JP4077334B2 - Variable valve operating device for internal combustion engine - Google Patents

Variable valve operating device for internal combustion engine Download PDF

Info

Publication number
JP4077334B2
JP4077334B2 JP2003041270A JP2003041270A JP4077334B2 JP 4077334 B2 JP4077334 B2 JP 4077334B2 JP 2003041270 A JP2003041270 A JP 2003041270A JP 2003041270 A JP2003041270 A JP 2003041270A JP 4077334 B2 JP4077334 B2 JP 4077334B2
Authority
JP
Japan
Prior art keywords
cam
eccentric
intake
plate
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003041270A
Other languages
Japanese (ja)
Other versions
JP2004251166A (en
Inventor
宏司 増田
豪 朝井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Yanmar Co Ltd filed Critical Petroleum Energy Center PEC
Priority to JP2003041270A priority Critical patent/JP4077334B2/en
Publication of JP2004251166A publication Critical patent/JP2004251166A/en
Application granted granted Critical
Publication of JP4077334B2 publication Critical patent/JP4077334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、偏心操作可能な揺動プレートを利用して、運転状況に応じて排気弁や吸気弁の開閉時期等を変更できる内燃機関の可変動弁装置に関する。
【0002】
【従来の技術】
内燃機関に備えられた吸気弁及び排気弁は、通常、吸気カム及び排気カムによって開閉駆動されるようになっており、各弁の開閉時期、開放期間及び弁リフト量は、カム形状及びカムの回転位相によって決定される。
【0003】
ところで各弁の開閉時期及び開放期間等は、運転状況に応じて最適な値が異なるため、弁開閉時期等を運転状況に応じて変更できるようにした可変動弁装置が各種開発されており、その1つとして、不等速継手の役割を果たす揺動プレート(又は偏心円形プレート)を利用した可変動弁装置が開発されている(たとえば特許文献1等。)
【0004】
図12及び図13は上記特許文献1に開示された揺動プレート方式の可変動弁装置であり、図12においてクランク軸により回転駆動するカム軸201にカム駆動回転体202が固着されており、該カム駆動回転体202の軸方向両側に2つのカム、たとえば吸気用カム203及び排気用カム204が配置されている。両カム203、204は上記カム駆動回転体202と同軸心O0上に配置されると共にカム軸201に回転可能に嵌合している。
【0005】
カム駆動回転体202に対する各カム203,204の回転角速度を変更可能とするために、カム駆動回転体202と吸気カム203の間にはカム軸心O0に対して偏心する吸気用揺動プレート207が配置され、カム駆動回転体202と排気カム204の間にはカム軸心O0に対して偏心する排気用揺動プレート208が配置されている。
【0006】
各揺動プレート207,208は半径方向に延びる一対の駆動溝210,211をそれぞれ備え、一方、吸気カム203及び排気カム204の端面並びにカム駆動回転体202の軸方向両端面には、上記各駆動溝210,211内に突出する駆動ピン215,216がそれぞれ形成され、各駆動ピン215,216には直方体形状のスライダー217,218がそれぞれ嵌合している。
【0007】
図13は図12の吸気用揺動プレート207のXIII-XIII断面図であり、吸気用揺動プレート207は、円形の偏心環221の偏心孔222内に回動可能に嵌合しており、上記偏心環221は、ハウジング220の嵌合孔224内に回動可能に嵌合している。上記嵌合孔224はカム軸心O0と同心に形成されているが、偏心孔222はカム軸心O0に対して一定量偏心しており、偏心環221を回動調節することにより、揺動プレート207の偏心位置を変更できるようになっている。
【0008】
図12の排気用揺動プレート208も吸気用揺動プレート207と同様な構造となっている。
【0009】
カム軸201が回転すると、回転部材202から各駆動ピン216、スライダー218、溝211、揺動プレート207,208、溝210、スライダー217、駆動ピン215を介して各カム203,204にカム駆動力が伝達され、各カム203,204を回転する。
【0010】
揺動プレート207,208がカム軸心O0から偏心して位置していることにより、回転に伴って各駆動ピン215,216及びスライダー217,218が溝210,211内を径方向に往復移動し、それにより、不等速軸継手機能を発揮し、各カム203、204の回転角速度は、カム駆動回転体202の回転角速度に対して、一回転中に増減する。このようにカム203,204をカム駆動回転体202に対して相対的に不等速回転させることにより、カム軸201と各カム203,204の間で回転位相差を生じさせている。
【0011】
【特許文献1】
米国特許3,633,555号明細書。
【0012】
【発明が解決しようとする課題】
図12及び図13に示す従来の可変動弁装置では、揺動プレート207等の偏心位置を変更する手段として、偏心孔222を有する1つの偏心環221を回動可能に備えているだけなので、揺動プレート207の偏心量は無段階に調節可能であるが、揺動プレート207の偏心方向は一定方向に固定されてしまう。
【0013】
したがって、吸気弁又は排気弁の開閉時期及び開放期間の変更可能範囲は、揺動プレートの偏心量の調節のみによる狭い範囲内に制限される。
【0014】
また、図12のように吸気弁203と排気弁204を同軸上に並べて配置する場合に、両カム203,204間に駆動回転体202並びに2組の揺動プレート207,208を配置し、駆動回転体202からそれぞれ揺動プレート207,208を介して両側のカム203,204に動力を伝達する構造では、両カム203,204間の距離が長くなることにより、カム203,204から弁腕室に至るプッシュロッドの傾斜が大きくなり、弁駆動力の伝達ロスが大きくなると共に、両カム203,204間のスペース的な制限により駆動回転体202及び2組の揺動プレート207,208の配置及び組付けが困難になる。さらに、駆動回転体202及びカム203,204の内周にカム軸201を通過させて入力するようにしているので、軸構造が複雑化すると共に駆動回転体202及びカム203,204の径が大きくなり、重量増加にもつながる。
【0015】
【発明の目的】
本発明の目的は、吸気弁及び排気弁の開閉時期及び開放期間の変更可能範囲を広げ、広範囲の運転状況に対して最適な弁開閉時期等を提供し、また、コンパクト性を維持しつつ、カム機構から弁腕への弁駆動力の伝達ロスを防ぎ、それらにより内燃機関の運転性能を向上させようとするものである。
【0016】
【課題を解決するための手段】
上記課題を解決するため、本願請求項1記載の発明は、カム駆動軸とカムとの間に、カム軸心に対して偏心可能な揺動プレートを介在させ、該揺動プレートを偏心させることによりカム駆動軸とカムの間に回転位相差を生じさせる内燃機関の可変動弁装置において、カム軸心に対して偏心する偏心部を有すると共にカム軸心回り回動可能な第1の回動部材と、上記偏心部の軸心に対して偏心するプレート支持部を有すると共に、偏心部軸心回り回動可能に偏心部に嵌合する第2の回動部材とを備え、プレート支持部に揺動プレートを支持し、両回動部材の回動操作の組み合わせにより、揺動プレートの偏心方向及び偏心量を調整可能として特徴としている。
【0017】
このように、偏心用の第1、第2の回動部材により、揺動プレートの偏心位置を2段構えで変更可能とし、揺動プレートの偏心方向と偏心量を独立して変更できるようにしていると、カム駆動軸に対するカムの回動位相の変更可能範囲が大幅に広がり、各種運転状況に応じて広範囲に吸、排気弁等の開閉時期及び開放期間を変更できる。
【0018】
請求項2記載の発明は、カム駆動軸とカムとの間に、カム軸心に対して偏心可能な揺動プレートを介在させ、該揺動プレートを偏心させることによりカム駆動軸とカムの間に回転位相差を生じさせる内燃機関の可変動弁装置において、カムとして、吸気カムと排気カムを、カム駆動軸と同軸心上に並列配置し、吸気カム又は排気カムの一方とカム駆動軸との間と、両カム間に、それぞれ揺動プレートを介在させていることを特徴としている。
【0019】
このように弁駆動力の伝達経路を、カム駆動軸→揺動プレート→一方のカム→揺動プレート→他方のカムとし、両カム間にはカム駆動軸を配置せずに1つの揺動プレートのみを配置してあると、両カム間の距離を短くし、プッシュロッドの傾斜角を小さくして弁駆動力の伝達ロスを少なくできる共に、カム駆動軸及び揺動プレートの配置及び組付も容易になる。また、図12のように両カム間に駆動回転体202を配置すると共にカム軸201をカム203,204内に挿通する構造に比べ、カム駆動軸への外部からの入力経路が簡単になり、図12のようにカム駆動軸の径を大きくする必要がなく、重量増加及び構造の複雑化を防ぐことができる。
【0020】
請求項3記載の発明は、請求項2記載の可変動弁装置において、一方の揺動プレートの偏心方向及び偏心量を、他方の揺動プレートの偏心方向及び偏心量と対称に設定可能としてあることを特徴としている。
【0021】
これにより、たとえばカム駆動軸から遠い側のカムを、カム駆動軸に対して等速同期回転させ、カム駆動軸に近い側のカムを、カム駆動軸に対して回転位相差を生じるように設定する場合に、偏心方向及び偏心量を対称に変更することにより、近い側のカムの回転位相差を簡単に打ち消すことができる。
【0022】
【発明の実施の形態】
[吸排気弁装置の概略]
図1〜図9は、OHV型ツインバルブ式内燃機関に本願発明の可変動弁装置を適用した例である。図1は内燃機関の内部構造を示す縦断面略図であり、シリンダ1内に嵌合するピストン2はコンロッド3を介してクランク軸4のクランクピン5に連結し、シリンダヘッド7には一対の吸気弁8と一対の排気弁(図示せず)が装着され、シリンダヘッド7の上側には吸気弁腕10及び排気弁腕(図示せず)が配置されている。吸気弁腕10の先端部は両吸気弁8の上端部にT字形の弁押え11を介して当接している。図示しない排気弁腕も、吸気弁腕と同様に排気弁の上端部に弁押えを介して当接している。
【0023】
可変動弁装置はシリンダ側方のカム室13内に配置されており、同一のカム軸心O0上に吸気カム21と排気カム22とカム駆動軸20を並列に配置してある。吸気カム21には吸気用スイングアーム(吸気用カムフォロアー)23の先端ローラ24が当接し、吸気用スイングアーム23の先端部の上面は、吸気用プッシュロッド27を介して吸気弁腕10の他端に連結している。排気カム22も吸気カム21と基本的に同様な構造で排気弁腕に連動連結しており、排気カム22には、図示しない排気用スイングアーム(排気用カムフォロアー)の先端ローラが当接し、排気用スイングアームの先端部の上面は、排気用プッシュロッドを介してシリンダヘッド7上の排気弁椀の他端に連動連結している。
【0024】
カム駆動軸20にはカムギヤ29が結合されており、該カムギヤ29は中間伝達ギヤ30を介してクランク軸4のカム駆動ギヤ31に連動連結している。クランク軸4の回転は中間伝達ギヤ30等により1/2の回転角速度に減速されてカム駆動軸20に伝達される。
【0025】
[可変動弁装置]
図2は可変動弁装置の縦断面拡大図であり、カム駆動軸20は、一端部がクランクケースカバー等のカバー部材32に軸受を介して回転可能に支持され、他端部はカム室13に突出し、軸受ハウジング15により回転可能に支持されている。カム駆動軸20側から順に吸気カム21と排気カム22が軸方向に並んで配置され、両カム21,22は、それぞれ軸受ハウジング16,17によりカム駆動軸20と同一軸心O0上に回転可能に支持されている。
【0026】
カム駆動軸20と吸気カム21の軸心方向間には、吸気用不等速継手機構を構成する部材として吸気用揺動プレート35が偏心位置変更可能に配置され、吸気カム21と排気カム22の軸心方向間には、排気用不等速継手機構を構成する部材として上記吸気用揺動プレート35とは別に、排気用揺動プレート36が偏心位置変更可能に配置されている。
【0027】
吸気用揺動プレート35の偏心方向及び偏心量を任意にかつ独立に変更可能とするために、カム駆動軸20内には、偏心用の第1、第2の回動部材40,41が配置されている。上記吸気用の第1の回動部材40は、この実施の形態では外側に配置された偏心軸であり、以下、第1の回動部材40を、吸気用外側偏心軸と称する。また、上記吸気用の第2の回動部材41は、吸気用外側偏心軸40の内側に嵌合する偏心軸であり、以下、第2の回動部材41を、吸気用内側偏心軸と称する。
【0028】
カム駆動軸20にはカム軸心O0と同軸心の嵌合孔43が形成されており、該嵌合孔43内に上記吸気用外側偏心軸40が回動可能に嵌合している。吸気用外側偏心軸40は、偏心部として、カム軸心O0に対して一定量だけ偏心する偏心孔44を有しており、該偏心孔(偏心部)44内に吸気用内側偏心軸41が回動可能に嵌合している。吸気用内側偏心軸41の先端には、円柱状のプレート支持部45が一体に形成されており、該プレート支持部45は、吸気用揺動プレート35を支持すると共に、吸気用内側偏心軸41の軸心(偏心孔44の中心)Oa1に対して一定量だけ偏心している。
【0029】
排気用揺動プレート36の偏心方向及び偏心量を任意にかつ独立に変更可能とするために、排気カム22内には、偏心用の第1、第2の回動部材50,51が配置されている。排気用の第1の回動部材50は、この実施の形態では外側に配置された偏心軸であり、以下、第1の回動部材50を、排気用外側偏心軸と称する。また、排気用の第2の回動部材51は、排気用外側偏心軸50の内側に嵌合する偏心軸であり、以下、第2の回動部材41を、吸気用内側偏心軸と称する。
【0030】
両排気用偏心軸50,51は、基本的には吸気用の偏心軸40、41と同様の構造となっている。すなわち、排気カム22にはカム軸心O0と同軸心の嵌合孔53が形成されており、該嵌合孔53内に排気用外側偏心軸50が回動可能に嵌合している。排気用外側偏心軸50は、偏心部としてカム軸心O0に対して一定量だけ偏心した偏心孔54を有しており、該偏心孔(偏心部)54内に排気用内側偏心軸51が回動可能に嵌合している。排気用内側偏心軸51の先端には、プレート支持部55が形成されており、該プレート支持部55は排気用揺動プレート36を支持すると共に排気用内側偏心軸51の軸心(偏心孔54の中心)Ob1に対して一定量だけ偏心している。
【0031】
図4は吸気用揺動プレート35の正面拡大図(図2のIV矢視図)であり、吸気用揺動プレート35は円盤状に形成されると共に、中央部に前記プレート支持部45に嵌合する中央孔35aが形成されており、外周端部には吸気用揺動プレート35の中心Oa2に対して対称な位置に一対の駆動ピン60,61が固着されている。各駆動ピン60,61は互いに軸心方向の反対方向に突出し、各突出部分に長方体形状のスライダー62,63がそれぞれ駆動ピン回り回動可能に嵌合している。すなわち、吸気用の両スライダー62,63は、吸気用揺動プレート35の表裏両面に、揺動プレート中心Oa2に対して対称位置に配置されている。
【0032】
図2に示す排気用揺動プレート36も基本的には前記吸気用揺動プレート35と同様な構造となっており、表裏両面に一対の駆動ピン70,71とそれらに嵌合するスライダー72,73をそれぞれプレート中心に対して対称に備え、中央部には排気用内側偏心軸51のプレート支持部55に嵌合する中央孔36aが形成されている。
【0033】
図3は可変動弁機構の縦断面分解斜視図であり、カム駆動軸20と吸気カム21の間に配置される吸気用揺動プレート35に対して、カム駆動軸20の端面には径方向に延びる駆動溝64が形成され、該駆動溝64には吸気用揺動プレート35の一方のスライダー62が径方向スライド可能に係合し、吸気カム22の端面には上記カム駆動軸20の駆動溝64と対称な位置に、径方向に延びる駆動溝65が形成され、該駆動溝65には吸気用揺動プレート35の他方のスライダー63が径方向スライド可能に係合する。
【0034】
吸気カム21と排気カム22の間に配置される排気用揺動プレート36に対して、吸気カム21の端面には径方向に延びる駆動溝74が形成され、該駆動溝74に排気用揺動プレート36の一方のスライダー72が径方向スライド可能に係合している。排気カム22の端面には上記吸気カム21の駆動溝74とカム軸心O0に対して対称な位置に、径方向に延びる駆動溝75が形成され、該駆動溝75には排気用揺動プレート36の他方のスライダー73が径方向スライド可能に係合する。
【0035】
上記吸気カム21の軸方向両端面に形成された両駆動溝65,74は、カム軸心O0に対して対称な位置に形成されている。
【0036】
吸気用外側偏心軸40及び吸気用内側偏心軸41の吸気用揺動プレート35側とは反対側の端部には、それぞれフランジ部40a,41aが一体に形成されており、各フランジ部40a,41aはそれぞれ電動ステップモータ等の駆動装置あるいは手動式駆動装置に連動連結しており、両吸気用偏心軸40,41をそれぞれ独立して所定の回転角度だけ回動させることができるようになっている。
【0037】
また、排気用外側偏心軸50及び排気用内側偏心軸51の排気用揺動プレート36側とは反対側の端部には、それぞれフランジ部50a,51aが一体に形成されており、各フランジ部50a,51aはそれぞれ電動ステップモータ等の駆動装置あるいは手動式駆動装置に連動連結しており、両排気用偏心軸50,51をそれぞれ独立して所定の回転角度だけ回動させることができるようになっている。
【0038】
図5は吸気用内側偏心軸41の拡大正面図(図2のIV矢視図)であり、吸気用内側偏心軸41の軸心Oa1に対して、吸気用プレート支持部45の軸心Oa2の偏心量をe2とすると、この偏心量e2は、図6に示す吸気用外側偏心軸40におけるカム軸心O0に対する偏心孔44の中心Oa1の偏心量e1と同じ値に設定されている。
【0039】
上記のように偏心量e2=e1に設定していると、たとえば図2のVII-VII断面を示す図7のように、カム軸心O0に対して外側偏心軸40の偏心孔44の中心Oa1を溝64の長さ方向の矢印A1側に偏心させ、上記偏心孔44の中心Oa1に対してプレート支持部45の軸心Oa2を上記矢印A1側とは反対の矢印A2側に偏心させることにより、上記プレート支持部45の軸心(吸気用揺動プレート35の中心)Oa2をカム軸心O0に一致させることができ、これにより揺動プレート35の偏心量を0とすることができる。
【0040】
また、図8のように、カム軸心O0に対して外側偏心軸40の偏心孔44の中心Oa1を溝64の長さ方向の矢印A1側に偏心させ、上記偏心孔44の中心Oa1に対してプレート支持ピン45の軸心Oa2を同じ矢印A1側に偏心させると、吸気用揺動プレート35の偏心量を最大(e1+e2)に設定することができる。
【0041】
図9は吸気用揺動プレート35の偏心方向を矢印A1,A2とは異ならせ、たとえば矢印A1に対して概ね90°の角度差で、その偏心方向B1の最大量まで偏心させた状態を示している。
【0042】
なお、図2及び図3に示す排気カム22は、異なるプロフィルのカム山を並列に2つ備えており、これら両排気カム山を選択的に使用したり、あるいは単一使用と共同使用とに切換えることで、排気弁のリフト量も含めて、排気弁のリフト特性を変更するようになっている。
【0043】
【作用】
[クランク軸回転力の伝達経路]
図1において、クランク軸4の回転力は、カム軸駆動用ギヤ31、中間伝達ギヤ30及びカムギヤ29を介し、回転角速度を1/2に減速してカム駆動軸20に伝達される。
【0044】
カム駆動軸20から各カム21,22への伝達経路は、図2において、カム駆動軸20→駆動溝64→スライダー62→駆動ピン60→吸気用揺動プレート35→駆動ピン61→スライダー63→駆動溝65→吸気カム21→駆動溝74→スライダー72→駆動ピン70→排気用揺動プレート36→駆動ピン71→スライダー73→駆動溝75→排気カム22となっている。すなわち、カム駆動軸20から、吸気用揺動プレート35及びその駆動ピン60,61及びスライダー62,63を介してまず吸気カム21へ伝達され、そして吸気カム21から排気用揺動プレート36及びその駆動ピン70,71及びスライダー72,73を介して排気カム22に伝達される。
【0045】
[カム駆動軸の回転に対する吸気カムの回転]
(1)吸気用揺動プレートの偏心量0の場合。
図7のように吸気用揺動プレート35の中心Oa2をカム軸心O0に一致させることにより、吸気用揺動プレート35の偏心量を0とした場合には、カム駆動軸20の回転は等速で吸気カム21に伝達される。したがって、カム駆動軸20と吸気カム21の間で回転位相差は生じず、等速で同期回転する。
【0046】
図10はカム駆動軸20に対する吸気カム21の回転位相差並びに吸気弁リフト量の変化の一例を示す図であり、上記のように吸気カム21がカム駆動軸20と等速同期回転している場合には、破線で示す直線X1のように回転位相差は0が維持されている。この時の吸気弁リフト特性は、下段の破線の曲線Y1のようになる。
【0047】
(2)吸気用揺動プレートの偏心量最大の場合。
図8のように吸気用揺動プレート35の中心Oa2をカム軸心O0に対して駆動溝方向に最大量偏心させた場合には、図3のカム駆動軸20が1回転する間に、たとえば一方の吸気用スライダー62が中心Oa2に近づくと同時に他方のスライダー63が離れ、続いて一方のスライダー62が中心Oa2から離れると同時に他方のスライダー63が中心Oa2に近づく動作を行なう。これにより、カム駆動軸20の回転は不等速で吸気カム21に伝達され、カム駆動軸20に対する吸気カム21の回転角速度が増減し、カム駆動軸20と吸気カム21の間で回転位相差が生じ、該回転位相差は、図10の上段に実線で示す曲線X2のように、概ねサインカーブに沿って変化する。すなわち、カム駆動軸回転角が概ね0°から180°の範囲では回転位相差は正となり、概ね180°から360の範囲では回転位相差は負となる。これにより、吸気弁のリフト特性は下段の実線の曲線Y2に示すように、曲線Y1に対して吸気弁閉時期が早まり、吸気弁開放期間が短縮される。
【0048】
(3)吸気用揺動プレートの偏心量のみ変更した場合。
図3の吸気用外側偏心軸40の回動調整位置と吸気用内側偏心軸41の回動調整位置を、任意に組み合わせることにより、吸気用揺動プレート35の偏心方向を図8の最大偏心時と略同方向(矢印A1側)であって、偏心量を2e1より小さく設定した場合、カム駆動軸20に対する吸気カム21の回転位相差は、図10の上段に一点鎖線で示す曲線X3のようになり、前記最大偏心時(曲線X2)と周期は同じであるが、振幅が小さくなる。これはカム駆動軸20に対する吸気カム21の回転角速度の増減量が少なくなっていることを示し、リフト特性は下段の一点鎖線の曲線Y3のように変化する。すなわち、吸気弁閉時期が曲線Y1と曲線Y2の中間にくる。
【0049】
(4)吸気揺動プレートの偏心量及び偏心方向を変更した場合。
図3の吸気用外側偏心軸40の回動調整位置と吸気用内側偏心軸41の回動調整位置を、任意に組み合わせることにより、吸気用揺動プレート35の偏心方向を図8の最大偏心時の矢印A1方向とは異ならせ、かつ偏心量も2e1より小さく設定した場合、カム駆動軸20に対する吸気カム21の回転位相差は、回転位相差は、図10の上段に二点鎖線で示す曲線X4のようになり、前記最大偏心時(曲線X2)と周期が異なると共に振幅も小さくなる。これは吸気弁の開閉時期がずれると共にカム駆動軸20に対する吸気カム21の回転角速度の増減量も少なくなっていることを示し、リフト特性はたとえば下段の二点鎖線の曲線Y4のように変化する。
【0050】
上記のように吸気揺動プレート35の偏心方向及び偏心量を、吸気用外側偏心軸40の回動調節と、吸気用内側偏心軸41の回動調節を組み合せて変更することにより、広い範囲に亘り吸気弁の開時期、閉時期及び開放期間を変更調節できる。
【0051】
[カム駆動軸及び吸気カムに対する排気カムの回転]
(1)排気揺動プレートの偏心量0の場合。
図2の吸気カム21に対する排気カム22の基本的な回転位相差の調節は、カム駆動軸20に対する吸気カム21の回転位相差の調節と同様である。図2において、排気用揺動プレート36の中心Ob2とカム軸心O0を一致させた場合には、排気カム22は吸気カム21と等速で同期回転する。この場合、吸気カム21がカム駆動軸20と等速で回転している時には、当然排気カム22はカム駆動軸20とも等速で同期回転する。しかし、吸気用揺動プレート35が任意の方向及び量だけ偏心していることにより、吸気カム21とカム駆動軸20との間に回転位相差が生じている時には、排気カム22はカム駆動軸20に対して吸気カム21と同じ位相差で回転することになる。
【0052】
(2)吸気用揺動プレート35の偏心時、排気カム22をカム駆動軸20と同期回転させる場合。
たとえば図8のように、吸気用揺動プレート35が最大量まで偏心し、吸気カム21がカム駆動軸20に対して不等速で回転している場合において、図3の排気カム22をカム駆動軸20に対して等速で同期回転させたい時には、排気用揺動プレート36を吸気用揺動プレート35の偏心方向と反対方向に、かつ、同じ偏心量だけ偏心させる。この場合、図3の吸気カム21の軸方向両端に形成された吸気用の駆動溝64と排気用の駆動溝74が、カム軸心O0に対して対称位置に形成してあることにより、排気用揺動プレート36を、カム軸心O0に対して簡単に吸気用揺動プレート35と対称な位置に変更調節することができる。
【0053】
(3)吸気用揺動プレート35の偏心時、排気用揺動プレート36も、排気独自の所望の弁開閉時期となるように設定する場合。
図3において、排気用揺動プレート36は、カム駆動軸20から吸気用揺動プレート36及び吸気カム21を経て回転力が伝達されるので、カム駆動軸20に対する排気カム22の回転位相差は、吸気用揺動プレート35による回転位相差と、吸気カム21に対する排気カム22の回転位相差を加えた位相差になる。したがって、排気用揺動プレート36の偏心位置を調節する場合には、前記吸気用揺動プレート35の偏心方向及び偏心量を加味して、排気用揺動プレート36の偏心方向及び偏心量を設定することになる。
【0054】
【発明の別の実施の形態】
(1)図11は揺動プレート110の外周側に、第1の回動部材である外側環状偏心板102と、第2の回動部材である内側環状偏心板103を配置した構造である。外側偏心板102はカム軸心O0回りに回動するように外周面がハウジング105に支持されており、偏心部として、カム軸心O0から偏心する外側偏心孔104を有している。内側偏心板103は上記外側偏心孔104内に回動可能に嵌合すると共に、プレート支持部として外側偏心孔104の中心Oa1から偏心する内側偏心孔106を有している。
【0055】
揺動プレート110は前記内側偏心孔106に回動可能に嵌合している。揺動プレート110の軸方向の表裏両面に、前記図3に示した揺動プレートと同様に、一対の駆動ピン120及びスライダー121を備えている。
【0056】
揺動プレート110とカム駆動軸101及び図示しない吸気カムとの連動連結構造は、前記図2及び図3の場合と同様であり、カム駆動軸並びに吸気カムあるいは排気カムに形成された径方向の溝に、スライダーがスライド可能に係合している。
【0057】
図11の可変動弁機構において、外側偏心板102と内側偏心板103をそれぞれ回動調節することにより、カム軸心O0に対する揺動プレート110の偏心方向及び偏心量を、独立して任意に設定することが可能となる。
【0058】
(2)図2及び図3の構造は、吸気カムは吸気用揺動プレートを介してカム駆動軸に連動連結し、排気カムは排気用揺動プレートを介して吸気カムに連動連結した構造であるが、かかる構造には限定されず、たとえば排気カムを排気用揺動プレートを介してカム駆動軸に連動連結し、吸気カムを吸気用揺動プレートを介して排気カムに連動連結する構造とすることもできる。
【0059】
(3)上記各実施の形態において、外側偏心軸に形成する偏心部として、いずれも偏心孔44等を形成しているが、偏心孔には限定されず、たとえば外側偏心軸に円筒形の偏心突起を形成し、該円筒形偏心突起の外周に内側偏心軸のボス部等を嵌合する構造とすることも可能である。
【0060】
【発明の効果】
以上説明したように本発明は、カム駆動軸とカムとの間に、カム軸心に対して偏心可能な揺動プレートを介在させ、該揺動プレートを偏心させることによりカム駆動軸とカムの間に回転位相差を生じさせる内燃機関の可変動弁装置において、次のような利点を有している。
【0061】
(1)1つの揺動プレート40を偏心操作するために、第1、第2の偏心用回動部材、たとえば外側及び内側の偏心軸40,41を用い、揺動プレート35の偏心位置を2段構えで変更可能とし、揺動プレート35の偏心方向と偏心量を独立して変更できるようにしているので、カム駆動軸20に対するカム21等の回転位相差の変更可能範囲が大幅に広がり、各種運転状況に応じて広範囲に吸、排気弁等の開閉時期及び開放期間を変更できる。
【0062】
(2)カムとして、吸気カム21と排気カム22を、カム駆動軸20と同軸心上に並列配置し、吸気カム21又は排気カム22の一方とカム駆動軸20との間と、両カム21,22の間に、それぞれ揺動プレート35,36を介在させると、弁駆動力の伝達経路が、たとえばカム駆動軸20→一方の揺動プレート35→一方のカム21→他方の揺動プレート36→他方のカム22となる。すなわち、両カム21,22間にカム駆動軸20を配置せずに1つの揺動プレート35のみを配置してあることにより、両カム21,22、間の距離を短くし、プッシュロッドの傾斜角を小さくして弁駆動力の伝達ロスを少なくできると共に、カム駆動軸20及び揺動プレート35の配置及び組付も容易になる。また、図12のように両カム間に駆動回転体202を配置すると共にカム軸201をカム203,204内に挿通する構造に比べ、カム駆動軸への外部からの入力経路が簡単になり、図12のようにカム駆動軸の径を大きくする必要がなく、重量増加及び構造の複雑化を防ぐことができる。
【0063】
(3)吸気カム21と排気カム22をカム軸心方向に並べて配置し、カム駆動軸20から一方のカム21を経て他方のカム22に弁駆動力を伝達する上記構造において、一方の揺動プレート35の偏心方向及び偏心量を、他方の揺動プレート36の偏心方向及び偏心量と対称となるように構成してあると、たとえば、カム駆動軸20に近い側のカム21を、カム駆動軸20に対して不等速で接続した場合であって、カム駆動軸20から遠い側のカム22をカム駆動軸20と等速で同期回転させたい場合には、遠い側のカム21に対応する他方の揺動プレート36を、近い側の揺動プレート35の偏心位置と対称移動させることにより、近い側のカムの回転位相差を簡単に打ち消すことができる。
【図面の簡単な説明】
【図1】 本願発明による可変動弁装置を備えた内燃機関の内部の縦断面略図である。
【図2】 本願発明による可変動弁装置の縦断面拡大図である。
【図3】 図2の可変動弁装置の縦断面分解斜視図である。
【図4】 揺動プレートの拡大正面図(図2のIV矢視図)である。
【図5】 内側偏心軸の拡大正面図(図2のIV矢視図)である。
【図6】 外側偏心軸の拡大正面図(図2のIV矢視図)である。
【図7】 偏心量0時の図2のVII-VII断面図である。
【図8】 最大偏心時の図2のVII-VII断面図である。
【図9】 中間偏心時の図2のVII-VII断面図である。
【図10】 カム駆動軸に対する吸気カム回転位相差並びに弁リフト特性を示す図である。
【図11】 本願発明による可変動弁装置の変形例を示す縦断面図である。
【図12】 従来例の縦断面図である。
【図13】 図12のXIII-XIII断面図である。
【符号の説明】
20 カム駆動軸
21 吸気カム
22 排気カム
27 吸気用プッシュロッド
35 吸気用揺動プレート
36 排気用揺動プレート
40 吸気用外側偏心軸(第1の回動部材の一例)
41 吸気用内側偏心軸(第2の回動部材の一例)
44 偏心孔(偏心部の一例)
45 吸気用プレート支持部
50 排気用外側偏心軸
51 排気用内側偏心軸
54 偏心孔(偏心部の一例)
60、61,70,71 駆動ピン
62,63,72,73 スライダー
64,65,74,75 駆動溝
102 排気用外側偏心板(第1の回動部材の一例)
103 排気用内側偏心板(第2の回動部材の一例)
104 偏心孔(偏心部の一例)
106 偏心孔(プレート支持部の一例)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a variable valve operating apparatus for an internal combustion engine that can change an opening / closing timing of an exhaust valve and an intake valve in accordance with an operating situation by using an oscillating plate that can be operated eccentrically.
[0002]
[Prior art]
An intake valve and an exhaust valve provided in an internal combustion engine are normally driven to be opened and closed by an intake cam and an exhaust cam, and the opening / closing timing, opening period and valve lift amount of each valve are determined depending on the cam shape and cam. Determined by rotational phase.
[0003]
By the way, the opening and closing timing and the opening period of each valve have different optimum values depending on the operating situation, so various variable valve operating devices that can change the valve opening and closing timing etc. according to the operating situation have been developed. As one of them, a variable valve apparatus using a swinging plate (or an eccentric circular plate) serving as an inconstant velocity joint has been developed (for example, Patent Document 1).
[0004]
12 and 13 are swing valve type variable valve operating devices disclosed in the above-mentioned Patent Document 1. In FIG. 12, a cam driving rotary body 202 is fixed to a cam shaft 201 that is driven to rotate by a crankshaft. Two cams, for example, an intake cam 203 and an exhaust cam 204 are disposed on both axial sides of the cam drive rotating body 202. Both cams 203 and 204 are arranged on the same axis O 0 as the cam drive rotary body 202 and are rotatably fitted to the cam shaft 201.
[0005]
In order to make it possible to change the rotational angular velocity of each of the cams 203 and 204 with respect to the cam drive rotator 202, the intake rocking plate 207 is eccentric between the cam drive rotator 202 and the intake cam 203 with respect to the cam axis O0. An exhaust rocking plate 208 that is eccentric with respect to the cam shaft O 0 is disposed between the cam drive rotary body 202 and the exhaust cam 204.
[0006]
Each of the swing plates 207 and 208 includes a pair of drive grooves 210 and 211 extending in the radial direction, respectively, while the end surfaces of the intake cam 203 and the exhaust cam 204 and the axial end surfaces of the cam drive rotating body 202 are respectively Drive pins 215 and 216 projecting into the drive grooves 210 and 211 are formed, and rectangular parallelepiped sliders 217 and 218 are fitted into the drive pins 215 and 216, respectively.
[0007]
13 is an XIII-XIII cross-sectional view of the intake rocking plate 207 of FIG. 12, and the intake rocking plate 207 is rotatably fitted in the eccentric hole 222 of the circular eccentric ring 221. The eccentric ring 221 is rotatably fitted in the fitting hole 224 of the housing 220. The fitting hole 224 is formed concentrically with the cam shaft center O 0, but the eccentric hole 222 is eccentric by a certain amount with respect to the cam shaft center O 0, and the swinging plate is adjusted by rotating the eccentric ring 221. The eccentric position 207 can be changed.
[0008]
The exhaust rocking plate 208 in FIG. 12 has the same structure as the intake rocking plate 207.
[0009]
When the cam shaft 201 rotates, the cam driving force is applied from the rotating member 202 to the cams 203 and 204 via the drive pins 216, sliders 218, grooves 211, swing plates 207 and 208, grooves 210, sliders 217, and drive pins 215. Is transmitted, and the cams 203 and 204 are rotated.
[0010]
Since the rocking plates 207 and 208 are located eccentrically from the cam shaft O0, the drive pins 215 and 216 and the sliders 217 and 218 reciprocate in the radial direction in the grooves 210 and 211 with rotation, As a result, an inconstant velocity shaft coupling function is exhibited, and the rotational angular velocities of the cams 203 and 204 increase or decrease with respect to the rotational angular velocities of the cam drive rotor 202 during one rotation. In this manner, the cams 203 and 204 are rotated at a non-uniform speed relative to the cam-driven rotating body 202, thereby generating a rotational phase difference between the cam shaft 201 and the cams 203 and 204.
[0011]
[Patent Document 1]
U.S. Pat. No. 3,633,555.
[0012]
[Problems to be solved by the invention]
In the conventional variable valve operating apparatus shown in FIGS. 12 and 13, only one eccentric ring 221 having an eccentric hole 222 is rotatably provided as means for changing the eccentric position of the swing plate 207 or the like. The eccentric amount of the swing plate 207 can be adjusted steplessly, but the eccentric direction of the swing plate 207 is fixed in a fixed direction.
[0013]
Therefore, the changeable range of the opening / closing timing and opening period of the intake valve or the exhaust valve is limited to a narrow range only by adjusting the eccentric amount of the swing plate.
[0014]
Further, when the intake valve 203 and the exhaust valve 204 are arranged side by side on the same axis as shown in FIG. 12, a drive rotating body 202 and two sets of swing plates 207 and 208 are arranged between the cams 203 and 204 to drive. In the structure in which power is transmitted from the rotating body 202 to the cams 203 and 204 on both sides via the swing plates 207 and 208, respectively, the distance between the cams 203 and 204 increases, so The push rod inclination to reach a larger angle, the transmission loss of the valve driving force becomes larger, and the space between the cams 203 and 204 is limited due to the space limitation between the two cams 203 and 204. Assembly becomes difficult. Furthermore, since the cam shaft 201 is passed through the inner periphery of the drive rotator 202 and cams 203 and 204, the shaft structure is complicated and the diameters of the drive rotator 202 and cams 203 and 204 are large. It also leads to an increase in weight.
[0015]
OBJECT OF THE INVENTION
The object of the present invention is to widen the changeable range of the opening and closing timings and opening periods of the intake and exhaust valves, provide an optimal valve opening and closing timing for a wide range of operating conditions, etc., while maintaining compactness, The transmission loss of the valve driving force from the cam mechanism to the valve arm is prevented, thereby improving the operation performance of the internal combustion engine.
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 of the present application is that an oscillating plate that is eccentric with respect to the cam axis is interposed between the cam drive shaft and the cam, and the oscillating plate is eccentric. In the variable valve operating apparatus for an internal combustion engine that generates a rotational phase difference between the cam drive shaft and the cam, the first rotation that has an eccentric portion that is eccentric with respect to the cam shaft and that can rotate about the cam shaft. The plate support portion includes a member and a plate support portion that is eccentric with respect to the axis of the eccentric portion, and a second rotation member that fits the eccentric portion so as to be rotatable around the eccentric portion axis. The rocking plate is supported, and the eccentric direction and the eccentric amount of the rocking plate can be adjusted by a combination of the rotating operations of both rotating members.
[0017]
As described above, the eccentric position of the swing plate can be changed in two steps by the first and second rotating members for eccentricity, and the eccentric direction and the eccentric amount of the swing plate can be independently changed. If this is done, the changeable range of the cam rotation phase relative to the cam drive shaft is greatly expanded, and the opening and closing timings and opening periods of the intake and exhaust valves can be changed over a wide range according to various operating conditions.
[0018]
According to a second aspect of the present invention, a rocking plate that can be eccentric with respect to the cam shaft center is interposed between the cam drive shaft and the cam, and the rocking plate is eccentric so that the cam drive shaft is located between the cam and the cam. In the variable valve operating apparatus for an internal combustion engine that generates a rotational phase difference between the intake cam and the exhaust cam, the intake cam and the exhaust cam are arranged in parallel on the same axis as the cam drive shaft. A rocking plate is interposed between the two cams and between the two cams.
[0019]
In this way, the transmission path of the valve driving force is cam drive shaft → oscillation plate → one cam → oscillation plate → the other cam, and no cam drive shaft is disposed between the two cams. Can be used to reduce the distance between the two cams, reduce the push rod tilt angle and reduce the transmission loss of the valve drive force, as well as the arrangement and assembly of the cam drive shaft and rocking plate. It becomes easy. Further, as compared with the structure in which the drive rotating body 202 is disposed between both cams as shown in FIG. 12 and the cam shaft 201 is inserted into the cams 203 and 204, the input path from the outside to the cam drive shaft is simplified. As shown in FIG. 12, it is not necessary to increase the diameter of the cam drive shaft, and an increase in weight and a complicated structure can be prevented.
[0020]
According to a third aspect of the present invention, in the variable valve operating apparatus according to the second aspect, the eccentric direction and the eccentric amount of one swing plate can be set symmetrically with the eccentric direction and the eccentric amount of the other swing plate. It is characterized by that.
[0021]
Thus, for example, the cam far from the cam drive shaft is rotated at the same speed synchronously with the cam drive shaft, and the cam close to the cam drive shaft is set so as to generate a rotational phase difference with respect to the cam drive shaft. In this case, the rotational phase difference of the near cam can be easily canceled by changing the eccentric direction and the eccentric amount symmetrically.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
[Outline of intake and exhaust valve device]
1 to 9 show examples in which the variable valve operating apparatus of the present invention is applied to an OHV type twin valve internal combustion engine. FIG. 1 is a schematic longitudinal sectional view showing the internal structure of an internal combustion engine. A piston 2 fitted in a cylinder 1 is connected to a crankpin 5 of a crankshaft 4 via a connecting rod 3, and a pair of intake air is connected to a cylinder head 7. A valve 8 and a pair of exhaust valves (not shown) are mounted, and an intake valve arm 10 and an exhaust valve arm (not shown) are arranged above the cylinder head 7. The tip of the intake valve arm 10 is in contact with the upper ends of both intake valves 8 via a T-shaped valve presser 11. The exhaust valve arm (not shown) is also in contact with the upper end portion of the exhaust valve via a valve presser like the intake valve arm.
[0023]
The variable valve operating device is arranged in a cam chamber 13 on the side of the cylinder, and an intake cam 21, an exhaust cam 22 and a cam drive shaft 20 are arranged in parallel on the same cam axis O0. A tip roller 24 of an intake swing arm (intake cam follower) 23 abuts on the intake cam 21, and the upper surface of the tip of the intake swing arm 23 is in addition to the intake valve arm 10 via an intake push rod 27. It is connected to the end. The exhaust cam 22 is also linked to the exhaust valve arm in a structure basically similar to that of the intake cam 21. The exhaust cam 22 is in contact with a tip roller of an exhaust swing arm (exhaust cam follower) (not shown). The upper surface of the tip of the exhaust swing arm is linked to the other end of the exhaust valve rod on the cylinder head 7 via an exhaust push rod.
[0024]
A cam gear 29 is coupled to the cam drive shaft 20, and the cam gear 29 is linked to a cam drive gear 31 of the crankshaft 4 via an intermediate transmission gear 30. The rotation of the crankshaft 4 is decelerated to a half rotational angular velocity by the intermediate transmission gear 30 or the like and transmitted to the cam drive shaft 20.
[0025]
[Variable valve gear]
FIG. 2 is an enlarged vertical cross-sectional view of the variable valve operating apparatus. One end of the cam drive shaft 20 is rotatably supported by a cover member 32 such as a crankcase cover via a bearing, and the other end is cam chamber 13. And is rotatably supported by the bearing housing 15. An intake cam 21 and an exhaust cam 22 are arranged in the axial direction in order from the cam drive shaft 20 side, and both the cams 21 and 22 can rotate on the same axis O0 as the cam drive shaft 20 by bearing housings 16 and 17, respectively. It is supported by.
[0026]
Between the cam drive shaft 20 and the intake cam 21 in the axial direction, an intake rocking plate 35 is disposed as a member constituting the intake non-constant joint mechanism so that the eccentric position can be changed. In addition to the intake rocking plate 35, an exhaust rocking plate 36 is disposed between the axial directions so that the eccentric position of the exhaust variable plate 36 can be changed.
[0027]
In order to be able to change the eccentric direction and the eccentric amount of the intake rocking plate 35 arbitrarily and independently, the first and second rotating members 40 and 41 for eccentricity are arranged in the cam drive shaft 20. Has been. The intake first rotating member 40 is an eccentric shaft disposed outside in the present embodiment, and hereinafter, the first rotating member 40 is referred to as an intake outer eccentric shaft. The intake second rotating member 41 is an eccentric shaft fitted inside the intake outer eccentric shaft 40. Hereinafter, the second rotating member 41 is referred to as an intake inner eccentric shaft. .
[0028]
The cam drive shaft 20 is formed with a fitting hole 43 coaxial with the cam shaft O 0, and the intake outer eccentric shaft 40 is rotatably fitted in the fitting hole 43. The intake outer eccentric shaft 40 has, as an eccentric portion, an eccentric hole 44 that is eccentric by a certain amount with respect to the cam shaft center O 0, and the intake inner eccentric shaft 41 is in the eccentric hole (eccentric portion) 44. It is fitted so that it can rotate. A cylindrical plate support 45 is integrally formed at the tip of the intake inner eccentric shaft 41, and the plate support 45 supports the intake rocking plate 35 and the intake inner eccentric shaft 41. Is eccentric by a certain amount with respect to the axial center (center of the eccentric hole 44) Oa1.
[0029]
In order to be able to arbitrarily and independently change the eccentric direction and the amount of eccentricity of the exhaust rocking plate 36, first and second rotating members 50 and 51 for eccentricity are arranged in the exhaust cam 22. ing. The first rotating member 50 for exhaust is an eccentric shaft arranged outside in this embodiment, and hereinafter, the first rotating member 50 is referred to as an outer eccentric shaft for exhaust. The exhaust second rotating member 51 is an eccentric shaft fitted inside the exhaust outer eccentric shaft 50. Hereinafter, the second rotating member 41 is referred to as an intake inner eccentric shaft.
[0030]
The exhaust eccentric shafts 50 and 51 basically have the same structure as the intake eccentric shafts 40 and 41. That is, the exhaust cam 22 is formed with a fitting hole 53 that is coaxial with the cam shaft O 0, and the exhaust outer eccentric shaft 50 is rotatably fitted in the fitting hole 53. The exhaust outer eccentric shaft 50 has an eccentric hole 54 that is eccentric by a certain amount with respect to the cam shaft O 0 as an eccentric portion, and the exhaust inner eccentric shaft 51 rotates in the eccentric hole (eccentric portion) 54. It is movably fitted. A plate support 55 is formed at the tip of the exhaust inner eccentric shaft 51. The plate support 55 supports the exhaust rocking plate 36 and the axis of the exhaust inner eccentric shaft 51 (the eccentric hole 54). The center is eccentric by a certain amount with respect to Ob1.
[0031]
4 is an enlarged front view of the intake rocking plate 35 (as viewed in the direction of arrow IV in FIG. 2). The intake rocking plate 35 is formed in a disc shape and is fitted to the plate support 45 at the center. A center hole 35a is formed, and a pair of drive pins 60 and 61 are fixed to the outer peripheral end portion at positions symmetrical to the center Oa2 of the intake rocking plate 35. The drive pins 60 and 61 protrude in directions opposite to each other in the axial direction, and rectangular-shaped sliders 62 and 63 are fitted to the protrusions so as to be rotatable around the drive pins. That is, both the intake sliders 62 and 63 are disposed on the front and back surfaces of the intake swing plate 35 at symmetrical positions with respect to the swing plate center Oa2.
[0032]
The exhaust rocking plate 36 shown in FIG. 2 has basically the same structure as the intake rocking plate 35, and has a pair of drive pins 70 and 71 on both the front and back surfaces and a slider 72 fitted to them. 73 are provided symmetrically with respect to the center of the plate, and a central hole 36a is formed in the central portion to fit into the plate support portion 55 of the exhaust inner eccentric shaft 51.
[0033]
FIG. 3 is an exploded perspective view of the variable valve mechanism in the longitudinal cross section. The intake drive rocker plate 35 disposed between the cam drive shaft 20 and the intake cam 21 has a radial direction on the end surface of the cam drive shaft 20. A drive groove 64 is formed, and one slider 62 of the intake rocking plate 35 is slidably engaged with the drive groove 64, and the cam drive shaft 20 is driven on the end face of the intake cam 22. A driving groove 65 extending in the radial direction is formed at a position symmetrical to the groove 64, and the other slider 63 of the intake rocking plate 35 is engaged with the driving groove 65 so as to be slidable in the radial direction.
[0034]
A drive groove 74 extending in the radial direction is formed on the end face of the intake cam 21 with respect to the exhaust swing plate 36 disposed between the intake cam 21 and the exhaust cam 22, and the exhaust swing is formed in the drive groove 74. One slider 72 of the plate 36 is engaged so as to be slidable in the radial direction. On the end face of the exhaust cam 22, a drive groove 75 extending in the radial direction is formed at a position symmetrical to the drive groove 74 of the intake cam 21 and the cam axis O0. The other slider 73 of 36 engages in a radially slidable manner.
[0035]
Both drive grooves 65 and 74 formed on both end surfaces in the axial direction of the intake cam 21 are formed at symmetrical positions with respect to the cam shaft O0.
[0036]
Flange portions 40a and 41a are integrally formed at the ends of the intake outer eccentric shaft 40 and the intake inner eccentric shaft 41 opposite to the intake rocking plate 35 side, respectively. 41a is linked to a driving device such as an electric step motor or a manual driving device, and both the intake eccentric shafts 40 and 41 can be independently rotated by a predetermined rotation angle. Yes.
[0037]
Further, flange portions 50a and 51a are integrally formed at the ends of the exhaust outer eccentric shaft 50 and the exhaust inner eccentric shaft 51 opposite to the exhaust rocking plate 36, respectively. Reference numerals 50a and 51a are linked to a driving device such as an electric step motor or a manual driving device so that the exhaust eccentric shafts 50 and 51 can be independently rotated by a predetermined rotation angle. It has become.
[0038]
FIG. 5 is an enlarged front view (indicated by an arrow IV in FIG. 2) of the intake inner eccentric shaft 41, and the axial center Oa2 of the intake plate support 45 with respect to the axial center Oa1 of the intake inner eccentric shaft 41. When the amount of eccentricity is e2, this amount of eccentricity e2 is set to the same value as the amount of eccentricity e1 of the center Oa1 of the eccentric hole 44 with respect to the cam shaft center O0 in the intake outer eccentric shaft 40 shown in FIG.
[0039]
When the eccentricity e2 = e1 is set as described above, the center Oa1 of the eccentric hole 44 of the outer eccentric shaft 40 with respect to the cam shaft O0 as shown in FIG. 7 showing the VII-VII cross section of FIG. Is eccentric to the arrow A1 side in the length direction of the groove 64, and the axis Oa2 of the plate support 45 is eccentric to the arrow A2 side opposite to the arrow A1 side with respect to the center Oa1 of the eccentric hole 44. The axis (the center of the intake rocking plate 35) Oa2 of the plate support 45 can be made to coincide with the cam shaft O0, whereby the eccentric amount of the rocking plate 35 can be made zero.
[0040]
Further, as shown in FIG. 8, the center Oa1 of the eccentric hole 44 of the outer eccentric shaft 40 is decentered to the arrow A1 side in the length direction of the groove 64 with respect to the cam shaft O0, and the center Oa1 of the eccentric hole 44 is When the axis Oa2 of the plate support pin 45 is eccentric to the same arrow A1 side, the eccentric amount of the intake rocking plate 35 can be set to the maximum (e1 + e2).
[0041]
FIG. 9 shows a state in which the eccentric direction of the intake rocking plate 35 is made different from the arrows A1 and A2, for example, with an angular difference of approximately 90 ° with respect to the arrow A1, up to the maximum amount in the eccentric direction B1. ing.
[0042]
The exhaust cam 22 shown in FIG. 2 and FIG. 3 has two cam peaks of different profiles in parallel. These exhaust cam peaks can be used selectively, or can be used for single use or joint use. By switching, the lift characteristic of the exhaust valve including the lift amount of the exhaust valve is changed.
[0043]
[Action]
[Crankshaft rotational force transmission path]
In FIG. 1, the rotational force of the crankshaft 4 is transmitted to the cam drive shaft 20 through the camshaft drive gear 31, the intermediate transmission gear 30, and the cam gear 29 with the rotational angular velocity reduced to ½.
[0044]
In FIG. 2, the transmission path from the cam drive shaft 20 to each of the cams 21 and 22 is as follows: cam drive shaft 20 → drive groove 64 → slider 62 → drive pin 60 → intake swing plate 35 → drive pin 61 → slider 63 → Drive groove 65 → intake cam 21 → drive groove 74 → slider 72 → drive pin 70 → exhaust rocking plate 36 → drive pin 71 → slider 73 → drive groove 75 → exhaust cam 22. That is, it is first transmitted from the cam drive shaft 20 to the intake cam 21 via the intake swing plate 35 and its drive pins 60 and 61 and sliders 62 and 63, and from the intake cam 21 to the exhaust swing plate 36 and its It is transmitted to the exhaust cam 22 via the drive pins 70 and 71 and the sliders 72 and 73.
[0045]
[Rotation of intake cam relative to rotation of cam drive shaft]
(1) When the eccentric amount of the intake rocking plate is zero.
As shown in FIG. 7, when the eccentric amount of the intake rocking plate 35 is set to 0 by aligning the center Oa2 of the intake rocking plate 35 with the cam shaft center O0, the cam drive shaft 20 rotates at the same speed. It is transmitted to the intake cam 21 at a speed. Therefore, there is no rotational phase difference between the cam drive shaft 20 and the intake cam 21, and they rotate synchronously at a constant speed.
[0046]
FIG. 10 is a diagram showing an example of a change in the rotational phase difference of the intake cam 21 and the intake valve lift amount with respect to the cam drive shaft 20. As described above, the intake cam 21 rotates in synchronization with the cam drive shaft 20 at a constant speed. In this case, the rotational phase difference is maintained at 0 as shown by the straight line X1 indicated by the broken line. The intake valve lift characteristic at this time is as shown by the lower broken line curve Y1.
[0047]
(2) When the eccentric amount of the intake rocking plate is maximum.
When the center Oa2 of the intake rocking plate 35 is deviated by the maximum amount in the drive groove direction with respect to the cam shaft center O0 as shown in FIG. 8, the cam drive shaft 20 shown in FIG. At the same time as one intake slider 62 approaches the center Oa2, the other slider 63 leaves, and then one slider 62 moves away from the center Oa2 and at the same time the other slider 63 approaches the center Oa2. Thereby, the rotation of the cam drive shaft 20 is transmitted to the intake cam 21 at a non-uniform speed, the rotational angular velocity of the intake cam 21 with respect to the cam drive shaft 20 increases and decreases, and the rotational phase difference between the cam drive shaft 20 and the intake cam 21 is increased. The rotational phase difference changes substantially along a sine curve as indicated by a curved line X2 indicated by a solid line in the upper part of FIG. That is, the rotation phase difference is positive when the cam drive shaft rotation angle is in the range of approximately 0 ° to 180 °, and the rotation phase difference is negative in the range of approximately 180 ° to 360 °. As a result, the lift characteristic of the intake valve is earlier than the curve Y1, and the intake valve opening period is shortened with respect to the curve Y1, as shown by the solid curve Y2 in the lower stage.
[0048]
(3) When only the eccentric amount of the intake rocking plate is changed.
By arbitrarily combining the rotation adjustment position of the intake outer eccentric shaft 40 of FIG. 3 and the rotation adjustment position of the intake inner eccentric shaft 41, the eccentric direction of the intake rocking plate 35 can be set to the maximum eccentricity of FIG. When the eccentric amount is set smaller than 2e1, the rotational phase difference of the intake cam 21 with respect to the cam drive shaft 20 is as shown by a curve X3 indicated by a one-dot chain line in the upper part of FIG. The period is the same as that in the maximum eccentricity (curve X2), but the amplitude is small. This indicates that the amount of increase / decrease in the rotational angular velocity of the intake cam 21 with respect to the cam drive shaft 20 is small, and the lift characteristic changes as shown by a dashed line curve Y3. That is, the intake valve closing timing is intermediate between the curves Y1 and Y2.
[0049]
(4) When the eccentric amount and direction of the intake rocking plate are changed.
By arbitrarily combining the rotation adjustment position of the intake outer eccentric shaft 40 of FIG. 3 and the rotation adjustment position of the intake inner eccentric shaft 41, the eccentric direction of the intake rocking plate 35 can be set to the maximum eccentricity of FIG. 10 and the eccentric amount is set smaller than 2e1, the rotational phase difference of the intake cam 21 with respect to the cam drive shaft 20 is a curve indicated by a two-dot chain line in the upper part of FIG. X4, the period is different from the maximum eccentricity (curve X2), and the amplitude is also reduced. This indicates that the opening / closing timing of the intake valve is shifted and the amount of increase / decrease in the rotational angular velocity of the intake cam 21 with respect to the cam drive shaft 20 is reduced, and the lift characteristic changes, for example, as shown by the lower two-dot chain line curve Y4. .
[0050]
As described above, the eccentric direction and the eccentric amount of the intake rocking plate 35 are changed by combining the rotation adjustment of the intake outer eccentric shaft 40 and the rotation adjustment of the intake inner eccentric shaft 41 in a wide range. The opening timing, closing timing, and opening period of the intake valve can be changed and adjusted.
[0051]
[Rotation of exhaust cam relative to cam drive shaft and intake cam]
(1) When the eccentric amount of the exhaust rocking plate is zero.
The basic adjustment of the rotational phase difference of the exhaust cam 22 with respect to the intake cam 21 in FIG. 2 is the same as the adjustment of the rotational phase difference of the intake cam 21 with respect to the cam drive shaft 20. In FIG. 2, when the center Ob 2 of the exhaust rocking plate 36 and the cam shaft center O 0 are matched, the exhaust cam 22 rotates synchronously with the intake cam 21 at a constant speed. In this case, when the intake cam 21 rotates with the cam drive shaft 20 at a constant speed, the exhaust cam 22 naturally rotates synchronously with the cam drive shaft 20 at the same speed. However, when the intake rocking plate 35 is decentered by an arbitrary direction and amount, when there is a rotational phase difference between the intake cam 21 and the cam drive shaft 20, the exhaust cam 22 is connected to the cam drive shaft 20. However, it rotates with the same phase difference as the intake cam 21.
[0052]
(2) When the exhaust cam 22 is rotated synchronously with the cam drive shaft 20 when the intake rocking plate 35 is eccentric.
For example, as shown in FIG. 8, when the intake rocking plate 35 is eccentric to the maximum amount and the intake cam 21 rotates at an unequal speed with respect to the cam drive shaft 20, the exhaust cam 22 of FIG. When it is desired to rotate synchronously with the drive shaft 20 at a constant speed, the exhaust rocking plate 36 is decentered in the direction opposite to the eccentric direction of the intake rocking plate 35 and by the same eccentric amount. In this case, the intake drive groove 64 and the exhaust drive groove 74 formed at both ends in the axial direction of the intake cam 21 in FIG. 3 are formed symmetrically with respect to the cam shaft center O0. The oscillating plate 36 can be easily changed and adjusted to a position symmetrical to the intake oscillating plate 35 with respect to the cam shaft O0.
[0053]
(3) When the intake rocking plate 35 is eccentric, the exhaust rocking plate 36 is also set to have a desired valve opening / closing timing unique to exhaust.
In FIG. 3, since the rotational force is transmitted to the exhaust rocking plate 36 from the cam drive shaft 20 via the intake rocking plate 36 and the intake cam 21, the rotational phase difference of the exhaust cam 22 with respect to the cam drive shaft 20 is The phase difference is obtained by adding the rotational phase difference due to the intake rocking plate 35 and the rotational phase difference of the exhaust cam 22 relative to the intake cam 21. Therefore, when adjusting the eccentric position of the exhaust rocking plate 36, the eccentric direction and the eccentric amount of the exhaust rocking plate 36 are set in consideration of the eccentric direction and the eccentric amount of the intake rocking plate 35. Will do.
[0054]
Another embodiment of the invention
(1) FIG. 11 shows a structure in which an outer annular eccentric plate 102 as a first rotating member and an inner annular eccentric plate 103 as a second rotating member are arranged on the outer peripheral side of the swing plate 110. The outer eccentric plate 102 has an outer peripheral surface supported by the housing 105 so as to rotate about the cam shaft center O0, and has an outer eccentric hole 104 that is eccentric from the cam shaft center O0. The inner eccentric plate 103 is rotatably fitted in the outer eccentric hole 104 and has an inner eccentric hole 106 that is eccentric from the center Oa1 of the outer eccentric hole 104 as a plate support.
[0055]
The swing plate 110 is rotatably fitted in the inner eccentric hole 106. Similar to the swing plate shown in FIG. 3, a pair of drive pins 120 and a slider 121 are provided on both front and back surfaces of the swing plate 110 in the axial direction.
[0056]
The interlocking connection structure of the rocking plate 110, the cam drive shaft 101, and the intake cam (not shown) is the same as in the case of FIG. 2 and FIG. 3, and the radial direction formed on the cam drive shaft and the intake cam or exhaust cam A slider is slidably engaged with the groove.
[0057]
In the variable valve mechanism shown in FIG. 11, the eccentric direction and the eccentric amount of the swing plate 110 with respect to the cam shaft O0 are independently and arbitrarily set by adjusting the rotation of the outer eccentric plate 102 and the inner eccentric plate 103, respectively. It becomes possible to do.
[0058]
(2) The structure of FIG. 2 and FIG. 3 is a structure in which the intake cam is linked to the cam drive shaft via the intake swing plate, and the exhaust cam is linked to the intake cam via the exhaust swing plate. However, the present invention is not limited to such a structure. For example, the exhaust cam is linked to the cam drive shaft via the exhaust swing plate, and the intake cam is linked to the exhaust cam via the intake swing plate. You can also
[0059]
(3) In each of the above embodiments, the eccentric part 44 is formed as the eccentric part formed on the outer eccentric shaft, but is not limited to the eccentric hole. For example, a cylindrical eccentric is formed on the outer eccentric shaft. It is also possible to have a structure in which a protrusion is formed and a boss portion of the inner eccentric shaft is fitted to the outer periphery of the cylindrical eccentric protrusion.
[0060]
【The invention's effect】
As described above, according to the present invention, a rocking plate that can be decentered with respect to the cam shaft center is interposed between the cam drive shaft and the cam, and the rocking plate is decentered to decenter the cam drive shaft and the cam. The variable valve operating apparatus for an internal combustion engine that generates a rotational phase difference therebetween has the following advantages.
[0061]
(1) In order to operate one rocking plate 40 eccentrically, first and second eccentric rotating members, for example, outer and inner eccentric shafts 40 and 41 are used, and the eccentric position of the rocking plate 35 is set to 2 Since it is possible to change the position of the oscillating plate 35 and the amount of eccentricity of the swing plate 35 can be changed independently, the changeable range of the rotational phase difference of the cam 21 and the like with respect to the cam drive shaft 20 is greatly expanded The opening and closing timing and opening period of the intake and exhaust valves can be changed over a wide range according to various operating conditions.
[0062]
(2) As cams, the intake cam 21 and the exhaust cam 22 are arranged in parallel on the same axis as the cam drive shaft 20, and between the intake cam 21 or the exhaust cam 22 and the cam drive shaft 20, both cams 21. , 22 is interposed between the swing plates 35, 36, respectively, the valve drive force transmission path is, for example, the cam drive shaft 20 → one swing plate 35 → one cam 21 → the other swing plate 36. → The other cam 22 is obtained. That is, the cam drive shaft 20 is not disposed between the cams 21 and 22 and only one swing plate 35 is disposed, so that the distance between the cams 21 and 22 is shortened and the push rod is inclined. The angle can be reduced to reduce the transmission loss of the valve driving force, and the cam drive shaft 20 and the swing plate 35 can be easily arranged and assembled. Further, as compared with the structure in which the drive rotating body 202 is disposed between both cams as shown in FIG. 12 and the cam shaft 201 is inserted into the cams 203 and 204, the input path from the outside to the cam drive shaft is simplified. As shown in FIG. 12, it is not necessary to increase the diameter of the cam drive shaft, and an increase in weight and a complicated structure can be prevented.
[0063]
(3) In the above-described structure in which the intake cam 21 and the exhaust cam 22 are arranged side by side in the cam shaft center direction and the valve drive force is transmitted from the cam drive shaft 20 to the other cam 22 via the one cam 21. When the eccentric direction and the eccentric amount of the plate 35 are configured to be symmetric with the eccentric direction and the eccentric amount of the other swing plate 36, for example, the cam 21 on the side close to the cam drive shaft 20 is driven by the cam. Corresponding to the far-side cam 21 when the cam 22 on the side far from the cam drive shaft 20 is connected to the shaft 20 at a non-uniform speed and synchronous rotation with the cam drive shaft 20 is desired. By moving the other rocking plate 36 symmetrically with the eccentric position of the near-side rocking plate 35, the rotational phase difference of the near-side cam can be easily canceled out.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of an internal combustion engine provided with a variable valve operating apparatus according to the present invention.
FIG. 2 is an enlarged longitudinal sectional view of a variable valve operating apparatus according to the present invention.
3 is a longitudinal sectional exploded perspective view of the variable valve operating apparatus of FIG. 2;
FIG. 4 is an enlarged front view of the rocking plate (viewed along arrow IV in FIG. 2).
FIG. 5 is an enlarged front view (indicated by arrow IV in FIG. 2) of the inner eccentric shaft.
6 is an enlarged front view of the outer eccentric shaft (as viewed in the direction of arrow IV in FIG. 2).
7 is a cross-sectional view taken along the line VII-VII in FIG. 2 when the amount of eccentricity is zero.
8 is a cross-sectional view taken along the line VII-VII in FIG. 2 at the maximum eccentricity.
9 is a cross-sectional view taken along the line VII-VII in FIG.
FIG. 10 is a diagram showing an intake cam rotation phase difference with respect to a cam drive shaft and a valve lift characteristic.
FIG. 11 is a longitudinal sectional view showing a modification of the variable valve operating apparatus according to the present invention.
FIG. 12 is a longitudinal sectional view of a conventional example.
13 is a cross-sectional view taken along the line XIII-XIII in FIG.
[Explanation of symbols]
20 Cam drive shaft
21 Intake cam
22 Exhaust cam
27 Push rod for intake
35 Swing plate for intake
36 Exhaust rocking plate
40 Outer eccentric shaft for intake (an example of a first rotating member)
41 Inside eccentric shaft for intake (an example of a second rotating member)
44 Eccentric hole (example of eccentric part)
45 Intake plate support
50 Outer eccentric shaft for exhaust
51 Eccentric shaft for exhaust
54 Eccentric hole (example of eccentric part)
60, 61, 70, 71 Drive pin
62, 63, 72, 73 Slider
64, 65, 74, 75 Drive groove
102 Exhaust outer eccentric plate (an example of a first rotating member)
103 Exhaust inner eccentric plate (example of second rotating member)
104 Eccentric hole (example of eccentric part)
106 Eccentric hole (Example of plate support)

Claims (3)

カム駆動軸とカムとの間に、カム軸心に対して偏心可能な揺動プレートを介在させ、該揺動プレートを偏心させることによりカム駆動軸とカムの間に回転位相差を生じさせる内燃機関の可変動弁装置において、
カム軸心に対して偏心する偏心部を有すると共にカム軸心回り回動可能な第1の回動部材と、
上記偏心部の軸心に対して偏心するプレート支持部を有すると共に、偏心部軸心回り回動可能に偏心部に嵌合する第2の回動部材とを備え、
プレート支持部に揺動プレートを支持し、
両回動部材の回動操作の組み合わせにより、揺動プレートの偏心方向及び偏心量を調整可能としていることを特徴とする内燃機関の可変動弁装置。
An internal combustion engine in which an oscillating plate that is eccentric with respect to the cam shaft is interposed between the cam drive shaft and the cam, and a rotational phase difference is generated between the cam drive shaft and the cam by decentering the oscillating plate. In the variable valve system of the engine,
A first rotating member having an eccentric portion that is eccentric with respect to the cam axis and capable of rotating about the cam axis;
A second support member that has a plate support portion that is eccentric with respect to the axis of the eccentric portion, and that is fitted to the eccentric portion so as to be rotatable around the eccentric portion axis;
Support the rocking plate on the plate support,
A variable valve operating apparatus for an internal combustion engine, characterized in that an eccentric direction and an eccentric amount of a swing plate can be adjusted by a combination of rotational operations of both rotational members.
カム駆動軸とカムとの間に、カム軸心に対して偏心可能な揺動プレートを介在させ、該揺動プレートを偏心させることによりカム駆動軸とカムの間に回転位相差を生じさせる内燃機関の可変動弁装置において、
カムとして、吸気カムと排気カムを、カム駆動軸と同軸心上に並列配置し、
吸気カム又は排気カムの一方とカム駆動軸との間と、両カム間に、それぞれ揺動プレートを介在させていることを特徴とする内燃機関の可変動弁装置。
An internal combustion engine in which an oscillating plate that is eccentric with respect to the cam shaft is interposed between the cam drive shaft and the cam, and a rotational phase difference is generated between the cam drive shaft and the cam by decentering the oscillating plate. In the variable valve system of the engine,
As a cam, an intake cam and an exhaust cam are arranged in parallel on the same axis as the cam drive shaft,
A variable valve operating apparatus for an internal combustion engine, characterized in that a swing plate is interposed between one of the intake cam or the exhaust cam and the cam drive shaft, and between the two cams.
請求項2記載の内燃機関の可変動弁装置において、
一方の揺動プレートの偏心方向及び偏心量を、他方の揺動プレートの偏心方向及び偏心量と対称に設定可能としてあることを特徴とする内燃機関の可変動弁装置。
The variable valve operating apparatus for an internal combustion engine according to claim 2,
A variable valve operating apparatus for an internal combustion engine, characterized in that an eccentric direction and an eccentric amount of one swing plate can be set symmetrically with an eccentric direction and an eccentric amount of the other swing plate.
JP2003041270A 2003-02-19 2003-02-19 Variable valve operating device for internal combustion engine Expired - Fee Related JP4077334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041270A JP4077334B2 (en) 2003-02-19 2003-02-19 Variable valve operating device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041270A JP4077334B2 (en) 2003-02-19 2003-02-19 Variable valve operating device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004251166A JP2004251166A (en) 2004-09-09
JP4077334B2 true JP4077334B2 (en) 2008-04-16

Family

ID=33024898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041270A Expired - Fee Related JP4077334B2 (en) 2003-02-19 2003-02-19 Variable valve operating device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4077334B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5630251B2 (en) * 2010-12-10 2014-11-26 トヨタ自動車株式会社 Variable valve operating device for internal combustion engine

Also Published As

Publication number Publication date
JP2004251166A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
JP4211846B2 (en) Variable valve gear
KR100812880B1 (en) Valve train for internal combustion engine
WO2006025564A1 (en) Variable valve device
WO2006025566A1 (en) Variable valve device
JP4283999B2 (en) Valve timing mechanism for internal combustion engine
KR20100047673A (en) Eccentricity variable type cam and continuous variable valve lifting actuator having the same
JPH0941924A (en) Power transmitting mechanism and variable valve system provided with power transmitting mechanism
JPWO2003098013A1 (en) Engine valve gear
JP4077334B2 (en) Variable valve operating device for internal combustion engine
JPH03175107A (en) Rotary drive device
JP5391439B2 (en) Continuously variable valve lift device and continuous variable valve lift device group
JP4157395B2 (en) Variable valve operating device for OHV type internal combustion engine
EP1956200A2 (en) Engine valve train having variable valve lift timing and duration
EP1179657B1 (en) Variable event timing mechanism
JP5287327B2 (en) Valve operating device for internal combustion engine
JP2004521245A (en) Variable valve mechanism
JP2002227674A (en) Variable compression ratio mechanism for internal combustion engine
JPH09105315A (en) Multi-dimensional plate slide type-continuously variable valve timing device
JPH08246824A (en) Reciprocating contact sliding opening/closing and continuously variable valve timing device
JP2004204822A (en) Continuous variable valve system of internal combustion engine
JP3832014B2 (en) Variable valve mechanism
JP3796327B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JPS6231648Y2 (en)
JP2012041884A5 (en)
JP2018096367A (en) Continuous variable valve duration apparatus, and engine including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080131

R150 Certificate of patent or registration of utility model

Ref document number: 4077334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees