a thickness of 100 nm and an Au film having a thickness of 100 nm, may be used.

また、上記一実施形態では、電流狭窄構造または横方向光閉じ込め構造として、リッジ構造を用いた場合について説明したが、本発明はこれに限らず、高抵抗のブロック層またはn型のブロック層を用いた埋め込み構造により電流狭窄を行ってもよい。また、イオン注入法などにより、電流狭窄層または横方向光閉じ込め構造としての光吸収層を形成してもよい。   In the above embodiment, the case where the ridge structure is used as the current confinement structure or the lateral light confinement structure has been described. However, the present invention is not limited to this, and a high-resistance block layer or an n-type block layer is used. Current confinement may be performed by the buried structure used. Further, a current confinement layer or a light absorption layer as a lateral light confinement structure may be formed by ion implantation or the like.

また、上記一実施形態では、本発明を窒化物系半導体レーザ素子に適用する場合について説明したが、本発明はこれに限らず、ウルツ鉱構造を有するn型の窒化物系半導体層または窒化物系半導体基板を用いた半導体素子であればよい。たとえば、表面の平坦性が要求されるMESFET(Metal Semiconductor Field Effect Transistor)、HEMT(High Electron Mobility Transistor)、発光ダイオード素子(LED)または面発光レーザ素子(VCSEL(Vertical Cavity Surface Emitting Laser))などに本発明を適用してもよい。   In the above embodiment, the case where the present invention is applied to a nitride-based semiconductor laser device has been described. However, the present invention is not limited to this, and an n-type nitride-based semiconductor layer or nitride having a wurtzite structure. Any semiconductor element using a semiconductor substrate may be used. For example, MESFET (Metal Semiconductor Field Effect Transistor), HEMT (High Electron Mobility Transistor), light emitting diode element (LED), or surface emitting laser element (VCSEL (VerticalErritSicC) is required for surface flatness. The present invention may be applied.

また、上記一実施形態では、所定の厚みを有するp側電極7およびn側電極8を用いたが、本発明はこれに限らず、他の厚みを有する電極であってもよい。たとえば、電極の各層の厚みを薄くして、電極が透光性を有するように形成することによって、面発光レーザ素子や発光ダイオード素子として用いてもよい。特に、n側の電極は透光性を有するような薄い厚みに形成しても、本発明により、n側電極のコンタクト抵抗を十分に低くすることができる。   In the above-described embodiment, the p-side electrode 7 and the n-side electrode 8 having a predetermined thickness are used. However, the present invention is not limited to this, and electrodes having other thicknesses may be used. For example, the thickness of each layer of the electrode may be reduced so that the electrode has translucency, so that it may be used as a surface emitting laser element or a light emitting diode element. In particular, even if the n-side electrode is formed to have a light-transmitting thickness, the contact resistance of the n-side electrode can be sufficiently reduced according to the present invention.

また、上記一実施形態では、n型GaN基板1の裏面(窒素面)を、RIE法によりドライエッチングを行ったが、本発明はこれに限らず、n型GaN基板1の裏面(窒素面)をウェットエッチングするようにしてもよい。n型GaN基板1の裏面の窒素面をウェットエッチングする場合には、ウェットエッチング液として、王水、KOHやK228などを用いる。たとえば、0.1Molの濃度のKOHを用いてn型GaN基板1の裏面の窒素面を室温でウェットエッチングすればよい。なお、この場合、約120℃に昇温すれば、室温の場合に比べて、エッチングレートを約10倍にすることができる。 In the above embodiment, the back surface (nitrogen surface) of the n-type GaN substrate 1 is dry-etched by the RIE method. However, the present invention is not limited to this, and the back surface (nitrogen surface) of the n-type GaN substrate 1. May be wet-etched. When the nitrogen surface on the back surface of the n-type GaN substrate 1 is wet-etched, aqua regia, KOH, K 2 S 2 O 8 or the like is used as a wet etchant. For example, the nitrogen surface on the back surface of the n-type GaN substrate 1 may be wet etched at room temperature using KOH having a concentration of 0.1 mol. In this case, if the temperature is raised to about 120 ° C., the etching rate can be increased about 10 times compared to the case of room temperature.

また、上記一実施形態では、n型GaN基板1の窒素面からなる裏面を、RIE法によりドライエッチングする場合について説明したが、本発明はこれに限らず、n型GaN基板1の裏面がGa面からなる場合に、そのn型GaN基板1のGa面からなる裏面をウェットエッチングするようにしてもよい。n型GaN基板1の裏面のGa面をウェットエッチングする場合には、ウェットエッチング液として、王水、KOHやK228などを用いる。たとえば、0.1Molの濃度のKOHを用いて365nmの水銀ランプを用いて、室温でn型GaN基板1の裏面のGa面をウェットエッチングすればよい。なお、この場合、約120℃に昇温すれば、室温の場合に比べて、エッチングレートを約10倍にすることができる。 In the above-described embodiment, the case where the back surface made of the nitrogen surface of the n-type GaN substrate 1 is dry-etched by the RIE method has been described. However, the present invention is not limited thereto, and the back surface of the n-type GaN substrate 1 is made of Ga. In the case of a surface, the back surface made of the Ga surface of the n-type GaN substrate 1 may be wet-etched. When the Ga surface on the back surface of the n-type GaN substrate 1 is wet-etched, aqua regia, KOH, K 2 S 2 O 8 or the like is used as a wet etching solution. For example, the Ga surface on the back surface of the n-type GaN substrate 1 may be wet etched at room temperature using a 365 nm mercury lamp using KOH having a concentration of 0.1 mol. In this case, if the temperature is raised to about 120 ° C., the etching rate can be increased about 10 times compared to the case of room temperature.

また、上記一実施形態では、裏面が全て窒素面であるn型GaNジャスト基板を用いる場合について説明したが、本発明はこれに限らず、n型GaN基板の裏面に少しGa面が存在するn型GaNオフ基板を用いてもよい。このn型GaNオフ基板の場合にも、裏面は本発明の窒素面に含まれる。   In the above-described embodiment, the case where the n-type GaN just substrate whose back surface is the nitrogen surface is used has been described. However, the present invention is not limited to this, and the n-type GaN substrate has a slight Ga surface on the back surface. A type GaN off-substrate may be used. Also in the case of this n-type GaN off substrate, the back surface is included in the nitrogen surface of the present invention.

本発明の一実施形態による窒化物系半導体レーザ素子の製造プロセスを説明するための断面図である。It is sectional drawing for demonstrating the manufacturing process of the nitride type semiconductor laser element by one Embodiment of this invention. 本発明の一実施形態による窒化物系半導体レーザ素子の製造プロセスを説明するための断面図である。It is sectional drawing for demonstrating the manufacturing process of the nitride type semiconductor laser element by one Embodiment of this invention. 本発明の一実施形態による窒化物系半導体レ−ザ素子の製造プロセスを説明するための断面図である。It is sectional drawing for demonstrating the manufacturing process of the nitride type semiconductor laser element by one Embodiment of this invention. 図3に示したプロセスにおける拡大断面図である。It is an expanded sectional view in the process shown in FIG. 本発明の一実施形態による窒化物系半導体レーザ素子の製造プロセスを説明するための斜視図である。It is a perspective view for demonstrating the manufacturing process of the nitride type semiconductor laser element by one Embodiment of this invention. RIE法のエッチングガスを変化させた場合のエッチングレートの変化を示したグラフである。It is the graph which showed the change of the etching rate at the time of changing the etching gas of RIE method. 従来の窒化物系半導体レーザ素子を示した断面図である。It is sectional drawing which showed the conventional nitride semiconductor laser element.

符号の説明Explanation of symbols

1 n型GaN基板(第1半導体層)
8 n側電極
1 n-type GaN substrate (first semiconductor layer)
8 n-side electrode

Claims (8)

型の窒化物系半導体層および窒化物系半導体基板のいずれかからなる第1半導体層の裏面を研磨する工程と、
前記研磨する工程により発生した転位を含む前記第1半導体層の裏面近傍の領域をエッチング除去して前記第1半導体層の裏面の転位密度を1×10 cm −2 以下とする工程と、
その後、前記エッチング除去された第1半導体層の裏面上に、n側電極を形成する工程とを備えることにより、前記第1半導体層と前記n側電極とのコンタクト抵抗を0.05Ωcm以下とする、窒化物系半導体素子の製造方法。
polishing the back surface of the first semiconductor layer made of either the n- type nitride-based semiconductor layer or the nitride-based semiconductor substrate ;
Etching and removing a region near the back surface of the first semiconductor layer including dislocations generated by the polishing step so that the dislocation density on the back surface of the first semiconductor layer is 1 × 10 9 cm −2 or less ;
Then, on the back surface of the first semiconductor layer that is the etching is removed, by providing a step of forming an n-side electrode, 0.05Omucm 2 below the contact resistance between the n-side electrode and the first semiconductor layer and A method for manufacturing a nitride semiconductor device.
前記第1半導体層の裏面は、前記第1半導体層の窒素面を含む、請求項1に記載の窒化物系半導体素子の製造方法。   The method for manufacturing a nitride-based semiconductor element according to claim 1, wherein a back surface of the first semiconductor layer includes a nitrogen surface of the first semiconductor layer. 前記エッチングする工程は、前記第1半導体層の裏面を反応性エッチングによりエッチングする工程を含む、請求項1または2に記載の窒化物系半導体素子の製造方法。   The method of manufacturing a nitride semiconductor device according to claim 1, wherein the etching step includes a step of etching the back surface of the first semiconductor layer by reactive etching. 前記反応性エッチングによりエッチングする工程は、
ClガスとBClガスとを用いて反応性エッチングによりエッチングする工程を含む、請求項3に記載の窒化物系半導体素子の製造方法。
The step of etching by the reactive etching includes:
The method for manufacturing a nitride-based semiconductor device according to claim 3, comprising a step of etching by reactive etching using Cl 2 gas and BCl 3 gas.
前記反応性エッチングによりエッチングする工程におけるClガスに対するBClガスの流量比は、30%以上70%以下である、請求項4に記載の窒化物系半導体素子の製造方法。 The method for manufacturing a nitride semiconductor device according to claim 4, wherein a flow rate ratio of BCl 3 gas to Cl 2 gas in the step of etching by reactive etching is 30% or more and 70% or less. 前記n側電極を形成する工程に先立って、前記エッチングされた第1半導体層の窒素面を、塩素、フッ素、臭素、ヨウ素、イオウおよびアンモニウムの少なくとも1つを含む溶液に浸す工程をさらに備える、請求項1〜5のいずれか1項に記載の窒化物系半導体素子の製造方法。   Prior to the step of forming the n-side electrode, the method further comprises the step of immersing the nitrogen surface of the etched first semiconductor layer in a solution containing at least one of chlorine, fluorine, bromine, iodine, sulfur and ammonium. The method for manufacturing a nitride-based semiconductor element according to claim 1. 前記エッチングする工程は、前記第1半導体層の裏面をウェットエッチングによりエッチングする工程を含む、請求項1または2に記載の窒化物系半導体素子の製造方法。   The method of manufacturing a nitride semiconductor device according to claim 1, wherein the etching step includes a step of etching the back surface of the first semiconductor layer by wet etching. 前記ウェットエッチングによりエッチングする工程は、王水、KOHおよびKからなるグループから選択される少なくとも1つのエッチング液を用いてエッチングする工程を含む、請求項に記載の窒化物系半導体素子の製造方法。 The nitride system according to claim 7 , wherein the step of etching by wet etching includes a step of etching using at least one etchant selected from the group consisting of aqua regia, KOH and K 2 S 2 O 8. A method for manufacturing a semiconductor device.
JP2006348164A 2002-03-26 2006-12-25 Nitride semiconductor device manufacturing method Expired - Lifetime JP4078380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006348164A JP4078380B2 (en) 2002-03-26 2006-12-25 Nitride semiconductor device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002085085 2002-03-26
JP2006348164A JP4078380B2 (en) 2002-03-26 2006-12-25 Nitride semiconductor device manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003074966A Division JP3933592B2 (en) 2002-03-26 2003-03-19 Nitride semiconductor device

Publications (2)

Publication Number Publication Date
JP2007081446A JP2007081446A (en) 2007-03-29
JP4078380B2 true JP4078380B2 (en) 2008-04-23

Family

ID=37941342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348164A Expired - Lifetime JP4078380B2 (en) 2002-03-26 2006-12-25 Nitride semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP4078380B2 (en)

Also Published As

Publication number Publication date
JP2007081446A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP5025540B2 (en) Nitride semiconductor device
JP3933592B2 (en) Nitride semiconductor device
US9786810B2 (en) Method of fabricating optical devices using laser treatment
JP3662806B2 (en) Method for manufacturing nitride-based semiconductor layer
JP4901477B2 (en) Nitride compound semiconductor device and manufacturing method thereof
JP2002185085A (en) Nitride-based semiconductor laser element and method of dividing chip
JP3920910B2 (en) Nitride-based semiconductor device and manufacturing method thereof
KR20110110846A (en) Photoelectrochemical etching for laser facets
JP2007273844A (en) Semiconductor device
WO2009087855A1 (en) Semiconductor device manufacturing method
JP4148976B2 (en) Nitride semiconductor device manufacturing method
JP2007116192A (en) Nitride-based semiconductor device
JP4078380B2 (en) Nitride semiconductor device manufacturing method
JP3896149B2 (en) Nitride-based semiconductor device and manufacturing method thereof
JP4017654B2 (en) Nitride semiconductor devices
JP4171511B2 (en) Nitride semiconductor device manufacturing method
JP2004158500A (en) Nitride semiconductor, nitride semiconductor substrate, nitride semiconductor device, and method of manufacturing them
JP2002026438A (en) Nitride-based semiconductor element and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

TRDD Decision of grant or rejection written
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R151 Written notification of patent or utility model registration

Ref document number: 4078380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term