JP4073673B2 - Resistor manufacturing method - Google Patents

Resistor manufacturing method Download PDF

Info

Publication number
JP4073673B2
JP4073673B2 JP2002017868A JP2002017868A JP4073673B2 JP 4073673 B2 JP4073673 B2 JP 4073673B2 JP 2002017868 A JP2002017868 A JP 2002017868A JP 2002017868 A JP2002017868 A JP 2002017868A JP 4073673 B2 JP4073673 B2 JP 4073673B2
Authority
JP
Japan
Prior art keywords
resistor
resistance value
temperature coefficient
trimming
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002017868A
Other languages
Japanese (ja)
Other versions
JP2003217903A (en
Inventor
中 中村
賢治 栗田
Original Assignee
進工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 進工業株式会社 filed Critical 進工業株式会社
Priority to JP2002017868A priority Critical patent/JP4073673B2/en
Publication of JP2003217903A publication Critical patent/JP2003217903A/en
Application granted granted Critical
Publication of JP4073673B2 publication Critical patent/JP4073673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、抵抗器の製造方法に属し、特に温度センサーの分野で好適に利用されうる。
【0002】
【従来の技術】
従来より温度変化に伴って抵抗値が大きく変化する抵抗体からなる抵抗器が、温度センサーとして用いられている。そのような抵抗器は、各温度によって所定の抵抗値をもつように製造段階で抵抗体をトリミングすることにより、抵抗値が調整される。
【0003】
【発明が解決しようとする課題】
しかし、上記の抵抗体は、抵抗温度係数が大きいことから、トリミング時に発生する熱によって抵抗体の温度が上昇し、トリミング中は温度と抵抗値の正確な関係が不明となる。従って、正確に抵抗値を調整することが困難であるし、そのため精度の高い温度センサーを得ることができない。
それ故、この発明の課題は、抵抗値調整の容易な抵抗器及び精度の高い温度センサーを提供することにある。
【0004】
【課題を解決するための手段】
その課題を解決するために、この発明の抵抗器を製造する方法は、
第1の抵抗体と第2の抵抗体を直列に接続して所定の合成抵抗値を有する抵抗器を製造する方法において、
第1の抵抗体と第2の抵抗体を同一平面上に形成し、
第2の抵抗体は、抵抗温度係数の絶対値が第1の抵抗体の100分の1以下で抵抗値が第1の抵抗体よりも大きくないものとし、
第1の抵抗体をトリミングした後、第2の抵抗体をトリミングすることを特徴とする。
【0005】
この抵抗器によれば、抵抗値は第1抵抗体と第2抵抗体の合成抵抗値となる。まず第1抵抗体をトリミングすることにより合成抵抗値を粗く調整する。第1抵抗体の抵抗値は、第2抵抗体のそれよりも大きいか同等であるので、短時間で目的の合成抵抗値に近似した値まで調整することができる。次に第2抵抗体をトリミングすることにより目的の合成抵抗値となるまで微調整する。第2抵抗体は温度係数の絶対値が第1抵抗体のそれの100分の1以下であるから、トリミング中であっても抵抗体の温度上昇が少なく、温度と抵抗値の関係を監視しながら調整することができる。
【0006】
よって、目的の合成抵抗値に極めて近似した抵抗値を有する抵抗器が得られる。また、この抵抗器からなる温度センサーは、抵抗値と温度とが設計通りの関係を有することから、精度の高いものとなる。
【0008】
上記課題を解決するために、上記製造方法と関連する第二の発明は、負の温度係数を有する第1の抵抗器と、これに直列に接続された正の温度係数を有する第2の抵抗器とを備える複合抵抗器を製造する方法において、
第1の抵抗器は、第1の抵抗体と第2の抵抗体を同一平面上で直列に接続して得られ、その第2の抵抗体は、抵抗温度係数の絶対値が第1の抵抗体の100分の1以下で抵抗値が第1の抵抗体よりも大きくなく、
第2の抵抗器は、第3の抵抗体と第4の抵抗体を同一平面上で並列に接続して得られ、その第4の抵抗体は、抵抗温度係数の絶対値が第3の抵抗体の100分の1以下で抵抗値が第3の抵抗体よりも小さくないものとし
第1の抵抗体をトリミングした後、第2の抵抗体をトリミングし、第3の抵抗体をトリミングした後、第4の抵抗体をトリミングする
ことを特徴とする。
【0009】
【発明の実施の形態】
−実施形態1−
この発明の抵抗器の実施形態を図面と共に説明する。図1は抵抗値調整前の抵抗器を示す平面図、図2は図1のA−A’断面図である。
抵抗器10は、アルミナ、窒化アルミニウム、ジルコニアなどの絶縁性セラミックからなる基板1と、第1の抵抗体2と、端子電極3,3と、櫛状の接続電極4と、第2の抵抗体5とを備える。
【0010】
第1抵抗体2は、クロムCr-ホウ素B-ケイ素Si合金の薄膜からなり、基板1の主面上の一方の側に形成されている。第2抵抗体5は、ニッケルNi-クロムCr合金の薄膜からなり、基板1の主面上の他方の側に形成されている。第1抵抗体2と第2抵抗体5は基板1のほぼ中央で互いに一部重畳している。端子電極3,3の一つは、基板1の主面上の一方の端で第1抵抗体2の一部と重畳するよううに形成され、他の一つは、他方の端で第2抵抗体5の一部と重畳するように形成されている。接続電極4は、同主面のほぼ中央で第1抵抗体2と第2抵抗体5との重畳部分に更に重畳するように且つその歯形が第1抵抗体2側を向くように形成されている。端子電極3及び接続電極4は、いずれもニッケルNiの薄膜からなる。
【0011】
抵抗体2,5及び電極3,4は、基板1上にスパッタリング及びエッチング技術を施すことによって形成される。第1抵抗体2の比抵抗は第2抵抗体5のそれよりもはるかに大きく、抵抗温度係数の絶対値についても前者がはるかに大きい。接続電極4の抵抗温度係数の絶対値は、それらの中間である。こうして得られた抵抗器10の等価回路は、図3に示すように第1抵抗体2、接続電極4及び第2抵抗体5が直列に接続されたものである。
【0012】
抵抗器10の合成抵抗値を設計値に調整する場合、まず第1抵抗体2及び接続電極4のどちらかを、図4に示すようにレーザーが端子電極3,3と交差しないように一方の辺から他方の辺に向かってレーザートリミングする。このとき第1抵抗体2をトリミングすれば、第1抵抗体2の比抵抗が大きいので短時間のトリミングで抵抗値を設計値に近い値に増加させることができる。接続電極4は導体からなるが、櫛状パターンを有するので、その歯をトリミングすることにより、短時間で抵抗値を上げることができる。
【0013】
次に、第2抵抗体5を同様にトリミングする。第2抵抗体5の抵抗温度係数の絶対値が小さいので、トリミング中の発熱によって第2抵抗体5の抵抗値が大きく変動することはない。また、第2抵抗体5の熱が直ぐに第1抵抗体2に伝わることはない。従って、トリミング中の合成抵抗値を常温における合成抵抗値とみなして合成抵抗値を微調整することができ、精度良く例えば設計値に対して±0.5%以内の精度で調整することができる。
【0014】
より具体的に述べると、合成抵抗値100kΩを実現するために、第1抵抗体2として温度係数−3,300ppm/℃、トリミング前の抵抗値90kΩ程度、第2抵抗体5として温度係数−10ppm/℃、トリミング前の抵抗値2kΩ程度のものを組み合わせることにより、図1及び図2に示した抵抗器1を得たとする。
【0015】
まず第1抵抗体2をトリミングすることにより合成抵抗値を目的地の−2%程度即ち98kΩ程度に粗く調整する。次に第2抵抗体5をトリミングすることにより100kΩとなるように微調整する。このときの総合の温度係数(単位:ppm/℃)は0.98×(-3,300)+0.02×(-10)=-3,234.2となり第1抵抗体2の±100ppm/℃以内に入る。しかも第2抵抗体5をトリミング中の熱はほとんど第1抵抗体2の抵抗値に影響しない。従って、トリミング中の発熱に伴う誤差は第2抵抗体5の2kΩに対して生じるだけであり、合成抵抗値としては±0.2%以内とすることが可能である。
【0016】
第1抵抗体2の材質としては上記の他にPt、Niなども挙げられる。第2抵抗体5の材質としてはNi−Cr合金、Cr−Al−B合金などが挙げられる。端子電極3及び接続電極4の材質としてはCuなども挙げられる。以下の実施形態でも同様である。
【0019】
−実施形態
これは、正の温度係数を有する抵抗器と負の温度係数を有する抵抗器からなる複合抵抗器及びその複合抵抗器を利用した温度センサーの例である。
複合抵抗器100は、図5に平面図として示すように実施形態1と同質の基板11上の両端及び中央に端子電極31,32,33を備える。一方(図面に向かって右側)の端の端子電極31と中央の端子電極32間には櫛状の接続電極14が形成され、そして端の端子電極31と接続電極14を接続するように第1の抵抗体12が形成され、中央の端子電極32と接続電極14を接続するように第2の抵抗体15が形成されている。接続電極14の歯は第1抵抗体12の方に向けられている。
【0020】
第1抵抗体12、接続電極14、第2抵抗体15及び端子電極31,32は、実施形態1の抵抗器と同じく全体として負の温度係数を有する抵抗器(第1抵抗器)として機能し、それらの材質は実施形態1における第1抵抗体2、接続電極4、第2抵抗体5及び端子電極3のものと同じである。従って、第1抵抗体12、第2抵抗体15の順でトリミングすることにより、それらの合成抵抗値を短時間で高精度に調整することができる。
【0021】
基板11の他方(図面に向かって左側)の端の端子電極33と中央の端子電極32間には、それらの電極を接続するように第3の抵抗体16及び第4の抵抗体17が並列に形成されている。第3抵抗体16及び第4抵抗体17はいずれも正の温度係数を有する。従って、第3抵抗体16、第4抵抗体17及び端子電極32,33は全体として正の温度係数を有する抵抗器(第2抵抗器)として機能する。第4抵抗体17は、抵抗温度係数の絶対値が第3抵抗体16の100分の1以下で抵抗値が第3抵抗体16よりも大きい。このような条件を満たす材質としては、例えば第3抵抗体16用にPt、Niなど、第4抵抗体17用にNi−Cr合金、Cr−Al−B合金などが挙げられる。従って、第3抵抗体16、第4抵抗体17の順でトリミングすることにより、それらの合成抵抗値を短時間で高精度に調整することができる。
【0022】
複合抵抗器100は、図6のような回路構成を有し、図7に示すように両端の端子電極31,33間に基準電圧を加え、中央の端子電極32と一方の端の端子電極33とから出力電圧を取り出すことで、分圧型の温度センサーとして利用することができる。
【0023】
特に常温における第1抵抗器の合成抵抗値と第2抵抗器の合成抵抗値を共にR、第1抵抗器の合成抵抗値の温度変化量をΔr、第2抵抗器の合成抵抗値の温度変化量をΔR、基準電圧をEとすると、出力電圧Vは、
V={(R+ΔR)/(R−Δr)+(R+ΔR)}×E
となる。第1抵抗器の全体の温度係数と第2抵抗器の全体の温度係数が互いに絶対値を等しくするなら、ΔR=Δrとなるので、
V={(R+ΔR)/2R}×E
となり、第2抵抗器の温度係数に比例した大きい出力を取り出すことができ、検出能力に優れる。
【0024】
【発明の効果】
以上のように、この発明の抵抗器は抵抗値調整の容易であるので、低コストで精度の高い抵抗器及び温度センサーを得ることができる。
【図面の簡単な説明】
【図1】 実施形態1の抵抗器(トリミング前)を示す平面図である。
【図2】 上記抵抗器のA−A’断面図である。
【図3】 上記抵抗器の等価回路図である。
【図4】 上記抵抗器をトリミングしている状態を示す平面図である。
【図5】 実施形態の複合抵抗器(トリミング前)を示す平面図である。
【図6】 上記複合抵抗器の等価回路図である。
【図7】 上記複合抵抗器を温度センサーとして用いるときの等価回路図である。
【符号の説明】
1、11 基板
2、12 第1抵抗体
3、31、32、33 端子電極
4、14 接続電極
5、15 第2抵抗体
16 第3抵抗体
17 第4抵抗体
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to a method for manufacturing a resistor, and can be suitably used particularly in the field of temperature sensors.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a resistor composed of a resistor whose resistance value greatly changes with a temperature change has been used as a temperature sensor. The resistance value of such a resistor is adjusted by trimming the resistor in the manufacturing stage so as to have a predetermined resistance value according to each temperature.
[0003]
[Problems to be solved by the invention]
However, since the resistor has a large temperature coefficient of resistance, the temperature of the resistor rises due to heat generated during trimming, and the exact relationship between the temperature and the resistance value is unknown during trimming. Therefore, it is difficult to accurately adjust the resistance value, and therefore a highly accurate temperature sensor cannot be obtained.
Therefore, an object of the present invention is to provide a resistor whose resistance value can be easily adjusted and a highly accurate temperature sensor.
[0004]
[Means for Solving the Problems]
In order to solve the problem, a method of manufacturing the resistor of the present invention is as follows.
In a method of manufacturing a resistor having a predetermined combined resistance value by connecting a first resistor and a second resistor in series,
Forming the first resistor and the second resistor on the same plane;
The second resistor has an absolute value of a resistance temperature coefficient of 1/100 or less of that of the first resistor, and the resistance value is not larger than that of the first resistor.
After the first resistor is trimmed, the second resistor is trimmed.
[0005]
According to this resistor, the resistance value is a combined resistance value of the first resistor and the second resistor. First, the combined resistance value is roughly adjusted by trimming the first resistor. Since the resistance value of the first resistor is greater than or equal to that of the second resistor, it can be adjusted to a value approximate to the target combined resistance value in a short time. Next, the second resistor is trimmed until the desired combined resistance value is obtained. Since the absolute value of the temperature coefficient of the second resistor is 1/100 or less of that of the first resistor, the temperature rise of the resistor is small even during trimming, and the relationship between the temperature and the resistance value is monitored. Can be adjusted.
[0006]
Therefore, a resistor having a resistance value very close to the target combined resistance value can be obtained. In addition, the temperature sensor composed of this resistor has high accuracy because the resistance value and the temperature have a designed relationship.
[0008]
In order to solve the above-described problem, a second invention related to the above manufacturing method includes a first resistor having a negative temperature coefficient and a second resistor having a positive temperature coefficient connected in series to the first resistor. A method of manufacturing a compound resistor comprising:
The first resistor is obtained by connecting the first resistor and the second resistor in series on the same plane, and the second resistor has an absolute value of the resistance temperature coefficient of the first resistor. Less than 1 / 100th of the body, the resistance value is not larger than the first resistor,
The second resistor is obtained by connecting the third resistor and the fourth resistor in parallel on the same plane, and the fourth resistor has an absolute value of the resistance temperature coefficient of the third resistor. resistance value less than one hundredth of the body shall not smaller than the third resistor,
After the first resistor is trimmed, the second resistor is trimmed, the third resistor is trimmed, and then the fourth resistor is trimmed .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
An embodiment of a resistor of the present invention will be described with reference to the drawings. 1 is a plan view showing a resistor before adjusting a resistance value, and FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG.
The resistor 10 includes a substrate 1 made of an insulating ceramic such as alumina, aluminum nitride, and zirconia, a first resistor 2, terminal electrodes 3 and 3, a comb-like connection electrode 4, and a second resistor. 5.
[0010]
The first resistor 2 is made of a chromium Cr—boron B—silicon Si alloy thin film and is formed on one side of the main surface of the substrate 1. The second resistor 5 is made of a nickel Ni—chrome Cr alloy thin film and is formed on the other side of the main surface of the substrate 1. The first resistor 2 and the second resistor 5 partially overlap each other in the approximate center of the substrate 1. One of the terminal electrodes 3, 3 is formed so as to overlap a part of the first resistor 2 at one end on the main surface of the substrate 1, and the other one is a second resistor at the other end. It is formed so as to overlap with a part of the body 5. The connection electrode 4 is formed so as to further overlap the overlapping portion of the first resistor 2 and the second resistor 5 at the substantially center of the main surface, and the tooth shape thereof faces the first resistor 2 side. Yes. Both the terminal electrode 3 and the connection electrode 4 are made of a nickel Ni thin film.
[0011]
The resistors 2 and 5 and the electrodes 3 and 4 are formed on the substrate 1 by performing sputtering and etching techniques. The specific resistance of the first resistor 2 is much larger than that of the second resistor 5, and the former is much larger in terms of the absolute value of the resistance temperature coefficient. The absolute value of the resistance temperature coefficient of the connection electrode 4 is between them. The equivalent circuit of the resistor 10 obtained in this way is obtained by connecting the first resistor 2, the connection electrode 4, and the second resistor 5 in series as shown in FIG.
[0012]
When adjusting the combined resistance value of the resistor 10 to the design value, first, either one of the first resistor 2 and the connection electrode 4 is set so that the laser does not cross the terminal electrodes 3 and 3 as shown in FIG. Laser trimming from one side to the other. At this time, if the first resistor 2 is trimmed, the specific resistance of the first resistor 2 is large, so that the resistance value can be increased to a value close to the design value in a short time trimming. Although the connection electrode 4 is made of a conductor and has a comb-like pattern, the resistance value can be increased in a short time by trimming the teeth.
[0013]
Next, the second resistor 5 is similarly trimmed. Since the absolute value of the resistance temperature coefficient of the second resistor 5 is small, the resistance value of the second resistor 5 does not fluctuate greatly due to heat generation during trimming. Further, the heat of the second resistor 5 is not immediately transmitted to the first resistor 2. Accordingly, the combined resistance value during trimming can be regarded as a combined resistance value at room temperature, and the combined resistance value can be finely adjusted. For example, the combined resistance value can be adjusted with accuracy within ± 0.5% of the design value. .
[0014]
More specifically, in order to realize a combined resistance value of 100 kΩ, the first resistor 2 has a temperature coefficient of −3,300 ppm / ° C., a resistance value of about 90 kΩ before trimming, and the second resistor 5 has a temperature coefficient of −10 ppm. It is assumed that the resistor 1 shown in FIGS. 1 and 2 is obtained by combining those having a resistance value of about 2 kΩ before trimming at / ° C.
[0015]
First, the combined resistance value is roughly adjusted to about −2% of the destination, that is, about 98 kΩ by trimming the first resistor 2. Next, the second resistor 5 is finely adjusted to 100 kΩ by trimming. The total temperature coefficient (unit: ppm / ° C.) at this time is 0.98 × (−3,300) + 0.02 × (−10) = − 3,234.2, which is within ± 100 ppm / ° C. of the first resistor 2. Moreover, the heat during trimming of the second resistor 5 hardly affects the resistance value of the first resistor 2. Therefore, an error due to heat generation during trimming only occurs with respect to 2 kΩ of the second resistor 5, and the combined resistance value can be within ± 0.2%.
[0016]
In addition to the above, the first resistor 2 may be made of Pt, Ni, or the like. Examples of the material of the second resistor 5 include a Ni—Cr alloy and a Cr—Al—B alloy. Examples of the material of the terminal electrode 3 and the connection electrode 4 include Cu. The same applies to the following embodiments.
[0019]
-Embodiment 2-
This is an example of a compound resistor composed of a resistor having a positive temperature coefficient and a resistor having a negative temperature coefficient, and a temperature sensor using the compound resistor.
The composite resistor 100 includes terminal electrodes 31, 32, and 33 at both ends and the center on the same substrate 11 as that of the first embodiment, as shown in a plan view in FIG. 5. A comb-like connection electrode 14 is formed between the terminal electrode 31 at one end (on the right side in the drawing) and the central terminal electrode 32, and the first terminal electrode 31 and the connection electrode 14 are connected to each other. The second resistor 15 is formed so as to connect the central terminal electrode 32 and the connection electrode 14. The teeth of the connection electrode 14 are directed toward the first resistor 12.
[0020]
The first resistor 12, the connection electrode 14, the second resistor 15, and the terminal electrodes 31 and 32 function as a resistor (first resistor) having a negative temperature coefficient as a whole, like the resistor of the first embodiment. These materials are the same as those of the first resistor 2, the connection electrode 4, the second resistor 5, and the terminal electrode 3 in the first embodiment. Therefore, by trimming the first resistor 12 and the second resistor 15 in this order, the combined resistance value can be adjusted with high accuracy in a short time.
[0021]
A third resistor 16 and a fourth resistor 17 are arranged in parallel between the terminal electrode 33 on the other end (left side in the drawing) of the substrate 11 and the central terminal electrode 32 so as to connect the electrodes. Is formed. Both the third resistor 16 and the fourth resistor 17 have a positive temperature coefficient. Accordingly, the third resistor 16, the fourth resistor 17, and the terminal electrodes 32 and 33 function as a resistor (second resistor) having a positive temperature coefficient as a whole. The fourth resistor 17 has an absolute value of a resistance temperature coefficient that is 1/100 or less of that of the third resistor 16 and has a resistance value larger than that of the third resistor 16. Examples of the material satisfying such conditions include Pt and Ni for the third resistor 16, and Ni—Cr alloy, Cr—Al—B alloy for the fourth resistor 17, and the like. Therefore, by trimming the third resistor 16 and the fourth resistor 17 in this order, the combined resistance value can be adjusted with high accuracy in a short time.
[0022]
The composite resistor 100 has a circuit configuration as shown in FIG. 6, and applies a reference voltage between the terminal electrodes 31 and 33 at both ends as shown in FIG. By taking out the output voltage from the above, it can be used as a voltage dividing type temperature sensor.
[0023]
In particular, the combined resistance value of the first resistor and the combined resistance value of the second resistor are both R, the temperature change amount of the combined resistance value of the first resistor is Δr, and the temperature change of the combined resistance value of the second resistor is room temperature. When the amount is ΔR and the reference voltage is E, the output voltage V is
V = {(R + ΔR) / (R−Δr) + (R + ΔR)} × E
It becomes. If the entire temperature coefficient of the first resistor and the entire temperature coefficient of the second resistor have the same absolute value, ΔR = Δr.
V = {(R + ΔR) / 2R} × E
Thus, a large output proportional to the temperature coefficient of the second resistor can be taken out, and the detection capability is excellent.
[0024]
【The invention's effect】
As described above, since the resistor of the present invention can be easily adjusted in resistance value, a highly accurate resistor and temperature sensor can be obtained at low cost.
[Brief description of the drawings]
FIG. 1 is a plan view illustrating a resistor (before trimming) according to a first embodiment.
FIG. 2 is a cross-sectional view taken along the line AA ′ of the resistor.
FIG. 3 is an equivalent circuit diagram of the resistor.
FIG. 4 is a plan view showing a state in which the resistor is trimmed.
FIG. 5 is a plan view showing a composite resistor (before trimming) according to a second embodiment.
FIG. 6 is an equivalent circuit diagram of the composite resistor.
FIG. 7 is an equivalent circuit diagram when the composite resistor is used as a temperature sensor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 11 Board | substrate 2, 12 1st resistor 3, 31, 32, 33 Terminal electrode 4, 14 Connection electrode 5, 15 2nd resistor 16 3rd resistor 17 4th resistor

Claims (2)

第1の抵抗体と第2の抵抗体を直列に接続して所定の合成抵抗値を有する抵抗器を製造する方法において、
第1の抵抗体と第2の抵抗体を同一平面上に形成し、
第2の抵抗体は、抵抗温度係数の絶対値が第1の抵抗体の100分の1以下で抵抗値が第1の抵抗体よりも大きくないものとし、
第1の抵抗体をトリミングした後、第2の抵抗体をトリミングすることを特徴とする抵抗器の製造方法。
In a method of manufacturing a resistor having a predetermined combined resistance value by connecting a first resistor and a second resistor in series,
Forming the first resistor and the second resistor on the same plane;
The second resistor has an absolute value of a resistance temperature coefficient of 1/100 or less of that of the first resistor, and the resistance value is not larger than that of the first resistor.
A method of manufacturing a resistor, wherein the second resistor is trimmed after the first resistor is trimmed.
負の温度係数を有する第1の抵抗器と、これに直列に接続された正の温度係数を有する第2の抵抗器とを備える複合抵抗器を製造する方法において、
第1の抵抗器は、第1の抵抗体と第2の抵抗体を同一平面上で直列に接続して得られ、その第2の抵抗体は、抵抗温度係数の絶対値が第1の抵抗体の100分の1以下で抵抗値が第1の抵抗体よりも大きくなく、
第2の抵抗器は、第3の抵抗体と第4の抵抗体を同一平面上で並列に接続して得られ、その第4の抵抗体は、抵抗温度係数の絶対値が第3の抵抗体の100分の1以下で抵抗値が第3の抵抗体よりも小さくないものとし
第1の抵抗体をトリミングした後、第2の抵抗体をトリミングし、第3の抵抗体をトリミングした後、第4の抵抗体をトリミングする
ことを特徴とする複合抵抗器の製造方法
In a method of manufacturing a composite resistor comprising a first resistor having a negative temperature coefficient and a second resistor having a positive temperature coefficient connected in series thereto,
The first resistor is obtained by connecting the first resistor and the second resistor in series on the same plane, and the second resistor has an absolute value of the resistance temperature coefficient of the first resistor. Less than 1 / 100th of the body, the resistance value is not larger than the first resistor,
The second resistor is obtained by connecting the third resistor and the fourth resistor in parallel on the same plane, and the fourth resistor has an absolute value of the resistance temperature coefficient of the third resistor. resistance value less than one hundredth of the body shall not smaller than the third resistor,
A method of manufacturing a composite resistor, comprising: trimming a first resistor; trimming a second resistor; trimming a third resistor; and trimming a fourth resistor .
JP2002017868A 2002-01-28 2002-01-28 Resistor manufacturing method Expired - Lifetime JP4073673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002017868A JP4073673B2 (en) 2002-01-28 2002-01-28 Resistor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002017868A JP4073673B2 (en) 2002-01-28 2002-01-28 Resistor manufacturing method

Publications (2)

Publication Number Publication Date
JP2003217903A JP2003217903A (en) 2003-07-31
JP4073673B2 true JP4073673B2 (en) 2008-04-09

Family

ID=27653415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002017868A Expired - Lifetime JP4073673B2 (en) 2002-01-28 2002-01-28 Resistor manufacturing method

Country Status (1)

Country Link
JP (1) JP4073673B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003241668A1 (en) * 2002-06-19 2004-01-06 Matsushita Electric Industrial Co., Ltd. Flexible ptc heating element and method of manufacturing the heating element
US7306283B2 (en) 2002-11-21 2007-12-11 W.E.T. Automotive Systems Ag Heater for an automotive vehicle and method of forming same
DE112005000939T5 (en) 2004-03-22 2007-07-26 W.E.T. Automotive Systems Ag Heating element for a vehicle and method of molding the same
JP5999315B2 (en) * 2012-03-30 2016-09-28 三菱マテリアル株式会社 Film type thermistor sensor and manufacturing method thereof
JP6618248B2 (en) * 2014-10-24 2019-12-11 Koa株式会社 Resistor and manufacturing method thereof
DE102015110607A1 (en) * 2015-07-01 2017-01-05 Epcos Ag Method for producing an electrical component
KR101794208B1 (en) * 2016-05-31 2017-11-07 주식회사 모다이노칩 Temperature sensor
CN108369143A (en) * 2015-12-24 2018-08-03 摩达伊诺琴股份有限公司 Temperature sensor
KR20180093461A (en) * 2017-02-13 2018-08-22 삼성전기주식회사 Resistor element, manufacturing method of the same and resistor element assembly

Also Published As

Publication number Publication date
JP2003217903A (en) 2003-07-31

Similar Documents

Publication Publication Date Title
JPS62226029A (en) Temperature correcting method for load cell
JP4073673B2 (en) Resistor manufacturing method
EP1197737A1 (en) Strain gauge
JP2013004640A (en) Thermistor material, temperature sensor and manufacturing method therefor
JP2639481B2 (en) Temperature compensation method for load detector
JP2585681B2 (en) Metal thin film resistive strain gauge
JP2987302B2 (en) Current sensing resistor and adjustment method thereof
JPH07191063A (en) Electric circuit for wheatstone bridge and so on having resistance-value adjusting part
JP2001110602A (en) Thin-film resistor forming method and sensor
JP2860799B2 (en) Manufacturing method of temperature sensitive resistor
JP2004200424A (en) Chip resistor
JPH0325994A (en) Hybrid integrated circuit
JP4867487B2 (en) Manufacturing method of chip resistor
JP2000299203A (en) Resistor and manufacture thereof
JP2001108543A (en) Resistance value adjusting method for strain detecting element in pressure sensor
JP4895513B2 (en) Surface mount type temperature sensor
JPWO2012039175A1 (en) Metal plate low resistance chip resistor manufacturing method
JP2020517925A (en) Membrane resistor and thin film sensor
WO2022210573A1 (en) Temperature sensor
JP2006019323A (en) Resistance composition, chip resistor and their manufacturing method
JP2023130634A (en) strain gauge
JP7469570B2 (en) Resistor, its manufacturing method and device equipped with resistor
JP2003197403A (en) Low-resistance resistor
JPH11160170A (en) Manufacture of stress sensor
JP3557750B2 (en) Magnetoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4073673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term