JP4073302B2 - Control device for synchronous motor - Google Patents

Control device for synchronous motor Download PDF

Info

Publication number
JP4073302B2
JP4073302B2 JP2002345668A JP2002345668A JP4073302B2 JP 4073302 B2 JP4073302 B2 JP 4073302B2 JP 2002345668 A JP2002345668 A JP 2002345668A JP 2002345668 A JP2002345668 A JP 2002345668A JP 4073302 B2 JP4073302 B2 JP 4073302B2
Authority
JP
Japan
Prior art keywords
voltage
current
time
synchronous motor
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002345668A
Other languages
Japanese (ja)
Other versions
JP2004180453A (en
Inventor
洋一 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2002345668A priority Critical patent/JP4073302B2/en
Publication of JP2004180453A publication Critical patent/JP2004180453A/en
Application granted granted Critical
Publication of JP4073302B2 publication Critical patent/JP4073302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、同期電動機の制御装置において、同期電動機の回転子位置を検出する位置センサを用いないで同期電動機の入力電流と電圧から回転子の位置を推定する技術に関するものである。
【0002】
【従来の技術】
例えば永久磁石を回転子内部にもつ永久磁石型同期電動機においては、永久磁石のN極の方向をd軸としそれと直交する軸をq軸とした2軸の座標を想定し、その各軸の電流を制御することで永久磁石型同期電動機のトルクが制御される。従って、前記座標軸の方向を知るために回転子の回転角度を検知する位置センサが必要になる。(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開平11−160101号公報(第2図)
【0004】
【発明が解決しようとする課題】
前述した従来の技術においては、同期電動機のトルクを制御する際に同期電動機の回転子の回転角度を検知する位置センサが必要である。位置センサは精密機器であるために各種環境に対する耐性が電動機より弱い。よって位置センサを付けることで電動機システムの適用範囲が狭く制限され、寿命も短くなり、コストアップとなる。
【0005】
【課題を解決するための手段】
上述した問題点を解決するために本発明の同期電動機の制御装置では、直交する2軸の座標を前記回転子上に想定し、前記同期電動機の入力電流と入力電圧をそれぞれ前記座標成分に分ける電流電圧変換手段と、前記同期電動機の入力電圧に高周波の電圧を重畳する高周波重畳手段と、前記電流電圧変換手段出力の各電流成分の時刻t0から所定期間Tまでの変化量から前記時刻t0とは異なる時刻t1から前記所定期間Tまでの変化量を引いたものを出力する電流変化量差演算手段と、前記電流電圧変換手段出力の各電圧成分を前記時刻t0から前記所定期間Tまで時間積分した値から、前記各電圧成分を前記時刻t1から前記所定期間Tまで時間積分した値を引いたものを出力する電圧積分差演算手段と、前記電流変化量差演算手段の出力と前記電圧積分差演算手段の出力から前記座標の軸と前記回転子の突極の軸との角度差を求める角度誤差演算手段と、前記角度誤差演算手段の出力の前記角度差が零となるように前記座標を回転させる軸推定手段とを具備する。
【0006】
【発明の実施の形態】
本発明の実施例を図1に示し、図1に基づいて詳細に説明する。
永久磁石型同期電動機1は、電力変換器2から電力を供給される。電力変換器2は入力された電圧指令v2通りの電圧を出力する。トルク制御器3は、入力したθを前記d軸とq軸からなる座標軸の角度と一致しているとして、永久磁石型同期電動機1のd−q軸の電流成分がトルク指令τ相当の値となるような電圧指令v1を出力する。高周波重畳器4は、電圧指令v1に高周波電圧を重畳して新たな電圧指令v2として出力する。そこで重畳される電圧は、交番するものでも回転するものでもいいし、その波形も正弦波に限らず、矩形波や三角波でもよい。電流電圧変換器5は、永久磁石型同期電動機1の入力電流iや入力電圧vを角度θだけ回転した直交するγ軸とδ軸からなる座標軸の各成分に分けて、それぞれをiγ、iδ、vγ、vδとして出力する。
【0007】
電流変化量差演算器6は、iγやiδの時刻t0から所定期間Tまでの変化量から時刻t0とは異なる時刻t1からTまでの変化量を引いたものΔiγ、Δiδを出力する。例えば、時刻t0のiγ、iδをそれぞれiγ00、iδ00とし、時刻t0+Tのiγ、iδをそれぞれiγ01、iδ01とし、時刻t1のiγ、iδをそれぞれiγ10、iδ10とし、時刻t1+Tのiγ、iδをそれぞれiγ11、iδ11とすると、
Δiγ=(iγ01−iγ00)−(iγ11−iγ10)
Δiδ=(iδ01−iδ00)−(iδ11−iδ10)
を出力することになる。
【0008】
電圧積分差演算器7は、vγやvδを時刻t0からt0+Tまで時間積分した値から、時刻t1からt1+Tまで時間積分した値を引いたものをΔvγ、Δvδとして出力する。つまり、
【0009】

Figure 0004073302
【0010】
となる。
【0011】
角度誤差演算器8は、
【0012】
Figure 0004073302
【0013】
でdq軸からなる座標軸とγδ軸からなる座標軸との角度差Δθを求める。ここで、Ldは永久磁石型同期電動機1のd軸のインダクタンスであり、Lqはq軸のインダクタンスである。(2)式が成り立つ理由を以下に説明する。
【0014】
永久磁石型同期電動機の特性式は、
【0015】
Figure 0004073302
【0016】
で表すことができる。ここで、ωは回転子の回転角速度であり、Rは巻線抵抗値であり、φは永久磁石が巻線に鎖交する磁束であり、Δθ=θr−θであり、θrはdq軸の座標軸の回転角度である。(3)式はγδの回転する座標上の式なので電流や電圧の基本波成分は直流となるため、電圧に高周波電圧が重畳されると(3)式の高周波成分のみは、
【0017】
Figure 0004073302
【0018】
で近似できる。ここでvhγ、vhδ、ihγ、ihδは高周波成分の電圧と電流である。(4)式から電流の微分項を求めると、
【0019】
Figure 0004073302
【0020】
となる。電圧の高周波成分は、
【0021】
Figure 0004073302
【0022】
と表される。ここで、vmγ、vmδは電圧の定常成分である。(6)式を代入した(5)式を時刻t0からt0+Tの間とt1からt1+Tの間で積分すると
【0023】
Figure 0004073302
Figure 0004073302
【0024】
となり、(7)式から(8)式を引いて(1)式を代入すると、
【0025】
Figure 0004073302
【0026】
となる。(9)式より、
【0027】
Figure 0004073302
【0028】
となり、sin2Δθ=2Δθと近似すると(2)式が導き出される。
【0029】
軸推定器9は、角度誤差演算器8の出力の角度差Δθが零となるようにθを調節する。例えば、Δθを比例積分増幅してωを推定し、それを時間積分してθを得る構成とする。そうするとΔθが零に収束するだけでなく回転子の回転角速度ωも得ることができる。
【0030】
【発明の効果】
本発明により、位置センサを用いることなく同期電動機のトルク制御が可能となり位置センサを用いることによるさまざまな問題点を解決できる。
【図面の簡単な説明】
【図1】本発明の一実施例を表すブロック図である。
【符号の説明】
1・・・永久磁石型同期電動機
2・・・電力変換器
3・・・トルク制御器
4・・・高周波重畳器
5・・・電流電圧変換器
6・・・電流変化量差演算器
7・・・電圧積分差演算器
8・・・角度誤差演算器
9・・・軸推定器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for estimating a rotor position from an input current and a voltage of a synchronous motor without using a position sensor for detecting the rotor position of the synchronous motor in a synchronous motor control device.
[0002]
[Prior art]
For example, in a permanent magnet type synchronous motor having a permanent magnet inside a rotor, assuming two-axis coordinates with the d-axis being the N-pole direction of the permanent magnet and the q-axis being orthogonal thereto, the current of each axis is assumed. Is controlled to control the torque of the permanent magnet type synchronous motor. Therefore, a position sensor that detects the rotation angle of the rotor is necessary to know the direction of the coordinate axes. (For example, refer to Patent Document 1).
[0003]
[Patent Document 1]
JP-A-11-160101 (FIG. 2)
[0004]
[Problems to be solved by the invention]
In the prior art described above, a position sensor is required to detect the rotation angle of the rotor of the synchronous motor when controlling the torque of the synchronous motor. Since the position sensor is a precision device, it is less resistant to various environments than an electric motor. Therefore, by attaching the position sensor, the application range of the electric motor system is limited, the life is shortened, and the cost is increased.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, in the synchronous motor control device of the present invention, two orthogonal axes are assumed on the rotor, and the input current and the input voltage of the synchronous motor are divided into the coordinate components, respectively. Current voltage converting means, high frequency superimposing means for superimposing a high frequency voltage on the input voltage of the synchronous motor, and the time t0 from the amount of change of each current component of the current voltage converting means output from time t0 to a predetermined period T. Is a current change amount difference calculating means for outputting a difference obtained by subtracting a change amount from the time t1 to the predetermined period T, and time integration of each voltage component of the current-voltage conversion means output from the time t0 to the predetermined period T. A voltage integration difference calculation means for outputting a value obtained by subtracting a value obtained by time integration of each voltage component from the time t1 to the predetermined period T, and an output of the current change amount difference calculation means. Angle error calculating means for obtaining an angle difference between the coordinate axis and the salient pole axis of the rotor from the output of the voltage integral difference calculating means, and the angle difference of the output of the angle error calculating means is zero. And an axis estimating means for rotating the coordinates.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention is shown in FIG. 1 and will be described in detail with reference to FIG.
The permanent magnet type synchronous motor 1 is supplied with power from the power converter 2. The power converter 2 outputs voltages according to the input voltage command v2. The torque controller 3 assumes that the input θ matches the angle of the coordinate axis composed of the d axis and the q axis, and the current component of the dq axis of the permanent magnet type synchronous motor 1 is a value corresponding to the torque command τ. A voltage command v1 is output. The high frequency superimposer 4 superimposes the high frequency voltage on the voltage command v1 and outputs it as a new voltage command v2. The superposed voltage may be alternating or rotating, and the waveform is not limited to a sine wave, but may be a rectangular wave or a triangular wave. The current-voltage converter 5 divides the input current i and the input voltage v of the permanent magnet type synchronous motor 1 into components of a coordinate axis composed of orthogonal γ-axis and δ-axis rotated by an angle θ, respectively, and iγ, iδ, Output as vγ and vδ.
[0007]
The current change amount difference calculator 6 outputs Δiγ and Δiδ obtained by subtracting the change amount from the time t1 to T different from the time t0 from the change amount from the time t0 to the predetermined period T of iγ and iδ. For example, iγ and iδ at time t0 are iγ00 and iδ00, respectively, iγ and iδ at time t0 + T are iγ01 and iδ01, iγ and iδ at time t1 are iγ10 and iδ10, respectively, and iγ and iδ at time t1 + T are iγ11, respectively. , Iδ11,
Δiγ = (iγ01−iγ00) − (iγ11−iγ10)
Δiδ = (iδ01−iδ00) − (iδ11−iδ10)
Will be output.
[0008]
The voltage integration difference calculator 7 outputs, as Δvγ and Δvδ, values obtained by subtracting values obtained by time integration from time t1 to t1 + T from values obtained by time integration of vγ and vδ from time t0 to t0 + T. That means
[0009]
Figure 0004073302
[0010]
It becomes.
[0011]
The angle error calculator 8 is
[0012]
Figure 0004073302
[0013]
To obtain the angle difference Δθ between the coordinate axis consisting of the dq axis and the coordinate axis consisting of the γδ axis. Here, Ld is the d-axis inductance of the permanent magnet type synchronous motor 1, and Lq is the q-axis inductance. The reason why the formula (2) holds will be described below.
[0014]
The characteristic equation of the permanent magnet type synchronous motor is
[0015]
Figure 0004073302
[0016]
Can be expressed as Here, ω is the rotational angular velocity of the rotor, R is the winding resistance value, φ is the magnetic flux interlinking the permanent magnet with the winding, Δθ = θr−θ, and θr is the dq axis The rotation angle of the coordinate axis. Since the equation (3) is an equation on the rotating coordinates of γδ, the fundamental wave component of current and voltage is DC, so when a high-frequency voltage is superimposed on the voltage, only the high-frequency component of (3) is
[0017]
Figure 0004073302
[0018]
Can be approximated by Here, vhγ, vhδ, ihγ, ihδ are the voltage and current of the high frequency component. When the differential term of the current is obtained from the equation (4),
[0019]
Figure 0004073302
[0020]
It becomes. The high frequency component of the voltage is
[0021]
Figure 0004073302
[0022]
It is expressed. Here, vmγ and vmδ are steady components of voltage. Integrating equation (5) substituting equation (6) between time t0 and t0 + T and between t1 and t1 + T,
Figure 0004073302
Figure 0004073302
[0024]
When substituting equation (1) by subtracting equation (8) from equation (7),
[0025]
Figure 0004073302
[0026]
It becomes. From equation (9)
[0027]
Figure 0004073302
[0028]
When approximated as sin2Δθ = 2Δθ, equation (2) is derived.
[0029]
The axis estimator 9 adjusts θ so that the angle difference Δθ of the output of the angle error calculator 8 becomes zero. For example, Δθ is proportionally integrated and amplified to estimate ω, and time integration is performed to obtain θ. Then, not only can Δθ converge to zero, but also the rotational angular velocity ω of the rotor can be obtained.
[0030]
【The invention's effect】
According to the present invention, torque control of a synchronous motor can be performed without using a position sensor, and various problems caused by using the position sensor can be solved.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Permanent magnet type synchronous motor 2 ... Power converter 3 ... Torque controller 4 ... High frequency superimposer 5 ... Current-voltage converter 6 ... Current change amount difference calculator 7- ..Voltage integral difference calculator 8 ... Angle error calculator 9 ... Axis estimator

Claims (1)

磁気的突極性を有する回転子をもつ同期電動機を駆動する制御装置において、直交する2軸の座標を前記回転子上に想定し、前記同期電動機の入力電流と入力電圧をそれぞれ前記座標成分に分ける電流電圧変換手段と、前記同期電動機の入力電圧に高周波の電圧を重畳する高周波重畳手段と、前記電流電圧変換手段出力の各電流成分の時刻t0から所定期間Tまでの変化量から前記時刻t0とは異なる時刻t1から前記所定期間Tまでの変化量を引いたものを出力する電流変化量差演算手段と、前記電流電圧変換手段出力の各電圧成分を前記時刻t0から前記所定期間Tまで時間積分した値から、前記各電圧成分を前記時刻t1から前記所定期間Tまで時間積分した値を引いたものを出力する電圧積分差演算手段と、前記電流変化量差演算手段の出力と前記電圧積分差演算手段の出力から前記座標の軸と前記回転子の突極の軸との角度差を求める角度誤差演算手段と、前記角度誤差演算手段の出力の前記角度差が零となるように前記座標を回転させる軸推定手段とを具備することを特徴とする同期電動機の制御装置。In a control device for driving a synchronous motor having a rotor with magnetic saliency, assuming two orthogonal coordinates on the rotor, the input current and the input voltage of the synchronous motor are divided into the coordinate components, respectively. Current voltage converting means, high frequency superimposing means for superimposing a high frequency voltage on the input voltage of the synchronous motor, and the time t0 from the amount of change of each current component of the current voltage converting means output from time t0 to a predetermined period T. Is a current change amount difference calculating means for outputting a difference obtained by subtracting a change amount from the time t1 to the predetermined period T, and time integration of each voltage component of the current-voltage conversion means output from the time t0 to the predetermined period T. A voltage integral difference calculating means for outputting a value obtained by subtracting a value obtained by time integration of each voltage component from the time t1 to the predetermined period T, and the current change difference calculating means. Angle error calculating means for obtaining an angle difference between the axis of the coordinate and the axis of the salient pole of the rotor from the output of the voltage integral difference calculating means, and the angle difference of the output of the angle error calculating means is zero. A control apparatus for a synchronous motor, comprising: an axis estimating means for rotating the coordinates so that
JP2002345668A 2002-11-28 2002-11-28 Control device for synchronous motor Expired - Lifetime JP4073302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345668A JP4073302B2 (en) 2002-11-28 2002-11-28 Control device for synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345668A JP4073302B2 (en) 2002-11-28 2002-11-28 Control device for synchronous motor

Publications (2)

Publication Number Publication Date
JP2004180453A JP2004180453A (en) 2004-06-24
JP4073302B2 true JP4073302B2 (en) 2008-04-09

Family

ID=32706790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345668A Expired - Lifetime JP4073302B2 (en) 2002-11-28 2002-11-28 Control device for synchronous motor

Country Status (1)

Country Link
JP (1) JP4073302B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230169A (en) * 2005-02-21 2006-08-31 Toshiba Corp Controller for synchronous machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3312520B2 (en) * 1995-01-24 2002-08-12 富士電機株式会社 Magnetic pole position detection device for motor
JP3509016B2 (en) * 2000-07-27 2004-03-22 東洋電機製造株式会社 Control device for permanent magnet type synchronous motor without position sensor

Also Published As

Publication number Publication date
JP2004180453A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP5853097B2 (en) Three-phase synchronous motor drive device, integrated three-phase synchronous motor, positioning device and pump device
US9154065B2 (en) Motor control apparatus and magnetic-pole position estimating method
JP4425193B2 (en) Motor position sensorless control device
JP4988374B2 (en) Motor control device
JP5697745B2 (en) Synchronous motor drive system
JP4230276B2 (en) Brushless DC motor control device
US7808203B2 (en) Motor control device
JP2008086129A (en) Ac motor controller and constant measurement apparatus
TWI525981B (en) System, method and apparatus of sensor-less field oriented control for permanent magnet motor
JP2010051078A (en) Motor control device
JP2003199389A (en) Motor controller and controlling method
WO2015019495A1 (en) Motor drive system and motor control device
JP5321792B2 (en) Control device for permanent magnet type synchronous motor
JP3707528B2 (en) AC motor control method and control apparatus therefor
JP2014225993A (en) Synchronous machine controller
EP1681762A2 (en) Synchronous motor driving system and method
WO2004032316A1 (en) Motor magnetic pole position estimation device and control device
JP2000156993A (en) Apparatus and method for control of permanent magnet synchronous machine
JP2012165585A (en) Synchronous motor drive system
KR20160065291A (en) Motor driving module
JP5082216B2 (en) Rotation detection device for turbocharger with electric motor and rotation detection method for turbocharger with electric motor
JP3692085B2 (en) Motor control method and apparatus
JP4073302B2 (en) Control device for synchronous motor
JP2002272195A (en) Synchronous motor control device
KR102409792B1 (en) Control device of permanent magnet synchronization electric motor, microcomputer, electric motor system, and driving method of permanent magnet synchronization electric motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4073302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

EXPY Cancellation because of completion of term