JP4072623B2 - Method for producing pyridine-N-oxides - Google Patents

Method for producing pyridine-N-oxides Download PDF

Info

Publication number
JP4072623B2
JP4072623B2 JP2004066420A JP2004066420A JP4072623B2 JP 4072623 B2 JP4072623 B2 JP 4072623B2 JP 2004066420 A JP2004066420 A JP 2004066420A JP 2004066420 A JP2004066420 A JP 2004066420A JP 4072623 B2 JP4072623 B2 JP 4072623B2
Authority
JP
Japan
Prior art keywords
solution
reaction
mmol
pyridine
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004066420A
Other languages
Japanese (ja)
Other versions
JP2005255560A (en
Inventor
一彦 佐藤
洋子 碓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004066420A priority Critical patent/JP4072623B2/en
Publication of JP2005255560A publication Critical patent/JP2005255560A/en
Application granted granted Critical
Publication of JP4072623B2 publication Critical patent/JP4072623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Quinoline Compounds (AREA)
  • Pyridine Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、種々の有機化合物の中間体として有用なピリジン−N−オキシド類の製造法に関し、さらに詳しくは、酸および有機溶媒を使用しない非水溶性のピリジン類油性溶液と過酸化水素水溶液の反応による、ピリジン−N−オキシド類の新規な製造法に関する。   The present invention relates to a process for producing pyridine-N-oxides useful as intermediates for various organic compounds. More specifically, the present invention relates to a water-insoluble pyridine-based oily solution and an aqueous hydrogen peroxide solution that do not use an acid and an organic solvent. The present invention relates to a novel process for producing pyridine-N-oxides by reaction.

ピリジン類を酸化してピリジン−N−オキシド類を製造する方法としては、ベンゼン溶媒中でのm-クロロ過安息香酸(非特許文献1)、アセトン溶媒中でのジメチルジオキシラン(非特許文献2)、または五塩化モリブデンを触媒とする過酸化−t−アミル(非特許文献3)等を酸化剤として用いる反応が知られている。さらに、メチル三酸化レニウム錯体触媒存在下、塩化メチレン溶媒中でビストリメチル過酸化シリルを酸化剤とする手法(非特許文献4)が報告されている。   As a method for producing pyridine-N-oxides by oxidizing pyridines, m-chloroperbenzoic acid in a benzene solvent (Non-Patent Document 1), dimethyldioxirane in an acetone solvent (Non-Patent Document 2). ), Or peroxide-t-amyl (non-patent document 3) using molybdenum pentachloride as a catalyst is known as a reaction. Furthermore, a method (non-patent document 4) using bistrimethyl peroxide as an oxidizing agent in a methylene chloride solvent in the presence of a methyl rhenium trioxide complex catalyst has been reported.

しかしながら、これらの方法は、反応後に毒性の高い大量の副生成物および有機溶媒を処理しなければならないため操作が煩雑となり、また環境および人体に与える負荷が大きいため、工業的に優れた方法とは言い難い。 However, these methods require a large amount of highly toxic by-products and organic solvents to be processed after the reaction, which makes the operation complicated, and the load on the environment and human body is large. Is hard to say.

一方、過酸化水素は、反応後の共生成物は無害な水のみであるために環境や人体への負荷が小さく、また、装置の腐食等の問題もないため、工業的に利用するのに優れた酸化剤ということができる。   Hydrogen peroxide, on the other hand, has only a harmless water as the co-product after the reaction, so the load on the environment and the human body is small, and there are no problems such as corrosion of the equipment. It can be said that it is an excellent oxidizing agent.

過酸化水素を酸化剤として用いたピリジン類からピリジン−N−オキシド類を製造する方法としては、酸溶媒中で行う反応(非特許文献5)が知られているが、この方法では反応系中で高濃度の過酸が発生するため爆発の危険があり、また反応後に酸溶媒の除去などの必要があるため、操作が煩雑である。さらに、酸による装置の腐食も問題である。   As a method for producing pyridine-N-oxides from pyridines using hydrogen peroxide as an oxidizing agent, a reaction performed in an acid solvent (Non-patent Document 5) is known. Since a high concentration of peracid is generated, there is a danger of explosion, and it is necessary to remove the acid solvent after the reaction, so that the operation is complicated. Furthermore, corrosion of the equipment by acid is also a problem.

水媒体中、金属触媒存在下、反応系のpHを3〜9(約6程度)に調整するために高濃度の硫酸(95%)や塩酸等を触媒量添加して、ピリジン類と過酸化水素からピリジン−N−オキシド類を生成する方法(特許文献1)も報告されている。この反応では強酸を使用するため、装置の腐食等の問題が発生し、工業的に優れた合成法ではない。   In order to adjust the pH of the reaction system to 3-9 (about 6) in the presence of a metal catalyst in an aqueous medium, a catalytic amount of high-concentration sulfuric acid (95%) or hydrochloric acid is added to oxidize with pyridines. A method for producing pyridine-N-oxides from hydrogen (Patent Document 1) has also been reported. Since a strong acid is used in this reaction, problems such as corrosion of the apparatus occur, and this is not an industrially excellent synthesis method.

一方、酸を使用しないピリジン−N−オキシド類の生成反応が報告されている。メチル三酸化レニウム錯体を触媒として用いる反応 (非特許文献6)では、塩化メチレンが溶媒として使用されている。また、ハイドロタルサイト触媒を用いた過酸化水素によるピリジン類の酸化反応(非特許文献7)が報告されたが、この反応では基質に対して二当量のベンゾニトリルを添加する必要があり、さらに、ピリジン類と過酸化水素水溶液を混合するために溶媒としてメタノールを使用しなくてはならない。   On the other hand, the formation reaction of pyridine-N-oxides without using an acid has been reported. In a reaction using a methyl rhenium trioxide complex as a catalyst (Non-patent Document 6), methylene chloride is used as a solvent. Moreover, although the oxidation reaction of pyridines with hydrogen peroxide using a hydrotalcite catalyst was reported (Non-patent Document 7), in this reaction, it is necessary to add two equivalents of benzonitrile to the substrate. In order to mix pyridines and aqueous hydrogen peroxide solution, methanol must be used as a solvent.

一般に、非水溶性のピリジン類の酸化反応において、過酸化水素水溶液を酸化剤とする場合、溶媒量または高濃度の酸を使用したり、ピリジン類油性溶液を溶解させて均一溶液とするために有機溶媒の使用が不可欠とされている。その結果、反応装置が腐食したり、目的生成物であるピリジン−N−オキシド類を単離する際に、酸または有機溶媒の除去手段が必要となり、反応操作が煩雑となる。さらにそれらの環境及び人体への影響・毒性も指摘されるに至っている。このように、操作が煩雑で装置の腐食等を引き起こし、また環境や人体へ有害である酸や有機溶媒を用いることによるピリジン−N−オキシド類の合成法がほとんどであった。過酸化水素の利便性、即ち環境や人体への負荷が小さく装置の腐食の問題がない等の性質を、酸や有機溶媒を使用することによって生かすことができていなかった。   In general, when an aqueous hydrogen peroxide solution is used as an oxidizing agent in the oxidation reaction of water-insoluble pyridines, it is necessary to use a solvent amount or high-concentration acid, or dissolve a pyridines oily solution to make a uniform solution. The use of organic solvents is considered essential. As a result, the reaction apparatus corrodes, or when isolating the target product pyridine-N-oxides, a means for removing acid or organic solvent is required, and the reaction operation becomes complicated. Furthermore, their effects on the environment and human body and toxicity have been pointed out. As described above, most of the methods for synthesizing pyridine-N-oxides by using an acid or an organic solvent which is complicated in operation and causes corrosion of the apparatus and is harmful to the environment and the human body. The convenience of hydrogen peroxide, that is, the property that the load on the environment and the human body is small and there is no problem of corrosion of the device, cannot be utilized by using an acid or an organic solvent.

特開平10-324678JP 10-324678 TetrahedronLett., 4867−4870(1966)Tetrahedron Lett., 4867-4870 (1966) J. Org. Chem., 50, 2847−2853 (1985)J. Org. Chem., 50, 2847-2553 (1985) TetrahedronLett., 2807−2808(1971)Tetrahedron Lett., 2807-2808 (1971) TetrahedronLett., 39, 761−764 (1998)TetrahedronLett., 39, 761-764 (1998) J. Chem. Soc., Chem. Commun., 28−29 (1971)J. Chem. Soc., Chem. Commun., 28-29 (1971) J. Org. Chem., 63, 1740−1741 (1998)J. Org. Chem., 63, 1740-1741 (1998) NewJ. Chem., 23, 799−801 (1999)NewJ. Chem., 23, 799-801 (1999)

本発明は、上記のような従来技術の問題点を克服するためになされたものであって、温和な反応条件下、酸および有機溶媒を使用せずとも、非水溶性のピリジン類油性溶液からピリジン−N−オキシド類を高収率で得ることができると共に、反応操作が簡便で反応終了後の酸や溶媒の除去操作を不要とし、装置の腐食も少なく、環境や人体への影響・毒性がきわめて小さい、非水溶性ピリジン類油性溶液と過酸化水素水溶液との反応による安全でかつ簡便で効率的なピリジン−N−オキシド類の新規製造法を提供することを目的とする。   The present invention has been made in order to overcome the problems of the prior art as described above, from a non-water-soluble pyridine-based oily solution under mild reaction conditions without using an acid and an organic solvent. Pyridine-N-oxides can be obtained in high yield, and the reaction procedure is simple, eliminating the need to remove the acid and solvent after completion of the reaction, reducing the corrosion of the equipment, and affecting the environment and human body. An object of the present invention is to provide a safe, simple and efficient method for producing pyridine-N-oxides by reacting a water-insoluble pyridine-based oily solution with an aqueous hydrogen peroxide solution.

本発明者らは、前記課題を解決するために鋭意研究した結果、酸あるいは有機溶媒を使用した非水溶性ピリジン類油性溶液と過酸化水素水溶液との酸化反応を行う従来の反応方法に代えて、酸および有機溶媒を使用しなくても、特定な触媒存在下、過酸化水素水溶液と非水溶性のピリジン類油性溶液の不均一溶液系を用いる反応を選定すると、従来の常識的な技術的知見とは異なり、対応するピリジン−N−オキシド類が高収率で安全かつ簡便に製造しうることを見いだし、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have replaced the conventional reaction method in which an oxidation reaction between a water-insoluble pyridine-based oil solution using an acid or an organic solvent and an aqueous hydrogen peroxide solution is performed. If a reaction using a heterogeneous solution system of an aqueous hydrogen peroxide solution and a water-insoluble pyridine-based oil solution is selected in the presence of a specific catalyst without using an acid and an organic solvent, the conventional common sense technical Unlike the findings, the inventors have found that the corresponding pyridine-N-oxides can be produced safely and simply at a high yield, and the present invention has been completed.

即ち、この出願によれば、以下の発明が提供される。That is, according to this application, the following invention is provided.
(1)タングステン酸触媒の存在下、非水溶性のピリジン類それ自体の油性液と過酸化水素水溶液を、酸および有機溶媒を用いずに、不均一溶液系で反応させることを特徴とするピリジン−N−オキシド類の製造方法。(1) Pyridine characterized by reacting an oily liquid of a water-insoluble pyridine itself with an aqueous hydrogen peroxide solution in the presence of a tungstic acid catalyst in a heterogeneous solution system without using an acid and an organic solvent. -Method for producing N-oxides.

本発明の製造方法によれば、種々の有機化合物の中間体として幅広く用いられる有用なピリジンN−オキシド類を、温和な条件下で、かつ高収率で得ることができる。また、本発明方法は、酸および有機溶媒を一切使用しないため、反応操作が簡便で、装置の腐食も少なく、環境や人体への影響・毒性がきわめて小さく、環境に対する負荷を軽減する効果も有し、安全かつ効率的にピリジン−N−オキシド類を得ることができる。したがって、本発明方法は工業的に多大な効果をもたらす発明ということができる。 According to the production method of the present invention, useful pyridine N-oxides widely used as intermediates for various organic compounds can be obtained under mild conditions and in high yield. In addition, since the method of the present invention does not use any acid or organic solvent, the reaction operation is simple, the apparatus is hardly corroded, the influence on the environment and the human body is extremely small, and the effect on the environment is reduced. Thus, pyridine-N-oxides can be obtained safely and efficiently. Therefore, the method of the present invention can be said to be an invention that has a great industrial effect.

本発明に係る過酸化水素を用いる非水溶性のピリジン類の酸化反応によるピリジン−N−オキシド類の製造方法は、該酸化反応を、タングステン酸触媒の存在下、非水溶性のピリジン類それ自体の油性液(以下、ピリジン油性溶液ともいう)と過酸化水素水溶液を、酸および有機溶媒を用いずに、不均一溶液系で反応させることを特徴としている。The method for producing pyridine-N-oxides by oxidation reaction of water-insoluble pyridines using hydrogen peroxide according to the present invention comprises the step of oxidizing the water-insoluble pyridines themselves in the presence of a tungstic acid catalyst. The oily liquid (hereinafter also referred to as pyridine oily solution) and a hydrogen peroxide aqueous solution are reacted in a heterogeneous solution system without using an acid and an organic solvent.

従来、過酸化水素を用いた酸化においては、酸を溶媒として、あるいは触媒量の強酸と金属を系中に添加して反応を円滑に進行させる手法が採られていた。しかしながら、酸を使用すると装置の腐食を招き、反応後の酸の除去操作等も煩雑となり、また過酸が発生して爆発の危険性もあるため、工業的な大スケールでの合成には不向きである。   Conventionally, in oxidation using hydrogen peroxide, a method has been adopted in which the reaction proceeds smoothly by using an acid as a solvent or adding a catalytic amount of a strong acid and a metal to the system. However, the use of acid leads to corrosion of the equipment, complicating the removal operation of the acid after the reaction, etc., and the risk of explosion due to the generation of peracid, is not suitable for industrial large-scale synthesis. It is.

さらに、液液反応においては、原料同士、あるいは原料と酸化剤、反応促進剤などの反応試薬が相溶性を持たない場合には、反応を円滑に進めるために原料と反応試薬が相互に溶解する有機溶媒を用いて、両者の均一な溶液を予め調整し、しかる後反応させるプロセスが選択率、収率などの点で有利であるとされていた。しかしながら、反応後の有機溶媒の除去操作等の操作が煩雑であり、また有機溶媒自身の人体に及ぼす毒性が問題視されている。   Furthermore, in the liquid-liquid reaction, when the raw materials or the raw materials and the reaction reagents such as the oxidizing agent and the reaction accelerator do not have compatibility, the raw materials and the reaction reagents dissolve each other in order to facilitate the reaction. A process in which a homogeneous solution of both is prepared in advance using an organic solvent and then reacted is considered advantageous in terms of selectivity and yield. However, operations such as removal of the organic solvent after the reaction are complicated, and toxicity of the organic solvent itself on the human body is regarded as a problem.

ピリジン類と過酸化水素の反応によるピリジン−N−オキシド類の合成反応においても、前記したように、これらの発想が踏襲され、酸または有機溶媒を使用して、ピリジン類油性溶液と過酸化水素を反応させてピリジン−N−オキシド類を製造するプロセスが採られている。   In the synthesis reaction of pyridine-N-oxides by the reaction of pyridines and hydrogen peroxide, as described above, these ideas are followed, and an acid or organic solvent is used to form an oil solution of pyridines and hydrogen peroxide. Is used to produce pyridine-N-oxides.

本発明者らは、かかる酸化反応を更に効率的にかつ環境・人体の保護の観点から、種々様々な研究、実験、理論的な考察を模索した結果、この過酸化水素を酸化剤とする非水溶性のピリジン類の酸化反応は、従来の技術常識とは異なり、酸および有機溶媒を一切使用せず、非水溶性のピリジン類油性溶液と過酸化水素水溶液の不均一溶液系で行った場合には、ピリジン−N−オキシド類が収率良く生成し、しかも環境負荷の軽減に著しく貢献することを知見した。このような知見は従来の技術常識では到底予期できるものではなく、本発明者の弛まぬ実験研究の積み重ねによって見いだされた現象である。   As a result of searching for various studies, experiments, and theoretical considerations from the viewpoint of more efficient and protecting the environment and the human body, the present inventors have found that this hydrogen peroxide is an oxidizing agent. Unlike conventional technology, the oxidation reaction of water-soluble pyridines is carried out in a heterogeneous solution system consisting of a water-insoluble pyridine oil-based solution and an aqueous hydrogen peroxide solution without using any acid or organic solvent. It was found that pyridine-N-oxides were produced with good yield and contributed significantly to reducing the environmental burden. Such knowledge is not expected in the conventional technical common sense, but is a phenomenon found by the continuous accumulation of experimental studies by the present inventor.

本発明における基質のピリジン類としては、従来公知のものが何れも使用でき、通常下記一般式(1)で示される化合物が用いられる。

Figure 0004072623
As the substrate pyridines in the present invention, any conventionally known pyridines can be used, and usually a compound represented by the following general formula (1) is used.
Figure 0004072623

式中、R1、R2、R3、R4およびR5はそれぞれ独立して同一または相異なり、水素原子、ヒドロキシ基、ハロゲン原子、カルボキシル基、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アルコキシ基、アシル基、アシロキシ基、ニトロ基、スルホン酸基、アルコキシカルボニル基、シリル基、ホスホリル基、スルフィニル基、スルホニル基、スルホナート基などの当該酸化反応に関与しない基を示し、必要に応じ当該酸化反応に不活性な置換基で置換されていてもよい。また、R1、R2、R3、R4およびR5のいずれか二つがそれぞれから水素原子を取り除いた残基で互いに結合して環を形成していても良く、さらにはR1、R2、R3、R4およびR5のいずれか二つから水素原子を取り除いた残基が2価の原子または/および2価の官能基を介して互いに結合して環を形成していても良い。 In the formula, R 1 , R 2 , R 3 , R 4 and R 5 are each independently the same or different and are each a hydrogen atom, a hydroxy group, a halogen atom, a carboxyl group, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group Group, aryl group, aralkyl group, alkoxy group, acyl group, acyloxy group, nitro group, sulfonic acid group, alkoxycarbonyl group, silyl group, phosphoryl group, sulfinyl group, sulfonyl group, sulfonate group, etc. Represents a group, and may be optionally substituted with a substituent inert to the oxidation reaction. Further, any two of R 1 , R 2 , R 3 , R 4 and R 5 may be bonded to each other with a residue obtained by removing a hydrogen atom from each other to form a ring, and further R 1 , R 2 , a residue obtained by removing a hydrogen atom from any two of R 3 , R 4 and R 5 may be bonded to each other via a divalent atom or / and a divalent functional group to form a ring. good.

本発明で好ましく使用されるピリジン類としては、例えば、ピリジン、2−ピコリン、3−ピコリン、4−ピコリン、2−ピリジンメタノール、3−ピリジンメタノール、4−ピリジンメタノール、4−フェニルピリジン、3−クロロピリジン、2,6−ルチジン、2,4,6−コリジン、キノリンなどが挙げられる。 Examples of pyridines preferably used in the present invention include pyridine, 2-picoline, 3-picoline, 4-picoline, 2-pyridinemethanol, 3-pyridinemethanol, 4-pyridinemethanol, 4-phenylpyridine, 3- Examples include chloropyridine, 2,6-lutidine, 2,4,6-collidine, quinoline and the like.

過酸化水素の使用量はピリジン類の窒素原子に対して通常1〜20当量、好ましくは1〜8当量の範囲である。過酸化水素の濃度は特に制限はなく、市販の30%水溶液で充分であるが、3−20%程度に希釈して用いてもよい。 The amount of hydrogen peroxide used is usually in the range of 1 to 20 equivalents, preferably 1 to 8 equivalents, relative to the nitrogen atoms of the pyridines. The concentration of hydrogen peroxide is not particularly limited, and a commercially available 30% aqueous solution is sufficient, but it may be diluted to about 3-20%.

本発明方法で用いる触媒は、タングステン酸を主体とするものである。その使用量に特に制限はないが、通常、原料のピリジン類に対して0.000001〜0.2当量、好ましくは0.0001〜0.1当量の範囲から選ばれる。The catalyst used in the method of the present invention is mainly composed of tungstic acid. Although there is no restriction | limiting in particular in the usage-amount, Usually, it is chosen from the range of 0.000001-0.2 equivalent with respect to pyridines of a raw material, Preferably it is 0.0001-0.1 equivalent.

本発明の製造方法で用いる触媒は、前記したタングステン酸を主体とするものであるが、必要に応じ、四級アンモニウム塩等の補助触媒等を使用することも可能である。The catalyst used in the production method of the present invention is mainly composed of the above-described tungstic acid, but an auxiliary catalyst such as a quaternary ammonium salt can be used as necessary.

本発明方法の反応条件には、特に制約はないが、通常、反応は30〜120 ℃、好ましくは50〜100 ℃の範囲で行われる。反応圧力は常圧、加圧、減圧のいずれでも良いが、常圧で行うことが望ましい。 The reaction conditions for the process of the present invention are not particularly limited, but the reaction is usually carried out in the range of 30 to 120 ° C, preferably 50 to 100 ° C. The reaction pressure may be normal pressure, pressurization, or reduced pressure, but it is desirable to carry out the reaction at normal pressure.

本発明の好ましい製造方法においては、非水溶性のピリジン類油性溶液と触媒を混合した溶液を反応実施温度まで加温し、ついで過酸化水素水溶液を徐々に滴下して撹拌しながら反応させる方法が採られる。 In a preferred production method of the present invention, there is a method in which a solution obtained by mixing a water-insoluble pyridine oil-based solution and a catalyst is heated to a reaction temperature, and then a hydrogen peroxide aqueous solution is gradually added dropwise and reacted while stirring. Taken.

本発明方法で得られるピリジン−N−オキシド類は、通常下記一般式(2)で示される。

Figure 0004072623

(式中の各記号は、一般式(1)と同じ。) The pyridine-N-oxides obtained by the method of the present invention are usually represented by the following general formula (2).
Figure 0004072623

(Each symbol in the formula is the same as in the general formula (1).)

このような、ピリジン−N−オキシド類としては、例えば、ピリジン−N−オキシド、2−ピコリン−N−オキシド、3−ピコリン−N−オキシド、4−ピコリン−N−オキシド、2−ピリジンメタノール−N−オキシド、3−ピリジンメタノール−N−オキシド、4−ピリジンメタノール−N−オキシド、4−フェニルピリジン−N−オキシド、3−クロロピリジン−N−オキシド、2,6−ルチジン−N−オキシド、2,4,6−コリジン−N−オキシド、キノリン−N−オキシドなどが例示される。 Examples of such pyridine-N-oxides include pyridine-N-oxide, 2-picoline-N-oxide, 3-picoline-N-oxide, 4-picoline-N-oxide, 2-pyridinemethanol- N-oxide, 3-pyridinemethanol-N-oxide, 4-pyridinemethanol-N-oxide, 4-phenylpyridine-N-oxide, 3-chloropyridine-N-oxide, 2,6-lutidine-N-oxide, Examples include 2,4,6-collidine-N-oxide and quinoline-N-oxide.

生成した目的生成物であるピリジン−N−オキシド類は、反応終了後に水相から分離して取り出し、再結晶や蒸留、昇華等の通常の方法によって精製することが出来る。   The produced target product, pyridine-N-oxides, can be separated and taken out from the aqueous phase after completion of the reaction, and purified by usual methods such as recrystallization, distillation and sublimation.

以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by these Examples.

実施例1
H2WO4 (25.0 mg, 0.100 mmol)とピリジン(0.81 mL, 10 mmol)を混合し、60 ℃で10分間撹拌した。その混合溶液へ30%過酸化水素水溶液(3.4 mL, 30 mmol)を徐々に滴下し、60 ℃で24時間撹拌した後、反応溶液を室温まで冷却した。GCおよびNMRを測定したところ、ピリジン−N−オキシドの収率は97%であった。
Example 1
H 2 WO 4 (25.0 mg, 0.100 mmol) and pyridine (0.81 mL, 10 mmol) were mixed and stirred at 60 ° C. for 10 minutes. A 30% aqueous hydrogen peroxide solution (3.4 mL, 30 mmol) was gradually added dropwise to the mixed solution and stirred at 60 ° C. for 24 hours, and then the reaction solution was cooled to room temperature. When the GC and NMR were measured, the yield of pyridine-N-oxide was 97%.

比較例1
ピリジンと過酸化水素水溶液が均一相をなすように、あらかじめジオキサン(10 mL)を加えた以外は実施例1と同じ条件で反応を行った結果、ピリジン−N−オキシドの収率は9%であった。
Comparative Example 1
The reaction was performed under the same conditions as in Example 1 except that dioxane (10 mL) was added in advance so that the pyridine and hydrogen peroxide aqueous solution formed a homogeneous phase. As a result, the yield of pyridine-N-oxide was 9%. there were.

実施例2
H2WO4 (250.0 mg, 1.000 mmol)とピリジン(8.10 mL, 100 mmol)を混合し、60 ℃で20分間撹拌した。その混合溶液へ30%過酸化水素水溶液(34.0 mL, 300 mmol)を徐々に滴下し、60 ℃で24時間撹拌した後、反応溶液を室温まで冷却した。過剰の過酸化水素を二酸化マンガンで分解した。溶液をろ過し、エバポレータで水を留去した後、蒸留により得られたピリジン−N−オキシド(8.37g, 88 mmol)の収率は88%であった。
Example 2
H 2 WO 4 (250.0 mg, 1.000 mmol) and pyridine (8.10 mL, 100 mmol) were mixed and stirred at 60 ° C. for 20 minutes. A 30% aqueous hydrogen peroxide solution (34.0 mL, 300 mmol) was gradually added dropwise to the mixed solution, followed by stirring at 60 ° C. for 24 hours, and then the reaction solution was cooled to room temperature. Excess hydrogen peroxide was decomposed with manganese dioxide. After filtering the solution and distilling off water with an evaporator, the yield of pyridine-N-oxide (8.37 g, 88 mmol) obtained by distillation was 88%.

参考例1
H3[P(W3O10)4] (24.0 mg, 0.0083 mmol)とピリジン(0.81 mL, 10 mmol)を混合し、60 ℃で10分間撹拌した。その混合溶液へ30%過酸化水素水溶液(3.4 mL, 30 mmol)を徐々に滴下し、60 ℃で24時間撹拌した後、反応溶液を室温まで冷却した。GCおよびNMRを測定したところ、ピリジン−N−オキシドの収率は63%であった。
Reference example 1
H 3 [P (W 3 O 10 ) 4 ] (24.0 mg, 0.0083 mmol) and pyridine (0.81 mL, 10 mmol) were mixed and stirred at 60 ° C. for 10 minutes. A 30% aqueous hydrogen peroxide solution (3.4 mL, 30 mmol) was gradually added dropwise to the mixed solution and stirred at 60 ° C. for 24 hours, and then the reaction solution was cooled to room temperature. As a result of measuring GC and NMR, the yield of pyridine-N-oxide was 63%.

参考例2
MoO3 (14.4 mg, 0.100 mmol)とピリジン(0.81 mL, 10 mmol)を混合し、60 ℃で10分間撹拌した。その混合溶液へ30%過酸化水素水溶液(3.4 mL, 30 mmol)を徐々に滴下し、60 ℃で24時間撹拌した後、反応溶液を室温まで冷却した。GCおよびNMRを測定したところ、ピリジン−N−オキシドの収率は12%であった。
Reference example 2
MoO 3 (14.4 mg, 0.100 mmol) and pyridine (0.81 mL, 10 mmol) were mixed and stirred at 60 ° C. for 10 minutes. A 30% aqueous hydrogen peroxide solution (3.4 mL, 30 mmol) was gradually added dropwise to the mixed solution and stirred at 60 ° C. for 24 hours, and then the reaction solution was cooled to room temperature. When the GC and NMR were measured, the yield of pyridine-N-oxide was 12%.

実施例3
H2WO4 (125.0 mg, 0.500 mmol)と2−ピコリン(0.97 mL, 10 mmol)を混合し、60 ℃で10分間撹拌した。その混合溶液へ30%過酸化水素水溶液(3.4 mL, 30 mmol)を徐々に滴下し、60 ℃で24時間撹拌した後、反応溶液を室温まで冷却した。GCおよびNMRを測定したところ、2−ピコリン−N−オキシドの収率は100%であった。
Example 3
H 2 WO 4 (125.0 mg, 0.500 mmol) and 2-picoline (0.97 mL, 10 mmol) were mixed and stirred at 60 ° C. for 10 minutes. A 30% aqueous hydrogen peroxide solution (3.4 mL, 30 mmol) was gradually added dropwise to the mixed solution and stirred at 60 ° C. for 24 hours, and then the reaction solution was cooled to room temperature. When GC and NMR were measured, the yield of 2-picoline-N-oxide was 100%.

実施例4
H2WO4 (125.0 mg, 0.500 mmol)と3−ピコリン(0.97 mL, 10 mmol)を混合し、60 ℃で10分間撹拌した。その混合溶液へ30%過酸化水素水溶液(3.4 mL, 30 mmol)を徐々に滴下し、60 ℃で24時間撹拌した後、反応溶液を室温まで冷却した。GCおよびNMRを測定したところ、3−ピコリン−N−オキシドの収率は98%であった。
Example 4
H 2 WO 4 (125.0 mg, 0.500 mmol) and 3-picoline (0.97 mL, 10 mmol) were mixed and stirred at 60 ° C. for 10 minutes. A 30% aqueous hydrogen peroxide solution (3.4 mL, 30 mmol) was gradually added dropwise to the mixed solution and stirred at 60 ° C. for 24 hours, and then the reaction solution was cooled to room temperature. When the GC and NMR were measured, the yield of 3-picoline-N-oxide was 98%.

実施例5
H2WO4 (125.0 mg, 0.500 mmol)と4−ピコリン(0.97 mL, 10 mmol)を混合し、60 ℃で10分間撹拌した。その混合溶液へ30%過酸化水素水溶液(3.4 mL, 30 mmol)を徐々に滴下し、60 ℃で24時間撹拌した後、反応溶液を室温まで冷却した。GCおよびNMRを測定したところ、4−ピコリン−N−オキシドの収率は99%であった。
Example 5
H 2 WO 4 (125.0 mg, 0.500 mmol) and 4-picoline (0.97 mL, 10 mmol) were mixed and stirred at 60 ° C. for 10 minutes. A 30% aqueous hydrogen peroxide solution (3.4 mL, 30 mmol) was gradually added dropwise to the mixed solution and stirred at 60 ° C. for 24 hours, and then the reaction solution was cooled to room temperature. When GC and NMR were measured, the yield of 4-picoline-N-oxide was 99%.

実施例6
H2WO4 (125.0 mg, 0.500 mmol)と2−ピリジンメタノール(0.97 mL, 10 mmol)を混合し、60 ℃で10分間撹拌した。その混合溶液へ30%過酸化水素水溶液(3.4 mL, 30 mmol)を徐々に滴下し、60 ℃で24時間撹拌した後、反応溶液を室温まで冷却した。GCおよびNMRを測定したところ、2−ピリジンメタノール−N−オキシドの収率は88%であった。
Example 6
H 2 WO 4 (125.0 mg, 0.500 mmol) and 2-pyridinemethanol (0.97 mL, 10 mmol) were mixed and stirred at 60 ° C. for 10 minutes. A 30% aqueous hydrogen peroxide solution (3.4 mL, 30 mmol) was gradually added dropwise to the mixed solution and stirred at 60 ° C. for 24 hours, and then the reaction solution was cooled to room temperature. When GC and NMR were measured, the yield of 2-pyridinemethanol-N-oxide was 88%.

実施例7
H2WO4 (125.0 mg, 0.500 mmol)と3−ピリジンメタノール(0.96 mL, 10 mmol)を混合し、60 ℃で10分間撹拌した。その混合溶液へ30%過酸化水素水溶液(3.4 mL, 30 mmol)を徐々に滴下し、60 ℃で24時間撹拌した後、反応溶液を室温まで冷却した。GCおよびNMRを測定したところ、3−ピリジンメタノール−N−オキシドの収率は83%であった。
Example 7
H 2 WO 4 (125.0 mg, 0.500 mmol) and 3-pyridinemethanol (0.96 mL, 10 mmol) were mixed and stirred at 60 ° C. for 10 minutes. A 30% aqueous hydrogen peroxide solution (3.4 mL, 30 mmol) was gradually added dropwise to the mixed solution and stirred at 60 ° C. for 24 hours, and then the reaction solution was cooled to room temperature. When GC and NMR were measured, the yield of 3-pyridinemethanol-N-oxide was 83%.

実施例8
H2WO4 (125.0 mg, 0.500 mmol)と4−ピリジンメタノール(1.091 g, 10 mmol)を混合し、60 ℃で10分間撹拌した。その混合溶液へ30%過酸化水素水溶液(3.4 mL, 30 mmol)を徐々に滴下し、60 ℃で24時間撹拌した後、反応溶液を室温まで冷却した。GCおよびNMRを測定したところ、4−ピリジンメタノール−N−オキシドの収率は90%であった。
Example 8
H 2 WO 4 (125.0 mg, 0.500 mmol) and 4-pyridinemethanol (1.091 g, 10 mmol) were mixed and stirred at 60 ° C. for 10 minutes. A 30% aqueous hydrogen peroxide solution (3.4 mL, 30 mmol) was gradually added dropwise to the mixed solution and stirred at 60 ° C. for 24 hours, and then the reaction solution was cooled to room temperature. When GC and NMR were measured, the yield of 4-pyridinemethanol-N-oxide was 90%.

実施例9
H2WO4 (125.0 mg, 0.500 mmol)と4−フェニルピリジン(1.552 g, 10 mmol)を混合し、60 ℃で10分間撹拌した。その混合溶液へ30%過酸化水素水溶液(3.4 mL, 30 mmol)を徐々に滴下し、60 ℃で24時間撹拌した後、反応溶液を室温まで冷却した。GCおよびNMRを測定したところ、4−フェニルピリジン−N−オキシドの収率は90%であった。
Example 9
H 2 WO 4 (125.0 mg, 0.500 mmol) and 4-phenylpyridine (1.552 g, 10 mmol) were mixed and stirred at 60 ° C. for 10 minutes. A 30% aqueous hydrogen peroxide solution (3.4 mL, 30 mmol) was gradually added dropwise to the mixed solution and stirred at 60 ° C. for 24 hours, and then the reaction solution was cooled to room temperature. When the GC and NMR were measured, the yield of 4-phenylpyridine-N-oxide was 90%.

実施例10
H2WO4 (125.0 mg, 0.500 mmol)と2−クロロピリジン(0.94 mL, 10 mmol)を混合し、60 ℃で10分間撹拌した。その混合溶液へ30%過酸化水素水溶液(3.4 mL, 30 mmol)を徐々に滴下し、60 ℃で24時間撹拌した後、反応溶液を室温まで冷却した。GCおよびNMRを測定したところ、2−クロロピリジン−N−オキシドの収率は85%であった。
Example 10
H 2 WO 4 (125.0 mg, 0.500 mmol) and 2-chloropyridine (0.94 mL, 10 mmol) were mixed and stirred at 60 ° C. for 10 minutes. A 30% aqueous hydrogen peroxide solution (3.4 mL, 30 mmol) was gradually added dropwise to the mixed solution and stirred at 60 ° C. for 24 hours, and then the reaction solution was cooled to room temperature. As a result of GC and NMR measurement, the yield of 2-chloropyridine-N-oxide was 85%.

実施例11
H2WO4 (25.0 mg, 0.100 mmol)と3−クロロピリジン(0.95 mL, 10 mmol)を混合し、60 ℃で10分間撹拌した。その混合溶液へ30%過酸化水素水溶液(3.4 mL, 30 mmol)を徐々に滴下し、60 ℃で24時間撹拌した後、反応溶液を室温まで冷却した。GCおよびNMRを測定したところ、3−クロロピリジン−N−オキシドの収率は97%であった。
Example 11
H 2 WO 4 (25.0 mg, 0.100 mmol) and 3-chloropyridine (0.95 mL, 10 mmol) were mixed and stirred at 60 ° C. for 10 minutes. A 30% aqueous hydrogen peroxide solution (3.4 mL, 30 mmol) was gradually added dropwise to the mixed solution and stirred at 60 ° C. for 24 hours, and then the reaction solution was cooled to room temperature. When GC and NMR were measured, the yield of 3-chloropyridine-N-oxide was 97%.

実施例12
H2WO4 (125.0 mg, 0.500 mmol)と2,6−ルチジン(1.16 mL, 10 mmol)を混合し、60 ℃で10分間撹拌した。その混合溶液へ30%過酸化水素水溶液(3.4 mL, 30 mmol)を徐々に滴下し、60 ℃で24時間撹拌した後、反応溶液を室温まで冷却した。GCおよびNMRを測定したところ、2,6−ルチジン−N−オキシドの収率は92%であった。
Example 12
H 2 WO 4 (125.0 mg, 0.500 mmol) and 2,6-lutidine (1.16 mL, 10 mmol) were mixed and stirred at 60 ° C. for 10 minutes. A 30% aqueous hydrogen peroxide solution (3.4 mL, 30 mmol) was gradually added dropwise to the mixed solution and stirred at 60 ° C. for 24 hours, and then the reaction solution was cooled to room temperature. When GC and NMR were measured, the yield of 2,6-lutidine-N-oxide was 92%.

実施例13
H2WO4 (125.0 mg, 0.500 mmol)と2,4,6−コリジン(1.32 mL, 10 mmol)を混合し、60 ℃で10分間撹拌した。その混合溶液へ30%過酸化水素水溶液(5.7 mL, 50 mmol)を徐々に滴下し、60 ℃で24時間撹拌した後、反応溶液を室温まで冷却した。GCおよびNMRを測定したところ、2,4,6−コリジン−N−オキシドの収率は83%であった。
Example 13
H 2 WO 4 (125.0 mg, 0.500 mmol) and 2,4,6-collidine (1.32 mL, 10 mmol) were mixed and stirred at 60 ° C. for 10 minutes. A 30% aqueous hydrogen peroxide solution (5.7 mL, 50 mmol) was gradually added dropwise to the mixed solution and stirred at 60 ° C. for 24 hours, and then the reaction solution was cooled to room temperature. When GC and NMR were measured, the yield of 2,4,6-collidine-N-oxide was 83%.

実施例14
H2WO4 (25.0 mg, 0.100 mmol)とキノリン(1.20 mL, 10 mmol)を混合し、60 ℃で10分間撹拌した。その混合溶液へ30%過酸化水素水溶液(3.4 mL, 30 mmol)を徐々に滴下し、60 ℃で24時間撹拌した後、反応溶液を室温まで冷却した。GCおよびNMRを測定したところ、キノリン−N−オキシドの収率は91%であった。
Example 14
H 2 WO 4 (25.0 mg, 0.100 mmol) and quinoline (1.20 mL, 10 mmol) were mixed and stirred at 60 ° C. for 10 minutes. A 30% aqueous hydrogen peroxide solution (3.4 mL, 30 mmol) was gradually added dropwise to the mixed solution and stirred at 60 ° C. for 24 hours, and then the reaction solution was cooled to room temperature. When the GC and NMR were measured, the yield of quinoline-N-oxide was 91%.

Claims (1)

タングステン酸触媒の存在下、非水溶性のピリジン類それ自体の油性液と過酸化水素水溶液を、酸および有機溶媒を用いずに、不均一溶液系で反応させることを特徴とするピリジン−N−オキシド類の製造方法。Pyridine-N- characterized by reacting an oily liquid of water-insoluble pyridine itself with an aqueous hydrogen peroxide solution in the presence of a tungstic acid catalyst in a heterogeneous solution system without using an acid and an organic solvent. A method for producing oxides.
JP2004066420A 2004-03-09 2004-03-09 Method for producing pyridine-N-oxides Expired - Lifetime JP4072623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004066420A JP4072623B2 (en) 2004-03-09 2004-03-09 Method for producing pyridine-N-oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004066420A JP4072623B2 (en) 2004-03-09 2004-03-09 Method for producing pyridine-N-oxides

Publications (2)

Publication Number Publication Date
JP2005255560A JP2005255560A (en) 2005-09-22
JP4072623B2 true JP4072623B2 (en) 2008-04-09

Family

ID=35081651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004066420A Expired - Lifetime JP4072623B2 (en) 2004-03-09 2004-03-09 Method for producing pyridine-N-oxides

Country Status (1)

Country Link
JP (1) JP4072623B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102060760A (en) * 2010-12-14 2011-05-18 上海天洋热熔胶有限公司 Preparation method of N-pyridine oxide

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2691379C (en) 2007-06-20 2015-06-09 Auspex Pharmaceuticals, Inc. Substituted n-aryl pyridinones
WO2011125568A1 (en) 2010-04-06 2011-10-13 日本曹達株式会社 Nitrogen-containing heterocyclic compound and method for producing same
WO2012122165A2 (en) 2011-03-08 2012-09-13 Auspex Pharmaceuticals, Inc. Substituted n-aryl pyridinones
JP6202280B2 (en) 2012-09-27 2017-09-27 日産化学工業株式会社 Process for producing nitrogen-containing heterocyclic N-oxide compound
CN116924981A (en) * 2023-07-21 2023-10-24 北京弗莱明科技有限公司 Method for continuously and efficiently preparing pyridine nitrogen oxides

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102060760A (en) * 2010-12-14 2011-05-18 上海天洋热熔胶有限公司 Preparation method of N-pyridine oxide
CN102060760B (en) * 2010-12-14 2012-04-04 上海天洋热熔胶有限公司 Preparation method of N-pyridine oxide

Also Published As

Publication number Publication date
JP2005255560A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
US8962849B2 (en) Nitrogen-containing heterocyclic compound and method for producing same
Hu et al. Highly efficient oxidation of organic halides to aldehydes and ketones with H5IO6 in ionic liquid [C12mim][FeCl4]
JP4072623B2 (en) Method for producing pyridine-N-oxides
EP1746089B1 (en) Process for the preparation of 2-cyanopyridine derivatives
JP4764586B2 (en) Method for producing 2-cyanopyridine
CN111170933B (en) Preparation method of 2-chloro-5-nitropyridine
US5587464A (en) Process for producing diazomethane derivatives
JP6464970B2 (en) Method for producing oxaziridine compound
JP3805788B2 (en) Method for producing cyanopyridines
EP1184375B1 (en) Process for preparing tribromomethylsulfonylpyridine
JP4534520B2 (en) Method for producing tungsten complex
AU2014201036B2 (en) Nitrogen-containing heterocyclic compound and method for producing same
Bahrami-Nasab et al. Polymer-supported dichloroiodate as a new polymeric oxidation reagent for novel and selective oxidation of benzylic alcohols under mild aprotic conditions
JP2003286243A (en) Method for producing n-oxide and catalyst therefor
JPH0987214A (en) Production of 4,4'-bis(chloromethyl)biphenyl
JP2019069908A (en) Production method of dipyridyl ethylene
CN117247350A (en) Synthesis method of quinoline-2-xanthate
JP5308763B2 (en) Method for producing N-fluoropyridinium salt
WO2006062201A1 (en) Method for producing thiocarbamate derivative
JP2004300058A (en) Method for producing pyridines containing trifluoromethyl group

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Ref document number: 4072623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term