JP4072994B2 - Magnetic particles - Google Patents

Magnetic particles Download PDF

Info

Publication number
JP4072994B2
JP4072994B2 JP2001313974A JP2001313974A JP4072994B2 JP 4072994 B2 JP4072994 B2 JP 4072994B2 JP 2001313974 A JP2001313974 A JP 2001313974A JP 2001313974 A JP2001313974 A JP 2001313974A JP 4072994 B2 JP4072994 B2 JP 4072994B2
Authority
JP
Japan
Prior art keywords
reaction
magnetic
magnetic particles
reactive component
soluble polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001313974A
Other languages
Japanese (ja)
Other versions
JP2003119030A (en
Inventor
英毅 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2001313974A priority Critical patent/JP4072994B2/en
Priority to EP02801548A priority patent/EP1440733A4/en
Priority to US10/490,742 priority patent/US7297405B2/en
Priority to PCT/JP2002/010590 priority patent/WO2003033159A1/en
Publication of JP2003119030A publication Critical patent/JP2003119030A/en
Application granted granted Critical
Publication of JP4072994B2 publication Critical patent/JP4072994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • G01N33/545Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • B03C1/01Pretreatment specially adapted for magnetic separation by addition of magnetic adjuvants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/112Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles with a skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • H01F1/14741Fe-Ni based alloys in the form of particles pressed, sintered or bonded together
    • H01F1/1475Fe-Ni based alloys in the form of particles pressed, sintered or bonded together the particles being insulated
    • H01F1/14758Fe-Ni based alloys in the form of particles pressed, sintered or bonded together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2446/00Magnetic particle immunoreagent carriers
    • G01N2446/80Magnetic particle immunoreagent carriers characterised by the agent used to coat the magnetic particles, e.g. lipids
    • G01N2446/84Polymer coating, e.g. gelatin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Power Engineering (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Compounds Of Iron (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、反応効率の高い反応場が提供でき、反応生成物の分離回収が容易な磁性粒子及びこれを用いた反応生成物の製造法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
微生物を利用した反応系、例えば微生物による排水処理、医薬品の生産等においては、微生物は反応液系に直接投入されるか、固定化技術により固相化されて用いられている。微生物が反応液系に直接投入される場合、一般に反応効率が低いことが指摘されている。また、固相化微生物を用いる場合は、通常、基質液を、固相化された微生物相を通過させる手段が採用されるが、基質と微生物との接触時間が充分でないか、接触時間を充分にすると反応効率が低下するという問題がある。従って、固相化された微生物を反応液中に直接投入するのが反応効率の点で望ましい。
【0003】
しかしながら、固相化された微生物を反応液中に直接投入すると反応終了後の固液分離が困難であるばかりでなく、反応液中には反応生成物だけでなく、原料及び培地成分等が混在しており、目的物である反応生成物の分離回収が困難であった。また、微生物を用いた反応や抗原抗体反応等は、原料の添加とともにいつまでも進行するというものではなく、反応途中から反応が飽和する現象があるため、反応効率を高く維持することは困難であった。
【0004】
従って、本発明の目的は、反応効率の高い反応場が提供でき、反応生成物の分離回収を容易にできる手段を提供することにある。
【0005】
【課題を解決するための手段】
そこで本発明者は、微生物、抗原、抗体、酵素、受容体等の反応性成分を、易分解性又は易溶解性高分子中に含有させ、これを磁性体粒子表面上に被覆することにより得られる磁性粒子を用いれば、反応が被覆層中で生起し、その反応効率は液相中の反応より高く、反応終了後の固液分離が磁力制御により容易にできることから反応生成物の回収が容易かつ効率的であることを見出し、本発明を完成するに至った。
【0006】
すなわち、本発明は、粒子状磁性体の表面に、反応性成分を含有する易分解性又は易溶解性高分子被覆層を有する磁性粒子を提供するものである。
また本発明は当該磁性粒子と、前記反応性成分に反応する物質とを反応させ、磁力制御により反応系から当該磁性粒子を分離した後、易分解性又は易溶解性高分子を分解又は溶解させて反応生成物を回収することを特徴とする反応生成物の製造法を提供するものである。
【0007】
【発明の実施の形態】
本発明の磁性粒子は、核部分に粒子状磁性体を有し、殻部分に反応性成分を含有する易分解性又は易溶解性高分子被覆層を有するものである。粒子状磁性体としては、磁性体自体でもよいし、磁性体を予め非反応性有機高分子又は無機物で被覆若しくはゲル化した粒子であってもよい。ここで磁性体としては、鉄及び磁性酸化鉄が好ましい。また、非反応性有機高分子としては例えばポリスチレン、ラテックス、ジビニルベンゼンラテックス、アルギン酸ナトリウム、カラギーナン等が挙げられる。非反応性無機物としては、セラミック、シリカ、アルミナ、シリカ−アルミナ、炭素末等が挙げられる。粒子状磁性体の粒径は0.1μm〜20mm、特に0.2μm〜20mmが好ましい。また磁性体の形状は、粒子であれば球状、略球状、角体状等のいずれでもよい。
【0008】
本発明磁性粒子の被覆層を構成する易分解性又は易溶解性高分子は、反応中は分解又は溶解せず、反応終了後の固液分離後に分解又は溶解させる観点から、反応性成分が反応する条件とは異なる条件で分解又は溶解するものであるのが望ましい。
そのような高分子としては、例えば反応性成分がアルカリ条件で反応するものであれば、酸性条件下で特異的に分解又は溶解する高分子;反応性成分が酸性条件で反応するものであれば、アルカリ条件下で特異的に分解又は溶解する高分子;反応性成分が、例えば30〜40℃等の生理的条件で反応するものであれば、その条件を超える温度、例えば50℃以上で分解又は溶解する高分子等が挙げられる。
【0009】
より好ましい易分解性又は易溶解性高分子としては、ゲル形成性高分子が挙げられる。このようなゲル形成性高分子の中から、例えば酸性条件でゾル化する高分子、アルカリ条件下でゾル化する高分子、温度変化によりゾル化する高分子等を選択すればよい。このうち、温度変化によりゲル化する高分子が好ましく、例えば寒天、アルギン酸カルシウム等の多糖類;ゼラチン、等のタンパク類;アクリルアミド類等の合成高分子等が挙げられる。このうち、寒天等のゲル形成性多糖類は入手が容易であるとともに、約50℃以上に加温すれば容易に溶解するため、特に好ましい。なお、これらの高分子は2種以上を組み合せて用いてもよい。
【0010】
本発明における反応性成分としては、特に限定されないが、生理的条件で反応する成分、例えば抗原、抗体、受容体、酵素、微生物等が挙げられ、このうち特に抗原、抗体、受容体、酵素及び微生物が好ましい。
【0011】
このうち、抗原及び抗体としては、種々の生体内成分、それに対するモノクローナル抗体、ポリクローナル抗体が挙げられる。また酵素としては、動物由来酵素、植物由来酵素、微生物由来酵素が挙げられる。また微生物としては、各種細菌類、真菌類、酵母類、担子菌類、ウィルス等のいずれも使用できる。
【0012】
これらの反応性成分のうち、微生物がより好ましく、廃水処理に用いられる微生物としてはシュードモナス デニトリフィカンス(Pseudomonas denitrificans)等のシュードモナス属、ニトロバクター アギリス(Nitrobacter agilis)等のニトロバクター属、ニトロソモナス ユーロピア(Nitrosomonas europaea)等のニトロソモナス属、アルカリゲネス属(Alcaligenes)、硝化菌、脱窒菌、クロレラ、シトロバクター属に属する細菌が挙げられ;また光合成細菌としてはロドバクター スフェロイデス(Rhodobacter sphaeroides)等のロドバクター属に属する細菌等が挙げられ;酵母としてはサッカロマイセス属等が挙げられる。
【0013】
これらの反応性成分は被覆層中に0.1〜70重量%、特に1〜50重量%、さらに1〜30重量%含有せしめるのが、反応効率の点で好ましい。また、被覆層は、核を構成する磁性体に対して容積比で、1/10以上、特に1/10〜10,000倍が好ましい。
【0014】
本発明の磁性粒子は、例えば易分解性又は易溶解性高分子と、反応性成分と、磁性体とを含む懸濁液を、当該高分子の不溶性媒体中に滴下する方法等により製造できる。このとき、易分解性又は易溶解性高分子を2重被覆することもできる。
【0015】
本発明の磁性粒子を用いる反応生成物の製造法は、磁性粒子と、前記反応性成分に反応する物質とを反応させ、磁力制御により反応系から当該磁性粒子を分解した後、易分解性又は易溶解性高分子を分解又は溶解させて反応生成物を回収することにより行うのが好ましい。ここで、反応性成分に反応する物質(反応物質)としては、反応性成分が抗原の場合は抗体、抗体の場合は抗原、酵素の場合は基質、受容体の場合は結合性物質、微生物の場合はその微生物が利用する物質、例えば廃水、工場廃液、各種産業廃棄物等である。
【0016】
反応条件は、反応性成分と反応物質との関係により決定され、例えば反応性成分として微生物、抗原、抗体等を用いた場合は生理的条件、例えば室温〜40℃であるのが好ましい。反応は、反応物質を含む液相中に本発明磁性粒子を添加して行うのが簡便であり、好ましい。
【0017】
反応終了後、反応容器の外側、例えば側面に磁力をかければ当該側面に磁性粒子が引き寄せられるので、固液分離が容易かつ効率的にできる。このとき、磁力制御は、常磁性体を近づけるだけでもよいが、電磁石によりONとOFFを切り替えて制御することもできる。
【0018】
固液分離後、磁性粒子を回収し、前記高分子を分解又は溶解させれば、反応生成物の回収が極めて容易である。
【0019】
なお、反応生成物として微生物や酵素等を用いた場合、通常反応は途中から飽和し、進行しなくなるが、磁力制御により、一部の磁性粒子を反応系から除去しつつ、新たな磁性粒子を反応系に供給すれば、反応はより進行し、反応効率は飛躍的に向上する。
【0020】
【実施例】
次に実施例を挙げて本発明をさらに詳細に説明するが、本発明は何らこれに限定されるものではない。
【0021】
実施例1
純水100mLに2〜3gのアルギン酸ナトリウムを加熱して溶解させる。そのなかに10〜20gの四酸化三鉄(Fe3O4)を添加した後に、十分に攪拌し、1%の塩化カルシウム溶液中に攪拌しながら1滴ずつ静かに滴下することで2〜10mmの磁性体球状ゲルが得られる(図1)。得られた磁性体球状ゲルは、本発明磁性粒子の核として使用できる。
【0022】
実施例2
超純水150mLに寒天粉末を15gを加熱し溶解させ、反応性成分として光合成細菌ロドバクター スフェロイデス RV株を添加した超純水150mLと混合する。温度を50℃前後に保ち、目的とする球状ゲル1つ分の量に対し磁性体(直径5mm前後の磁石)を1〜3個含ませ、約5℃に冷却したオイルもしくは有機溶剤中にゆっくりと、例えば50滴/分ぐらい滴下することで、直径2〜15mmの球状ゲルが得られる(図2)。
【0023】
実施例3
また、実施例2で用いたのと同じ磁性体を核に置き、反応性成分として光合成細菌ロドバクター スフェロイデス RV株を含んだ2〜7wt%寒天のゲルもしくはゾルを主層として、強度確保のために2wt%アルギン酸カルシウムの外膜で包んだ3層構造をもった球状ゲル(図3)は、図4に示すごとく2重管を用いて1%塩化カルシウム溶液内に滴下し、冷却して製造する。
【0024】
実施例4
実施例2と同様にして得られた本発明磁性粒子を用いて、当該磁性粒子中に固定化された光合成細菌による有機酸から水素の発生を検討した。なお、本発明磁性粒子における寒天内の菌体量は、波長660nmにおける光学濁度で2.0となるように調整した。また寒天濃度は3%とし、超純水のかわりに緩衝液を用いた。
本発明磁性粒子を、水素発生培地(100mM HEPES、60mM 乳酸ナトリウム(基質)及び10mM グルタミン酸ナトリウム(窒素源基質)を含む)に入れ、アルゴン雰囲気下、光強度10klux・30℃の嫌気明条件で培養を行った。
【0025】
表1のように基質溶液と寒天ゲル内のpHを変化させた時の水素発生量を測定した(300時間)。
【0026】
【表1】

Figure 0004072994
【0027】
ゲル内のpHを最適pH6.8にして基質溶液のpHをA.6.8、酸性側C.5.7、アルカリ側E.8.5にした時の水素発生の影響を検討した。その結果、全水素発生量は、A.pH6.8の時2126mL;C.pH5.7の時1722mL;E.pH8.5の時2186mLとなった。このことから最適培養A.pH6.8とE.pH8.5の水素発生量はほぼ同じだった。また、A.pH6.8とC.pH5.7の水素発生量を比較すると6.8の水素量を100%とすると5.7は80%となり、20%の減少となった。
【0028】
緩衝液を用いて寒天内を基質のpHと同じ条件とした時の水素発生についての結果は次のようになった。B.pH6.8の時1260mL;D.pH5.7の時20mL;F.pH8.5の時2826mLとなった。この結果から酸性側では水素発生はしないことがわかる。
【0029】
また、B.pH6.8とF.pH8.5の水素発生を比べるとpH8.5は、最適培養pH6.8の2倍水素を発生した。次に、基質の溶液のpHが同じAとB、CとD、EとFを比較する。AとBではAはBの1.7倍水素発生が良かった。CとDではあきらかに水素発生の違いが見られた。EとFではFはEの1.3倍水素発生が良かった。全体的の考察としては、酸性側では、寒天内をpH6.8にすることにより水素発生が可能であることがわかった。アルカリ側では、pH6.8より水素発生が良い結果となった。これらのことから、本発明は磁性粒子中では、単なる基質溶液中の反応に比べてpH域が拡大できた。
また、反応率も基質溶液中の反応より高くなる傾向がみられた。
また、反応終了後、反応容器の側面に磁石をあてて磁性粒子を容器側面に固定すると、基質溶液と磁性粒子の分離が容易にできた。また、回収した磁性粒子を約50℃に加熱すると寒天ゲルが溶解し、さらに磁性体とゲルが分離できた。
【0030】
【発明の効果】
本発明の磁性粒子を用いれば、固相反応が効率良く進行し、かつ反応生成物の回収が容易である。
【図面の簡単な説明】
【図1】粒子状磁性体の製造法を示す図である。
【図2】本発明磁性粒子の製造法の一例を示す図である。
【図3】3重構造を有する本発明磁性粒子の模式図である。
【図4】3重構造を有する本発明磁性粒子の製造法を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic particle that can provide a reaction field with high reaction efficiency and can easily separate and recover reaction products, and a method for producing a reaction product using the same.
[0002]
[Prior art and problems to be solved by the invention]
In reaction systems using microorganisms, such as wastewater treatment with microorganisms, production of pharmaceuticals, etc., microorganisms are used by being directly charged into a reaction solution system or solidified by an immobilization technique. It has been pointed out that reaction efficiency is generally low when microorganisms are directly charged into the reaction solution system. In the case of using a solid-phased microorganism, a means for allowing the substrate solution to pass through the solid-phased microbial phase is usually employed, but the contact time between the substrate and the microorganism is not sufficient or the contact time is sufficient. When it makes it, there exists a problem that reaction efficiency falls. Therefore, it is desirable in terms of reaction efficiency that the solid-phased microorganism is directly introduced into the reaction solution.
[0003]
However, when solid-phased microorganisms are directly introduced into the reaction solution, not only is it difficult to separate the solid and liquid after the completion of the reaction, but the reaction solution contains not only reaction products but also raw materials and medium components. Therefore, it was difficult to separate and recover the target reaction product. In addition, reactions using microorganisms, antigen-antibody reactions, etc. do not continue with the addition of raw materials, but there is a phenomenon that the reaction saturates in the middle of the reaction, so it was difficult to maintain high reaction efficiency. .
[0004]
Accordingly, an object of the present invention is to provide a means capable of providing a reaction field with high reaction efficiency and facilitating separation and recovery of reaction products.
[0005]
[Means for Solving the Problems]
Therefore, the present inventor has obtained a reactive component such as a microorganism, an antigen, an antibody, an enzyme, and a receptor in an easily degradable or easily soluble polymer and coated it on the surface of the magnetic particles. When the magnetic particles are used, the reaction takes place in the coating layer, the reaction efficiency is higher than the reaction in the liquid phase, and solid-liquid separation after the reaction can be easily performed by magnetic force control, so the reaction product can be easily recovered. And it discovered that it was efficient and came to complete this invention.
[0006]
That is, the present invention provides magnetic particles having an easily decomposable or easily soluble polymer coating layer containing a reactive component on the surface of a particulate magnetic material.
Further, the present invention reacts the magnetic particles with a substance that reacts with the reactive component, separates the magnetic particles from the reaction system by magnetic force control, and then decomposes or dissolves the easily decomposable or easily soluble polymer. The reaction product is recovered to provide a method for producing a reaction product.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The magnetic particle of the present invention has a particulate magnetic substance in the core portion and an easily decomposable or easily soluble polymer coating layer containing a reactive component in the shell portion. The particulate magnetic material may be the magnetic material itself, or may be a particle obtained by coating or gelling the magnetic material with a non-reactive organic polymer or inorganic material in advance. Here, iron and magnetic iron oxide are preferable as the magnetic material. Examples of the nonreactive organic polymer include polystyrene, latex, divinylbenzene latex, sodium alginate, carrageenan and the like. Non-reactive inorganic materials include ceramic, silica, alumina, silica-alumina, carbon powder and the like. The particle size of the particulate magnetic material is preferably 0.1 μm to 20 mm, particularly preferably 0.2 μm to 20 mm. Further, the shape of the magnetic material may be any of spherical, substantially spherical, rectangular and the like as long as it is a particle.
[0008]
The easily decomposable or easily soluble polymer constituting the coating layer of the magnetic particles of the present invention is not decomposed or dissolved during the reaction, and the reactive component is reacted from the viewpoint of decomposing or dissolving after the solid-liquid separation after the reaction is completed. It is desirable that the material decomposes or dissolves under conditions different from those to be performed.
As such a polymer, for example, if a reactive component reacts under alkaline conditions, a polymer that specifically decomposes or dissolves under acidic conditions; if a reactive component reacts under acidic conditions , A polymer that specifically decomposes or dissolves under alkaline conditions; if the reactive component reacts under physiological conditions such as 30 to 40 ° C., it decomposes at a temperature exceeding that condition, for example, 50 ° C. or higher. Or the polymer | macromolecule etc. which melt | dissolve are mentioned.
[0009]
More preferable easily decomposable or easily soluble polymers include gel-forming polymers. From such gel-forming polymers, for example, a polymer that is solated under acidic conditions, a polymer that is sollated under alkaline conditions, a polymer that is sollated under temperature changes, and the like may be selected. Of these, polymers that gel with changes in temperature are preferred, and examples include polysaccharides such as agar and calcium alginate; proteins such as gelatin; and synthetic polymers such as acrylamides. Among these, gel-forming polysaccharides such as agar are particularly preferable because they are easily available and easily dissolved when heated to about 50 ° C. or higher. In addition, you may use these polymers in combination of 2 or more types.
[0010]
The reactive component in the present invention is not particularly limited, and examples thereof include components that react under physiological conditions, such as antigens, antibodies, receptors, enzymes, microorganisms, etc. Among these, antigens, antibodies, receptors, enzymes and Microorganisms are preferred.
[0011]
Among these, as an antigen and an antibody, various in-vivo components, the monoclonal antibody with respect to it, and a polyclonal antibody are mentioned. Examples of the enzyme include an animal-derived enzyme, a plant-derived enzyme, and a microorganism-derived enzyme. As the microorganism, any of various bacteria, fungi, yeasts, basidiomycetes, viruses and the like can be used.
[0012]
Among these reactive components, microorganisms are more preferred, and microorganisms used in wastewater treatment include Pseudomonas denitrificans and other Pseudomonas species, Nitrobacter agilis and other Nitrobacter species and Nitrosomonas. Examples include bacteria belonging to the genus Nitrosomonas europaea, Nitrosomonas, Alcaligenes, nitrifying bacteria, denitrifying bacteria, Chlorella, Citrobacter; and photosynthetic bacteria such as Rhodobacter sphaeroides. Examples of yeast include the genus Saccharomyces.
[0013]
These reactive components are preferably contained in the coating layer in an amount of 0.1 to 70% by weight, particularly 1 to 50% by weight, and more preferably 1 to 30% by weight from the viewpoint of reaction efficiency. Further, the coating layer is preferably 1/10 or more, particularly 1/10 to 10,000 times in volume ratio with respect to the magnetic material constituting the nucleus.
[0014]
The magnetic particles of the present invention can be produced by, for example, a method of dropping a suspension containing an easily decomposable or easily soluble polymer, a reactive component, and a magnetic substance into an insoluble medium of the polymer. At this time, it is also possible to double coat the easily decomposable or easily soluble polymer.
[0015]
In the method for producing a reaction product using the magnetic particles of the present invention, the magnetic particles react with a substance that reacts with the reactive component, and the magnetic particles are decomposed from the reaction system by magnetic force control. It is preferable to carry out by decomposing or dissolving the readily soluble polymer and recovering the reaction product. Here, the substance that reacts with the reactive component (reactive substance) is an antibody when the reactive component is an antigen, an antigen when it is an antibody, a substrate when it is an enzyme, a binding substance when it is a receptor, or a microbial substance. In some cases, it is a substance used by the microorganism, such as waste water, factory waste liquid, various industrial wastes, and the like.
[0016]
The reaction conditions are determined by the relationship between the reactive component and the reactant. For example, when a microorganism, an antigen, an antibody, or the like is used as the reactive component, it is preferably a physiological condition, for example, room temperature to 40 ° C. The reaction is preferably carried out by adding the magnetic particles of the present invention in a liquid phase containing a reactant, and is preferable.
[0017]
After completion of the reaction, if a magnetic force is applied to the outside, for example, the side surface of the reaction vessel, the magnetic particles are attracted to the side surface, so that solid-liquid separation can be easily and efficiently performed. At this time, the magnetic force control may be performed only by bringing the paramagnetic material closer, but can be controlled by switching between ON and OFF with an electromagnet.
[0018]
If the magnetic particles are recovered after the solid-liquid separation and the polymer is decomposed or dissolved, the reaction product can be recovered very easily.
[0019]
When microorganisms, enzymes, etc. are used as reaction products, the reaction normally saturates and does not proceed, but some magnetic particles are removed from the reaction system by magnetic force control, and new magnetic particles are removed. If it supplies to a reaction system, reaction will progress more and reaction efficiency will improve dramatically.
[0020]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to this at all.
[0021]
Example 1
2-3 g of sodium alginate is heated and dissolved in 100 mL of pure water. After adding 10 to 20 g of triiron tetroxide (Fe 3 O 4 ), 2-10 mm was obtained by gently stirring and dropping dropwise into a 1% calcium chloride solution. The magnetic spherical gel is obtained (FIG. 1). The obtained magnetic spherical gel can be used as the nucleus of the magnetic particles of the present invention.
[0022]
Example 2
15 g of agar powder is heated and dissolved in 150 mL of ultrapure water and mixed with 150 mL of ultrapure water to which the photosynthetic bacterium Rhodobacter spheroides RV strain is added as a reactive component. Keep the temperature at around 50 ° C, and contain 1-3 magnetic materials (magnets with a diameter of around 5mm) for the amount of one target spherical gel, and slowly in oil or organic solvent cooled to about 5 ° C. Then, for example, by dropping about 50 drops / minute, a spherical gel having a diameter of 2 to 15 mm is obtained (FIG. 2).
[0023]
Example 3
In addition, in order to ensure strength, the same magnetic material as used in Example 2 was placed in the core, and a gel or sol of 2 to 7 wt% agar containing the photosynthetic bacterium Rhodobacter spheroides RV as a reactive component was used as the main layer. A spherical gel having a three-layer structure wrapped with an outer membrane of 2 wt% calcium alginate (FIG. 3) is produced by dripping into a 1% calcium chloride solution using a double tube as shown in FIG. 4 and cooling. .
[0024]
Example 4
Using the magnetic particles of the present invention obtained in the same manner as in Example 2, the generation of hydrogen from organic acids by photosynthetic bacteria immobilized in the magnetic particles was examined. The amount of bacterial cells in the agar in the magnetic particles of the present invention was adjusted so as to be 2.0 as the optical turbidity at a wavelength of 660 nm. The agar concentration was 3%, and a buffer solution was used instead of ultrapure water.
The magnetic particles of the present invention are placed in a hydrogen generation medium (containing 100 mM HEPES, 60 mM sodium lactate (substrate) and 10 mM sodium glutamate (nitrogen source substrate)), and cultured under anaerobic conditions of 10 klux and 30 ° C. in an argon atmosphere. Went.
[0025]
As shown in Table 1, the amount of hydrogen generated when the pH in the substrate solution and the agar gel was changed was measured (300 hours).
[0026]
[Table 1]
Figure 0004072994
[0027]
The pH in the gel was adjusted to the optimum pH 6.8, and the pH of the substrate solution was adjusted to A. 6.8, acidic side C.I. 5.7, alkali side E.I. The influence of hydrogen generation when 8.5 was set was examined. As a result, the total hydrogen generation amount is A.I. 2126 mL at pH 6.8; C.I. 1722 mL at pH 5.7; The pH was 2186 mL at 8.5. Therefore, optimal culture A. pH 6.8 and E.I. The hydrogen generation amount at pH 8.5 was almost the same. A. pH 6.8 and C.I. Comparing the amount of hydrogen generated at pH 5.7, when the amount of hydrogen at 6.8 was 100%, 5.7 was 80%, a decrease of 20%.
[0028]
The results of hydrogen generation when the buffer was used and the agar content was the same as the pH of the substrate were as follows. B. 1260 mL at pH 6.8; 20 mL at pH 5.7; It reached 2826 mL when the pH was 8.5. From this result, it is understood that hydrogen is not generated on the acidic side.
[0029]
B. pH 6.8 and F.R. Compared to hydrogen generation at pH 8.5, pH 8.5 generated twice as much hydrogen as optimal culture pH 6.8. Next, A and B, C and D, and E and F having the same pH of the substrate solution are compared. In A and B, A generated 1.7 times more hydrogen than B. The difference in hydrogen generation was clearly seen between C and D. E and F generated 1.3 times as much hydrogen as E. As a general consideration, it was found that on the acidic side, hydrogen can be generated by adjusting the pH of the agar to 6.8. On the alkali side, hydrogen generation was better than pH 6.8. From these facts, in the present invention, the pH range can be expanded in the magnetic particles as compared with the reaction in a simple substrate solution.
In addition, the reaction rate tended to be higher than the reaction in the substrate solution.
In addition, after completion of the reaction, when the magnetic particles were fixed to the side of the container by applying a magnet to the side of the reaction container, the substrate solution and the magnetic particles could be easily separated. When the collected magnetic particles were heated to about 50 ° C., the agar gel was dissolved, and the magnetic substance and the gel could be separated.
[0030]
【The invention's effect】
If the magnetic particles of the present invention are used, the solid-phase reaction proceeds efficiently and the reaction product can be easily recovered.
[Brief description of the drawings]
FIG. 1 is a diagram showing a method for producing a particulate magnetic material.
FIG. 2 is a diagram showing an example of a method for producing magnetic particles of the present invention.
FIG. 3 is a schematic view of a magnetic particle of the present invention having a triple structure.
FIG. 4 is a view showing a method for producing the magnetic particles of the present invention having a triple structure.

Claims (4)

粒子状磁性体の表面に、抗原、抗体、受容体、酵素及び微生物から選ばれる反応性成分を含有する易分解性又は易溶解性高分子被覆層を有する磁性粒子であって、該易分解性又は易溶解性高分子が、該反応性成分が反応するアルカリ条件、酸性条件又は温度条件とは異なる条件で分解又は溶解するものである磁性粒子。 Magnetic particles having a readily degradable or easily soluble polymer coating layer containing a reactive component selected from an antigen, an antibody, a receptor, an enzyme and a microorganism on the surface of the particulate magnetic material , Alternatively, a magnetic particle in which an easily soluble polymer is decomposed or dissolved under conditions different from the alkaline condition, acidic condition or temperature condition with which the reactive component reacts. 反応性成分が反応する条件が室温〜40℃であり、易分解性又は易溶解性高分子がこの温度を超える温度で分解又は溶解するものである請求項1記載の磁性粒子。2. The magnetic particles according to claim 1, wherein the reactive component is reacted at room temperature to 40 [deg.] C., and the easily decomposable or easily soluble polymer is decomposed or dissolved at a temperature exceeding this temperature . 易分解性又は易溶解性高分子が、ゲル形成性高分子である請求項1又は2記載の磁性粒子。Labile or easily soluble polymer, the magnetic particles according to claim 1 or 2, wherein the gel-forming polymer. 請求項1〜のいずれか1項記載の磁性粒子と、前記反応性成分に反応する物質とを反応させ、磁力制御により反応系から当該磁性粒子を分離した後、易分解性又は易溶解性高分子を分解又は溶解させて反応生成物を回収することを特徴とする反応生成物の製造法。A magnetic particle according to any one of claims 1 to 3 is reacted with a substance that reacts with the reactive component, and the magnetic particle is separated from the reaction system by magnetic force control. A method for producing a reaction product, comprising decomposing or dissolving a polymer to recover a reaction product.
JP2001313974A 2001-10-11 2001-10-11 Magnetic particles Expired - Fee Related JP4072994B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001313974A JP4072994B2 (en) 2001-10-11 2001-10-11 Magnetic particles
EP02801548A EP1440733A4 (en) 2001-10-11 2002-10-11 Magnetic particles
US10/490,742 US7297405B2 (en) 2001-10-11 2002-10-11 Magnetic particles having core-shell structure
PCT/JP2002/010590 WO2003033159A1 (en) 2001-10-11 2002-10-11 Magnetic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001313974A JP4072994B2 (en) 2001-10-11 2001-10-11 Magnetic particles

Publications (2)

Publication Number Publication Date
JP2003119030A JP2003119030A (en) 2003-04-23
JP4072994B2 true JP4072994B2 (en) 2008-04-09

Family

ID=19132359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001313974A Expired - Fee Related JP4072994B2 (en) 2001-10-11 2001-10-11 Magnetic particles

Country Status (4)

Country Link
US (1) US7297405B2 (en)
EP (1) EP1440733A4 (en)
JP (1) JP4072994B2 (en)
WO (1) WO2003033159A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040234962A1 (en) * 2003-05-02 2004-11-25 Javier Alarcon Multicoated or multilayer entrapment matrix for protein biosensor
JP4207754B2 (en) * 2003-10-31 2009-01-14 和光純薬工業株式会社 Immunological measurement method using magnetic substance
US9267167B2 (en) * 2004-06-28 2016-02-23 Becton, Dickinson And Company Dissolvable films and methods including the same
CN102712539B (en) * 2010-01-19 2014-07-02 巴斯夫欧洲公司 Method for producing hollow bodies having enclosed freely displaceable particles
US8557329B2 (en) 2010-05-06 2013-10-15 International Business Machines Corporation Method for silica encapsulation of magnetic particles
US9975790B2 (en) 2013-09-30 2018-05-22 Maersk Olie Og Gas A/S Water treatment suited for oil production wells
US10150908B2 (en) 2013-09-30 2018-12-11 Total E&P Danmark A/S Method and system for the recovery of oil, using water that has been treated using magnetic particles
CN105992808B (en) 2013-09-30 2018-10-19 综合E&P丹麦股份有限公司 Magnetic nano-particle is used to exhaust the purposes of the aromatic compounds in oil
WO2015044445A1 (en) 2013-09-30 2015-04-02 Mærsk Olie Og Gas A/S Method and system for the enhanced recovery of oil, using water that has been depleted in ions using magnetic particles
KR101781976B1 (en) * 2015-04-08 2017-10-23 한국과학기술연구원 Nano-structured hybrid particle, manufacturing method thereof, and device containing the particle
US20210063387A1 (en) * 2017-08-26 2021-03-04 Aj Innuscreen Gmbh Means and method for detecting analytes by means of macroscopic granulate particles
CN108226485B (en) * 2018-02-12 2020-06-30 中国人民解放军陆军军医大学 Composite immunomagnetic bead for separating and purifying hepatic stellate cells and preparation method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892673A (en) * 1971-03-24 1975-07-01 Graham Magnetics Inc Composition of metal salt crystals having a polymeric coating
DE3000483A1 (en) * 1979-01-09 1980-07-17 Fuji Photo Film Co Ltd MICROCAPSULES FOR IMMUNOLOGICAL PROVISIONS
US4452773A (en) * 1982-04-05 1984-06-05 Canadian Patents And Development Limited Magnetic iron-dextran microspheres
US4612247A (en) * 1984-06-27 1986-09-16 Cape Cod Research, Inc. Magnetic cellulose-derivative structures
US4582622A (en) * 1984-10-12 1986-04-15 Fujirebio Kabushiki Kaisha Magnetic particulate for immobilization of biological protein and process of producing the same
US5597531A (en) * 1985-10-04 1997-01-28 Immunivest Corporation Resuspendable coated magnetic particles and stable magnetic particle suspensions
US5262176A (en) * 1986-07-03 1993-11-16 Advanced Magnetics, Inc. Synthesis of polysaccharide covered superparamagnetic oxide colloids
JP2979414B2 (en) * 1989-09-29 1999-11-15 富士レビオ株式会社 Magnetic particles and immunoassay using the same
JPH0599926A (en) * 1991-10-11 1993-04-23 Tdk Corp Method for measuring bacterium, cell and virus
DE19528029B4 (en) * 1995-07-31 2008-01-10 Chemagen Biopolymer-Technologie Aktiengesellschaft Magnetic polymer particles based on polyvinyl alcohol, process for their preparation and use
GB9600427D0 (en) * 1996-01-10 1996-03-13 Nycomed Imaging As Contrast media
WO1998034114A1 (en) * 1997-01-30 1998-08-06 Merck Patent Gmbh Method for the immunological determination of an analyte
JPH11191510A (en) * 1997-12-25 1999-07-13 Jsr Corp Magnetic polymer article, its manufacturing and diagnostic medicine
JPH11191509A (en) * 1997-12-25 1999-07-13 Jsr Corp Magnetic particle, its manufacturing and diagnostic medicine
FR2773416B1 (en) * 1998-01-06 2000-02-11 Bio Merieux IMPROVED MAGNETIC PARTICLES, PROCESSES FOR OBTAINING SAME AND THEIR USES IN THE SEPARATION OF MOLECULES
US6761877B2 (en) * 2000-02-18 2004-07-13 Biocrystal, Ltd. Functionalized encapsulated fluorescent nanocrystals
SE517421C2 (en) * 2000-10-06 2002-06-04 Bioglan Ab New production of microparticles involves use of aqueous solution of purified amylopectin-based starch of reduced molecular weight

Also Published As

Publication number Publication date
EP1440733A1 (en) 2004-07-28
JP2003119030A (en) 2003-04-23
US7297405B2 (en) 2007-11-20
US20040241428A1 (en) 2004-12-02
EP1440733A4 (en) 2008-07-09
WO2003033159A1 (en) 2003-04-24

Similar Documents

Publication Publication Date Title
JP4072994B2 (en) Magnetic particles
van Loosdrecht et al. Influence of interfaces on microbial activity
Matsunaga et al. Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization
Lei et al. The preparation and catalytically active characterization of papain immobilized on magnetic composite microspheres
CA1254528A (en) Process for encapsulation and encapsulated active material system
US4744933A (en) Process for encapsulation and encapsulated active material system
Stormo et al. Preparation of encapsulated microbial cells for environmental applications
JP4887530B2 (en) Magnetic fine particles and method for producing the same
EP1312671B1 (en) Magnetic particles having lower limit critical solution temperature
Safarik et al. Magnetically responsive yeast cells: methods of preparation and applications
Prakash et al. Preparation and in vitro analysis of microencapsulated genetically engineered E. coli DH5 cells for urea and ammonia removal
Yu et al. Covalent immobilization and characterization of penicillin G acylase on amino and GO functionalized magnetic Ni0. 5Zn0. 5Fe2O4@ SiO2 nanocomposite prepared via a novel rapid-combustion process
JPS62171686A (en) Production of biological group composite
Tanyolaç et al. A new low cost magnetic material: magnetic polyvinylbutyral microbeads
JPS6215198B2 (en)
JPS623791A (en) Production of lipid by mildew or algae
CN108949738B (en) Preparation method and application of magnetic-loaded ionic liquid microsphere immobilized cell
JPS61104785A (en) Enzyme composition
JPH01141594A (en) Magnetic membrane capsule and its use
Šafarík et al. Overview of magnetic separations used in biochemical and biotechnological applications
Ma et al. Immobilization and property of penicillin G acylase on amino functionalized magnetic Ni0. 3Mg0. 4Zn0. 3Fe2O4 nanoparticles prepared via the rapid combustion process
JP2007049966A (en) Immobilization of microbial cell on hydrophobic carrier
JPH0452202A (en) Magnetic material fine particles
JP2016015926A (en) Immobilization method for bacteria, immobilization carrier for bacteria, and preservation method for bacteria
JPS61242692A (en) Biological treatment of water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040906

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees