JP4074006B2 - Method for producing IgE antibody production inhibitor and food using the same - Google Patents

Method for producing IgE antibody production inhibitor and food using the same Download PDF

Info

Publication number
JP4074006B2
JP4074006B2 JP19366898A JP19366898A JP4074006B2 JP 4074006 B2 JP4074006 B2 JP 4074006B2 JP 19366898 A JP19366898 A JP 19366898A JP 19366898 A JP19366898 A JP 19366898A JP 4074006 B2 JP4074006 B2 JP 4074006B2
Authority
JP
Japan
Prior art keywords
ige antibody
cells
antibody production
food
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19366898A
Other languages
Japanese (ja)
Other versions
JP2000004830A (en
Inventor
博 塩野谷
瑞夫 矢嶋
定一 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asama Chemical Co Ltd
Original Assignee
Asama Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asama Chemical Co Ltd filed Critical Asama Chemical Co Ltd
Priority to JP19366898A priority Critical patent/JP4074006B2/en
Publication of JP2000004830A publication Critical patent/JP2000004830A/en
Application granted granted Critical
Publication of JP4074006B2 publication Critical patent/JP4074006B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Alcoholic Beverages (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は新規な免疫調節活性を有する菌体分解物およびその製造方法並びにそれを用いた食品に関する。
【0002】
【従来の技術】
アレルギーはその発症の免疫学的機序によって1型から4型に分類されている。このうち、1型アレルギーは別名即時型アレルギー、アトピーとも呼ばれ、花粉症、気管支喘息、アトピー性皮膚炎、食物アレルギーなどの発症機序の主な原因となっており、抗原に対するIgEタイプの免疫グロブリンがその原因である。これに対し、2型、3型アレルギーはIgGおよびIgMタイプの免疫グロブリンによる。
【0003】
通常、アレルギー体質といわれるのは、1型アレルギーを発症しやすい体質を称するが、通常アレルギー体質の患者においては、血液中のIgE抗体の濃度が高く、様々な抗原に対して容易にIgE抗体を産生することが知られている。産生されたIgE抗体は皮膚や目、鼻、気管、消化管などの粘膜組織に多い肥満細胞表面にあるIgE抗体の受容体に結合する。1型アレルギーの発症は、この抗体に抗原が結合すると肥満細胞からヒスタミン、セロトニン、ロイコトリエンなどの生理活性物質(メデイエーター)が放出され、アレルギー反応が惹起される。また、肥満細胞のみならず、抗原特異的なリンパ球と抗原との反応に伴い、これらの細胞から産生される各種サイトカインを介して、好酸球などが活性化され炎症反応が進行する。
【0004】
1型アレルギーの予防治療には、現在これらのメデイエーターの拮抗する薬剤(抗ヒスタミン剤、抗セロトニン剤、抗ロイコトリエン剤)や、肥満細胞からこれらのメデイエーターの放出を阻止する薬剤、免疫担当細胞の活性化を抑制してサイトカインの産生を抑制したり、サイトカインによる活性化を抑える副腎ホルモンステロイド剤などが医薬品として用いられている。
【0005】
1型アレルギーの原因抗体は、先に述べたようにIgE抗体であるので、IgE抗体の産生を抑制する薬剤は1型アレルギーの原因療法として有効と考えられる。抗体の産生を抑制する薬剤として従来から知られている薬品としては制癌作用を有する薬剤などが知られているが、これらの薬物は毒性が強いために、アレルギー疾患の治療には使用されていない。先に述べた、2型、3型アレルギーはIgGおよびIgMタイプの免疫グロブリンによるとされているが、IgGおよびIgM抗体はIgA抗体とともに、ウイルスや病原性細菌に対する防御作用に重要な抗体であり、生体の正常な免疫機能の維持のためには、これらの抗体にはむしろ増強させるような薬剤ないし食品が開発されることが望ましい。
【0006】
【発明が解決しようとする課題】
本発明の課題は、IgG抗体などの抗体産生に影響しないか、乃至は増強するのに対し、IgE抗体の産生を抑制し、アトピー、アレルギー体質を改善できる食品添加物ないしは健康食品を提供することである。
【0007】
【課題を解決するための手段】
本発明者らは、前記課題を解決するために鋭意研究の結果、Bacillus属細菌及び/又は乳酸菌の酵素等による分解物を含む食品を摂取することにより、IgG抗体などの抗体産生に影響しないか、乃至は増強するのに対し、IgE抗体の産生を抑制することができることを見出し、本発明に到達した。
【0008】
動物において免疫抗体を効率よく産生させるために、抗原と混合して非経口的に投与されるものを称して、免疫アジュバントと呼んでいる。結核菌死菌体には免疫アジュバント作用があることが古くから知られている。その免疫アジュバント作用の有効成分を追求した結果、最小構成単位は細胞壁のペプチドグリカン構成成分であるムラミル−L−アラニル−D−イソグルタミン(MDP)であった。また、MDPは結核菌のみならず、病原性、非病原性、グラム染色の陽性陰性菌を問わず、全ての細菌にあることが知られている。実際検討された殆どの細菌で、MDPを含む細胞壁分画は免疫アジュバント作用を示した。また、化学合成したMDPは経口的に投与しても免疫増強作用を示した(小谷尚三、生化学、第48巻第12号第1081─1107頁、1976) 。
【0009】
以上の背景から、免疫増強作用を目的として、様々な研究がなされ、細胞壁を含む分画について、腫瘍に対する抵抗性(Bogdanov IG et al.,Antitumor glycopeptides from Lactobacillus bulgaricus cell wall FEBS LETT. 1975 57(3):251-261) や、細菌感染に対する抵抗に関係するマクロファージや細胞免疫の活性化や、細菌ウイルス感染に対する抵抗性に重要な役割をになうIgG抗体の増強作用(Namba Y et al.,Effect of oral administration of Isozyme or digested cell wall on immunostimulation in guinea pigs.,Infect Immun 31:580-583 1981)が知られている。また、活性と構造との関係では、細胞壁、その酵素消化物について研究がなされた(小谷尚三、生化学、第48巻第12号第1081─1107頁、1976) 。
しかし、これまでの研究はMDPを含有する分画がアトピーなどの1型アレルギーの原因抗体の産生にどのような影響を有するかについては知られていなかった。
【0010】
本発明者らは、納豆菌と乳酸菌について、菌体とその酵素消化物を作成し、経口的に摂取させた場合のIgE抗体産生について調べ、両細菌ともに、そのMDPを含む酵素分解物を投与することにより、IgE抗体の産生を抑制することができること、菌体それ自体では上記活性は弱いが細胞壁溶解酵素により酵素分解することにより、IgE抗体産生の抑制活性が増強されることを見出した。
【0011】
細菌細胞壁のムコペプチド層は、N−アセチルグルコサミンとムラミン酸がβ−1,4結合で長鎖に結合したポリマーとムラミン酸のカルボキシル残基からペプチド結合でL−アラニンまたはL−グリシン、D−グルタミン酸、L−リジンまたはメメゾジアミノピメリン酸、D−アラニンなどの順にアミノ酸が結合する。最後のD−アラニンは隣の糖鎖のムラミン酸のカルボキシル残基から同様に派生するペプチド鎖のD−グルタミンまたはL−リジンまたはメメゾジアミノピメリン酸にペプチド結合する。糖鎖間にまたがって結合するアミノ酸の数は、菌により異なるが、全て6乃至7残基のアミノ酸である。平行に並ぶ糖鎖と糖鎖を縦の糸とすると、これらと糖鎖を結ぶペプチド結合は横の糸の関係で、両者により網の構造をなし、ペプチドグリカンとも命名されている。ペプチドグリカンは細胞質を含む形となり、細胞が浸透圧の変化にも物理的に対応できる強固な壁を形成する。
【0012】
細菌細胞壁溶解酵素は、ペプチドグリカンを加水分解する酵素で酵素の作用機序から大別して糖鎖を切断するグリコシダーゼ型酵素(例えば卵白リゾチームなど)、ペプチド結合に作用するエンドペプチダーゼ(例えばAchromobacter プロテアーゼI)、糖鎖のムラミン酸とアミノ酸の結合を分解するアミダーゼの3者に大別される。
【0013】
本発明はBacillus属細菌及び/又は乳酸菌の細胞壁を溶解してえられた免疫調節活性を有する菌体分解物(以下、免疫調節活性分解物という)およびその製造方法、並びにそれを含有する食品または飲料である。
【0014】
【発明の実施の形態】
Bacillus属細菌および乳酸菌は入手容易な細菌であり、なかでも納豆菌(Bacillus natto) は食品としてその安全性が認められており、また好気性菌であるため、培養が容易で菌体の生産効率もよく、経済的にも安価であるという利点がある。Bacillus属細菌としては、納豆菌のほか、Bacillus subtilis、Bacillusmegateriumを挙げることができる。また、乳酸菌としては、Lactobacillus plantarum, Lactobacillus acidophilus, Lactobacillus delbruckii, Biphidobacterium longum,および Leuconostoc mesenteroidesを挙げることができる。
【0015】
Bacillus属細菌および乳酸菌の培養は任意の培地を用いて公知の方法で培養すればよい。菌体は培養物そのもの、遠心分離生菌体、凍結乾燥菌体、噴霧乾燥菌体などいずれも使用できる。
【0016】
菌体より本発明の免疫調節活性分解物の製造は、菌体細胞の細胞壁の溶解によるが細胞壁の溶解法としては、細胞壁溶解酵素による方法、溶原ファージの誘発による方法および菌自体の有する自己融解酵素による方法を挙げることができる。
【0017】
これらのうち、効率のよい細胞壁溶解酵素による方法は細胞壁溶解酵素グルコシダーゼ型酵素及び/又はエンドペプチダーゼ型蛋白分解酵素を作用させる方法である。本発明においては両者の酵素の単独よりも両酵素の併用が優れた活性を有する分解物を生ずることができ、好ましい。また、両者のうちではグルコシダーゼ型酵素を用いる分解が効率的であり、グルコシダーゼ型酵素としては卵白リゾチーム、細菌リゾチーム、N−アセチルムラミデイスSGを挙げることができるが、安全性の点から食品添加物として用いられている卵白リゾチームが好ましい。
【0018】
エンドペプチダーゼ型蛋白分解酵素としてはブロメライン、セラチオペプチターゼ、プロナーゼ(Streptomyces griseus f1-エンドペプチダーゼ)、ナガーゼ(Subtilisin BPN) 、セアプローゼS(Armillaria mellea(ナラタケ)プロテアーゼ)、トリプシン、Achromobacter プロテアーゼI(リシルエンドペプチダーゼ)、Grifola frondosa(マイタケ)メタロエンドペプチダーゼを挙げることができるが、基質特異性が広く、食品の加工に用いられているブロメラインが最も好ましい。
【0019】
これらの酵素による処理はそれぞれの酵素の至適pH付近で行う。グリコシダーゼ型酵素及びエンドペプチダーゼ型蛋白分解酵素処理は通常の中性付近pH5〜8で、酵素の添加量は乾燥菌体1g当たり0.01〜10mg、温度は室温から30〜70℃でよい。酵素処理物には、粘度を下げる必要に応じて、核酸分解酵素DNase、RNaseを10〜500μg/ml加えてもよい。
【0020】
溶原ファージの誘発による菌体の融解はBacillus属細菌を45℃で5分処理の後、42℃で培養することにより行う。また、自己融解による方法は菌体を精製水に懸濁し、50℃付近に1〜3日間保温することにより行う。
【0021】
具体的な免疫調節活性分解物の製造方法としては、例えば納豆菌を適当な培地中で培養した後、遠心分離して集菌し、例えば生理食塩液などの等張圧の媒体中で菌体懸濁液に卵白リゾチーム等のグリコシダーゼ型酵素、またはブロメライン等のエンドペプチダーゼ型蛋白分解酵素を添加して細胞壁を溶かし、菌体の細胞膜とこれに囲まれた細胞質をプロトプラストの状態として残し、これを遠心分離または分子篩などの手段で分離除去した後、上澄み液に、他方の酵素、すなわちエンドペプチダーゼ型蛋白分解酵素、またはグリコシダーゼ型酵素を作用させる方法を挙げることができるが、グリコシダーゼ型酵素でまず細胞壁を溶解してプロトプラストを分離除去後、エンドペプチダーゼ型蛋白分解酵素処理を行う方が効率が高く、好ましい。プロトプラストを分離除去することにより該媒体可溶化画分に効率よく活性分解物を精製することができる。生じる免疫調節活性分解物の濃縮はエタノール、アセトン分別によることもできる。
【0022】
また、別な製造方法しては、例えば納豆菌を培養後、分離集菌し、精製水中に懸濁してグリコシダーゼ型酵素を加えて攪拌して細胞壁を溶かし、その後エンドペプチダーゼ型蛋白分解酵素を加えてさらに攪拌する方法によってもよい。
【0023】
本発明の免疫調節活性分解物の標準的な摂取量は乾燥死菌体に換算して一日0.2〜2g相当量で、好ましくは1g程度である。
【0024】
本発明の免疫調節活性分解物は粉末、倍散、錠剤、カプセル、お菓子、パン、麺類、ドリンク剤などの形態で食品または飲料とすることができる。これらの食品は公知の方法によって製造すればよい。
【0025】
【実施例】
以下に実施例を挙げて本発明をさらに詳細に説明する。実施例中、%、部はともに重量基準である。
【0026】
実施例1
ソイビーンカゼインダイジェスト(SCD)培地10mlを含むL字管に納豆菌(BN−2株)を接種し37℃で7時間振盪培養した。この培養液の各1mlをSCD培地100mlを含む坂口フラスコ4本に接種し、37℃で24時間振盪培養した。菌体を遠心して集菌し、約5gの湿菌体を得た。生理食塩液で1回遠心洗浄の後、菌体に精製水20mlを加えて懸濁し、攪拌しながら卵白リゾチーム5mgを加え、37℃で1時間攪拌の後、セラチオペプチターゼ10mgを加え、さらに37℃で1時間攪拌し、分解物とした。分解物を80℃で30分間加熱の後、凍結乾燥し、乾燥物1gを得た。
【0027】
実施例2
ソイビーンカゼインダイジェスト(SCD)培地100mlを含む坂口フラスコに納豆菌(BN−2株)を接種し37℃で18時間振盪培養した。この培養液の各1mlをSCD培地100mlを含む坂口フラスコ40本に接種し、37℃で8時間振盪培養した。菌体を遠心して集菌し、約50gの湿菌体を得た。生理食塩液で1回遠心洗浄の後、菌体に生理食塩液200mlを加えて懸濁し、攪拌しながら卵白リゾチーム50mgを加え、37℃で1時間攪拌の後、13000回転/30分遠心して沈殿するプロトプラストを除き、上澄みを分取した。上澄みにセラチオペプチターゼ50mgを加え、さらに37℃で1時間攪拌し、分解物とした。分解物を80℃で30分間加熱の後、透析して食塩を除いた後、凍結乾燥し、乾燥物1.2gを得た。
【0028】
実施例3
セラチオペプチターゼ50mgの代わりにブロメライン50mgを用いるほかは実施例2と同様に処理して乾燥物1.0gを得た。
【0029】
実施例4
納豆菌(三浦株)の凍結乾燥菌体1kgを20リットルの生理食塩液に懸濁し、30℃で攪拌しつつ、卵白リゾチーム5gを含む生理食塩液100mlを加えて30℃で1時間攪拌の後、ブロメライン10gを含む生理食塩液200mlを加え、さらに30℃で1時間攪拌し、分解物とした。分解物を噴霧乾燥し、乾燥物1kgを得た。
【0030】
実施例5
納豆菌(三浦株)の凍結乾燥菌体1kgを20リットルの精製水に懸濁し、50℃に24時間静置し自己融解させた。自己融解物を噴霧乾燥し、乾燥物1kgを得た。
【0031】
実施例6
Bacillus subtilis 溶原ファージの誘導による溶菌を以下のようにして実施した。
ソイビーンカゼインダイジェスト(SCD)培地100mlを含む坂口フラスコにBacillus subtilis marburg 株を接種し、37℃で18時間振盪培養した。この培養物の各1mlをSCD培地100mlを含む坂口フラスコ40本に接種し、37℃で8時間振盪培養した。菌体を遠心して集菌し、約50gの湿菌体を得た。菌体を45℃の2リットルの新鮮培地に懸濁した。通気しつつ、5分間培養の後、氷冷した培地を加えて培養温度を42℃にし、60分培養を続けた。菌液の濃度は610nmの吸光度で測定した。通気培養開始時OD610nm =28であったが、42℃、60分後にはOD610nm =6.5となり、溶菌が確認された。
【0032】
実施例7
6週齢のBALB/c系雌マウス1群6匹に納豆菌加熱死体、実施例3と4で得られた乾燥物、のそれぞれを加えた混餌飼料を作成した。混餌飼料で2週間飼育の後、卵白アルブミン10μg、水酸化アルミニウム1mgを含む0.1mlで免疫した。免疫の14日後に眼底静脈叢より採血し血清を分離した。6匹の血清をプールし、プール血清のIgE抗体をラットにおける受け身皮膚反応により測定した。すなわち、15〜20週齢の雄性SD系ラットの背部の毛を刈り、ネンブタール麻酔下に、皮内に注射用生理食塩液で希釈した血清の0.1mlを各希釈血清とも2匹の動物に投与した。皮内投与の24時間後に、ネンブタール麻酔下に、エヴァンスブルー色素10mgと卵白アルブミン1mgを含む生理食塩液1mlを静脈内投与し、静脈内投与の30分後に皮内投与部位に見られた青色漏出色素の長径と短径を計り、その平均径が5mm以上を陽性と判定した。抗体価は血清の希釈倍数で示し、2匹の抗体価の高い値をその血清の抗体価とした。結果を表1に示した。なお、表中効果の判定は血清希釈2倍希釈倍数で2管以上の差を有意とし、1管の差につき+と判定した。
【0033】
【表1】

Figure 0004074006
【0034】
抗原刺激の前処理でIgE抗体産生を抑制したことは、菌体およびその分解物の摂取により生体の反応性乃至体質に影響していることを示した。また菌体自体より実施例4の分解物摂取群で強い抑制が認められたことは、酵素分解により活性が強まったこと、さらに、IgE抗体産生抑制作用が実施例の分解物摂取群で最も高かったことはその活性分解物は主として細胞壁の構成成分であることを示した。
【0035】
実施例8
免疫調節活性分解物摂取のIgG抗体産生に及ぼす作用を卵白アルブミンで免疫したマウス血清中の抗卵白アルブミンIgG抗体産生により調べた。すなわち、平底96穴マイクロプレート(Coster,Cambridge,MA,USA)に、0.05MのpH9.5の炭酸ナトリウム緩衝液に溶解した卵白アルブミン0.1mg/mlの50μlを入れ、4℃に一晩置いた。洗浄液(0.9%NaCl,0.05%Tween20)で洗浄後、牛血清アルブミン1mg/mlを含有する燐酸緩衝生理食塩水(日水製薬、PBS)200を加え、37℃、1時間おいてブロッキングし、洗浄後、牛血清アルブミン10mg/ml、0.05%Tween20、食塩3%を含むPBS(溶液A)にて希釈した実施例のマウス血清を加え、37℃に1時間置いた。洗浄後、ペルオキシダーゼ標識抗マウスIgGヤギ抗体(生化学工業製)の溶液Aによる10000倍希釈液50μlを加え、37℃に1時間置いた後、洗浄し、基質溶液(o−フェニレンジアミン40mg、30%過酸化水素20μl/クエン酸−リン酸ナトリウム緩衝液100ml)100μlを加え、室温に置き、492nmの吸光度で測定した。
【0036】
抗体量は、卵白アルブミンをフロインドの完全アジュバントとともに免疫したマウス血清より、卵白アルブミン結合セファロース4Bアフィニテイーカラムを用いて精製したIgG抗体を用いて作成した検量線より求めた。実施例で用いたプール血清中の抗卵白アルブミンIgG抗体(抗EAIgG)の測定結果を表2に示した。
【0037】
【表2】
Figure 0004074006
【0038】
この結果は納豆菌の菌体乃至酵素分解物の摂取により、IgG抗体産生の増強(対照群の2倍以上)乃至増強傾向を示している。
【0039】
実施例9
IgE抗体産生抑制性分解物の安全性
4週齢のSD系雄ラット一群5匹に実施例4で得られた酵素分解物の2g/kg体重当てを強制経口投与し、単回投与における安全性を調べた。また、4週齢のSD系雄ラット一群10匹に5%含有する飼料で4週間に亘って飼育し、飼料のみを与えた群を対照群として投与群と比較した。その結果、単回投与では何らの急性症状も認められず、表3に示した如く、反復投与試験においても、体重増加、一般状態ともに対照群との間に差は認められなかった。
【0040】
【表3】
Figure 0004074006
【0041】
実施例10
実施例4で得られた納豆菌の卵白リゾチームおよびブロメラインを用いた酵素分解物90mg、デンプン30mg、アビセル(セルロース)180mgの割合で用いて1錠300mgの食品を常法により製造した。
【0042】
実施例11
実施例4で得られた納豆菌の卵白リゾチーム及びブロメラインを用いた分解物2部、ココアバター10部、グラニュー糖7部、牛乳7部、乳化剤0.05部に精製水を加え、全量を100部とし、常法によりココア飲料を製造した。
【0043】
【発明の効果】
本発明によるとIgG抗体の産生を増強し、IgE抗体の産生を選択的に抑制する免疫調節活性分解物を容易に製造することができ、そのような作用を有する食品を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microbial cell degradation product having a novel immunoregulatory activity, a method for producing the same, and a food using the same.
[0002]
[Prior art]
Allergies are classified from type 1 to type 4 depending on the immunological mechanism of the onset. Of these, type 1 allergy is also known as immediate allergy or atopy, and is the main cause of the pathogenesis of hay fever, bronchial asthma, atopic dermatitis, food allergy, etc. Globulin is the cause. In contrast, type 2 and type 3 allergies are due to IgG and IgM type immunoglobulins.
[0003]
Usually, an allergic predisposition refers to a predisposition to easily develop type 1 allergy, but in patients with allergic predisposition, the concentration of IgE antibody in the blood is high, and IgE antibodies are easily administered against various antigens. It is known to produce. The produced IgE antibody binds to a receptor for IgE antibody on the surface of mast cells, which is abundant in mucosal tissues such as skin, eyes, nose, trachea and digestive tract. In the onset of type 1 allergy, when an antigen binds to this antibody, physiologically active substances (mediators) such as histamine, serotonin, and leukotriene are released from mast cells, and an allergic reaction is induced. In addition to mast cells, eosinophils and the like are activated through various cytokines produced from these cells in response to the reaction between antigen-specific lymphocytes and antigen, and an inflammatory reaction proceeds.
[0004]
For prevention and treatment of type 1 allergy, drugs that antagonize these mediators (antihistamines, antiserotonins, anti-leukotrienes), drugs that block the release of these mediators from mast cells, and activity of immunocompetent cells Adrenal hormone steroids or the like are used as pharmaceuticals to suppress the production of cytokines by inhibiting the production of cytokines or to suppress the activation by cytokines.
[0005]
Since the causative antibody of type 1 allergy is an IgE antibody as described above, a drug that suppresses the production of IgE antibody is considered to be effective as a causative therapy for type 1 allergy. Conventionally known drugs that suppress the production of antibodies include drugs that have anticancer effects, but these drugs are highly toxic and are therefore used for the treatment of allergic diseases. Absent. It is said that type 2 and type 3 allergies mentioned above are caused by IgG and IgM type immunoglobulins, but IgG and IgM antibodies together with IgA antibodies are important antibodies for protecting against viruses and pathogenic bacteria. In order to maintain the normal immune function of the living body, it is desirable to develop drugs or foods that rather enhance these antibodies.
[0006]
[Problems to be solved by the invention]
The object of the present invention is to provide food additives or health foods that can suppress or enhance the production of antibodies such as IgG antibodies while suppressing the production of IgE antibodies and improving atopy and allergic predisposition. It is.
[0007]
[Means for Solving the Problems]
As a result of diligent research to solve the above-mentioned problems, the present inventors do not affect the production of antibodies such as IgG antibodies by ingesting foods containing degradation products of Bacillus bacteria and / or lactic acid bacteria. The inventors have found that the production of IgE antibody can be suppressed while the present invention has been achieved.
[0008]
In order to efficiently produce immune antibodies in animals, the term “immune adjuvant” refers to what is administered parenterally mixed with an antigen. It has long been known that Mycobacterium tuberculosis dead cells have an immune adjuvant effect. As a result of pursuing the active ingredient of the immunoadjuvant action, the smallest structural unit was muramyl-L-alanyl-D-isoglutamine (MDP) which is a peptidoglycan constituent of the cell wall. MDP is known to be present not only in tuberculosis but also in all bacteria, including pathogenic, non-pathogenic, and Gram-stained positive-negative bacteria. In most bacteria examined in practice, the cell wall fraction containing MDP showed immunoadjuvant action. In addition, chemically synthesized MDP exhibited an immunopotentiating effect even when administered orally (Shozo Otani, Biochemistry, Vol. 48, No. 12, pp. 1081-1107, 1976).
[0009]
Based on the above background, various studies have been conducted for the purpose of enhancing immunity, and fractions containing cell walls are resistant to tumor (Bogdanov IG et al., Antitumor glycopeptides from Lactobacillus bulgaricus cell wall FEBS LETT. 1975 57 (3 ): 251-261) and enhancement of IgG antibodies that play an important role in activation of macrophages and cellular immunity related to resistance to bacterial infection and resistance to bacterial virus infection (Namba Y et al., Effect of oral administration of Isozyme or digested cell wall on immunostimulation in guinea pigs., Infect Immun 31: 580-583 1981). In addition, regarding the relationship between activity and structure, cell walls and enzyme digests were studied (Shozo Otani, Biochemistry, Vol. 48, No. 12, pp. 1081-1107, 1976).
However, previous studies have not yet known how the fraction containing MDP has an effect on the production of antibodies that cause type 1 allergies such as atopy.
[0010]
The present inventors prepared bacterial cells and enzyme digests thereof for natto and lactic acid bacteria, examined IgE antibody production when ingested orally, and administered both enzymes with enzyme digests containing MDP. Thus, it was found that the production of IgE antibody can be suppressed, and the activity itself is weak in the cell itself, but the activity of inhibiting IgE antibody production is enhanced by enzymatic degradation with cell wall lytic enzyme.
[0011]
The mucopeptide layer of the bacterial cell wall is composed of a polymer in which N-acetylglucosamine and muramic acid are bonded to a long chain by β-1,4 bonds and a carboxyl residue of muramic acid by peptide bonds to L-alanine or L-glycine, D- Amino acids are bound in the order of glutamic acid, L-lysine or memezodiaminopimelic acid, D-alanine and the like. The last D-alanine is peptide-bonded to D-glutamine or L-lysine or memezodiaminopimelic acid of the peptide chain similarly derived from the carboxyl residue of muramic acid of the adjacent sugar chain. The number of amino acids bound between sugar chains varies depending on the bacterium, but is an amino acid having 6 to 7 residues. If the sugar chains and sugar chains that are arranged in parallel are vertical threads, the peptide bonds that connect these sugar chains to each other are in the form of a horizontal thread, and both form a network structure and are also called peptidoglycans. Peptidoglycan is in a cytoplasmic form and forms a strong wall where the cells can physically cope with changes in osmotic pressure.
[0012]
Bacterial cell wall lytic enzyme is an enzyme that hydrolyzes peptidoglycan and is roughly divided from the mechanism of action of the enzyme to cleave sugar chains (eg egg white lysozyme), endopeptidase (eg Achromobacter protease I) that acts on peptide bonds, There are three types of amidases that break down the linkage between muramic acid and amino acids in sugar chains.
[0013]
The present invention relates to a cell lysate having immunomodulating activity obtained by dissolving cell walls of Bacillus bacteria and / or lactic acid bacteria (hereinafter referred to as immunomodulating activity lysate), a method for producing the same, a food containing the same or a food containing the same It is a beverage.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Bacillus genus bacteria and lactic acid bacteria are readily available bacteria. Among them, Bacillus natto has been recognized as a safe food and is an aerobic bacterium, so it can be cultured easily and the production efficiency of the cells. There is also an advantage that it is economical and inexpensive. Examples of Bacillus bacteria include Bacillus subtilis and Bacillus megaterium in addition to Bacillus natto. Examples of lactic acid bacteria include Lactobacillus plantarum, Lactobacillus acidophilus, Lactobacillus delbruckii, Biphidobacterium longum, and Leuconostoc mesenteroides.
[0015]
What is necessary is just to culture | cultivate Bacillus genus bacteria and lactic acid bacteria by a well-known method using arbitrary culture media. As the microbial cells, any of the culture itself, live centrifuge cells, lyophilized cells, spray-dried cells, etc. can be used.
[0016]
The production of the immunomodulating activity degradation product of the present invention from the microbial cells is based on the lysis of the cell walls of the microbial cells, but the cell wall lysis methods include cell wall lytic enzyme methods, lysogen phage induction methods, and self-owned bacteria A method using a melting enzyme can be mentioned.
[0017]
Among these, an efficient method using a cell wall lytic enzyme is a method in which a cell wall lytic enzyme glucosidase type enzyme and / or an endopeptidase type protease is allowed to act. In the present invention, the combined use of both enzymes can produce a degradation product having an activity superior to that of both enzymes alone. Among them, degradation using a glucosidase type enzyme is efficient, and examples of the glucosidase type enzyme include egg white lysozyme, bacterial lysozyme, and N-acetylmuramidis SG. Egg white lysozyme used as is preferred.
[0018]
Endopeptidase-type proteolytic enzymes include bromelain, cerathiopeptidase, pronase (Streptomyces griseus f1-endopeptidase), nagase (Subtilisin BPN), seaprose S (Armillaria mellea protease), trypsin, Achromobacter protease I (lysyl endo) Peptidase), Grifola frondosa (maitake) metalloendopeptidase, and bromelain, which has a wide substrate specificity and is used for food processing, is most preferable.
[0019]
The treatment with these enzymes is performed near the optimum pH of each enzyme. Glycosidase type enzyme and endopeptidase type proteolytic enzyme treatment may be carried out at a normal neutral pH of 5 to 8, the enzyme may be added in an amount of 0.01 to 10 mg per 1 g of dried cells, and the temperature may be from room temperature to 30 to 70 ° C. The enzyme-treated product may contain 10 to 500 µg / ml of nucleolytic enzymes DNase and RNase as necessary to lower the viscosity.
[0020]
Bacterial lysis by induction of lysogen phage is performed by treating Bacillus bacteria for 5 minutes at 45 ° C and then culturing at 42 ° C. Moreover, the method by self-melting is performed by suspending bacterial cells in purified water and incubating at around 50 ° C. for 1 to 3 days.
[0021]
As a specific method for producing an immunomodulating activity degradation product, for example, Bacillus natto is cultured in an appropriate medium, and then collected by centrifugation, for example, cells in an isotonic medium such as physiological saline. Glycosidase-type enzyme such as egg white lysozyme or endopeptidase-type protease such as bromelain is added to the suspension to dissolve the cell wall, leaving the cell membrane of the cell body and the cytoplasm surrounded by it as a protoplast state. After separation and removal by means such as centrifugation or molecular sieve, the other enzyme, ie, endopeptidase-type protease or glycosidase-type enzyme, can be applied to the supernatant liquid. It is more efficient and preferable to perform endopeptidase-type proteolytic enzyme treatment after dissolving and removing protoplasts By separating and removing protoplasts, the active degradation product can be efficiently purified in the medium-solubilized fraction. Concentration of the resulting immunomodulating activity degradation product can also be achieved by fractionation of ethanol and acetone.
[0022]
As another production method, for example, after natto bacteria are cultured, separated and collected, suspended in purified water, glycosidase type enzyme is added and stirred to dissolve the cell wall, and then endopeptidase type protease is added. Further, a method of further stirring may be used.
[0023]
The standard intake of the immunomodulating activity degradation product of the present invention is equivalent to 0.2 to 2 g per day, preferably about 1 g in terms of dry dead cells.
[0024]
The immunomodulating activity degradation product of the present invention can be made into a food or beverage in the form of powder, powder, tablet, capsule, confectionery, bread, noodles, drink and the like. What is necessary is just to manufacture these foodstuffs by a well-known method.
[0025]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. In the examples, both% and parts are based on weight.
[0026]
Example 1
An L-shaped tube containing 10 ml of soy bean casein digest (SCD) medium was inoculated with Bacillus natto (BN-2 strain) and cultured with shaking at 37 ° C. for 7 hours. Each 1 ml of this culture solution was inoculated into 4 Sakaguchi flasks containing 100 ml of SCD medium and cultured with shaking at 37 ° C. for 24 hours. The cells were collected by centrifugation to obtain about 5 g of wet cells. After centrifugal washing once with physiological saline, 20 ml of purified water is added and suspended in the cells, 5 mg of egg white lysozyme is added while stirring, and after stirring for 1 hour at 37 ° C., 10 mg of seratiothiopeptidase is added. The mixture was stirred at 37 ° C. for 1 hour to obtain a decomposed product. The decomposed product was heated at 80 ° C. for 30 minutes and then freeze-dried to obtain 1 g of a dried product.
[0027]
Example 2
A Sakaguchi flask containing 100 ml of soy bean casein digest (SCD) medium was inoculated with Bacillus natto (BN-2 strain) and cultured with shaking at 37 ° C. for 18 hours. Each 1 ml of this culture solution was inoculated into 40 Sakaguchi flasks containing 100 ml of SCD medium, and cultured with shaking at 37 ° C. for 8 hours. The cells were collected by centrifugation to obtain about 50 g of wet cells. After centrifugal washing once with physiological saline, 200 ml of physiological saline is added to the cells, suspended, 50 mg of egg white lysozyme is added with stirring, the mixture is stirred at 37 ° C. for 1 hour, and then centrifuged at 13,000 rpm for 30 minutes to precipitate. The supernatant was collected except for the protoplast. Cerathiopeptidase 50 mg was added to the supernatant, and the mixture was further stirred at 37 ° C. for 1 hour to obtain a decomposed product. The decomposition product was heated at 80 ° C. for 30 minutes, dialyzed to remove sodium chloride, and then freeze-dried to obtain 1.2 g of a dried product.
[0028]
Example 3
A dried product 1.0 g was obtained in the same manner as in Example 2 except that 50 mg of bromelain was used instead of 50 mg of serratiopeptidase.
[0029]
Example 4
After suspending 1 kg of lyophilized natto (Miura strain) in 20 liters of physiological saline, stirring at 30 ° C, adding 100 ml of physiological saline containing 5 g of egg white lysozyme and stirring at 30 ° C for 1 hour Then, 200 ml of physiological saline containing 10 g of bromelain was added and further stirred at 30 ° C. for 1 hour to obtain a decomposed product. The decomposed product was spray-dried to obtain 1 kg of a dried product.
[0030]
Example 5
1 kg of freeze-dried microbial cells of Bacillus natto (Miura strain) was suspended in 20 liters of purified water and allowed to stand at 50 ° C. for 24 hours for self-thawing. The self-melted product was spray-dried to obtain 1 kg of a dried product.
[0031]
Example 6
Lysis by induction of Bacillus subtilis lysogen phage was performed as follows.
Bacillus subtilis marburg strain was inoculated into a Sakaguchi flask containing 100 ml of soy bean casein digest (SCD) medium and cultured with shaking at 37 ° C. for 18 hours. 1 ml of each culture was inoculated into 40 Sakaguchi flasks containing 100 ml of SCD medium and cultured with shaking at 37 ° C. for 8 hours. The cells were collected by centrifugation to obtain about 50 g of wet cells. The cells were suspended in 2 liters of fresh medium at 45 ° C. After culturing for 5 minutes with aeration, an ice-cooled medium was added to bring the culture temperature to 42 ° C., and the culture was continued for 60 minutes. The concentration of the bacterial solution was measured by absorbance at 610 nm. Although OD610nm = 28 at the start of aeration culture, OD610nm = 6.5 after 42 minutes at 42 ° C., and lysis was confirmed.
[0032]
Example 7
A 6-week-old BALB / c female mouse group of 6 mice was prepared by adding each of the Bacillus natto heated cadaver and the dried product obtained in Examples 3 and 4. After 2 weeks of feeding on a mixed diet, immunization was performed with 0.1 ml containing 10 μg of ovalbumin and 1 mg of aluminum hydroxide. 14 days after immunization, blood was collected from the fundus venous plexus and serum was separated. Six sera were pooled and the IgE antibodies of the pooled sera were measured by passive skin reaction in rats. That is, the back of 15-20 week old male SD rats was shaved, and under Nembutal anesthesia, 0.1 ml of serum diluted with physiological saline for injection was injected into two animals with each diluted serum. Administered. 24 hours after intradermal administration, 1 ml of physiological saline containing 10 mg of Evans blue dye and 1 mg of ovalbumin was intravenously administered under Nembutal anesthesia, and blue leakage observed at the site of intradermal administration 30 minutes after intravenous administration The major axis and minor axis of the dye were measured, and an average diameter of 5 mm or more was determined as positive. The antibody titer was expressed as the dilution factor of serum, and the high antibody titer value of two animals was defined as the antibody titer of the serum. The results are shown in Table 1. In addition, the determination of the effect in a table | surface determined the difference more than 2 pipe | tubes by the serum dilution 2-fold dilution multiple as the significance, and determined it as + per difference of 1 pipe | tube.
[0033]
[Table 1]
Figure 0004074006
[0034]
Suppression of IgE antibody production by antigen stimulation pretreatment indicated that ingestion of bacterial cells and their degradation products affected the reactivity and constitution of the living body. Moreover, the strong suppression was recognized in the degradation product ingestion group of Example 4 from the microbial cells per se, that the activity was enhanced by enzymatic degradation, and that the IgE antibody production inhibitory effect was the most in the degradation product ingestion group of Example 3. It was high that the active degradation product was mainly a constituent of cell wall.
[0035]
Example 8
The effect of intake of immunomodulating activity degradation product on IgG antibody production was examined by production of anti-ovalbumin IgG antibody in the serum of mice immunized with ovalbumin. That is, 50 μl of ovalbumin 0.1 mg / ml dissolved in 0.05 M pH 9.5 sodium carbonate buffer was placed in a flat bottom 96-well microplate (Coster, Cambridge, MA, USA) overnight at 4 ° C. placed. After washing with a washing solution (0.9% NaCl, 0.05% Tween 20), phosphate buffered saline (Nissui Pharmaceutical, PBS) 200 containing 1 mg / ml of bovine serum albumin was added and left at 37 ° C. for 1 hour. After blocking and washing, the mouse serum of Example 7 diluted with PBS (solution A) containing 10 mg / ml bovine serum albumin, 0.05% Tween 20, and 3% sodium chloride was added and placed at 37 ° C. for 1 hour. After washing, 50 μl of a 10,000-fold diluted solution of peroxidase-labeled anti-mouse IgG goat antibody (manufactured by Seikagaku Corporation) in solution A was added and placed at 37 ° C. for 1 hour, followed by washing and substrate solution (o-phenylenediamine 40 mg, 30 % Hydrogen peroxide 20 μl / citrate-sodium phosphate buffer 100 ml) was added, and the mixture was placed at room temperature and measured by absorbance at 492 nm.
[0036]
The amount of antibody was determined from a calibration curve prepared using IgG antibody purified from ovalbumin-conjugated Sepharose 4B affinity column from mouse serum immunized with ovalbumin with Freund's complete adjuvant. Table 2 shows the measurement results of anti-ovalbumin IgG antibody (anti-EA IgG) in the pooled serum used in Example 7 .
[0037]
[Table 2]
Figure 0004074006
[0038]
This result shows an increase in IgG antibody production (more than twice that of the control group) or an increase tendency due to ingestion of natto bacteria or enzyme degradation products.
[0039]
Example 9
Safety of IgE antibody production-inhibiting degradation product Five groups of 4 week-old SD male rats were forcibly orally administered with 2 g / kg body weight of the enzyme degradation product obtained in Example 4, and safety in a single administration I investigated. In addition, 10 groups of 4 week-old SD male rats were reared for 4 weeks with a feed containing 5% and compared with the administration group as a control group. As a result, no acute symptom was observed in a single administration, and as shown in Table 3, there was no difference between the control group and the weight gain and general state in the repeated administration test.
[0040]
[Table 3]
Figure 0004074006
[0041]
Example 10
A 300 mg food product was prepared in a conventional manner using the enzyme-degraded product 90 mg, starch 30 mg, and avicel (cellulose) 180 mg using the egg white lysozyme and bromelain obtained in Example 4.
[0042]
Example 11
Purified water is added to 2 parts of a decomposition product using natto egg white lysozyme and bromelain obtained in Example 4, 10 parts of cocoa butter, 7 parts of granulated sugar, 7 parts of milk, and 0.05 part of emulsifier. A cocoa beverage was produced by a conventional method.
[0043]
【The invention's effect】
According to the present invention, it is possible to easily produce an immunomodulating activity degradation product that enhances the production of IgG antibody and selectively suppresses the production of IgE antibody, and can provide a food having such action.

Claims (4)

納豆菌( Bacillus natto )の細胞壁を卵白リゾチームで溶解した後、ブロメライン又はセラチオペプチダーゼで処理するIgE抗体産生抑制物質の製造方法。 A method for producing an IgE antibody production inhibitor, comprising dissolving a cell wall of Bacillus natto with egg white lysozyme and then treating the cell wall with bromelain or cerathiopeptidase . 卵白リゾチームによる細胞壁の溶解を等張圧の媒体中で行い、生じたプロトプラストを分離除去し、媒体中の可溶化画分をブロメライン又はセラチオペプチダーゼで処理する請求項記載のIgE抗体産生抑制物質の製造方法。Perform lysis of the cell walls by egg white lysozyme in a medium like Cho圧, resulting protoplasts were separated off, IgE antibody production according to claim 1, wherein processing the solubilized fraction of the medium in bromelain or serratiopeptidase suppressed A method for producing a substance . 請求項1又は2に記載の製造方法により得られたIgE抗体産生抑制物質An IgE antibody production inhibitor obtained by the production method according to claim 1 or 2 . 請求項記載のIgE抗体産生抑制物質を含有する食品または飲料。A food or beverage containing the IgE antibody production-suppressing substance according to claim 3 .
JP19366898A 1998-06-24 1998-06-24 Method for producing IgE antibody production inhibitor and food using the same Expired - Fee Related JP4074006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19366898A JP4074006B2 (en) 1998-06-24 1998-06-24 Method for producing IgE antibody production inhibitor and food using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19366898A JP4074006B2 (en) 1998-06-24 1998-06-24 Method for producing IgE antibody production inhibitor and food using the same

Publications (2)

Publication Number Publication Date
JP2000004830A JP2000004830A (en) 2000-01-11
JP4074006B2 true JP4074006B2 (en) 2008-04-09

Family

ID=16311802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19366898A Expired - Fee Related JP4074006B2 (en) 1998-06-24 1998-06-24 Method for producing IgE antibody production inhibitor and food using the same

Country Status (1)

Country Link
JP (1) JP4074006B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ415899A0 (en) * 1999-11-19 1999-12-16 Vasse Research Institute Pty Ltd Compositions for and methods of treatment of allergic diseases
JP4712289B2 (en) * 2003-08-26 2011-06-29 株式会社エイ・エル・エイ Immune promoting composition
JP4688457B2 (en) * 2004-09-10 2011-05-25 四国乳業株式会社 Immune enhancing composition
JP4886983B2 (en) * 2004-12-09 2012-02-29 アサマ化成株式会社 Functional composition containing antibody
ES2264368B1 (en) * 2005-02-11 2007-12-01 Francisco Exposito Mesa FOOD OR DIETETIC COMPLEMENT COMPOSED BY PRODUCTS FROM THE LIST OF MICROORGANISMS.
JP4716770B2 (en) * 2005-03-29 2011-07-06 キユーピー株式会社 Method for producing immunostimulatory / allergy improving agent
JP2007055986A (en) * 2005-08-26 2007-03-08 Sankyo Lifetech Co Ltd Antiallergic agent
JP2008231094A (en) * 2007-02-20 2008-10-02 Univ Of Tokyo Antiallergic agent
JP2008255084A (en) * 2007-04-04 2008-10-23 Isako Hashimoto Anti-pollinosis agent or foodstuff
EP2399595B1 (en) * 2009-02-20 2015-11-04 Meisho.Co., Ltd Immunopotentiating composition and process for producing same
EP2804613A4 (en) 2012-01-16 2015-12-09 Elizabeth Mckenna Compositions and methods for the treatment of hepatic diseases and disorders
WO2014047588A1 (en) 2012-09-21 2014-03-27 Elizabeth Mckenna Naturally occurring cpg oligonucleotide compositions and therapeutic applications thereof
KR101729478B1 (en) * 2014-11-28 2017-04-25 주식회사농심 Immune regulating tyndalized lactic acid bacteria and a method for manufacturing the same
CN111423989A (en) * 2020-04-21 2020-07-17 济南碧蒙萱生物技术有限公司 Preparation method of schizosaccharomyces cerevisiae fermentation product lysate

Also Published As

Publication number Publication date
JP2000004830A (en) 2000-01-11

Similar Documents

Publication Publication Date Title
JP4074006B2 (en) Method for producing IgE antibody production inhibitor and food using the same
JP4706016B2 (en) Bifidobacterium in the treatment of inflammatory diseases
US9416160B2 (en) Macromolecular complex of bacterial origin and use of said macromolecular complex for preventing and treating inflammatory rheumatism
ES2402183T3 (en) Microorganisms to improve the health status of individuals with disorders related to gluten intake
Namba et al. Effect of oral administration of lysozyme or digested bacterial cell walls on immunostimulation in guinea pigs
US20110081320A1 (en) Treatment/Cure of Autoimmune Disease
RU2558304C2 (en) PEA PROTEIN PEPTIDES WITH ANTI-Helicobacter pylori ACTIVITY
RU2294366C2 (en) Transformed lactic-acid bacteria reducing susceptibility to allergic reactions and uses thereof
RU2768030C2 (en) Bifidobacterium longum, able to modulate the immune response to a respiratory viral infection
WO2010003916A1 (en) New probiotic bifidobacterium longum
JP2010047504A (en) Atopic dermatitis mitigative
US6506388B1 (en) Immunomodulator, immunomodulator food
US11883446B2 (en) Probiotics for use in the prevention or treatment of illness and/or symptoms associated with coronaviruses
Cherno et al. Immunological properties of the bacterial origin compounds
JP2005194259A (en) Nk cell activator
JPH07228536A (en) Immunopotentiator using lactic acid bacterium
JPS58164514A (en) Interferon inducing proteoglycan immunostimulant and manufacture
EP4034145A1 (en) Beneficial bacteria and secretory immunoglobulin a
JP2911603B2 (en) A novel attenuated Pseudomonas aeruginosa strain
JP2017014231A (en) NK cell activator
JPH07106142B2 (en) Bifidobacterium longum or Bifidobacterium breve capable of inducing IgA
JP2008255084A (en) Anti-pollinosis agent or foodstuff
KR100813637B1 (en) Bifidobacterium infantis MAEIL-K9-derived peptidoglycan-containing extract, and a composition for preventing or treating rotaviral infection containing the same
JP4689060B2 (en) Immunostimulatory composition
Nagy et al. Induction of specific mucosal immune responses by viable or heat denatured probiotic bacteria of Lactobacillus strains

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060824

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees