JP4076977B2 - Spread spectrum communication apparatus and opposite station receiver - Google Patents

Spread spectrum communication apparatus and opposite station receiver Download PDF

Info

Publication number
JP4076977B2
JP4076977B2 JP2004171367A JP2004171367A JP4076977B2 JP 4076977 B2 JP4076977 B2 JP 4076977B2 JP 2004171367 A JP2004171367 A JP 2004171367A JP 2004171367 A JP2004171367 A JP 2004171367A JP 4076977 B2 JP4076977 B2 JP 4076977B2
Authority
JP
Japan
Prior art keywords
antenna
spread
spread spectrum
antennas
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004171367A
Other languages
Japanese (ja)
Other versions
JP2005354284A (en
Inventor
卓政 小竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004171367A priority Critical patent/JP4076977B2/en
Publication of JP2005354284A publication Critical patent/JP2005354284A/en
Application granted granted Critical
Publication of JP4076977B2 publication Critical patent/JP4076977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Radio Transmission System (AREA)

Description

本発明は、スペクトル拡散方式にて通信を行うスペクトル拡散通信装置とその対向局受信装置に関するもので、特に複数のアンテナを切り替え使用するものに関する。   The present invention relates to a spread spectrum communication apparatus that communicates using a spread spectrum system and an opposite station reception apparatus thereof, and more particularly to an apparatus that switches between a plurality of antennas.

例えば、固定局から通信衛星を介して地上の移動局との間で通信する移動体衛星通信システムにおいては、移動局側のアンテナはゲインを高めるため指向性アンテナを用いることが多い。この場合、衛星の移動、移動局の移動に応じて指向性アンテナを常に通信衛星の方向に指向制御しなければならない。このようなアンテナ指向装置は大型の機構部を必要としたり、あるいは電子的に指向方向を制御するアレーアンテナでは大面積を必要とし、その指向制御に高度な制御技術を必要とするなど、移動体に積載して走行しながら制御することはかなり困難であり、その簡略化が望まれている。
このような簡略化の一つの方法として、特許文献1には、互いにその指向範囲の一部が重複し、互いに異なる空域を照射する複数の半固定アンテナを設け、これらを適宜切り換えて通信するものが開示されている。この場合、通信衛星が一方のアンテナの空域のみにある場合には、指向が有効な側のアンテナに接続された受信系の復調信号が出力用端末に送られ、また、端末からの変調出力が、指向が有効な側のアンテナへ送られるようにし、衛星又は移動体の移動に応じて、有効なアンテナが変わると、指向が有効な側のアンテナに切り換えて送信及び受信を行う。
For example, in a mobile satellite communication system that communicates with a mobile station on the ground from a fixed station via a communication satellite, a directional antenna is often used as the antenna on the mobile station side in order to increase the gain. In this case, the directivity of the directional antenna must always be controlled in the direction of the communication satellite according to the movement of the satellite and the movement of the mobile station. Such an antenna directing device requires a large mechanism part, or an array antenna that electronically controls the directing direction requires a large area, and requires advanced control technology for directing control. It is quite difficult to control the vehicle while traveling on it, and simplification is desired.
As one method of such simplification, Patent Document 1 includes a plurality of semi-fixed antennas that partially overlap their directivity ranges and irradiate different airspaces, and communicate by switching these appropriately. Is disclosed. In this case, when the communication satellite is only in the airspace of one antenna, the demodulated signal of the reception system connected to the antenna on which the directivity is effective is sent to the output terminal, and the modulation output from the terminal is When the effective antenna is changed according to the movement of the satellite or the moving body, the antenna is switched to the antenna with the effective directing to perform transmission and reception.

通信衛星が隣接する2つの空域の境界(重複した部分)に移動してきたときの動作について説明する。まず、受信について説明すると、境界の両側の2つのアンテナそれぞれに対応して2つの受信系を装備し、今後、使用する側の受信系から得た信号の位相が、現用している受信系の信号の位相に一致するように、両アンテナと衛星との経路差にもとづく位相の補償を行い、両位相が一致してから、アンテナを切り変える。これにより、切替えたときに切換前後で信号の位相ずれによるビット誤りが生じなくなる。
また、送信についても2つの送信系を装備し、前記受信によって知り得た両経路差による位相のずれ量に相当する位相補償を、送信系のチップ位相を調整することにより補正を行い、キャリア位相の違いについては、再同期で補正を実施する方法で、今後の送信に使用する側の送信系に補償を施してから切換を行うことにより、衛星側で受信したときに切換前後で位相がずれないのでビット誤りも生じないというものである。
The operation when the communication satellite moves to the boundary (overlapping part) between two adjacent airspaces will be described. First, the reception will be explained. Equipped with two receiving systems corresponding to the two antennas on both sides of the boundary, the phase of the signal obtained from the receiving system on the use side will be the same as that of the receiving system currently in use. The phase is compensated based on the path difference between the two antennas and the satellite so as to match the signal phase, and the antenna is switched after the two phases match. As a result, bit errors due to signal phase shifts do not occur before and after switching when switching.
Also, for transmission, two transmission systems are provided, and phase compensation corresponding to the amount of phase shift due to the difference between both paths obtained by the reception is corrected by adjusting the chip phase of the transmission system, and the carrier phase For the difference between the two, the phase is shifted before and after switching when receiving on the satellite side by performing compensation after re-synchronization and switching after compensating the transmission system on the side used for future transmission. Since there is no bit error, no bit error occurs.

特許文献2にはビットスプレッドアロハ方式について開示されている。これは本願実施の形態1で使用する公知技術である。
特開平3−52336号公報、 スペクトラム拡散通信方式を用いた移動体衛星通信システムの移動局。 特開平3−150940号公報、 ビットスプレッドアロハ方式。
Patent Document 2 discloses a bit spread Aloha system. This is a known technique used in Embodiment 1 of the present application.
JP-A-3-52336, a mobile station of a mobile satellite communication system using a spread spectrum communication system. Japanese Patent Laid-Open No. 3-150940, Bit spread Aloha system.

従来のものでは、移動局側にて複数のアンテナを切り換える際、受信では、個々のアンテナの指向領域に一部重複する部分をもたせ、2つのアンテナで同時受信した受信信号の位相を合わせてから切り換える。
また、送信では、送信系の切換によって2つのアンテナ間に生じる伝送距離差に起因するチップ位相、キャリア位相の違いを補正してから切替える。
この場合、アンテナ切換時間をごく小さくし、キャリア位相ずれ補正を高速で行わなければビット誤りが発生してしまう。しかし、アンテナの切換の高速化は容易ではない。また、送信系/受信系の位相は移動局の移動(アンテナの位置の変化)により刻々と変化するためその補正が容易でなく、位相差が生じてビット誤り率が期待どおりに改善されないという課題があった。
In the conventional system, when switching a plurality of antennas on the mobile station side, the reception has a partially overlapping part in the directivity area of each antenna, and after matching the phases of the received signals simultaneously received by the two antennas Switch.
In transmission, switching is performed after correcting the difference in chip phase and carrier phase caused by the transmission distance difference between the two antennas due to switching of the transmission system.
In this case, a bit error occurs unless the antenna switching time is made extremely short and carrier phase shift correction is performed at high speed. However, speeding up antenna switching is not easy. In addition, the phase of the transmission system / reception system changes every moment due to the movement of the mobile station (change in the antenna position), so that the correction is not easy, and a phase difference occurs and the bit error rate is not improved as expected. was there.

本発明は、とくにスペクトル拡散通信において、上記のような課題を解消し移動局のアンテナ毎に行う位相補正を容易にしてビット誤り率を改善したスペクトル拡散通信装置を提供するものである。   The present invention provides a spread spectrum communication apparatus that solves the above-described problems and improves the bit error rate by facilitating phase correction performed for each antenna of a mobile station, particularly in spread spectrum communication.

本発明のスペクトル拡散通信装置は、指向領域の一部が互いに重複するとともに、相手局への電波の到達時間差があらかじめ定めた所定の時間差以下となるように配置された第1のアンテナと第2のアンテナ、
前記第1及び第2のアンテナのそれぞれに搬送波電力を供給する2つの電力増幅部、
1つのコード信号を分離して生成した被変調信号を前記2つの電力増幅部のそれぞれに供給する1つのスプレッドアロハ変調器、
前記スプレッドアロハ変調器と前記第1のアンテナとの間に挿入され、その遅延時間と前記2つのアンテナから前記相手局への到達時間差との合計が前記拡散コードの1チップ時間より大となる遅延手段を備えたものである。
The spread spectrum communication apparatus of the present invention includes a first antenna and a second antenna that are arranged such that part of the directivity areas overlap each other and the arrival time difference of radio waves to the other station is equal to or less than a predetermined time difference. Antenna,
Two power amplifiers for supplying carrier power to each of the first and second antennas;
One spread Aloha modulator for supplying a modulated signal generated by separating one code signal to each of the two power amplifiers;
A delay inserted between the spread Aloha modulator and the first antenna, and the sum of the delay time and the arrival time difference from the two antennas to the counterpart station is greater than one chip time of the spreading code Means are provided.

本発明のスペクトル拡散通信装置は、複数のアンテナのそれぞれに対して1系統づつの送信系を備え、しかも、アンテナの切り替え時にビット誤りを生じないので、装置の構成を小型、安価とすることができるという作用効果が得られる。   The spread spectrum communication apparatus of the present invention includes one transmission system for each of a plurality of antennas, and does not cause a bit error when switching antennas. Therefore, the configuration of the apparatus can be reduced in size and cost. The effect that it can be obtained.

実施の形態1.
以下、本発明の実施の形態1のスペクトル拡散通信装置を図面により説明する。以下の各図において同符号は同一または相当部分を示すので、その詳細な説明を図ごとに繰り返すことは省略する。説明の都合上、通信衛星を経由する移動局と固定局との間での通信を想定して説明するが、本発明はこのような場合に限らず、移動局と移動局との間、固定局と固定局との間でも使用できる。移動局100は移動体50に搭載され、スペクトル拡散方式を用いる通信装置であり、異なる領域を指向する複数のアンテナ(図1では、第1アンテナ1、第2アンテナ2)を持っている。両アンテナは図2のように、第1アンテナ1の指向領域101、第2アンテナ2の指向領域102の一部が互いに重複しているように設置されている。移動局100から例えば通信衛星経由で固定局200(以下、相手局という)への送信では、入出力装置としての端末15からの信号をスプレッドアロハ方式の変復調器13(以下、S/A−MODEMという、詳細については後述)に入力してスペクトル拡散信号を得る。S/A−MODEM13からの信号をハイブリッド11(以下Hという)にて分割し、アップコンバータ5と6(以下、U/C)で送信キャリア周波数に変換してから、ハイパワーアンプ3と4(以下、HPA)を経由して、第1アンテナ1と第2アンテナ2に送られ、各アンテナからほぼ同一出力レベルで出力されるよう調整されている。
図4は各アンテナと相手局との経路長の差について説明する図である。ここで、アンテナ1を経由して相手局に内蔵された変復調器への経路長(図4の経路30aと図1の内部回路長を合わせたもの)と、アンテナ2を経由して対向局に内蔵された変復調器への経路長(図4の経路30bと図1の内部回路長を合わせたもの)との差にもとづく送信信号の位相差が、拡散コードの1チップ時間より大きくなるように、両系統のS/A−MODEM13〜アンテナ1又は2の間で、以下に説明するようにあらかじめ必要な伝送距離差をとって設置する。
Embodiment 1 FIG.
Hereinafter, a spread spectrum communication apparatus according to Embodiment 1 of the present invention will be described with reference to the drawings. In the following drawings, the same reference numerals indicate the same or corresponding parts, and therefore detailed description thereof will not be repeated for each drawing. For convenience of explanation, the description will be made assuming communication between a mobile station and a fixed station via a communication satellite. However, the present invention is not limited to such a case, and the mobile station and the mobile station are fixed. It can also be used between stations and fixed stations. The mobile station 100 is a communication device that is mounted on a mobile unit 50 and uses a spread spectrum system, and has a plurality of antennas (first antenna 1 and second antenna 2 in FIG. 1) that are directed to different regions. As shown in FIG. 2, both antennas are installed such that part of the directivity area 101 of the first antenna 1 and part of the directivity area 102 of the second antenna 2 overlap each other. In transmission from the mobile station 100 to, for example, a fixed station 200 (hereinafter referred to as a partner station) via a communication satellite, a signal from a terminal 15 as an input / output device is converted into a spread Aloha modulator / demodulator 13 (hereinafter referred to as S / A-MODEM). The details will be described later) to obtain a spread spectrum signal. The signal from the S / A-MODEM 13 is divided by the hybrid 11 (hereinafter referred to as H), converted into a transmission carrier frequency by the up-converters 5 and 6 (hereinafter referred to as U / C), and then the high power amplifiers 3 and 4 ( Hereinafter, the signals are sent to the first antenna 1 and the second antenna 2 via the HPA), and are adjusted so as to be output from each antenna at substantially the same output level.
FIG. 4 is a diagram for explaining a difference in path length between each antenna and a partner station. Here, the path length to the modulator / demodulator incorporated in the partner station via the antenna 1 (the path 30a in FIG. 4 and the internal circuit length in FIG. 1 combined) and the opposite station via the antenna 2 The phase difference of the transmission signal based on the difference between the path length to the built-in modulator / demodulator (the path 30b in FIG. 4 and the internal circuit length in FIG. 1) is made larger than one chip time of the spreading code. As described below, the S / A-MODEM 13 and the antenna 1 or 2 of both systems are installed with a necessary transmission distance difference.

即ち、図1に示すように、第2アンテナ2(第1アンテナ1でもよい)と移動局装置100との間には冗長伝送路90が挿入してある。冗長伝送路90は伝送データが1チップ時間に進む距離以上の伝送経路差を取れるように2つのアンテナ間の物理的な配置の距離差を設定するものであり、具体的にはチップレートが20MHzの場合、その必要距離差は15mより大きいことが必要となる。このとき、対向する衛星からアンテナまでの経路距離差(図4の60)も計算に入れる必要がある。また衛星は十分遠い距離にあるため、切り換えを行うアンテナ間の実距離の影響はほとんどないため、実際的には前述の必要距離差の30%増し程度、例えば20m程度の移動局内伝送経路差をとればよい。   That is, as shown in FIG. 1, a redundant transmission path 90 is inserted between the second antenna 2 (or the first antenna 1) and the mobile station device 100. The redundant transmission path 90 sets the physical arrangement distance difference between the two antennas so that the transmission data has a transmission path difference equal to or longer than the distance that the transmission data travels in one chip time. Specifically, the chip rate is 20 MHz. In this case, the necessary distance difference needs to be larger than 15 m. At this time, it is also necessary to take into account the path distance difference (60 in FIG. 4) from the facing satellite to the antenna. In addition, since the satellite is sufficiently far away, there is almost no influence of the actual distance between the antennas to be switched, so in practice, the transmission path difference within the mobile station is increased by about 30% of the above required distance difference, for example, about 20 m. Just do it.

次に、図1の構成による固定局200からの電波の受信について説明する。特に図示説明しないが、通信衛星からは一つのアンテナから1つの信号が発信されているとする。
この1つの信号は図1の第1、第2のアンテナから受信される。送信系の伝送経路差と受信系の伝送経路差は同じであるから、移動局の受信系も位相差が1チップ位相よりおおきくなる。そして低雑音増幅器7、8、ダウンコンバータ9、10、ハイブリッド12を介してS/A−MODEM13に入力される。このとき冗長伝送路90により第2アンテナ2から受信された信号の位相は、第1アンテナ1から受信した信号の位相に比べて拡散コードの1チップ時間より大きな遅れを生じる。
S/A−MODEM13は、特許文献2に開示され、また、後述のように、同一拡散コードのチップ位相の異なる2信号を個別に受信できる変復調器であるから、これら2信号を別個に復調して2つの受信信号として出力することが可能である。
更に、PNコード発生器14(以下Pngenという)により、2つの受信信号を比較し同期をとることにより、片方の信号が送信側の移動局のアンテナ切り替えによって消失したとしても受信データの断等のビット誤りが生じない。
HPAは電力増幅部という。S/A−MODEMは変調器として用いるときスプレッドアロハ変調器と言い、復調器として用いるときにはスプレッドアロハ復調器と言う。冗長伝送路はこの発明に言う遅延手段である。
Next, reception of radio waves from the fixed station 200 having the configuration shown in FIG. 1 will be described. Although not specifically illustrated, it is assumed that one signal is transmitted from one antenna from a communication satellite.
This one signal is received from the first and second antennas of FIG. Since the transmission path difference in the transmission system and the transmission path difference in the reception system are the same, the phase difference in the reception system of the mobile station is larger than the phase of one chip. Then, it is input to the S / A-MODEM 13 through the low noise amplifiers 7 and 8, the down converters 9 and 10, and the hybrid 12. At this time, the phase of the signal received from the second antenna 2 by the redundant transmission path 90 is delayed more than one chip time of the spreading code as compared with the phase of the signal received from the first antenna 1.
The S / A-MODEM 13 is disclosed in Patent Document 2 and, as will be described later, is a modem that can individually receive two signals having different chip phases of the same spreading code, so that these two signals are demodulated separately. Can be output as two received signals.
Further, the PN code generator 14 (hereinafter referred to as Pngen) compares and synchronizes two received signals, so that even if one of the signals is lost due to antenna switching of the transmitting mobile station, the received data is interrupted. Bit errors do not occur.
HPA is called a power amplifier. S / A-MODEM is called a spread Aloha modulator when used as a modulator, and a spread Aloha demodulator when used as a demodulator. The redundant transmission line is a delay means in the present invention.

実施の形態2.
次に、図1の送信系から送信された信号を他所(特に固定局の受信装置などのように、相手局の方向があまり変わらず、アンテナの切換を要しない場合)で受信する受信回路を簡易化した対向局受信装置について説明する。受信回路は図1に示した回路の受信系と同じ構成としてもよいが、次のようにすることで簡易化される。
図3は簡易化された受信回路を用いた例えば固定局に搭載された対向局通信装置200の構成を説明するブロック図である。同図中の受信系部分(LNA7〜D/C9〜S/A−MODEM13)が本発明で言う対向局受信装置に相当する。図1の移動局100の2つのアンテナ1と2がともに信号を出力している時、図4のように相手局200において、移動局100のS/A−MODEM13からの出力信号が2つの信号として、相手局200のS/A−MODEM13に1チップ以上の位相差をもって入力される。S/A−MODEM13は、特許文献2に開示され、また、後述のように、同一拡散コードのチップ位相の異なる2信号を個別に受信できる変復調器であるから、これら2信号を別個に復調して2つの受信信号として出力することが可能である。スプレッドアロハ方式の復調器を使用することにより、このように受信系を図3のような1系統にすることが可能となる。
Embodiment 2. FIG.
Next, a receiving circuit for receiving a signal transmitted from the transmission system of FIG. 1 at another place (especially when the direction of the other station does not change so much and the antenna does not need to be switched, such as a receiving device of a fixed station). A simplified counter station receiver will be described. The receiving circuit may have the same configuration as the receiving system of the circuit shown in FIG. 1, but it can be simplified by the following.
FIG. 3 is a block diagram for explaining the configuration of the opposite station communication apparatus 200 mounted on, for example, a fixed station using a simplified receiving circuit. The receiving system portion (LNA 7 to D / C 9 to S / A-MODEM 13) in the figure corresponds to the opposite station receiving apparatus referred to in the present invention. When the two antennas 1 and 2 of the mobile station 100 of FIG. 1 are outputting signals, the output signal from the S / A-MODEM 13 of the mobile station 100 is two signals at the partner station 200 as shown in FIG. Is input to the S / A-MODEM 13 of the partner station 200 with a phase difference of one chip or more. The S / A-MODEM 13 is disclosed in Patent Document 2 and, as will be described later, is a modem that can individually receive two signals having different chip phases of the same spreading code, so that these two signals are demodulated separately. Can be output as two received signals. By using a spread Aloha demodulator, the receiving system can be made into one system as shown in FIG.

更に、PNコード発生器14(以下Pngenという)により、2つの受信信号を比較し同期をとることにより、片方の信号が送信側の移動局のアンテナ切り替えによって消失したとしても受信データの断等のビット誤りが生じない。
スプレッドアロハ方式変復調器13(S/A−MODEM)について説明する。特許文献2にはスプレッドアロハ方式について開示されている。スプレッドアロハ復調器は、同一拡散コードの2つの信号が互いに1チップよりおおきい位相差をもって入力された場合、それを個々に復調することができるものである。
Further, the PN code generator 14 (hereinafter referred to as Pngen) compares and synchronizes two received signals, so that even if one of the signals is lost due to antenna switching of the transmitting mobile station, the received data is interrupted. Bit errors do not occur.
The spread Aloha modulator / demodulator 13 (S / A-MODEM) will be described. Patent Document 2 discloses a spread Aloha system. The spread Aloha demodulator can individually demodulate two signals having the same spreading code when they are input with a phase difference larger than one chip.

実施の形態3.
以下、本発明の実施の形態3の衛星通信移動局装置300の構成を、図5により説明する。移動局300はスペクトル拡散方式を用いる移動体通信システムである。実施の形態1の図2で説明したと同様に、移動局300は異なる領域を指向する複数のアンテナを持ち、その指向領域の一部が重複しているように設定する。移動局300から相手局への送信では、S/A−MODEM13(スプレッドアロハ方式変復調器)からの信号をH11(ハイブリッド)にて分割し、U/C5、U/C6(アップコンバータ)、HPA3、HPA4(ハイパワーアンプ)を経由して、第1アンテナ1、第2アンテナ2に送られ、各アンテナからほぼ同一出力レベルで出力されるよう調整されている。
このとき予め、対向局に内蔵された変復調器との間の伝送経路長が、送信信号の位相差が拡散コードの1チップ時間より大きくなるように、2系統のS/A−MODEM13とアンテナとの間に遅延器39(図ではDと示す)を設置する。遅延器39は、片方の経路の信号を遅延させ必要なチップ位相差を設定するものであり、具体的にはチップレートが20MHzの場合、1チップの遅延量は50nsとなるため、衛星からの経路差の揺らぎを考慮してその30%増し、例えば66ns以上の移動局内伝送路遅延を設定すればよい。
相手局側は、実施の形態2の図4と同じであり、2受信信号を比較しPNコード発生器14で同期をとることにより、片方の信号が送信側の移動局のアンテナ切り替えによって消失しても受信データの断等のビット誤りを生じない。
Embodiment 3 FIG.
Hereinafter, the configuration of satellite communication mobile station apparatus 300 according to the third embodiment of the present invention will be described with reference to FIG. The mobile station 300 is a mobile communication system using a spread spectrum system. As described with reference to FIG. 2 of the first embodiment, mobile station 300 has a plurality of antennas that are directed to different areas, and is set so that a part of the directional areas overlaps. In transmission from the mobile station 300 to the partner station, the signal from the S / A-MODEM 13 (Spread Aloha Modulator / Demodulator) is divided by H11 (hybrid), and U / C5, U / C6 (upconverter), HPA3, The signals are sent to the first antenna 1 and the second antenna 2 via the HPA 4 (high power amplifier) and adjusted so as to be output from each antenna at substantially the same output level.
At this time, the S / A-MODEM 13 and the antennas of the two systems are set in advance so that the transmission path length between the modem and the built-in modem in the opposite station is larger than the one-chip time of the spread code. A delay device 39 (shown as D in the figure) is installed between the two. The delay device 39 delays the signal of one path and sets a necessary chip phase difference. Specifically, when the chip rate is 20 MHz, the delay amount of one chip is 50 ns. Considering the fluctuation of the path difference, it is increased by 30%, for example, a mobile station transmission line delay of 66 ns or more may be set.
The counterpart station side is the same as that in FIG. 4 of the second embodiment. By comparing the two received signals and synchronizing with the PN code generator 14, one of the signals is lost by switching the antenna of the transmitting mobile station. However, no bit error such as disconnection of received data occurs.

図5では、送信側の遅延器39はU/C6とH11の間に挿入しているがHPA4とU/C6の間でも、HPA4と第2アンテナ2との間でもよい。また、第2アンテナ2の側には挿入せずに、第1アンテナ1の側の上記の位置に挿入してもよい。
受信側についても同様に、遅延器39と同じ性能の遅延器40をD/C10とH12の間に挿入している。これもLNA8とD/C10の間でも、LNA8と第2アンテナ2との間でもよい。また、第2アンテナ2の側には挿入せずに、第1アンテナ1の側の上記の位置に挿入してもよい。遅延器39、40はこの発明に言う遅延手段である。
In FIG. 5, the delay device 39 on the transmission side is inserted between U / C 6 and H 11, but may be between HPA 4 and U / C 6 or between HPA 4 and the second antenna 2. Moreover, you may insert in the said position of the 1st antenna 1 side, without inserting in the 2nd antenna 2 side.
Similarly, on the receiving side, a delay device 40 having the same performance as that of the delay device 39 is inserted between the D / C 10 and H12. This may be between the LNA 8 and the D / C 10 or between the LNA 8 and the second antenna 2. Moreover, you may insert in the said position of the 1st antenna 1 side, without inserting in the 2nd antenna 2 side. The delay devices 39 and 40 are delay means according to the present invention.

実施の形態4.
以上に説明した各実施の形態の技術は適宜組み合わせて用いることができる。ここでは、送信系には実施の形態1の図1の回路構成の送信系部分を用い、受信系には実施の形態2の図3の回路構成の受信系部分を用いたものを図6に示す。
図6で受信系は第1アンテナ1から受信した信号と、第2アンテナ2から受信して冗長伝送路90で遅延させた信号を混合器23で混合して取り出している。本実施の形態では受信系は回路的にはアンテナの切換をしないが、相手局からの電波(図1の送信系で送信された位相の異なる2つの信号)がいずれか一方のアンテナに入感するために実質的に切替えたことになる。なお、図示しないがHPA3、HPA4の送信電力が受信系に混入しないように方向性結合器を適宜もちいるが、公知の技術なので詳細な説明は省略する。
Embodiment 4 FIG.
The techniques of the embodiments described above can be used in appropriate combination. Here, the transmission system using the transmission system portion of the circuit configuration of FIG. 1 of the first embodiment and the reception system using the reception system portion of the circuit configuration of FIG. 3 of the second embodiment are shown in FIG. Show.
In FIG. 6, the receiving system mixes and extracts the signal received from the first antenna 1 and the signal received from the second antenna 2 and delayed in the redundant transmission path 90 by the mixer 23. In the present embodiment, the receiving system does not switch antennas in terms of circuit, but radio waves from the other station (two signals transmitted in the transmitting system in FIG. 1 having different phases) are sensed by either antenna. In order to do so, it is substantially switched. Although not shown, a directional coupler is used as appropriate so that the transmission power of HPA3 and HPA4 is not mixed into the reception system, but detailed description thereof is omitted because it is a known technique.

実施の形態5.
実施の形態1〜実施の形態4ではアンテナは2つであるとして説明した。ここではアンテナが3つ以上ある場合について説明する。アンテナが3つ以上であっても、切換はその3つのうちで領域が隣り合い、重複した指向領域をもつ2つのアンテナの間で行われる。したがって図1に示した2つの送信系は図7に示すような第1のアンテナ切換回路20、第2のアンテナ切換回路21によって、順次、次に切換を予定されるアンテナへと切替えていく。アンテナ切換回路20、21による切換は、相手局が1つのアンテナの領域内にあり、まだ境界領域に達していないとき、即ち、現に通信を行っていないアンテナについて切替えるのであるから特別に説明を要することはなく、説明を省略する。
図7においてA,B,C,D・・・は複数のアンテナ、a,b,c,d・・・は各アンテナの指向領域を模式的に示したものである。図8は相手局が領域をa,b,c,dの順に移動していくとき切替えていくべきアンテナの切換手順を示すものである。第1のアンテナの切換回路20はA,C,Eの順で、第2のアンテナ21はB,D・・・の順で切替えられる。
Embodiment 5. FIG.
In Embodiments 1 to 4, it has been described that there are two antennas. Here, a case where there are three or more antennas will be described. Even if there are three or more antennas, switching is performed between two antennas having adjacent directivity areas among the three antennas. Therefore, the two transmission systems shown in FIG. 1 are sequentially switched to the antenna to be switched next by the first antenna switching circuit 20 and the second antenna switching circuit 21 as shown in FIG. Switching by the antenna switching circuits 20 and 21 requires special explanation because the partner station is in the area of one antenna and has not yet reached the boundary area, that is, switching is performed for an antenna that is not currently communicating. No explanation is given.
7, A, B, C, D... Schematically show a plurality of antennas, and a, b, c, d. FIG. 8 shows an antenna switching procedure to be switched when the partner station moves in the order of a, b, c, and d. The switching circuit 20 of the first antenna is switched in the order of A, C, E, and the second antenna 21 is switched in the order of B, D,.

この発明のスペクトル拡散通信装置は、移動局に搭載するものに限らず、固定局でも相手局が複数の方向に存在するなど、アンテナを切替えて運用する局に利用することができる。   The spread spectrum communication apparatus according to the present invention is not limited to the one installed in the mobile station, but can be used for a station that operates by switching antennas, such as a fixed station that has other stations in a plurality of directions.

本発明の実施の形態1によるスペクトル拡散通信装置の構成図である。1 is a configuration diagram of a spread spectrum communication apparatus according to Embodiment 1 of the present invention. 図1のアンテナの領域説明図である。It is area | region explanatory drawing of the antenna of FIG. 実施の形態2の簡易化された受信系の構成説明図である。6 is a configuration explanatory diagram of a simplified receiving system according to Embodiment 2. FIG. 図1のアンテナの経路差の説明図である。It is explanatory drawing of the path | route difference of the antenna of FIG. 実施の形態3のスペクトル拡散通信装置の構成図である。FIG. 6 is a configuration diagram of a spread spectrum communication apparatus according to a third embodiment. 実施の形態4のスペクトル拡散通信装置の構成図である。FIG. 6 is a configuration diagram of a spread spectrum communication apparatus according to a fourth embodiment. 実施の形態5のスペクトル拡散通信装置の構成図である。FIG. 10 is a configuration diagram of a spread spectrum communication apparatus according to a fifth embodiment. 図7の動作を説明する図である。It is a figure explaining the operation | movement of FIG.

符号の説明Explanation of symbols

1 第1アンテナ、 2 第2アンテナ、 3、4 ハイパワーアンプ(HPA)
5、6 アップコンバータ(U/C) 7、8 低雑音増幅器(LNA)
9、10 ダウンコンバータ(D/C) 11、12 ハイブリッド(H)
13 スプレッドアロハ変復調器(S/A−MODEM)、
14 PNコード発生器(PNgen)
15 端末、
20 第1のアンテナ切換回路、 21 第2のアンテナ切換回路、
30 通信衛星のアンテナ、
30a 通信衛星と移動局の第1アンテナとの経路、
30b 通信衛星と移動局の第2アンテナとの経路、
39、40 遅延器(D)、 50 移動体、 60 経路差、
90 冗長伝送路、 100 移動局、 190 簡易化された受信系、
200 固定局、 300 移動局。
1 First antenna, 2 Second antenna, 3, 4 High power amplifier (HPA)
5, 6 Upconverter (U / C) 7, 8 Low noise amplifier (LNA)
9, 10 Down converter (D / C) 11, 12 Hybrid (H)
13 Spread Aloha Modulator / Demodulator (S / A-MODEM),
14 PN code generator (PNgen)
15 terminals,
20 first antenna switching circuit, 21 second antenna switching circuit,
30 Communication satellite antenna,
30a The path between the communication satellite and the first antenna of the mobile station,
30b The path between the communication satellite and the second antenna of the mobile station,
39, 40 Delay (D), 50 mobile, 60 path difference,
90 redundant transmission lines, 100 mobile stations, 190 simplified reception system,
200 fixed stations, 300 mobile stations.

Claims (6)

指向領域の一部が互いに重複するとともに、通信相手局への電波の到達時間差があらかじめ定めた所定の時間差以下となるように配置された第1のアンテナと第2のアンテナ、
前記第1及び第2のアンテナのそれぞれに搬送波電力を供給する2つの電力増幅部、
1つのコード信号から拡散コード信号を生成し、前記2つの電力増幅部のそれぞれに供給するスプレッドアロハ変調器、
前記スプレッドアロハ変調器と前記第1のアンテナとの間に挿入され、その遅延時間と前記2つのアンテナから前記通信衛星への到達時間差との合計が前記コード信号の1チップ時間より大となる遅延手段を備えたことを特徴とするスペクトル拡散通信装置。
A first antenna and a second antenna arranged so that a part of the directivity area overlaps each other and a difference in arrival time of radio waves to the communication partner station is equal to or less than a predetermined time difference;
Two power amplifiers for supplying carrier power to each of the first and second antennas;
A spread Aloha modulator that generates a spread code signal from one code signal and supplies it to each of the two power amplifiers;
A delay inserted between the spread Aloha modulator and the first antenna, and the sum of the delay time and the arrival time difference from the two antennas to the communication satellite is greater than one chip time of the code signal A spread spectrum communication apparatus comprising means.
前記遅延手段は、前記第1のアンテナとこのアンテナに前記搬送波電力を供給する前記電力増幅部との間に挿入された冗長伝送路であることを特徴とする請求項1に記載のスペクトル拡散通信装置。   2. The spread spectrum communication according to claim 1, wherein the delay means is a redundant transmission line inserted between the first antenna and the power amplifier that supplies the carrier power to the antenna. apparatus. 前記遅延手段は、前記第1のアンテナに前記搬送波電力を供給する前記電力増幅部と、前記スプレッドアロハ変調器との間に挿入された遅延回路であることを特徴とする請求項1に記載のスペクトル拡散通信装置。   The delay unit is a delay circuit inserted between the power amplification unit that supplies the carrier power to the first antenna and the spread Aloha modulator. Spread spectrum communication device. 請求項1に記載のスペクトル拡散通信装置から送信され、その位相差が前記コードの1チップ時間より大なる2つの信号を受信する対向局受信装置であって、
1つのアンテナ、
この1つのアンテナで受信した前記1チップ以上の位相差をもって入力された2つの信号を、個々に2信号として復調可能な1つのスプレッドアロハ復調器、
復調された前記2信号を比較して受信データの同期をとり、もとの1つのコード信号を再生するPNコード発生器を備えたことを特徴とする対向局受信装置。
A counter-station receiving apparatus that receives two signals transmitted from the spread spectrum communication apparatus according to claim 1 and whose phase difference is larger than one chip time of the code,
One antenna,
One spread ALOHA demodulator capable of individually demodulating two signals received with a phase difference of one chip or more received by the one antenna as two signals;
A counter-station receiving apparatus comprising a PN code generator that compares the demodulated two signals to synchronize received data and reproduces one original code signal.
指向領域の一部が互いに重複するとともに、前記通信衛星への電波の到達時間差があらかじめ定めた所定の時間差以下となるように配置された第1のアンテナと第2のアンテナ、
前記第1及び第2のアンテナのそれぞれに搬送波電力を供給する2つの電力増幅部、
1つのコード信号を分離して生成した被変調信号を前記2つの電力増幅部のそれぞれに供給する1つのスプレッドアロハ変調器、
前記スプレッドアロハ変調器と前記第1のアンテナとの間に挿入され、その遅延時間と前記2つのアンテナから前記通信衛星への到達時間差との合計が前記コード信号の1チップ時間より大となる遅延手段、
前記2つのアンテナで受信し、前記遅延手段によって前記1チップ以上の位相差をもって入力された2つの信号を、個々に2信号として復調可能な1つのスプレッドアロハ復調器、
復調された前記2信号を比較して受信データの同期をとり、もとの1つのコード信号を再生するPNコード発生器を備えたことを特徴とするスペクトル拡散通信装置。
A first antenna and a second antenna arranged such that a part of the pointing area overlaps each other and a difference in arrival time of radio waves to the communication satellite is equal to or smaller than a predetermined time difference;
Two power amplifiers for supplying carrier power to each of the first and second antennas;
One spread Aloha modulator for supplying a modulated signal generated by separating one code signal to each of the two power amplifiers;
A delay inserted between the spread Aloha modulator and the first antenna, and the sum of the delay time and the arrival time difference from the two antennas to the communication satellite is greater than one chip time of the code signal means,
One spread aloha demodulator capable of individually demodulating two signals received by the two antennas and having a phase difference of one chip or more by the delay means as two signals;
A spread spectrum communication apparatus comprising a PN code generator that compares the two demodulated signals to synchronize received data and reproduces one original code signal.
移動体に搭載され、通信衛星との間で通信をおこなうことを特徴とする請求項1、2、3、5のいずれか一項に記載のスペクトル拡散通信装置。   The spread spectrum communication apparatus according to any one of claims 1, 2, 3, and 5, wherein the spread spectrum communication apparatus is mounted on a mobile body and performs communication with a communication satellite.
JP2004171367A 2004-06-09 2004-06-09 Spread spectrum communication apparatus and opposite station receiver Expired - Fee Related JP4076977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004171367A JP4076977B2 (en) 2004-06-09 2004-06-09 Spread spectrum communication apparatus and opposite station receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004171367A JP4076977B2 (en) 2004-06-09 2004-06-09 Spread spectrum communication apparatus and opposite station receiver

Publications (2)

Publication Number Publication Date
JP2005354284A JP2005354284A (en) 2005-12-22
JP4076977B2 true JP4076977B2 (en) 2008-04-16

Family

ID=35588377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004171367A Expired - Fee Related JP4076977B2 (en) 2004-06-09 2004-06-09 Spread spectrum communication apparatus and opposite station receiver

Country Status (1)

Country Link
JP (1) JP4076977B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5915153B2 (en) * 2011-12-19 2016-05-11 日本電気株式会社 Transmitting apparatus and transmitting method

Also Published As

Publication number Publication date
JP2005354284A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
US7925232B2 (en) Reduced cost mobile satellite antenna system using a plurality of satellite transponders
US20170005741A1 (en) Method and apparatus for efficient data transmissions in half-duplex communication systems with large propagation delays
US8958412B2 (en) Methods and apparatus for uplink timing alignment in system with large number of antennas
US20100296458A1 (en) Method of inserting cdma beacon pilots in output of distributed remote antenna nodes
JP2018512786A (en) Method and apparatus for time or frequency synchronization in non-geostationary satellite communication systems
WO2000049730A1 (en) Radio communication system, transmitter and receiver
CN101959261B (en) Signal selection method and equipment in high-speed moving scene
JP3094221B2 (en) Periodic beacon signal generator for code division multiplex base station
US5640672A (en) Communication system for varying timing offset to accommodate variation in propagation delay
JP4076977B2 (en) Spread spectrum communication apparatus and opposite station receiver
JP2001251665A (en) Wireless communication system and base station
KR100530497B1 (en) Gap Filler For Converting Signals Coupled With Satellite Communication System
JP4037302B2 (en) Satellite communication system, base station and mobile station
KR101159889B1 (en) Apparatus and Method for sharing of frequency allocated for mobile satellite service using a satellite and its ground component
US6400706B1 (en) System and method for re-synchronizing a phase-independent first-in first-out memory
KR100554042B1 (en) Satellite communication system, receiving earth station and communication satellite hand-over method
KR20030017171A (en) Method and apparatus to remove spill-over signals for radio frequency repeater
CN115225133B (en) Satellite link switching method of phased array antenna with multimode architecture
JP5672896B2 (en) Antenna system, relay station, and wireless communication system
JP5106892B2 (en) Mobile relay transmission system
JP2008060851A (en) Radio communication system, radio communication method, radio base station and radio receiving station
JP2924536B2 (en) Soft handoff method in spread spectrum communication system
WO2024144623A1 (en) A network controlled repeater having increased spatial degrees of freedom
KR100597867B1 (en) Receiver in mobile communication
JPH11122150A (en) Radio communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080130

R151 Written notification of patent or utility model registration

Ref document number: 4076977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees