JP4078182B2 - Method for producing colored particles used for toner for electrostatic charge development and toner - Google Patents

Method for producing colored particles used for toner for electrostatic charge development and toner Download PDF

Info

Publication number
JP4078182B2
JP4078182B2 JP2002306143A JP2002306143A JP4078182B2 JP 4078182 B2 JP4078182 B2 JP 4078182B2 JP 2002306143 A JP2002306143 A JP 2002306143A JP 2002306143 A JP2002306143 A JP 2002306143A JP 4078182 B2 JP4078182 B2 JP 4078182B2
Authority
JP
Japan
Prior art keywords
toner
melt
fluid
colored particles
supercritical fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002306143A
Other languages
Japanese (ja)
Other versions
JP2004144778A (en
Inventor
康博 芝井
克己 足立
真一 仲野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002306143A priority Critical patent/JP4078182B2/en
Publication of JP2004144778A publication Critical patent/JP2004144778A/en
Application granted granted Critical
Publication of JP4078182B2 publication Critical patent/JP4078182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真プロセスやイオンフロー方式により、像担持体上に形成された静電潜像を現像するためのトナーに用いられる着色粒子及びその製造方法と製造装置に関わる。
【0002】
【従来の技術】
電子写真に用いられるトナーは、昨今の高精細画像及び低消費量化の要求を満たすべく、小粒径や高顔料濃度化の方向にあり、一般に平均粒径が5〜15μm及び顔料濃度が5〜10重量%程度の微粒子として得られる。
【0003】
このような微粒子の製造方法としては、樹脂や顔料等を溶融混練した後、機械的に粉砕するいわゆる溶融混練粉砕法が一般的である。溶融混練粉砕法は溶融混練時に顔料に対し高シュアを付与できるため顔料の分散性は高めることができるが、機械的な粉砕のため、小粒径になる程所望のトナーを得るまでの設備工程が繁雑で、コスト面で割高になるばかりでなく、得られた粒子の形状も不定形で流動性や保存性に劣る、顔料やワックスが表面に出てくるため帯電安定性や保存性が劣る、などの欠点を有していた。
【0004】
一方、近年懸濁重合や乳化重合凝集法などの重合法と呼ばれるトナーの製造方法が提案されている。重合法は小粒子径化や真球から異形まで製造できるため保存性、また、水中で作製するため、疎水性の顔料やワックスを内包できるため帯電安定性や保存性の点で有利な製法である。しかしながら、造粒時に重合を伴うため樹脂がアクリル系樹脂に限定さたり、親水性の乳化剤や分散安定剤を使用するために、トナーの環境依存性や製造時の廃水処理の問題等があった。
【0005】
また、造粒時に重合を伴わない方法として液中乾燥法がある。液中乾燥法で作製されたトナーは重合法では作製できないポリエステル系の樹脂でも作製可能であるが、重合法と同じ排水処理の問題や樹脂を溶解するための溶剤を用いることによる環境への悪影響や操作が煩雑などの問題があった。
【0006】
本発明の目的は、上述した問題を解決する静電荷現像用トナーに用いられる着色粒子の製造方法を提供することにある。
【0007】
一方、特許文献1には超臨界流体を用いて微粒子を作製する方法を提案している。この方法はあくまでトナーに外添される微粒子を製造する方法であって、顔料を複合化させたトナーの製法については、何ら記載されていない。
【0008】
本発明者らは、樹脂と顔料を超臨界流体中に配合後、減圧することにより樹脂が析出し顔料を内包化したトナーが製造できることを見出し、特許文献2に新規なトナー製法として提案している。
【0009】
超臨界流体は常圧では気体であるために乾燥工程や排水処理も不用である。また、超臨界流体に炭酸ガスを用いれば有害な有機溶剤を用いることがないため、環境にも優しい製法である。更に、造粒時に重合を伴わないためポリエステル系の樹脂等でも製造可能である。また、得られる粒子の形状も真球形から略球形であるため、保存性の面でも有利であるなど、従来のトナーの問題点を解決することができる製法である。
【0010】
【発明が解決しようとする課題】
しかしながら、この超臨界流体を用いる方法では、顔料と樹脂が同時に析出するため、分散性を維持し造粒するには限界があった。特に、従来よりも高い量の顔料を複合化させようと思うと顔料の分散性が維持できないという問題があった。
顔料の濃度及び分散性はトナー消費量や光学特性等に悪影響を及ぼすため、早期の解決が望まれていた。
【0011】
【特許文献1】
特開平10−133417号公報
【特許文献2】
特開2001−312098号公報
【0012】
【課題を解決するための手段】
本発明者らは、鋭意研究した結果、超臨界流体あるいは亜臨界流体を利用するトナーに用いられる着色粒子製造方法及び製造装置において特定の工程を採用することによって上記課題が解決されることを見出し、本発明に至った。
【0013】
本発明の着色粒子の製造方法は、以上の課題を解決するために、少なくとも結着樹脂と着色剤を予め溶融混練し、次にその溶融混練物を超臨界流体あるいは亜臨界流体中加熱攪拌して溶融混練物を分散させ、その後減圧することで、超臨界流体あるいは亜臨界流体中からトナーを取り出すことを特徴とする。
【0014】
予め樹脂と顔料を溶融混練することで、顔料の分散性を高くすることができる。この溶融混練物を超臨界流体中で分散することで小粒子径、かつ分布の狭いトナーを得ることができる。超臨界流体は減圧することで気体に変化するため洗浄・乾燥工程を必要としないため、簡便な方法でトナーを製造することができる。
【0015】
さらに、本発明の着色粒子の製造方法においては、少なくとも結着樹脂と着色剤を予め溶融混練し、次にその溶融混練物を超臨界流体あるいは亜臨界流体中で加熱攪拌して溶融混練物を分散後、減圧することで、超臨界流体あるいは亜臨界流体中からトナーを取り出す際、超臨界流体あるいは亜臨界流体中に溶解する樹脂として、分散安定化剤としてのフッ素系樹脂を、溶融混練物に加えて、更に超臨界流体あるいは亜臨界流体中に配合しておく。超臨界流体あるいは亜臨界流体中で溶融混練物加熱攪拌して分散する際に、分散安定化剤としてのフッ素系樹脂は超臨界流体あるいは亜臨界流体中で溶解し、その後、減圧することで、この溶解したフッ素系樹脂が不溶化し、溶融混練物を分散した粒子の表面に析出することで、顔料やワックスを複合化したカプセル構造のトナーを作製することができる。
【0016】
また、本発明の着色粒子の製造方法は、溶融混練時にワックスを加えることが好ましい。溶融混練時にワックスを配合することで、ワックスを所定の粒度まで微粒化できるとともに、粒子内部に位置することで、保存安定性への悪影響を抑制できる。
【0017】
また、本発明の着色粒子の製造方法においては、超臨界流体あるいは亜臨界流体中に帯電制御剤を含有させることが好ましい。帯電制御剤を超臨界流体あるいは亜臨界流体中に加えることでトナー表面近傍に局在化させることが可能となり、少量で帯電性の高いトナーを得ることができる。
【0018】
更に、本発明の着色粒子の製造方法においては、超臨界流体あるいは亜臨界流体は、二酸化炭素であることが好ましい。二酸化炭素は臨界点が約31℃と比較的低く、樹脂と少し親和することで樹脂を軟化させることができる。そのため、比較的低温で製造でき、製造エネルギーコストが少なく環境に優しい方法で着色粒子を提供できる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。
【0020】
本発明のトナーに用いられる着色粒子の製造方法は少なくとも結着樹脂と着色剤を予め溶融混練し、次にその溶融混練物を超臨界流体あるいは亜臨界流体中に投入後、加熱攪拌し溶融混練物を分散、その後減圧することで、超臨界流体あるいは亜臨界流体中からトナーに用いられる着色粒子を取り出す方法である。
【0021】
本発明に用いる混練機は特に限定はないが、例えば二軸押し出し機、三本ロール、ラボブラストミル等の一般的な混練機を用いることができ、TEM−100B(東芝機械製),PCM−65/87(池貝製)等の1軸、もしくは、2軸のエクストルーダー、あるいは、ニーディックス(三井鉱山社製)などのオープンロール方式のものを挙げることができる。その中でも、特に溶融混練操作においては、添加剤を効率よく分散させるために、溶融時の樹脂粘度が下がりすぎないよう低温度での高シェア混練が望ましく、特にオープンロール方式のものなどが望ましい。
【0022】
次に、その溶融混練物を超臨界流体あるいは亜臨界流体中に投入する。ここで、超臨界流体あるいは亜臨界流体とは、物質の温度・圧力をある一定条件(臨界点)以上に設定すると、気相と液相とでの密度が等しい状態の流体となり、この臨界点近傍以上の温度・圧力下での流体が超臨界流体と呼ばれおり、また、超臨界点未満であっても、臨界点に近い条件でも超臨界流体に近い状態となり、このような流体を亜臨界流体と呼ぶ。
【0023】
超臨界流体あるいは亜臨界流体(以下の、超臨界流体の記載では、特に断らないかぎり亜臨界流体も含むものとする)中では、気体の性質と液体の性質がともに現れる。例えば、密度は液体に近く(気体の数100倍程度)、粘度は気体に近く(液体の1/10ないし1/100程度)、拡散係数も液体の1/10ないし1/100程度、熱伝導度は液体に近い(気体の100倍程度)とすることができる。
【0024】
このように超臨界流体は通常の液体に比べ熱電導性は同じだが、粘度が低くいため、高融点高粘度の溶融混練物を分散する点において非常に優れている。また、減圧により容易に気体に変化するために、乾燥性の点でも格段に優れている。
【0025】
ここで、超臨界流体として使用可能な物質として、例えば、CO2、N2、CH4、C26、CF3H、NH3、CF3Cl、CH3OH、C25OH、H2O等が挙げられる。これらの中で、前述したように、臨界点が比較的低く、安全性の点でCO2が最も好適に用いることができる。
【0026】
樹脂の溶解性を向上あるいは樹脂の粘性を低下させる目的で、超臨界流体中に助溶剤を用いることができる。この時用いることができる助溶媒としては、例えばアルコール類(メタノール、エタノール、イソプロパノール、ブタノール等)や、ケトン類(メチルエチルケトン、アセトン、シクロヘキサノン等)や、エーテル類(ジエチルエーテル、テトラヒドロフラン等)、炭化水素類(トルエン、ベンゼン、シクロヘキサン等)や、エステル類(酢酸エチル、酢酸ブチル、メチルアセテート、アルキルカルボン酸エステル等)や、ハロゲン化炭化水素類(クロロベンゼン、ジクロロメタン等)などがある。これらの中で、溶媒によるトナー粒子の変性の抑制や環境への負荷低減の観点からアルコール類が好適であり、その中でもエタノールが最も好適に用いることができる。
【0027】
前記溶融混練物中に含まれる樹脂成分としては、熱可塑性で超臨界流体中で溶解しなければ特に限定されない。例えば、ポリスチレン、スチレン/ブタジエン共重合体、スチレン/アクリル共重合体などのスチレン系樹脂や、ポリエチレン、ポリエチレン/酢酸ビニル共重合体、ポリエチレン/ビニルアルコール共重合体などのエチレン系樹脂、ポリメチルメタクリレートなどのアクリル系樹脂、また、フェノール系樹脂、エポキシ系樹脂、アリルフタレート系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリエーテル系樹脂、マレイン酸系樹脂等を用いることができる。
【0028】
また、一般に着色剤成分としてはブラック色、シアン色、マゼンタ色、イエロー色の内の何れかの色の顔料が含まれていればよい。
【0029】
ブラック顔料としては、カーボンブラック、酸化銅、二酸化マンガン、アニリン・ブラック、活性炭、非磁性フェライト、磁性フェライト、マグネタイトなどが例示される。
【0030】
青色顔料としては、紺青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキが例示される。
【0031】
マゼンタ顔料としては、ベンガラ、カドミウムレッド、鉛丹、硫化水銀、カドミウム、パーマネントレッド4R、リソールレッド、ピラゾロンレッド、ウオッチングレッド、カルシウム塩、レーキレッドC、レーキレッドD、ブリリアントカーミン6B、エオシンレーキ、ローダミンレーキB、アリザリンレーキ、ブリリアントカーミン3Bなどがある。
【0032】
黄色顔料としては、黄鉛、亜鉛黄、カドミウムイエロー、黄色酸化鉄、ミネラルファストイエロー、ニッケルチタンイエロー、ネーブルイエロー、ナフトールイエローS、ハンザイエローG、ハンザイエロー10G、ベンジジンイエローG、ベンジジンイエローGR、キノリンイエローレーキ、パーマネントイエローNCG、タートラジンレーキなどがある。
【0033】
超臨界流体中に樹脂粒子を安定に分散させるために分散安定化剤を用いても良い。分散安定化剤としては特に限定されないが、フッ素系樹脂、シリコーン系樹脂、エポキシ系樹脂、ウレタン系樹脂が挙げられる。配合量としては特に限定はないが、好ましくは10重量%以下、より好ましくは5重量%以下が望ましい。10重量%を越えると粉体性能としての保存安定性等への問題がある。
【0034】
本発明では溶融混練時にワックスを加えることが好ましい。ワックスとしては特に限定はないが、例えば、パラフィンワックス、酸化パラフィンワックス、マイクロクリスタリンワックスなどのような石油ワックス、モンタンワックスなどのような鉱物ワックス、みつろう、カルナバワックスなどのような動植物ワックス、ポリオレフィンワックス(ポリエチレン、ポリプロピレンなど)、酸化ポリオレフィンワックス、フィッシャートロプシュワックスなどのような合成ワックス等が挙げられる。これら離型剤は単独で用いてもよいし、2種以上を併用してもよい。
【0035】
超臨界流体中に配合することが好ましい帯電制御剤としては、低分子化合物から高分子化合物まで種々の物質が使用できる。例えば、4級アンモニウム塩化合物、ニグロシン系化合物、有機金属錯体、キレート化合物、アミノ基を有するモノマーを単独重合、あるいは、共重合させた高分子化合物等が挙げられる。これら帯電制御剤は単独で用いてもよいし、2種以上を併用してもよい。
【0036】
次に、本発明の着色粒子を作製するための製造装置を説明する。トナーを作製するための製造装置としては、例えば図1に示すような構成が挙げられる。まず、超臨界流体とする物質が充填されたガスボンベ1より、反応容器7に向けガスが供給される。このガスは加圧ポンプ2により所望の圧力に高められる。また、助剤3も同様に加圧ポンプ4で所望の圧力まで高められる。これら高圧ガスや助剤3はバルブ5、6を介して反応容器7に送られる。このとき、図示しないが、予熱コイル等で高圧ガスを所望の温度近くまで温調してもよい。また、反応容器7へ導入する前に、超臨界ガスと助剤3とを図示していないが予め別の容器中で混合しておいてもよい。
【0037】
反応容器7中には、溶融混練成分14と帯電制御剤15(場合によりカプセル用樹脂16と分散安定剤17)を封入しておき、この反応容器7は例えばヒーター8やあるいは図示していないが恒温水槽等で所望の温度となるよう構成されている。また、前記のバルブ5、6により、反応容器7内は所望の圧力となるように調整される。これら温度、圧力は温度計12、圧力計13によりモニターされる。このようにして反応容器7中には超臨界状態となった超臨界流体18、助剤3、溶融混練成分14と帯電制御剤15(場合によりカプセル用樹脂16と分散安定剤17)が混合された状態となる。このとき、攪拌装置19にて反応容器7内を所定の粒子径になるまで攪拌を行う。
【0038】
その後、図1に示す減圧バルブ9を開くことによって、着色粒子11は粒子捕集箱10及び反応容器7中にて採取される。
【0039】
【実施例】
以下、実施例により、本発明を更に具体的に説明するが、本発明はこれらにより何ら限定されるものではない。
【0040】
「トナーの特性評価」
トナー粒子の粒子径及び分布はレーザー回折式粒径測定装置(LA−920;堀場製作所社製)で測定した体積平均粒子径及び変動係数である。変動係数が28%以下ならば分布が狭いと判断した。
【0041】
形状は反射型電子顕微鏡観察(SEM)により25個のトナーの短径と長径の比の平均値を形状係数として測定した。形状係数 = 短径/長径で表され、0.95以上を真球に近い値と判断した。
【0042】
また、顔料分散性はトナーを樹脂包埋後、薄膜切片の透過型電子顕微鏡観察(TEM)により、トナー粒子10個中の顔料分散径の最大値を目視確認した。最大径が0.7μm以下であれば分散性が良好と判断した。
【0043】
[溶融混練物≪P−1≫の作成]
スチレン−アクリル系樹脂(MW=22500・軟化点=129℃)178重量部に、カーボンブラック(キャボット社製;MOGAL-L)22重量部、の割合の原材料をヘンシェルミキサーに投入、10分間混合した原材料混合物を、三井鉱山(株)製ニーディクスMOS140−800で130℃以下で溶融混練分散させ、ブラック色の溶融混練物≪P−1≫を得た。
【0044】
[溶融混練物≪P−2≫及び≪P−3≫の作成]
ポリエーテル樹脂;TPO-349(三井化学(株)社製;軟化点=121℃)170重量部に、フタロシアニン顔料(Fastogen Blue 5415;大日本インキ化学製造社製)20重量部、ポリプロピレンワックス10重量部の割合の原材料をヘンシェルミキサーに投入、10分間混合した原材料混合物を、三井鉱山(株)製ニーディクスMOS140−800で130℃以下で溶融混練分散させ、シアン色の溶融混練物≪P−2≫を得た。
【0045】
樹脂と顔料をそれぞれポリエステル樹脂;EP208(三洋化成工業(株)社製;軟化点=117℃)及びイエロー顔料(Fast Yellow 7410;三洋色素社製)にし≪P−2≫と同条件で溶融混練分散させ、イエロー色の溶融混練物≪P−3≫を得た。
【0046】
[トナー粒子≪T−1≫の作製]
櫛歯型羽を有する攪拌機・ヒーター・温度及び圧力モニターが組み込まれた1000ml3の高圧反応容器に溶融混練物≪P-1≫150重量部およびポリウレタン系の樹脂(BYK-182;ビックケミー社製)3重量部を投入した。ヒーター温度を120℃に設定および密閉した後、100RPMで攪拌しつつ炭酸ガスを加圧ポンプにより圧力が15MPaになるまで供給した。その後、エタノール350mlを供給した後、設定温度を95℃に変更し内温が90℃になるまで攪拌した。その時の反応容器内の圧力は24MPであった。その後1800RPMに攪拌速度を上げて約1h分散を行った。その後、減圧バルブを開放し反応容器内の混合物を粒子採取箱内に排出することでトナー粒子≪T−1≫を回収した。得られた粒子の平均粒子径は7.5μm、変動係数は22で分布が狭く、形状係数は0.98でほぼ球形、顔料最大粒度が0.52μmで分散性も高かった。
【0047】
[トナー粒子≪T−2≫及び≪T−3≫の作製]
櫛歯型羽を有する攪拌機・ヒーター・温度および圧力モニターが組み込まれた1000ml3の高圧反応容器に溶融混練物≪P-2≫150重量部およびフッ素系の樹脂3重量部を投入した。ヒーター温度を130℃に設定および密閉した後、100RPMで攪拌しつつ炭酸ガスを加圧ポンプにより圧力が25MPaになるまで供給した。設定温度を85℃に変更し内温が80℃になるまで攪拌した。その後2000RPMに攪拌速度を上げて約1h分散を行った。その後、減圧バルブを開放し反応容器内の混合物を粒子採取箱内に排出することでトナー粒子≪T−2≫を回収した。得られた粒子の平均粒子径は6.8μm、変動係数は24で分布が狭く、形状係数は0.99でほぼ球形、顔料最大粒度が0.49μmで分散性も高かった。
【0048】
スチレン−アクリル系樹脂(ST/NBMA/GMA=30/20/50;MW=33500・軟化点=130℃)10重量部、サリチル酸アンモニウム(帯電調製剤)2重量部及びエタノール350mlを高圧反応容器中に配合した以外は≪T−1≫のトナー作製例と同様の方法でカプセル型のトナー粒子≪T−3≫を得た。得られた粒子の平均粒子径は6.5μm、変動係数は26で分布が狭く、形状係数は0.96でほぼ球形、顔料最大粒度が0.62μmで分散性も高かった。
【0049】
[トナー粒子≪T−4≫及び≪T−5≫の作製]
櫛歯型羽を有する攪拌機・ヒーター・温度および圧力モニターが組み込まれた1000ml3の高圧反応容器に溶融混練物≪P-3≫150重量部およびフッ素系の樹脂4重量部を投入した。ヒーター温度を130℃に設定および密閉した後、100RPMで攪拌しつつ炭酸ガスを加圧ポンプにより圧力が25MPaになるまで供給した。内温120℃になるまで攪拌した。設定温度を85℃に変更し内温が80℃になるまで攪拌した。その後2000RPMに攪拌速度を上げて約1h分散を行った後、減圧バルブを開放し反応容器内の混合物を粒子採取箱内に排出することでトナー粒子≪T−4≫を回収した。得られた粒子の平均粒子径は6.9μm、変動係数は25で分布が狭く、形状係数は0.98でほぼ球形、顔料最大粒度が0.56μmで分散性も高かった。
【0050】
得られたトナー粒子≪T−4≫100重量部とポリエステル系樹脂;FZ-100(MW=33500・軟化点=130℃)8重量部、サリチル酸アンモニウム(帯電調製剤)2重量部及びエタノール300mlを高圧反応容器中に配合し密閉した。その後、200RPMで攪拌しつつ炭酸ガスを加圧ポンプにより圧力が25MPaになるまで供給した。その時の高圧容器内の温度は50℃を維持した。約1h攪拌を行った後、減圧バルブを開放し反応容器内の混合物を粒子採取箱内に排出することでカプセル型のトナー粒子≪T−5≫を得た。得られた粒子の平均粒子径は6.9μmで、単一ピーク分布でほぼ球形であった。得られた粒子の平均粒子径は7.9μm、変動係数は23で分布が狭く、形状係数は0.99でほぼ球形、顔料最大粒度が0.68μmで分散性も高かった。
【0051】
【発明の効果】
本発明のトナーに用いられる着色粒子の製造方法においては、結着樹脂と着色剤を予め溶融混練するために、顔料濃度を上げても分散性を維持できる。また、溶融混練物を超臨界流体あるいは亜臨界流体中に投入後、加熱攪拌し溶融混練物を分散するために、球形でしかも樹脂中に顔料が複合化されているために環境性や保存性が高く、有害な有機溶剤や排水処理のいらない環境負荷の少ない製造方法で静電荷現像用トナーを提供できる。
【図面の簡単な説明】
【図1】本発明のトナー製造に用いるトナー製造装置の模式図である。
【符号の説明】
1;ガスボンベ、2;加圧ポンプ、3;高圧ガスやエントレーナー(添加助剤)、4;加圧ポンプ、5,6;バルブ、7;反応容器、8;ヒーター、9;減圧バルブ、10;粒子補修箱、11;トナー粒子、12;温度計、13;圧力計、14;溶融混練成分、15;帯電制御材、16;カプセル用樹脂、17;分散安定剤、18;超臨界状態となった超臨界流体、19;攪拌装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to colored particles used in toner for developing an electrostatic latent image formed on an image carrier by an electrophotographic process or an ion flow method, and a method and apparatus for manufacturing the same.
[0002]
[Prior art]
Toners used in electrophotography are in the direction of smaller particle sizes and higher pigment concentrations to meet the recent demands for high-definition images and low consumption, and generally have an average particle size of 5 to 15 μm and a pigment concentration of 5 to 5. Obtained as fine particles of about 10% by weight.
[0003]
As a method for producing such fine particles, a so-called melt-kneading pulverization method in which a resin, a pigment, or the like is melt-kneaded and then mechanically pulverized is generally used. In the melt-kneading pulverization method, high dispersion can be imparted to the pigment at the time of melt-kneading, so that the dispersibility of the pigment can be improved. However, because of mechanical pulverization, the equipment process until obtaining a desired toner as the particle size becomes smaller Not only is expensive and expensive, but the shape of the resulting particles is indefinite and inferior in fluidity and storability, and the charging stability and storability are inferior because pigments and wax appear on the surface. , And so on.
[0004]
On the other hand, in recent years, a toner production method called a polymerization method such as suspension polymerization or emulsion polymerization aggregation method has been proposed. The polymerization method is advantageous in terms of storage stability because it can be manufactured from small particle size and true sphere to irregular shape, and it can be encapsulated in hydrophobic pigment and wax because it is produced in water. is there. However, since polymerization is accompanied during granulation, the resin is limited to an acrylic resin, and since hydrophilic emulsifiers and dispersion stabilizers are used, there are problems such as environmental dependency of toner and wastewater treatment during production. .
[0005]
Moreover, there is a submerged drying method as a method not involving polymerization at the time of granulation. Toner prepared by in-liquid drying method can be prepared by polyester resin that cannot be prepared by polymerization method, but the same wastewater treatment problem as polymerization method and adverse effects on environment by using solvent to dissolve resin And problems such as complicated operation.
[0006]
An object of the present invention is to provide a method for producing colored particles for use in an electrostatic charge developing toner that solves the above-described problems.
[0007]
On the other hand, Patent Document 1 proposes a method for producing fine particles using a supercritical fluid. This method is merely a method for producing fine particles to be externally added to the toner, and does not describe any method for producing a toner in which a pigment is combined.
[0008]
The inventors of the present invention have found that a resin in which a resin is precipitated by encapsulating a resin and a pigment in a supercritical fluid and then reducing the pressure can be produced. Yes.
[0009]
Since the supercritical fluid is a gas at normal pressure, neither a drying process nor wastewater treatment is necessary. In addition, if carbon dioxide gas is used for the supercritical fluid, a harmful organic solvent is not used, so that it is an environmentally friendly manufacturing method. Furthermore, since it does not accompany polymerization at the time of granulation, it can be produced even with a polyester resin or the like. Further, since the shape of the obtained particles is from a spherical shape to a substantially spherical shape, it is a production method that can solve the problems of conventional toners, such as being advantageous in terms of storage stability.
[0010]
[Problems to be solved by the invention]
However, in this method using a supercritical fluid, since the pigment and the resin are precipitated at the same time, there is a limit to granulation while maintaining dispersibility. In particular, there is a problem that the dispersibility of the pigment cannot be maintained when trying to combine a higher amount of pigment than in the past.
Since the concentration and dispersibility of the pigment adversely affect the toner consumption and optical characteristics, an early solution has been desired.
[0011]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-133417 [Patent Document 2]
Japanese Patent Laid-Open No. 2001-312098
[Means for Solving the Problems]
As a result of diligent research, the present inventors have found that the above problem can be solved by adopting a specific process in a colored particle manufacturing method and manufacturing apparatus used for toners using supercritical fluid or subcritical fluid. The present invention has been reached.
[0013]
Method for producing colored particles of the present invention, in order to solve the above problems, melt-kneading at least a binder resin and a colorant, then heating the melt-kneaded product with a supercritical fluid or subcritical fluid It is characterized in that the toner is taken out from the supercritical fluid or subcritical fluid by stirring to disperse the melt-kneaded material and then reducing the pressure.
[0014]
Dispersibility of the pigment can be increased by melt-kneading the resin and the pigment in advance. By dispersing this melt-kneaded material in a supercritical fluid, a toner having a small particle size and a narrow distribution can be obtained. Since the supercritical fluid changes to a gas when the pressure is reduced, a cleaning / drying process is not required, and thus a toner can be produced by a simple method.
[0015]
Further , in the method for producing colored particles of the present invention, at least the binder resin and the colorant are previously melt-kneaded, and then the melt-kneaded product is heated and stirred in a supercritical fluid or subcritical fluid to obtain a melt-kneaded product. When the toner is taken out from the supercritical fluid or subcritical fluid by reducing the pressure after dispersion, a fluororesin as a dispersion stabilizer is melted and kneaded as a resin that dissolves in the supercritical fluid or subcritical fluid. in addition to, your Ku further compounded in the supercritical fluid or subcritical fluid. When the molten kneaded material is stirred and dispersed in a supercritical fluid or subcritical fluid , the fluororesin as a dispersion stabilizer is dissolved in the supercritical fluid or subcritical fluid, and then decompressed. The melted fluorine-based resin is insolubilized and deposited on the surface of the particles in which the melt-kneaded material is dispersed, whereby a toner having a capsule structure in which pigments and waxes are combined can be produced.
[0016]
Moreover, it is preferable that the manufacturing method of the colored particle of this invention adds a wax at the time of melt-kneading. By blending the wax at the time of melt-kneading, the wax can be atomized to a predetermined particle size, and the adverse effect on storage stability can be suppressed by being located inside the particle.
[0017]
In the method for producing colored particles of the present invention, it is preferable to include a charge control agent in the supercritical fluid or subcritical fluid. By adding the charge control agent to the supercritical fluid or subcritical fluid, it becomes possible to localize the toner near the surface of the toner, and a toner having high chargeability can be obtained in a small amount.
[0018]
Furthermore, in the method for producing colored particles of the present invention, the supercritical fluid or subcritical fluid is preferably carbon dioxide. Carbon dioxide has a relatively low critical point of about 31 ° C., and the resin can be softened by having a slight affinity with the resin. Therefore, it can be produced at a relatively low temperature, and colored particles can be provided by an environmentally friendly method with low production energy costs.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0020]
The method for producing colored particles used in the toner of the present invention is to melt and knead at least a binder resin and a colorant in advance, and then add the melt-kneaded material into a supercritical fluid or subcritical fluid, and then heat and stir to melt and knead. In this method, the colored particles used in the toner are taken out of the supercritical fluid or subcritical fluid by dispersing the substance and then reducing the pressure.
[0021]
The kneader used in the present invention is not particularly limited. For example, a general kneader such as a twin screw extruder, three rolls, or a lab blast mill can be used. TEM-100B (manufactured by Toshiba Machine), PCM- Examples thereof include uniaxial or biaxial extruders such as 65/87 (manufactured by Ikegai) or open roll systems such as knee dicks (manufactured by Mitsui Mining Co., Ltd.). Among them, particularly in the melt kneading operation, in order to disperse the additive efficiently, high shear kneading at a low temperature is desirable so that the resin viscosity at the time of melting is not excessively lowered, and an open roll type is particularly desirable.
[0022]
Next, the melt-kneaded product is put into a supercritical fluid or a subcritical fluid. Here, a supercritical fluid or subcritical fluid is a fluid in which the density in the gas phase and the liquid phase is equal when the temperature and pressure of the substance are set to a certain condition (critical point) or higher. A fluid under a temperature or pressure near or above is called a supercritical fluid.Also, even if it is less than the supercritical point or near the critical point, it becomes a state close to the supercritical fluid. Called a critical fluid.
[0023]
In supercritical fluids or subcritical fluids (in the following description of supercritical fluids, subcritical fluids are included unless otherwise specified), both gas properties and liquid properties appear. For example, density is close to liquid (several hundred times that of gas), viscosity is close to gas (1/10 to 1/100 of liquid), diffusion coefficient is 1/10 to 1/100 of liquid, heat conduction The degree can be close to liquid (about 100 times that of gas).
[0024]
As described above, the supercritical fluid has the same thermal conductivity as that of a normal liquid, but has a low viscosity. Therefore, the supercritical fluid is excellent in that a high-melting and high-viscosity melt-kneaded material is dispersed. In addition, since it is easily changed to a gas by decompression, it is remarkably excellent in terms of dryness.
[0025]
Here, examples of substances that can be used as the supercritical fluid include CO 2 , N 2 , CH 4 , C 2 H 6 , CF 3 H, NH 3 , CF 3 Cl, CH 3 OH, C 2 H 5 OH, H 2 O, and the like. Among these, as described above, the critical point is relatively low, and CO 2 can be most suitably used from the viewpoint of safety.
[0026]
For the purpose of improving the solubility of the resin or lowering the viscosity of the resin, a cosolvent can be used in the supercritical fluid. Examples of cosolvents that can be used at this time include alcohols (methanol, ethanol, isopropanol, butanol, etc.), ketones (methyl ethyl ketone, acetone, cyclohexanone, etc.), ethers (diethyl ether, tetrahydrofuran, etc.), hydrocarbons, and the like. (Toluene, benzene, cyclohexane, etc.), esters (ethyl acetate, butyl acetate, methyl acetate, alkyl carboxylic acid ester, etc.), halogenated hydrocarbons (chlorobenzene, dichloromethane, etc.), and the like. Among these, alcohols are preferable from the viewpoint of suppressing modification of toner particles by a solvent and reducing environmental load, and ethanol is most preferably used among them.
[0027]
The resin component contained in the melt-kneaded material is not particularly limited as long as it is thermoplastic and does not dissolve in the supercritical fluid. For example, styrene resins such as polystyrene, styrene / butadiene copolymer, styrene / acrylic copolymer, ethylene resins such as polyethylene, polyethylene / vinyl acetate copolymer, polyethylene / vinyl alcohol copolymer, polymethyl methacrylate In addition, acrylic resins such as phenol resins, epoxy resins, allyl phthalate resins, polyamide resins, polyester resins, polyether resins, and maleic resins can be used.
[0028]
In general, the colorant component only needs to contain a pigment of any one of black, cyan, magenta, and yellow.
[0029]
Examples of the black pigment include carbon black, copper oxide, manganese dioxide, aniline black, activated carbon, nonmagnetic ferrite, magnetic ferrite, and magnetite.
[0030]
Examples of blue pigments include bitumen, cobalt blue, alkali blue lake, and Victoria blue lake.
[0031]
Examples of magenta pigments include bengara, cadmium red, red lead, mercury sulfide, cadmium, permanent red 4R, risol red, pyrazolone red, watching red, calcium salt, lake red C, lake red D, brilliant carmine 6B, eosin lake, There are Rhodamine Lake B, Alizarin Lake, Brilliant Carmine 3B, and the like.
[0032]
Yellow pigments include yellow lead, zinc yellow, cadmium yellow, yellow iron oxide, mineral fast yellow, nickel titanium yellow, navel yellow, naphthol yellow S, Hansa Yellow G, Hansa Yellow 10G, Benzidine Yellow G, Benzidine Yellow GR, and quinoline. There are yellow rake, permanent yellow NCG, tartrage rake and so on.
[0033]
A dispersion stabilizer may be used to stably disperse the resin particles in the supercritical fluid. Although it does not specifically limit as a dispersion stabilizer, A fluororesin, a silicone resin, an epoxy resin, and a urethane resin are mentioned. Although there is no limitation in particular as a compounding quantity, Preferably it is 10 weight% or less, More preferably, 5 weight% or less is desirable. When it exceeds 10% by weight, there is a problem in storage stability as powder performance.
[0034]
In the present invention, it is preferable to add wax during melt-kneading. The wax is not particularly limited. For example, petroleum wax such as paraffin wax, oxidized paraffin wax and microcrystalline wax, mineral wax such as montan wax, animal and plant wax such as beeswax and carnauba wax, and polyolefin wax. (Polyethylene, polypropylene, etc.), synthetic polyolefin wax such as oxidized polyolefin wax, Fischer-Tropsch wax, and the like. These release agents may be used alone or in combination of two or more.
[0035]
As the charge control agent that is preferably blended in the supercritical fluid, various substances from low molecular weight compounds to high molecular weight compounds can be used. Examples thereof include quaternary ammonium salt compounds, nigrosine compounds, organometallic complexes, chelate compounds, and polymer compounds obtained by homopolymerizing or copolymerizing monomers having amino groups. These charge control agents may be used alone or in combination of two or more.
[0036]
Next, a manufacturing apparatus for producing the colored particles of the present invention will be described. As a production apparatus for producing a toner, for example, Una O to diagrammatic configuration are exemplified in FIG. First, gas is supplied to the reaction vessel 7 from the gas cylinder 1 filled with a substance to be a supercritical fluid. This gas is raised to a desired pressure by the pressurizing pump 2. Similarly, the auxiliary agent 3 is also raised to a desired pressure by the pressure pump 4. These high-pressure gas and auxiliary agent 3 are sent to the reaction vessel 7 through valves 5 and 6. At this time, although not shown, the temperature of the high-pressure gas may be adjusted to a desired temperature with a preheating coil or the like. Moreover, before introducing into the reaction vessel 7, the supercritical gas and the auxiliary agent 3 are not shown, but may be mixed in another vessel in advance.
[0037]
In the reaction vessel 7, a melt-kneading component 14 and a charge control agent 15 (in some cases, a capsule resin 16 and a dispersion stabilizer 17) are enclosed, and this reaction vessel 7 is, for example, a heater 8 or not shown. It is comprised so that it may become desired temperature in a constant temperature water tank etc. Further, the inside of the reaction vessel 7 is adjusted to a desired pressure by the valves 5 and 6. These temperature and pressure are monitored by a thermometer 12 and a pressure gauge 13. Thus, the supercritical fluid 18, the auxiliary agent 3, the melt kneading component 14, and the charge control agent 15 (optionally the capsule resin 16 and the dispersion stabilizer 17) are mixed in the reaction vessel 7. It becomes a state. At this time, stirring is performed in the reaction vessel 7 with the stirring device 19 until a predetermined particle diameter is obtained.
[0038]
Thereafter, the colored particles 11 are collected in the particle collection box 10 and the reaction vessel 7 by opening the decompression valve 9 shown in FIG.
[0039]
【Example】
Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples.
[0040]
"Evaluation of toner characteristics"
The particle size and distribution of the toner particles are a volume average particle size and a coefficient of variation measured with a laser diffraction particle size measuring device (LA-920; manufactured by Horiba, Ltd.). If the coefficient of variation was 28% or less, it was judged that the distribution was narrow.
[0041]
The shape was measured by reflection electron microscope observation (SEM), and the average value of the ratio of the short diameter to the long diameter of 25 toners was measured as a shape factor. Shape factor = represented by minor axis / major axis, and 0.95 or more was judged to be close to a true sphere.
[0042]
Regarding the pigment dispersibility, the maximum value of the pigment dispersion diameter in 10 toner particles was visually confirmed by embedding the toner with a resin and observing the thin film section with a transmission electron microscope (TEM). If the maximum diameter was 0.7 μm or less, it was judged that the dispersibility was good.
[0043]
[Creation of melt-kneaded product << P-1 >>]
Raw materials in a ratio of 178 parts by weight of styrene-acrylic resin (MW = 22500, softening point = 129 ° C.) and 22 parts by weight of carbon black (manufactured by Cabot; MOGAL-L) were put into a Henschel mixer and mixed for 10 minutes. The raw material mixture was melt-kneaded and dispersed at 130 ° C. or lower with a Niedix MOS140-800 manufactured by Mitsui Mining Co., Ltd. to obtain a black-colored melt-kneaded product “P-1”.
[0044]
[Creation of melt-kneaded material << P-2 >> and << P-3 >>]
Polyether resin: TPO-349 (manufactured by Mitsui Chemicals, Inc .; softening point = 121 ° C.) 170 parts by weight, phthalocyanine pigment (Fastogen Blue 5415; manufactured by Dainippon Ink & Chemicals) 20 parts by weight, polypropylene wax 10 parts by weight Part of the raw material mixture was charged into a Henschel mixer, and the raw material mixture mixed for 10 minutes was melt-kneaded and dispersed at 130 ° C. or lower with a Niedix MOS140-800 manufactured by Mitsui Mining Co., Ltd. Got.
[0045]
The resin and the pigment are each made of polyester resin; EP208 (manufactured by Sanyo Chemical Industries, Ltd .; softening point = 117 ° C.) and yellow pigment (Fast Yellow 7410; manufactured by Sanyo Color Co., Ltd.). It was dispersed to obtain a yellow melt-kneaded product << P-3 >>.
[0046]
[Preparation of Toner Particles << T-1 >>]
150 parts by weight of melt-kneaded product << P-1 >> and polyurethane resin (BYK-182; manufactured by BYK-Chemie) in a 1000 ml 3 high-pressure reactor equipped with a stirrer, heater, temperature and pressure monitor with comb-shaped wings 3 parts by weight were charged. After setting and sealing the heater temperature at 120 ° C., carbon dioxide gas was supplied by a pressure pump until the pressure became 15 MPa while stirring at 100 RPM. Thereafter, 350 ml of ethanol was supplied, and then the set temperature was changed to 95 ° C. and stirred until the internal temperature reached 90 ° C. The pressure in the reaction vessel at that time was 24 MP. Thereafter, the stirring speed was increased to 1800 RPM and dispersion was performed for about 1 h. Thereafter, the decompression valve was opened, and the mixture in the reaction vessel was discharged into a particle collection box to collect toner particles << T-1 >>. The obtained particles had an average particle size of 7.5 μm, a variation coefficient of 22 and a narrow distribution, a shape factor of 0.98, a substantially spherical shape, a maximum pigment particle size of 0.52 μm and high dispersibility.
[0047]
[Production of Toner Particles << T-2 >> and << T-3 >>
Into a 1000 ml 3 high-pressure reactor equipped with a stirrer, heater, temperature and pressure monitor having comb-shaped wings, 150 parts by weight of the melt-kneaded product << P-2 >> and 3 parts by weight of a fluorine-based resin were charged. After setting and sealing the heater temperature at 130 ° C., carbon dioxide gas was supplied by a pressure pump until the pressure became 25 MPa while stirring at 100 RPM. The set temperature was changed to 85 ° C., and stirring was continued until the internal temperature reached 80 ° C. Thereafter, the stirring speed was increased to 2000 RPM and dispersion was performed for about 1 h. Thereafter, the pressure reducing valve was opened, and the mixture in the reaction vessel was discharged into a particle collection box to collect toner particles << T-2 >>. The obtained particles had an average particle size of 6.8 μm, a variation coefficient of 24, a narrow distribution, a shape factor of 0.99, an almost spherical shape, a maximum pigment particle size of 0.49 μm, and high dispersibility.
[0048]
10 parts by weight of styrene-acrylic resin (ST / NBMA / GMA = 30/20/50; MW = 33500, softening point = 130 ° C.), 2 parts by weight of ammonium salicylate (charging preparation agent) and 350 ml of ethanol in a high pressure reaction vessel Capsule-type toner particles << T-3 >> were obtained in the same manner as in the toner preparation example of << T-1 >> except that it was added to the toner. The obtained particles had an average particle size of 6.5 μm, a variation coefficient of 26, a narrow distribution, a shape factor of 0.96, an almost spherical shape, a maximum pigment particle size of 0.62 μm, and high dispersibility.
[0049]
[Production of Toner Particles << T-4 >> and << T-5 >>
Into a 1000 ml 3 high-pressure reactor equipped with a stirrer, heater, temperature and pressure monitor having comb-shaped wings, 150 parts by weight of the melt-kneaded product << P-3 >> and 4 parts by weight of a fluorine-based resin were charged. After setting and sealing the heater temperature at 130 ° C., carbon dioxide gas was supplied by a pressure pump until the pressure became 25 MPa while stirring at 100 RPM. The mixture was stirred until the internal temperature reached 120 ° C. The set temperature was changed to 85 ° C., and stirring was continued until the internal temperature reached 80 ° C. Thereafter, the stirring speed was increased to 2000 RPM to disperse for about 1 h, and then the decompression valve was opened, and the mixture in the reaction vessel was discharged into a particle collection box to collect toner particles << T-4 >>. The obtained particles had an average particle size of 6.9 μm, a variation coefficient of 25, a narrow distribution, a shape factor of 0.98, a substantially spherical shape, a maximum pigment particle size of 0.56 μm, and high dispersibility.
[0050]
Obtained toner particles << T-4 >> 100 parts by weight, polyester resin; FZ-100 (MW = 33500, softening point = 130 ° C.) 8 parts by weight, ammonium salicylate (charge preparation agent) 2 parts by weight and ethanol 300 ml It mix | blended and sealed in the high pressure reaction container. Thereafter, carbon dioxide was supplied by a pressure pump while stirring at 200 RPM until the pressure reached 25 MPa. The temperature in the high-pressure vessel at that time was maintained at 50 ° C. After stirring for about 1 hour, the pressure reducing valve was opened, and the mixture in the reaction vessel was discharged into a particle collection box to obtain capsule-type toner particles << T-5 >>. The average particle diameter of the obtained particles was 6.9 μm, and it was almost spherical with a single peak distribution. The obtained particles had an average particle size of 7.9 μm, a variation coefficient of 23, a narrow distribution, a shape factor of 0.99, an almost spherical shape, a maximum pigment particle size of 0.68 μm, and high dispersibility.
[0051]
【The invention's effect】
In the method for producing colored particles used in the toner of the present invention, since the binder resin and the colorant are melt-kneaded in advance, the dispersibility can be maintained even if the pigment concentration is increased. In addition, since the molten kneaded material is put into a supercritical fluid or subcritical fluid and then heated and stirred to disperse the molten kneaded material, it is spherical and the pigment is compounded in the resin, so it is environmentally friendly and storable. Therefore, it is possible to provide a toner for developing an electrostatic charge by a production method that is high in environmental impact and does not require harmful organic solvents or wastewater treatment.
[Brief description of the drawings]
FIG. 1 is a schematic view of a toner production apparatus used for producing toner of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1; Gas cylinder, 2; Pressurization pump, 3; High-pressure gas and entrainer (addition aid), 4; Pressurization pump, 5,6; Valve, 7; Reaction vessel, 8: Heater, 9; ; Particle repair box, 11; toner particles, 12; thermometer, 13; pressure gauge, 14; melt-kneaded component, 15; charge control material, 16; resin for capsule, 17; dispersion stabilizer, 18; Supercritical fluid, 19; stirring device.

Claims (5)

少なくとも結着樹脂と着色剤とを溶融混練して予め生成した溶融混練物を、超臨界流体あるいは亜臨界流体中で加熱攪拌して当該溶融混練物を分散させ、その後減圧することで、超臨界流体あるいは亜臨界流体中から着色粒子を取り出す静電荷現像用トナーに用いられる着色粒子の製造方法にあって、
前記超臨界流体あるいは亜臨界流体中に溶解する樹脂として、分散安定化剤としてのフッ素系樹脂を、前記溶融混練物に加えて、更に超臨界流体あるいは亜臨界流体中に配合することを特徴とする静電荷現像用トナーに用いられる着色粒子の製造方法。
At least a melt-kneaded product previously produced by melt-kneading a binder resin and a colorant is heated and stirred in a supercritical fluid or a subcritical fluid to disperse the melt-kneaded product, and then depressurized, thereby supercritical. In a method for producing colored particles used in a toner for electrostatic charge development that extracts colored particles from a fluid or subcritical fluid ,
As a resin that dissolves in the supercritical fluid or subcritical fluid, a fluororesin as a dispersion stabilizer is added to the melt-kneaded product, and is further blended in the supercritical fluid or subcritical fluid. A method for producing colored particles used in an electrostatic charge developing toner.
前記溶融混練時にワックスを加えることを特徴とする請求項1に記載の静電荷現像用トナーに用いられる着色粒子の製造方法。The method for producing colored particles used in the electrostatic charge developing toner according to claim 1, wherein a wax is added during the melt kneading. 前記超臨界流体あるいは亜臨界流体中に帯電制御剤を含有させることを特徴とする請求項1又は2に記載の静電荷現像用トナーに用いられる着色粒子の製造方法。Method for producing a supercritical fluid or characterized also contain a charge control agent in the subcritical fluid according to claim 1 or 2 colored particles used in the electrostatic image developing toner according to. 前記超臨界流体あるいは亜臨界流体は、二酸化炭素であることを特徴とする請求項1ないし3の何れかに記載の静電荷現像用トナーに用いられる着色粒子の製造方法。The supercritical fluid or subcritical fluid, the production method of the colored particles used in the toner for developing an electrostatic image according to any one of claims 1 to 3, characterized in that carbon dioxide. 請求項1ないし4の何れかに記載の方法で製造された静電荷現像用トナー。An electrostatic charge developing toner produced by the method according to claim 1 .
JP2002306143A 2002-10-21 2002-10-21 Method for producing colored particles used for toner for electrostatic charge development and toner Expired - Fee Related JP4078182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002306143A JP4078182B2 (en) 2002-10-21 2002-10-21 Method for producing colored particles used for toner for electrostatic charge development and toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002306143A JP4078182B2 (en) 2002-10-21 2002-10-21 Method for producing colored particles used for toner for electrostatic charge development and toner

Publications (2)

Publication Number Publication Date
JP2004144778A JP2004144778A (en) 2004-05-20
JP4078182B2 true JP4078182B2 (en) 2008-04-23

Family

ID=32453024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002306143A Expired - Fee Related JP4078182B2 (en) 2002-10-21 2002-10-21 Method for producing colored particles used for toner for electrostatic charge development and toner

Country Status (1)

Country Link
JP (1) JP4078182B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4192115B2 (en) * 2003-05-19 2008-12-03 株式会社リコー Method for producing electrophotographic toner by kneading and pulverization method and kneaded material used therefor
EP1744221B1 (en) 2005-07-13 2010-09-08 Ricoh Company, Ltd. Toner production process
JP4652299B2 (en) 2005-09-14 2011-03-16 株式会社リコー Toner and manufacturing method thereof, developer, toner-containing container, process cartridge, image forming method, and image forming apparatus
JP2011206759A (en) * 2010-03-12 2011-10-20 Ricoh Co Ltd Particles and method for producing the same, toner and method for producing the same, and developer, process cartridge, image forming method and image forming apparatus
JP5494097B2 (en) * 2010-03-25 2014-05-14 株式会社リコー Toner for electrostatic charge development
US8603373B2 (en) * 2010-11-04 2013-12-10 Ricoh Company, Ltd. Method for producing particles, method for producing toner, and apparatus for producing particles
JP5866756B2 (en) * 2010-11-30 2016-02-17 株式会社リコー Particle manufacturing method, toner manufacturing method, and particle manufacturing apparatus
JP5779902B2 (en) * 2011-02-22 2015-09-16 株式会社リコー Method for producing crystalline polyester resin particles

Also Published As

Publication number Publication date
JP2004144778A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
CN100584888C (en) Wax emulsion for emulsion aggregation toner
JP4220538B2 (en) Toner and method for producing the same
JP4283861B2 (en) Method for producing resin particles
JP6008799B2 (en) Electrostatic latent image developing toner and method for producing electrostatic latent image developing toner
JP5777596B2 (en) Toner for electrostatic image development
JP2004004383A (en) Method for manufacturing toner particle, and toner
JP2001312098A (en) Toner and its manufacturing method
JPH0566600A (en) Capsule type toner and production thereof
JP4662058B2 (en) Method for producing negatively chargeable toner
JP2014164274A (en) Toner for electrostatic charge image development
JP4078182B2 (en) Method for producing colored particles used for toner for electrostatic charge development and toner
JP2006257354A (en) Method for producing resin-containing grain, and toner for electrophotography using the same
JP2005330350A (en) Method of manufacturing resin particle, resin particle, and toner for electrophotography
JP5911416B2 (en) Toner for electrostatic image development
JP2004144787A (en) Method for manufacturing toner
JP4365263B2 (en) Toner for developing electrostatic latent image and method for producing the same
JP2014219598A (en) Manufacturing method of toner for electrostatic latent image development
JP2007047691A (en) Toner and method for manufacturing the same
JP2007328206A (en) Electrophotographic toner
JP2014077929A (en) Manufacturing method of toner for electrostatic latent image development
JP5800782B2 (en) Toner for electrostatic latent image development
US20090117479A1 (en) Method and apparatus for manufacturing developer, and developer
JP4716021B2 (en) Method for producing negatively chargeable toner
JP2006276771A (en) Manufacturing method for toner, the toner manufactured by same method, and toner manufacturing device used for same method
JP4391371B2 (en) Magnetic powder dispersion carrier for electrophotography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Ref document number: 4078182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees