JP4076637B2 - Loop coil train detector - Google Patents

Loop coil train detector Download PDF

Info

Publication number
JP4076637B2
JP4076637B2 JP27318598A JP27318598A JP4076637B2 JP 4076637 B2 JP4076637 B2 JP 4076637B2 JP 27318598 A JP27318598 A JP 27318598A JP 27318598 A JP27318598 A JP 27318598A JP 4076637 B2 JP4076637 B2 JP 4076637B2
Authority
JP
Japan
Prior art keywords
train
loop coil
reference frequency
detection
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27318598A
Other languages
Japanese (ja)
Other versions
JP2000103336A (en
Inventor
茂雄 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP27318598A priority Critical patent/JP4076637B2/en
Publication of JP2000103336A publication Critical patent/JP2000103336A/en
Application granted granted Critical
Publication of JP4076637B2 publication Critical patent/JP4076637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軌道上にループコイルを配置し、このループコイルのインダクタンスの変化により列車の有無を検知するループコイル式列車検知装置に関するものである。なお、本明細書では、列車という用語を単一の車輌を含む意味で用いている。
【0002】
【従来の技術】
この種のループコイル式列車検知装置は、このループコイルを周波数決定要素とするLC発振回路を構成し、列車非検知の状態(列車がループコイル上に無い状態)における発振周波数を基準周波数として記憶し、発振周波数が基準周波数から所定%高くなることで列車有りすなわち列車を検知するものである。そして、列車非検知中は、温度変動等の環境変動による発振周波数の変化がある場合、これに応じて記憶中の基準周波数を変化させ、環境変動による誤動作を防止している。
【0003】
【発明が解決しようとする課題】
しかしながら、列車検知の状態、すなわち列車がループコイル上に有る場合は、発振周波数の変動が生じても、列車移動による発振周波数の変動か、環境変動による発振周波数の変動かが判別できないため、たとえ環境変動があっても基準周波数を補正することができない。このため、一定時間以上列車検知の状態が継続する場合、検知状態を保持し、安全性を確保している。
【0004】
この従来例の問題を図5,図6により詳しく説明する。この例では、発振周波数が基準周波数に対し0.5%以上高くなると列車有りとし、0.3%未満まで低くなると列車無しとするものである。図5,図6の縦軸は発振周波数の基準周波数に対する変化率(%)および検知出力を示し、横軸は時間を示す。
【0005】
図5に、温度変動等(環境変動)により発振周波数が高くなる場合を示す。ループコイル上に列車が進入するまでは、発振周波数はほぼ基準周波数と同じであり、前述の変化率はほぼ0%である。ループコイル上に列車がさしかかると、変化率が急上昇し、0.5%を越えると(50参照以下同様)、検知出力はローレベルからハイレベルに反転し(58)、列車を検知する。列車進入に伴い、車軸等の影響により変化率は急変し(51,52,53)、ループコイル上に列車が停止すると変化率はほぼ一定となる(54)。この状況で温度変動等により変化率が徐々に上昇すると(55)、列車が移動しループコイル上から進出して変化率が急下降しても(56)、列車無しを検知する非検知感度0.3%未満にならない場合がある(57)。よって、列車がループコイル上から移動しても検知出力はハイレベルのままとなり列車有りのままとなる誤動作が起きる。
【0006】
図6に、温度変動等により発振周波数が低くなる場合を示す。この場合は、ループコイル上に列車が進入し、変化率が0.5%を越えると列車を検知し(60,67)、ループコイル上に列車が停止すると変化率はほぼ一定となる(61〜64)。ここまでは図5と同様である。その後温度変動等により発振周波数が徐々に下降すると(65)、列車がループコイル上に停止しているにもかかわらず、変化率が非検知感度0.3%未満となる場合がある(66)。よって、列車がループコイル上に有るにもかかわらず、検知出力はハイレベルからローレベルに反転し(68)、列車無しとなる誤動作が起きる。
【0007】
このような誤動作に対し安全性を確保するため、一定時間以上列車有りの状態が継続する場合は、前述のように列車の有無にかかわらず検知状態を保持してフェールセーフを実現している。
【0008】
本発明は、このような状況のもとでなされたもので、列車がループコイル上に有る場合にも環境変動に応じて基準周波数を変化させること(更正ともいう)ができ、常にループコイルへの列車の出入すなわちループコイル上の列車の有無が正確に検知できるループコイル式列車検知装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
前記目的を達成するため、本発明では、ループコイル式列車検知装置を次の(1)〜(4)のとおりに構成する。
【0010】
(1)軌道上に配置するループコイルと、このループコイルを周波数決定素子とするLC発振回路と、このLC発振回路の発振周波数を検出する検出手段と、列車非検知時に前記検出手段で検出した発振周波数を列車検知の基準周波数として記憶する記憶手段と、前記検出手段で検出した発振周波数が前記記憶手段に記憶された基準周波数より所定%以上増加した場合に列車有りと判定する判定手段と、この判定手段で列車有りと判定した状態で、前記記憶手段に記憶する基準周波数を温度変動等の環境変動に応じて更正する更正手段とを備えたループコイル式列車検知装置。
【0011】
(2)前記(1)記載のループコイル式列車検知装置において、前記更正手段は、列車停止判定手段を有し、この列車停止判定手段により所定時間以上の列車停止を判定した場合に、前記基準周波数の更正を行うものであるループコイル式列車検知装置。
【0012】
(3)前記(2)記載のループコイル式列車検知装置において、前記列車停止判定手段は、前記検出手段で検出した発振周波数の変動が所定時間中所定%以下の場合に列車停止を判定するものであるループコイル式列車検知装置。
【0013】
(4)前記(3)記載のループコイル式列車検知装置において、前記更正手段は、更正周期30秒にて、次のa、bの条件で前記基準周波数の更正を行うものであるループコイル式列車検知装置。
【0014】
【数1】

Figure 0004076637
【0015】
【発明の実施の形態】
以下本発明の実施の形態をループコイル式列車検知装置の例により詳しく説明する。
【0016】
【実施例】
図3は、実施例である“ループコイル式列車検知装置”の構成を示すブロック図であり、図2はループコイルの配置例を示す図である。
【0017】
図3において、1はループコイル、2はループコイル式列車検知装置である。ループコイル1はノイズを拾わないように8字状に巻回されている。3はループコイル1と共にLC発振回路を構成する発振部である。4は発振部3の発振周波数を計数する発振周波数計数部、5は基準周波数を記憶し、後述の条件で記憶している基準周波数を自動補正する基準周波数自動補正部である。6は、発振周波数計数部4の出力を受けて列車停止を判定し、また発振周波数計数部4の出力および基準周波数補正部5の基準周波数にもとづいて列車検知を判定する列車検知判定,列車停止判定部である。
【0018】
図2に示すように、ループコイルは軌道上に配置され、ケーブルを介してループコイル式列車検知装置に接続される。詳しくは、20は本線の軌道、21は軌道20上に配置されたループコイル、22はループコイル21をループコイル式列車検知装置2に接続する接続箱である。23は本線軌道20から分岐する支線の軌道、24は軌道23上に配置されたループコイル、25はループコイル24をループコイル式列車検知装置2に接続する接続箱である。
【0019】
図1は、本実施例の動作説明図であり、縦軸は発振周波数の基準周波数に対する変化率(%)および検知出力を示し、横軸は時間を示す。本実施例においても従来例と同様に、発振周波数が基準周波数に対し0.5%以上高くなると列車有りとし、0.3%未満まで低くなると列車無しとするものである。
【0020】
図1,図3を参照し、本実施例の動作を説明する。ループコイル式列車検知装置2は、立上げ時には、ループコイル1上に列車が存在しないことを人手により確認し、基準周波数自動補正部5の基準周波数を発振周波数計数部4の出力により発振周波数に一致させる。その後列車を検知するまでは、温度変動等の環境変動に対応するため、基準周波数自動補正部5において、基準周波数を自動補正する。この自動補正の仕方は、従来例と同様であり説明を省略する。このようにして、ループコイル1上に列車が進入するまでは、発振部3の発振周波数は、ほぼ基準周波数と同じであり、変化率はほぼ0%である。ループコイル1上に列車がさしかかると、変化率が急上昇し、0.5%を越えると(10)、検知出力はローレベルからハイレベルに反転し(18)、列車を検知する。列車進入に伴い、車軸等の影響により変化率は急変するが(12,13,14)、0.3%を下回ることはない。ループコイル1上に列車が停止すると、ループコイル1のインダクタンスは一定となり、変化率はほぼ一定となる(14)。
【0021】
列車停止中に、温度変動等の環境変動により発振部3の発振周波数が変化しても(15,16)、基準周波数自動補正部5において、基準周波数が後述の要件により自動補正されるので(17)、列車がループコイル1上から進出しているにもかかわらず変化率が0.3%未満にならないということがなく、或は列車がループコイル1上に停止しているにもかかわらず、変化率が0.3%未満になるということがなく、誤動作が防止できる。
【0022】
以下に、ループコイル1上に列車が停止している際の、基準周波数の自動補正について説明する。
【0023】
▲1▼列車停止の判定
“列車は停止状態からノッチを入れて列車を進めると最低でも1mは移動する”ということを前提で列車停止判定を考えた。
【0024】
絶縁走行での静的検知特性試験結果から、列車が1m移動すると発振周波数は0.1%以上変化する。また、絶縁走行の静的特性試験結果から列車を停止状態からノッチを入れて2m移動させる時間は15秒以内であった。
【0025】
そのため、列車検知中で30秒間連続しての発振周波数変動が0.05%以内であったとき、列車がループ上で停止している(列車停止)と判定する。また発振周波数が0.05%以上変化したとき、列車停止と判定しない。
【0026】
図4に列車停止判定の1例を示す。図示のように、30秒毎に、最初の発振周波数を列車停止時の仮の基準周波数として、この基準周波数との差が±0.05%内の状態が30秒続く場合は列車停止を判定し、この基準周波数との差が±0.05%以上の状態では列車停止を判定しない。
【0027】
▲2▼基準周波数の補正(更正ともいう)
列車停止判定が10分以上継続している場合に、基準周波数自動補正部5に記憶されている基準周波数を補正する。補正の仕方は次のとおりである。
【0028】
【数2】
Figure 0004076637
【0029】
なお、▲1▼,▲2▼の各数値は、試作機を用いての実地テストにもとづいて決定した値である。たとえば、変化率−0.4%以下,0.2%以上の値は、環境変動だけでは発生しない値なので、この場合は故障として基準周波数は変更しない。
【0030】
以上説明したように、本実施例によれば、環境変動のために、ループコイル上から列車が移動してもこれを検知できない、或はループコイル上に列車が有るのにループコイル上から列車が移動したと誤検知するといった誤動作を防止することができる。
【0031】
【発明の効果】
以上説明したように、本発明によれば、環境変動にかかわらず、ループコイル上の列車の有無を正確に検知できるループコイル式列車検知装置を提供することができる。
【図面の簡単な説明】
【図1】 実施例の動作説明図
【図2】 ループコイルの配置例を示す図
【図3】 実施例の構成を示す図
【図4】 列車停止判定の説明図
【図5】 従来例の動作説明図
【図6】 従来例の動作説明図
【符号の説明】
1 ループコイル
3 発振部
4 発振周波数計数部
5 基準周波数自動補正部
6 列車検知判定,列車停止判定部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a loop coil type train detection device that arranges a loop coil on a track and detects the presence or absence of a train by a change in inductance of the loop coil. In the present specification, the term train is used to include a single vehicle.
[0002]
[Prior art]
This type of loop coil type train detection device constitutes an LC oscillation circuit having the loop coil as a frequency determining element, and stores the oscillation frequency in a non-train detection state (a state where the train is not on the loop coil) as a reference frequency. When the oscillation frequency is higher than the reference frequency by a predetermined percentage, the presence of a train, that is, the train is detected. During non-detection of the train, if there is a change in the oscillation frequency due to environmental fluctuations such as temperature fluctuations, the stored reference frequency is changed accordingly to prevent malfunction due to environmental fluctuations.
[0003]
[Problems to be solved by the invention]
However, in the train detection state, that is, when the train is on the loop coil, even if the oscillation frequency varies, it cannot be determined whether the oscillation frequency varies due to train movement or the oscillation frequency varies due to environmental variations. The reference frequency cannot be corrected even if there are environmental fluctuations. For this reason, when the state of train detection continues for a certain time or more, the detection state is maintained and safety is ensured.
[0004]
The problem of this conventional example will be described in detail with reference to FIGS. In this example, when the oscillation frequency is higher than the reference frequency by 0.5% or more, the train is present, and when the oscillation frequency is lower than 0.3%, the train is absent. 5 and 6, the vertical axis represents the rate of change (%) of the oscillation frequency with respect to the reference frequency and the detection output, and the horizontal axis represents time.
[0005]
FIG. 5 shows a case where the oscillation frequency increases due to temperature fluctuations (environmental fluctuations). Until the train enters the loop coil, the oscillation frequency is substantially the same as the reference frequency, and the above-mentioned rate of change is approximately 0%. When the train approaches the loop coil, the rate of change increases rapidly, and when it exceeds 0.5% (same as 50 and below), the detection output is reversed from low level to high level (58), and the train is detected. As the train approaches, the rate of change suddenly changes due to the influence of the axle or the like (51, 52, 53), and when the train stops on the loop coil, the rate of change becomes substantially constant (54). In this situation, if the rate of change gradually increases due to temperature fluctuation or the like (55), even if the train moves and advances from above the loop coil and the rate of change suddenly drops (56), non-detection sensitivity for detecting no train is 0 May not be less than 3% (57). Therefore, even if the train moves from above the loop coil, the detection output remains at a high level and a malfunction occurs in which the train remains.
[0006]
FIG. 6 shows a case where the oscillation frequency is lowered due to temperature fluctuation or the like. In this case, when the train enters the loop coil and the rate of change exceeds 0.5%, the train is detected (60, 67), and when the train stops on the loop coil, the rate of change becomes substantially constant (61 ~ 64). The steps so far are the same as those in FIG. Thereafter, when the oscillation frequency gradually decreases due to temperature fluctuation or the like (65), the rate of change may be less than 0.3% of non-detection sensitivity even though the train is stopped on the loop coil (66). . Therefore, although the train is on the loop coil, the detection output is reversed from the high level to the low level (68), and a malfunction occurs in which there is no train.
[0007]
In order to ensure safety against such malfunctions, when the state where the train is present continues for a certain time or more, the detection state is maintained regardless of the presence or absence of the train as described above, thereby realizing fail-safe.
[0008]
The present invention has been made under such circumstances, and even when the train is on the loop coil, the reference frequency can be changed according to environmental changes (also referred to as correction), and the loop coil can always be changed. It is an object of the present invention to provide a loop coil type train detection device that can accurately detect the presence or absence of trains, that is, the presence or absence of a train on a loop coil.
[0009]
[Means for Solving the Problems]
In order to achieve the object, in the present invention, a loop coil train detection device is configured as described in the following (1) to (4).
[0010]
(1) A loop coil arranged on the track, an LC oscillation circuit using the loop coil as a frequency determining element, a detection means for detecting the oscillation frequency of the LC oscillation circuit, and the detection means detected when the train is not detected Storage means for storing the oscillation frequency as a reference frequency for train detection, and determination means for determining that there is a train when the oscillation frequency detected by the detection means is increased by a predetermined percentage or more from the reference frequency stored in the storage means; A loop coil train detection device comprising: a correction means for correcting the reference frequency stored in the storage means in accordance with an environmental change such as a temperature change in a state where the determination means determines that there is a train.
[0011]
(2) In the loop coil train detection device according to (1), the correction means includes a train stop determination means, and when the train stop determination means determines a train stop for a predetermined time or more, the reference A loop coil train detector that corrects the frequency.
[0012]
(3) In the loop coil type train detection device according to (2), the train stop determination means determines the train stop when the fluctuation of the oscillation frequency detected by the detection means is not more than a predetermined percentage during a predetermined time. Loop coil type train detection device.
[0013]
(4) In the loop coil train detection device according to (3), the correction means performs the correction of the reference frequency under the following conditions a and b in a correction cycle of 30 seconds. Train detection device.
[0014]
[Expression 1]
Figure 0004076637
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to an example of a loop coil train detection device.
[0016]
【Example】
FIG. 3 is a block diagram illustrating a configuration of a “loop coil train detection device” as an embodiment, and FIG. 2 is a diagram illustrating an arrangement example of loop coils.
[0017]
In FIG. 3, 1 is a loop coil, and 2 is a loop coil train detector. The loop coil 1 is wound in an eight-letter shape so as not to pick up noise. Reference numeral 3 denotes an oscillating unit that constitutes an LC oscillation circuit together with the loop coil 1. Reference numeral 4 denotes an oscillation frequency counting unit that counts the oscillation frequency of the oscillation unit 3, and reference numeral 5 denotes a reference frequency automatic correction unit that stores a reference frequency and automatically corrects the stored reference frequency under conditions described later. 6 is a train detection determination that determines the train stop based on the output of the oscillation frequency counting unit 4 and determines the train detection based on the output of the oscillation frequency counting unit 4 and the reference frequency of the reference frequency correction unit 5. It is a judgment part.
[0018]
As shown in FIG. 2, the loop coil is disposed on the track and connected to the loop coil train detection device via a cable. Specifically, 20 is a main track, 21 is a loop coil arranged on the track 20, and 22 is a connection box for connecting the loop coil 21 to the loop coil train detector 2. 23 is a track of a branch line branched from the main track 20, 24 is a loop coil arranged on the track 23, and 25 is a connection box for connecting the loop coil 24 to the loop coil train detector 2.
[0019]
FIG. 1 is an explanatory diagram of the operation of the present embodiment, in which the vertical axis indicates the rate of change (%) of the oscillation frequency with respect to the reference frequency and the detection output, and the horizontal axis indicates time. In this embodiment, as in the conventional example, when the oscillation frequency is higher than the reference frequency by 0.5% or more, the train is present, and when the oscillation frequency is lower than 0.3%, the train is absent.
[0020]
The operation of this embodiment will be described with reference to FIGS. When the loop coil type train detection device 2 is started up, it is manually checked that there is no train on the loop coil 1, and the reference frequency of the reference frequency automatic correction unit 5 is changed to the oscillation frequency by the output of the oscillation frequency counting unit 4. Match. After that, until the train is detected, the reference frequency automatic correction unit 5 automatically corrects the reference frequency in order to cope with environmental fluctuations such as temperature fluctuations. This automatic correction method is the same as in the conventional example, and the description thereof is omitted. In this way, until the train enters the loop coil 1, the oscillation frequency of the oscillation unit 3 is substantially the same as the reference frequency, and the rate of change is approximately 0%. When the train approaches the loop coil 1, the rate of change increases rapidly. When it exceeds 0.5% (10), the detection output is reversed from the low level to the high level (18), and the train is detected. As the train approaches, the rate of change suddenly changes due to the influence of the axles (12, 13, 14), but does not fall below 0.3%. When the train stops on the loop coil 1, the inductance of the loop coil 1 becomes constant and the rate of change becomes almost constant (14).
[0021]
Even if the oscillation frequency of the oscillation unit 3 changes due to environmental variations such as temperature variations while the train is stopped (15, 16), the reference frequency is automatically corrected by the reference frequency automatic correction unit 5 according to the requirements described later ( 17) The rate of change does not become less than 0.3% even though the train has advanced from the loop coil 1, or the train is stopped on the loop coil 1. The change rate is not less than 0.3%, and malfunction can be prevented.
[0022]
Hereinafter, automatic correction of the reference frequency when the train is stopped on the loop coil 1 will be described.
[0023]
(1) Judgment of train stop The train stop judgment was considered on the premise that “the train moves at least 1 m when the train is advanced with the notch from the stop state”.
[0024]
From the static detection characteristic test result in the insulated traveling, the oscillation frequency changes by 0.1% or more when the train moves 1 m. Further, from the static characteristic test result of the insulated traveling, the time for moving the train 2 m from the stop state was within 15 seconds.
[0025]
Therefore, it is determined that the train is stopped on the loop (train stop) when the oscillation frequency fluctuation for 30 seconds continuously is within 0.05% during train detection. When the oscillation frequency changes by 0.05% or more, it is not determined that the train is stopped.
[0026]
FIG. 4 shows an example of train stop determination. As shown in the figure, every 30 seconds, the initial oscillation frequency is used as a temporary reference frequency when the train is stopped. If the difference from this reference frequency is within ± 0.05% for 30 seconds, it is determined that the train is stopped. However, the train stoppage is not determined when the difference from the reference frequency is ± 0.05% or more.
[0027]
(2) Reference frequency correction (also called correction)
When the train stop determination continues for 10 minutes or more, the reference frequency stored in the reference frequency automatic correction unit 5 is corrected. The method of correction is as follows.
[0028]
[Expression 2]
Figure 0004076637
[0029]
The numerical values (1) and (2) are values determined based on an actual test using a prototype. For example, the values of the change rate of −0.4% or less and 0.2% or more are values that do not occur only due to environmental fluctuations.
[0030]
As described above, according to the present embodiment, due to environmental fluctuations, even if a train moves from above the loop coil, this cannot be detected, or there is a train on the loop coil but the train from above the loop coil. It is possible to prevent malfunctions such as erroneous detection of movement.
[0031]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a loop coil train detection device that can accurately detect the presence or absence of a train on a loop coil regardless of environmental changes.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an operation of an embodiment. FIG. 2 is a diagram illustrating an arrangement example of a loop coil. FIG. 3 is a diagram illustrating a configuration of the embodiment. Operation explanatory diagram [Fig. 6] Operation explanatory diagram of conventional example [Explanation of symbols]
1 Loop coil 3 Oscillating unit 4 Oscillating frequency counting unit 5 Automatic reference frequency correcting unit 6 Train detection determination, train stop determination unit

Claims (4)

軌道上に配置するループコイルと、このループコイルを周波数決定素子とするLC発振回路と、このLC発振回路の発振周波数を検出する検出手段と、列車非検知時に前記検出手段で検出した発振周波数を列車検知の基準周波数として記憶する記憶手段と、前記検出手段で検出した発振周波数が前記記憶手段に記憶された基準周波数より所定%以上増加した場合に列車有りと判定する判定手段と、この判定手段で列車有りと判定した状態で、前記記憶手段に記憶する基準周波数を温度変動等の環境変動に応じて更正する更正手段とを備えたことを特徴とするループコイル式列車検知装置。A loop coil arranged on the track, an LC oscillation circuit using the loop coil as a frequency determining element, a detection means for detecting the oscillation frequency of the LC oscillation circuit, and an oscillation frequency detected by the detection means when the train is not detected Storage means for storing as a reference frequency for train detection, determination means for determining that there is a train when the oscillation frequency detected by the detection means has increased by a predetermined percentage or more from the reference frequency stored in the storage means, and this determination means A loop coil type train detection apparatus comprising: a correction means for correcting the reference frequency stored in the storage means in response to an environmental change such as a temperature change in a state where it is determined that there is a train. 請求項1記載のループコイル式列車検知装置において、前記更正手段は、列車停止判定手段を有し、この列車停止判定手段により所定時間以上の列車停止を判定した場合に、前記基準周波数の更正を行うものであることを特徴とするループコイル式列車検知装置。The loop coil train detection device according to claim 1, wherein the correction means includes a train stop determination means, and when the train stop determination means determines that the train has stopped for a predetermined time or longer, the correction of the reference frequency is performed. A loop coil type train detection device characterized in that it performs. 請求項2記載のループコイル式列車検知装置において、前記列車停止判定手段は、前記検出手段で検出した発振周波数の変動が所定時間中所定%以下の場合に列車停止を判定するものであることを特徴とするループコイル式列車検知装置。3. The loop coil train detection device according to claim 2, wherein the train stop determination means determines that the train stops when the fluctuation of the oscillation frequency detected by the detection means is not more than a predetermined percentage during a predetermined time. A loop coil type train detection device. 請求項3記載のループコイル式列車検知装置において、前記更正手段は、更正周期30秒にて、次のa、bの条件で前記基準周波数の更正を行うものであることを特徴とするループコイル式列車検知装置。
Figure 0004076637
4. The loop coil train detection apparatus according to claim 3, wherein the correction means corrects the reference frequency under the following conditions a and b in a correction cycle of 30 seconds. Type train detector.
Figure 0004076637
JP27318598A 1998-09-28 1998-09-28 Loop coil train detector Expired - Fee Related JP4076637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27318598A JP4076637B2 (en) 1998-09-28 1998-09-28 Loop coil train detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27318598A JP4076637B2 (en) 1998-09-28 1998-09-28 Loop coil train detector

Publications (2)

Publication Number Publication Date
JP2000103336A JP2000103336A (en) 2000-04-11
JP4076637B2 true JP4076637B2 (en) 2008-04-16

Family

ID=17524293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27318598A Expired - Fee Related JP4076637B2 (en) 1998-09-28 1998-09-28 Loop coil train detector

Country Status (1)

Country Link
JP (1) JP4076637B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113689711B (en) * 2021-08-31 2023-06-02 武汉拓宝科技股份有限公司 Geomagnetic parking detection method and geomagnetic parking detection system

Also Published As

Publication number Publication date
JP2000103336A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
EP1189025A3 (en) Inertial rate sensor and method with built-in testing
CN105741413B (en) Withdrawal equipment and its dynamic calibration sensor and bearing calibration and device
CN108626839B (en) Anti-creeping control method and device, electric heater, storage medium and air conditioner
CN108415009A (en) A kind of train speed computational methods and system
US20030136173A1 (en) System and method for detecting faulty fuel tank level sensor
JPH04259002A (en) Valve-position detecting apparatus
US6502025B1 (en) Relative steering angle sensor diagnostic for momentary signal dropout
CN104627029A (en) Vehicle-mounted automatic passing neutral section detector of railway electric locomotive
JP4076637B2 (en) Loop coil train detector
JP3725471B2 (en) Method for functionally testing a vehicle dynamics control sensor system
CN106740902B (en) A kind of monitoring method of track train zero-speed state
EP0881185A3 (en) Method for monitoring yarn tension in yarn manufacturing process
JPH11508212A (en) Device for detecting electromagnetic interference noise
CN113525098A (en) Suspension control method and device for magnetic suspension vehicle
CN105818838A (en) Axle counting sensor and axle counting detection method
JP2007285925A (en) Sensor device and control system using it
US6588252B2 (en) Diagnostic method for rapidly detecting erroneous operation of a knock sensor of an internal combustion engine
US6196644B1 (en) Anti-skid or anti-slip braking system that suppresses interference signals at a mains frequency
CN110139153A (en) A kind of detection of video broadcasting condition and control method for playing back and system
JP4215362B2 (en) Train stop position detector
US20200234012A1 (en) Magnetic recording medium processing device and control method
CN207481577U (en) tire pressure monitoring system
JPS6326278B2 (en)
EP1176693A2 (en) Static random access memory backup
JP2002033600A (en) Component detection method and component mounting machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees