JP4072578B2 - Projection device for regeneration of deteriorated catalyst - Google Patents

Projection device for regeneration of deteriorated catalyst Download PDF

Info

Publication number
JP4072578B2
JP4072578B2 JP14104999A JP14104999A JP4072578B2 JP 4072578 B2 JP4072578 B2 JP 4072578B2 JP 14104999 A JP14104999 A JP 14104999A JP 14104999 A JP14104999 A JP 14104999A JP 4072578 B2 JP4072578 B2 JP 4072578B2
Authority
JP
Japan
Prior art keywords
catalyst
projection
polishing
flow
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14104999A
Other languages
Japanese (ja)
Other versions
JP2000325801A (en
Inventor
光信 宇佐美
元 永井
安延 石村
謙三 西川
尚武 佐伯
広志 久次米
吉典 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Electric Power Co Inc
Original Assignee
Shikoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Electric Power Co Inc filed Critical Shikoku Electric Power Co Inc
Priority to JP14104999A priority Critical patent/JP4072578B2/en
Publication of JP2000325801A publication Critical patent/JP2000325801A/en
Application granted granted Critical
Publication of JP4072578B2 publication Critical patent/JP4072578B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、触媒パックを排煙脱硝装置内に設置したままで迅速に劣化した触媒機能の再生工事の施工を可能ならしめる劣化触媒再生用の投射装置に関する。
【0002】
【従来の技術】
国際的にみて我が国の電気料金が割高であって、産業界の国際競争力強化を図る上で重要な問題点であることが、近年とみにクロ−ズアップされており、電力会社に対する電気料金の値下げ要求は声高なものとなっている。係る社会的状況から、火力発電所では、燃料コストが最も安い海外で採取された石炭を発電用燃料として採用し、この石炭を微粉状に粉砕して燃焼させ、必要な発電エネルギ−を得る機運にある。そして、このような火力発電所では、公害防止の観点から排煙脱硝装置が設置されているが、該排煙脱硝装置には、多数の触媒ピ−スが内蔵された触媒パックが各階層に一定間隔にて多数配置されている。
【0003】
ところで、排煙脱硝装置は、高価な設備であるので、内蔵された触媒が長期間にわたり安定した高脱硝率の触媒機能を発揮することか設備費低減を図る上で望ましいことから、従来から、新しい触媒に取り換える時期を極力先延ばしすべく、一定期間の使用により触媒機能が劣化した触媒を再生する技術開発がなされており、例えば、特開昭58−150439号公報、特開昭61−263646号公報、特公平7−14486号公報にそれぞれ提案された技術がある。
【0004】
特開昭58−150439号公報に開示された提案は、活性体表面に近い極く僅かな層に集中するアッシュ等による活性体部の細孔の目詰まり部、及び被毒物質堆積部を削り落として触媒の性能を回復させるべく、所定の断面形状を備えたガス通路を有する平行流式触媒を内蔵したガス処理装置において、触媒のガス通路の端面に対向して設置されたス−ツブロ−ノズルからガス体と粉体とを同時に噴射して触媒表面に付着している触媒被毒物質を強制的に耗させて除去するものである。
【0005】
また、特開昭61−263646号公報に開示された提案は、石炭焚ガスに含まれるカルシウム成分が、触媒の表面にコ−ティングしたものを除去して触媒性能を再生し、触媒の寿命を長期化することを目的としたものであって、触媒パックの下方位置に設けられた下部ホッパ−の流入口近くに配設された流動化空気入口弁から空気を導入して下部ホッパ−中を触媒パック側に流通させ、この後、下部ホッパ−の上方位置にて研材を供給し耗材とともに空気を更に触媒パック側に流動化させる手段を講じることにより、脱硝性能の低下(触媒機能の低下)した触媒の表面に流動化させた耗材を接触させ、触媒表面に付着している触媒被毒物質を除去する提案である。
【0006】
更に、特公平7−14486号公報に開示された提案は、劣化触媒表面の上面の耗防止を図りながら、触媒表面(側面)を研削除去することにより、触媒強度に実用上の支障なく、効率よく触媒機能の再生を行うことを目的としたものであって、予め劣化触媒の上面に触媒端面保護多孔体を取り付けた後、触媒および触媒端面保護多孔体を密閉容器内に収納し、この密閉容器の下部にサイクロン、フィルタ−を介してブロアを接続し、密閉容器の上部に設けられた定量供給機から珪砂を空気流に乗せて密閉容器内の触媒内に導入する手段を講じることにより、流動する珪砂により触媒孔内表面に付着している触媒被毒物質を研削して除去することにより多数の筒状、ハニカム状または多数の板状に形成された劣化触媒の触媒機能の再生をはかる提案である。
【0007】
【発明が解決しようとする課題】
ところで、排煙脱硝装置(特開昭58−150439号公報に開示するガス処理装置に相当する。)は、限られた設置スペ−スに多数の触媒ピ−スを内蔵する触媒パック(特公平7−14486号公報に開示する密閉容器に相当する。)を極力多数設置すべく、一定間隔で所定の位置に密集した状態でそれぞれ設置されている。このため、同一階層で隣接する触媒パック間の同一階層隙間空間、上階層と下階層間で隣接する触媒パック間の上下階間隙間空間は共に極めて狭く(成人が腰をかがめて出入り出来る程度の空間)、また、これら多数の触媒パック等の重量を支えるため、多数の柱部材や梁部材等の構造部材か所定の位置に配設された構造となっている。
【0008】
しかるに、特開昭58−150439号公報が開示する提案であるス−ツブロ−ノズルを触媒のガス通路の端面に対向して設置すること、特開昭61−263646号公報が開示する提案を実現する前提となる触媒パックの下方位置に下部ホッパ−を設ける手段を講じること、特公平7−14486号公報が開示する提案を実現する前提となる密閉容器の下部にサイクロン、フィルタを介してブロアを接続すること、及び密閉容器の上部に定量供給機を設ける手段を講じることは、前記した排煙脱硝装置の構造から、これら手段が、狭い同一階層隙間空間や上下階層隙間空間に設置できないことと柱部材や梁部材と接触する等から、触媒パックを排煙脱硝装置内に密集状態で所定の位置に設置したままで、これら手段を講じることは不可能である。
【0009】
このため、排煙脱硝装置内に触媒パックを設置したままで触媒再生工事を施工することができず、排煙脱硝装置から多数の触媒パックそれぞれを再生工事を実施する毎に逐次取り出して所定の触媒機能の再生工事をなし、再生完了後に再度元の設置位置に戻すといった作業を反復実行せねばならない。
【0010】
また、前記した各提案は、通常の所要動力の圧送手段(ブロア−等)による圧送力により、空気とともに研材を、一の触媒バックの上面側に単に圧送流動なさしめた後、圧送圧の作用を受けるにまかせて、一の触媒パックを構成する全ての触媒ピ−スそれぞれに対して投射するものであるが、係る投射では、投射方向に流動する空気の圧送圧や流動速度が投射空間全域で等しくないため、各触媒ピ−スそれぞれに対する単位時間当たりの研材の投射量にバラツキが大きくなる。
【0011】
このため、単位時間当たりの研材の投射量が過大に投射された触媒ピ−スは、研材が触媒壁に付着した触媒被毒物質を除去する作用をなす前に、触媒穴入り口付近が短時間に大きな摩耗力を受けて損傷してしまう。この一方、単位時間当たりの研材の投射量が過小に投射された触媒ピ−スでは、触媒壁に付着した触媒被毒物質を除去する作用をなす研材の単位時間当たりの量が不足することから、触媒壁に付着した触媒被毒物質を除去するのに長時間を要したり除去漏れが生じる。
【0012】
係る投射・除去状況となるので、単位時間当たりの研材が過大に投射される状況を考慮して投射時間を短く設定すると、一の触媒パックを構成する一部の触媒グル−プに触媒被毒物質の除去残しが生じ触媒機能の再生ができない事態となる。また、単位時間当たりの研材が過小に投射される状況を考慮して投射時間を長めに設定すると、前記した理由から一の触媒パックを構成する一部の触媒グル−プが損傷する事態となる。
【0013】
このような事態を回避しながら一の触媒バックを構成する全ての触媒を損傷することなく付着した触媒被毒物質を除去しようとすれば、研材が投射された触媒の状況を観察しながら投射時間を細かく調整する必要があり、非常に手間のかかる触媒再生工事とならざるを得ない。
【0014】
また、通常の所要動力のブロア−等による圧送力により、空気とともに研材を、圧送力のみに依存して一の触媒パックを構成する全ての触媒ピ−スに対して分散投射するため、各触媒ピ−スに対する研材の貫徹力が弱まる。このため、触媒内に流入当初での断面積急減に伴う流動速度向上の効果があるものの、各触媒ピ−スを構成する多数の各触媒内を空気とともに流動する研材の流動速度の高速化は望めず、触媒表面を研する作用力の向上には一定の限界があり、一の触媒パックに内蔵された全ての劣化した触媒の触媒機能の再生に時間がかかる。
【0015】
前記したように非常に手間がかかるとともに劣化した触媒機能の再生に時間がかかることから、排煙脱硝装置に対する触媒機能の再生工事期間の長期化が避けられず、劣化触媒の再生工事をなすことを最初から放棄し、新品の触媒パックを手当てする方策を採用するほうが全体としてコスト減となる程、再生工事費用が膨大となる。また、長期にわたる再生工事間に遭遇する可能性が高まる降雨により、触媒パックに水分が降りかかると、触媒機能自体が毀損され、以降使用不能な事態を招く危険性も高い。
【0016】
さらに、特公平7−14486号公報に開示している触媒再生をなす前に劣化触媒の上方端面に触媒保護多孔体を取り付け、研材を空気とともに流入する初期段階での過大な耗を阻止する提案がなされているが、一般に触媒機能が劣化するまで触媒パックを脱硝に使用すると、内蔵された大部分の触媒の上方端面は一部が破損しており、しかも破損の程度と状態は触媒毎に相違している。
【0017】
このため、上方位置から一定長さの触媒保護多孔体を一律に触媒の上方端面に取り付けても、空気とともに流動する研材の流動拡散開始位置が、どの触媒についても触媒保護多孔体の下端であるので、流動拡散した研材が、より一層脱硝に伴う破損が激しい隣接する触媒に衝突して摩耗損傷を生じさせてしまい、触媒保護多孔体を触媒の上方端面に取り付けた目的が果たせないことになる。
【0018】
以上説明した如く、従来の前記した各提案では、排煙脱硝装置内に設置された多数の触媒パックそれぞれに内蔵され一定期間の使用により触媒機能か低下した多数の触媒ピ−スを、火力発電所の運転計画に対応なさしめて経済的に触媒機能を再生することが事実上不可能であって、新品の触媒パックに取り替えるしか方策がなかった。
【0019】
本発明は、前記した事情に鑑み、触媒パックを排煙脱硝装置に設置したままで劣化触媒の再生工事の施工が可能であって、しかも、短時間で劣化した触媒の触媒機能を確実に再生なさしめ得る、劣化触媒再生用の投射装置を提供することを目的とする。
【0020】
【課題を解決するための手段】
請求項1に記載の発明は、下記二つの解決手段により係る目的を達成することとしたものてある。第一の解決手段は、一の触媒パックの触媒機能を再生する工事をなすにあたり、一の触媒パックを構成する多数の触媒ピ−スそれぞれ毎に劣化触媒の触媒機能の再生工事をなすとともに、個々の触媒ピ−ス毎に再生工事をなす際に、空気とともに研材を、個々の触媒ピ−スを構成する多数の触媒に向けて強制的に投射に好適な拡散流動をなさしめる施工方策としたものである。
【0021】
即ち、触媒パックの上面から極めて近い位置を、圧送流動から投網状拡散流動転換位置とし、該転換位置から空気とともに研材が一の触媒ピ−スに向けて投網状に流動し得る投射構造として、一の触媒ピ−スを構成する多数の各触媒それぞれに対する研材の単位時間当たり投射量のバラツキを最小化するとともに投射装置全体をコンパクト化して、触媒パックを排煙脱硝装置に設置したままで、排煙脱硝装置内で作業者が所定の劣化触媒の再生作業ができるようにしたものである。
【0022】
また、第二の解決手段は、流動断面積の急減により運動量急増状態となり、物体と接触すると強固に摩擦力を作用する状態にある時点の研材が、触媒に直接接触させないように、流動断面積が急減する流動挙動となるのを投射経路の当初に設定し、投射経路の中間経路で流動速度が加速され一方向にのみ整然と流動する状態となさしめ、研材を含む加圧空気がノズルから触媒の内部空間に投射されると投射周辺域は低投射速度であるが投射中心域は最大投射速度となる投射速度分布となる状況を投射経路の終端経路に設定する等、流体力学上の緒現象を巧みに利用して投射経路の各経路それぞれにおいて好適な流動挙動となるように仕向けることにより、触媒に対して何らの損傷を生じさせることなく所定の触媒機能を再生せしめ、一回の劣化触媒の再生作業に要する時間の大幅短縮を可能ならしめたものである。
【0023】
具体的には、一の触媒ピ−スを構成する触媒群のうち最も外方に配設された一部の触媒群を除いた他の触媒群が配設された配設領域より若干広い外形形状であって他の触媒群を構成する多数の触媒の配設間隔と同一間隔で且つ配設数と同数のノズル取付穴が穿設された投射区画部位と該投射区画部位の外側端から前記した一部の触媒群と対面可能な位置より更に若干外方まで延伸されて形成された連結部位からなる投射部材と、多数のノズル取付穴それぞれに脱着可能に装着された多数の差込ノズルとからなる投射手段と、その投射手段の流入側と同一形状に形成され前記した差込ノズルの内径と略同一内径の流動調整穴が前記したノズル取付穴と同一間隔にて同数穿設され流出側がその連結部位の流入側と連結された過大摩耗阻止・流動調整手段と、流出側にその過大摩耗阻止・流動調整手段の流入側の開口と同一開口形状に形成された流出口が設けられ流入側が圧送配管と略同形であって流動断面積が流入側から流出側に向けて漸次広くなるように形成され流出側が過大摩耗阻止・流動調整手段の流入側と連結されたケ−シング部材とそのケ−シング部材の流入側の流入中心軸に対して振り子状に回動自在な軸受部材を介してそのケ−シング部材の流入側に支持された研材導入部材とからなる投網状拡散流動構造の研材供給手段とから構成された劣化触媒再生用の投射装置としたものである。
【0024】
請求項2に記載の発明が講じた解決手段は、一定期間の使用により触媒機能が劣化した触媒は、上面の一部が損傷しており損傷の程度が触媒毎に異なる場合が多いので、このような現場状況であっても、研材がどの触媒にも損傷を及ぼさずに確実に触媒内に流入し得るようにしたものである。
【0025】
具体的には、請求項1に記載の発明に係る劣化触媒再生用の投射装置を前提とし、請求項1に記載の多数の差込ノズルそれぞれの長さを、触媒の損傷程度に応じて異ならしめたものである。
【0026】
請求項3に記載の発明が講じた解決手段は、前記した解決手段となる研材の投網状の拡散流動が、何人が劣化触媒の再生工事に従事しても常に一定の投網状の拡散流動状態になし得るようにして、劣化触媒再生工事の実用性を高めるようにしたものである。
【0027】
具体的には、請求項1に記載の発明に係る劣化触媒再生用の投射装置、又は請求項2に記載の発明に係る劣化触媒再生用の投射装置を前提とする。そして、請求項1に記載の投網状拡散流動構造の研材供給手段に代え、請求項記載のケ−シング部材と流入側から流出側に向けて流入中心軸に対して放射状に配設された複数の導入穴が設けられケ−シング部材の流入側と固定軸受部材を介して支持された研磨材導入部材とからなる投網状拡散流動構造の研磨材供給手段を構成要素としたものである。
【0028】
請求項4に記載の発明が講じた解決手段は、研材が加圧空気とともに流動するグル−プと加圧空気のみが流動するグル−プに分け、一旦、両グル−プそれぞれを投射方向とは異なる流動方向から投射装置内に流入させた直後に、両グル−プの一方を主として投射空間の周辺域に研材を回遊なさしめるのに寄与する渦巻状の回転流動をなさしめる一方、他方を研材が幅広く飛散されて拡散されるのに寄与するような衝突を伴う流動を投射装置内でなさしめる。そして、係る二系統の流動下にある両グル−プを入り混らせた流動状態で投射方向に拡散流動なさしめ、投射空間の周辺域にも中心域と同様に研材が回遊可能なようにして投射空間の全域にわたり研材の存在密度を均一となるように仕向け、多数の触媒それぞれに対する研材の単位時間当たり投射量のバラツキを最小化したものである。
【0029】
具体的には、請求項1に記載の発明に係る劣化触媒再生用の投射装置又は請求項2に記載の発明に係る劣化触媒再生用の投射装置を前提とする。そして、請求項1に記載の投網状拡散流動構造の研材供給手段に代えて、流出側に請求項1に記載の過大摩耗阻止・流動調整手段の流入側の開口と同一開口形状に形成された流出口が流入側に通過穴が側面側に一側流入口がそれぞれ設けられ流出側が請求項1に記載の過大摩耗阻止・流動調整手段の流入側と連結された多角形箱状ケ−シング部材と、流出側が前記した通過穴と連通なさしめて多角形箱状ケ−シング部材の流入側と連結され流入中心軸が周壁上の一箇所での接線と平行となさしめて他側流入口が周壁に設けられた円筒形ケ−シング部材と、一側流入口と連通なさしめて多角形箱状ケ−シング部材の側面に取付られた一側導入部材と、他側流入口と連通なさしめて円筒形ケ−シング部材の周壁に取付られた他側導入部材とからなる研材群の乱流拡散流動構造の研材供給手段を構成要素とする劣化触媒再生用の投射装置としたものである。
【0030】
請求項5に記載の発明が講じた解決手段は、研材が加圧空気とともに流動するグル−プと加圧空気のみが流動するグル−プに分け、一旦、両グル−プそれぞれが投射方向とは異なる流動方向から投射装置内に流入させた直後に、加圧空気のみが流動するグル−プを主として投射空間の周辺域に研磨材粒を回遊なさしめるのに寄与する渦巻状の回転流動をなさしめる一方、研材が加圧空気とともに流動するグル−プを、研材を破砕なさしめて研材粒として幅広く飛散なさしめるとともに加圧空気を乱流状態となさしめるのに寄与するような投射装置内での衝突を伴う流動をなさしめる。そして、係る二系統の流動下にある両グル−プを入り混じらせた流動状態で投射方向に拡散流動なさしめ、投射空間の周辺域にも中心域と同様に研材粒が回遊可能なようにして投射空間の全域にわたり研材粒の存在密度を均一となるように仕向け、多数の触媒それぞれに対する研材粒の単位時間当たり投射量のバラツキを最小化して、研材粒が研材と同様の触媒機能の再生工事に使用可能なようにし、強度が劣ったり柔らかい材質あるいは劣化度合いが進行した触媒に対しても所定の研作用ができるようにしたものである。
【0031】
具体的には、請求項1に記載の発明に係る劣化触媒再生用の投射装置、又は請求項2に記載の発明に係る劣化触媒再生用の投射装置を前提とする。そして、請求項1に記載の投網状拡散流動構造の研材供給手段に代えて、流出側に請求項1に記載の過大耗阻止・流動調整手段の流入側の開口と同一開口形状に形成された流出口が流入側に通過穴が側面側に一側流入口がそれぞれ設けられ流出側が請求項1に記載の過大摩耗阻止・流動調整手段の流入側と連結されるとともに内壁に多数の破砕・飛散誘導部材が密集して設けられた多角形箱状ケ−シング部材と、請求項4に記載の円筒形ケ−シング部材と、請求項4に記載の一側導入部材と、請求項4に記載の他側導入部材と、からなる破砕研材粒群の乱流拡散流動構造の研材供給手段を構成要素とする劣化触媒再生用の投射装置としたものである。
【0032】
請求項6に記載の発明が講じた解決手段は、単位投射面積に作用する研材の衝突エネルギ−を極力抑え、研材が衝突しても触媒が摩耗破損しないように配慮しつつ、触媒パックの上部に汚れがあって所定の劣化触媒の再生工事に着手しずらい場合や、梁部材が邪魔となる排煙脱硝装置の縁部位置に配置され、所定の劣化触媒の再生工事を円滑に施工しずらい触媒パックに対しても、確実に劣化触媒の再生工事が施工可能なようにするものである。
【0033】
具体的には、投射側が一の触媒ピ−スの上面面積より小さい面積の平面状に形成され流入側が中心部を厚肉に周辺部を薄肉にして傾斜面をつけて形成されるとともに流入側と投射側間を貫いて多数の狭小投射穴が穿設された投射区画部位とその投射区画部位の外側端から外方に若干延伸なさしめて設けられた連結部位からなる投射手段と、流出側にその投射手段の流入側の開口と同一開口形状に形成された流出口が設けられ流入側が圧送配管と略同形であって流動断面積が流入側から流出側に向けて漸次広くなるように形成され連結部位を介して投射手段の流入側と連結されたケ−シング部材と請求項1に記載の研材導入部材又は請求項記載の研磨材導入部材とからなる投網状流動拡散構造の研材供給手段とから構成された劣化触媒再生用の投射装置としたものである。
【0034】
【発明の実施の形態】
請求項乃至請求項3に記載の発明の構成により、投射手段の外形形状が一の触媒パックを構成する一の触媒ピ−スの上面の外形形状より僅かに大きくなる程度であって、研材が投網状に拡散流動開始するのが研材導入部材であるので、一の触媒ピ−スの上面に接近した位置で拡散流動開始可能となる。係る全体構成であるので、投射装置全体がコンパクトになり、劣化触媒再生用の投射装置を携帯した作業者は、排煙脱硝装置内の一の触媒パックの上方隙間空間に容易に入り込める。
【0035】
つぎに多数の差込ノズルをそれぞれと対面する触媒内に差込ノズルを差し込んで投射部材を構成する投射区画部位の投射側を、一の触媒ピ−スを構成する最も外方に配設された一部の触媒群を除く他の触媒群の上面と対面接触なさしめるとともに、連結部位を最も外方に配設された触媒群の上面と対面接触なさしめる等の触媒再生工事の準備をし、研材導入部材をケ−シング部材の流入側の流入中心軸を中心として振り子状に回動させると、研材導入部材を通過した研材を含む加圧空気は、投網状に拡散しつつ流動断面積が漸次拡大されたケ−シング中を流出側に流動し、流動断面積が最大である流出側端に到達する。
【0036】
尚、請求項3に記載の発明の構成によれば、研材導入部材を回動させずに固定していても、空気とともに流動してきた研材は、流入側から流出側に向けて流入中心軸に対して放射状に設けられた複数の導入穴それぞれを通過すると、常に同様に投網状に拡散する。
【0037】
つぎに、流出側端から過大摩耗阻止・流動調整手段に穿設された多数の流動調整穴と出会うが、この際に、流動断面積が急縮小するので研材運動量が急増する現象が生じ、流動調整穴の入口壁に強固に接触して摩擦力を及ぼしつつ貫徹力が増して流動速度は加速される。このため、触媒から遠く離れた入口壁が摩擦力を受けとめ、触媒には摩擦力が直接作用されないので、触媒内に研磨材を含む加圧空気が流入する際の触媒に対する過大摩耗が阻止される。そして、研材を含む加圧空気は、多数の流動調整穴それぞれにより流動案内されて、加速された流動速度にて整流され、係る流動状態で流出側に向けて流動する。
【0038】
ついで、整流状態で加速された流動速度にて、研材は、加圧空気とともに多数の流動調整穴それぞれと極めて間近に対面する多数の差込ノズル中にそれぞれ流入する。この後、研材は、各差込ノズルそれぞれの先端から、流動断面積が差込ノズル内径より若干拡大している一の触媒ピ−スを構成するそれぞれの触媒内に投射される。すると、投射された研材は、投射中心域では最大投射速度で投射周辺域では低投射速度となる投射速度分布となって触媒内を扇状の投射軌跡にて流動する。
【0039】
尚、請求項2に記載の発明の構成によれば、触媒の上部の損傷程度が激しい触媒が存在する触媒ピ−スに対して触媒再生をなす場合にはノズル取付穴に長尺の差込ノズルを、若干の損傷しか生じてない触媒が存在する触媒ピ−スに対して再生工事をなす場合にはノズル取付穴に中尺の差込ノズルを、全く損傷がない触媒のみから構成される触媒ピ−スに対し再生工事をなす場合にはノズル取付穴に標準長さの差込ノズルをそれぞれ脱着可能に装着すれば、損傷の有無損傷の程度に影響されずに、再生工事の対象となる触媒ピ−スを構成する全ての触媒内に差込ノズルの先端側は常に確実に差し込まれ、触媒内に、研材は空気とともに確実に前記した扇状の投射軌跡を描いて投射される。
【0040】
触媒内を、前記した扇状の投射軌跡にて研材群が流動すると、投射軌跡周辺域にある研材群の一部が触媒の側面に低速にて斜め衝突して適宜な研作用を及ぼすので、触媒表面に損傷を生じさせることなく、触媒側面にコ−ティングされたカルシウム成分を主とした触媒被毒物質を研除去して、研材や空気とともに触媒外に放出する。この一方、投射軌跡中心域にある研材群の一部は、投射当初の最大投射速度が余り低下せずに触媒中を流動し、触媒内を素早く貫通する。このため、一の触媒ピ−スを構成する多数の触媒は迅速に触媒機能が再生される。
【0041】
そして、このような、一連の触媒再生工事を一の触媒パックを構成する他の触媒ピ−スについても反復実行すると、一の触媒パックが内蔵する全ての触媒の触媒機能が再生され、このような触媒再生工事を他の触媒バックについても順次実行すると、排煙脱硝装置に設置したままで、触媒機能が劣化した触媒を内蔵する全ての触媒パックに対する所定の劣化した触媒機能の再生が実行される。
【0042】
また、請求項4に記載の発明の構成により、前記したと同様の触媒再生工事の準備をした後、一側導入部材を介して一側流入口に加圧空気とともに研材を流入させる一方、他側導入部材を介して他側流入口に加圧空気のみを流入させる。
【0043】
すると、一側流入口に流入した研材は加圧空気とともに、多角形箱状ケ−シング部材内を投射方向に対して略直角方向に噴射され、一側流入口と対面する位置関係となる内壁を中心とした一定範囲の内壁に衝突して飛散し、飛散した研材が異なる位置の内壁と衝突して更に飛散するようにして連鎖的に衝突と飛散を繰り返す。一方、他側流入口に流入した加圧空気は、円筒形ケ−シング部材の内壁と接触しながら強制的に連続して旋回されるのと後続して円筒形ケ−シング部材内に流入した加圧空気流に押されることから、流入当初接線方向に流動していた加圧空気は、渦巻状に回転流動しながら多角形箱状ケ−シング部材側に流動移動する。
【0044】
そして、このように渦巻状に回転流動しながら流動移動する加圧空気流が通過穴を通って多角形箱状ケ−シング部材内に進入すると、前記した如くして連鎖的に衝突と飛散を繰り返す研材を含む加圧空気に対して、渦巻状に回転流動しながら流動移動する加圧空気が、渦巻状の回転流動作用力と投射方向に流動移動なさしめる作用力とがミックスされた複合流動作用力を付与しつつ、両者は入り混じる。すると、多角形箱状ケ−シング部材内に更に複雑且つ多様に乱流しつつ投射方向に移動する加圧空気の空気流が引き起こされるので、研材群は、投射空間の周辺域にも中心域と略同一の研材存在密度で回遊して加圧空気の空気流にのって乱流拡散されながら投射方向に流動する。
【0045】
このようにして、研材群が加圧空気とともに投射方向に乱流拡散流動すると、前記した過大摩耗阻止・流動調整手段に穿設された多数の流動調整穴それぞれに、単位時間当たり投射量のバラツキが略生じない研材の投射状態で、研材群を含む加圧空気が到達する。この後、前記したと同様の経路をへて、差込ノズルを介して、一の触媒ピ−スを構成する多数の触媒内それぞれに、単位時間当たり投射量のバラツキが殆どない整流状態で加速された流動速度の研材群が加圧空気と共に投射される。
【0046】
尚、一側流入口に加圧空気のみが他側流入口に加圧空気とともに研材を流入させた場合には、前記したと同様にして、多角形箱状ケ−シング部材内では加圧空気流の乱流が生じる一方、円筒形ケ−シング部材内で研材が加圧空気とともに渦巻状に回転流動しながら多角形箱状ケ−シング部材側に流動移動する。この後、多角形箱状ケ−シング部材内で出会って入り混じり、前記したと同様にして、研材は、加圧空気とともに乱流拡散されながら投射方向に流動する。
【0047】
また、請求項5に記載の発明の構成により、一側流入口に加圧空気とともに研材群を流入させると、多角形箱状ケ−シング内を投射方向に対して略直角方向に噴射され、最初に、一側流入口と対面する位置関係にある内壁又は破砕・飛散誘導部材を中心とする一定範囲に衝突する。
【0048】
すると、内壁と衝突した場合には研材群は他の方向に飛散して破砕・飛散誘導部材と初めて衝突し、研材群の一部は破砕されて小径の多数の研材粒となり破砕されなかった残余の研材群とともに破砕・飛散誘導部材から弾かれて四方八方に飛散するとともに、加圧空気は、該破砕・飛散誘導部材により乱反射される。当初から破砕・飛散誘導部材と衝突した場合には、同様にして破砕された多数の研材粒は残余の研材群とともに破砕・飛散誘導部材から弾かれて四方八方に飛散するとともに、加圧空気は、該破砕・飛散誘導部材により乱反射される。
【0049】
この後、破砕された研材粒を含む研材群の飛散と加圧空気の乱反射により他の位置に設けられたその他の多数の破砕・飛散誘導部材それぞれと連鎖的に衝突をなすとともに該衝突を起因とする前記した多数の破砕された研材粒を含む研磨材群及び加圧空気の同様の挙動が繰り返され、流入当初の研材群は全て破砕されて小径の研材粒となって乱反射する加圧空気の流れに乗って、更に別の破砕・飛散誘導部材との衝突を繰り返す。
【0050】
そして、他側流入口に流入し、前記したと同様にして渦巻状に回転流動しながら流動移動する加圧空気が多角形箱状ケ−シング部材内に進入すると、乱反射を繰り返す加圧空気の流れに乗るとともに四方八方に飛散する破砕された研材粒群に対して、渦巻状に回転流動しながら流動移動する加圧空気が前記したと同様の複合流動作用力を付与しつつ、両者は入り混じる。
【0051】
すると、多角形箱状ケ−シング部材内に、請求項4に記載の発明の構成により挙動する加圧空気の場合より、より一層流動状態が多様に変動しつつ投射方向に流動移動する加圧空気の空気流が引き起こされるので、破砕された研材粒群は、投射空間の周辺域にも中心域と略同一の研材粒存在密度で回遊して加圧空気の空気流にのって流動状態が多様に乱流拡散されながら投射方向に流動する。
【0052】
このようにして破砕された研材粒群が加圧空気とともに投射方向に乱流拡散流動すると、前記した過大摩耗阻止・流動調整手段に穿設された多数の流動調整穴それぞれに、単位時間当たり投射量のバラツキが略生じない破砕された研材粒の投射状態で、研材粒を含む加圧空気が到達する。この後、前記したと同様の経路を経て、差込ノズルを介して、一の触媒ピ−スを構成する多数の触媒内それぞれに、単位時間当たり投射量のバラツキが殆どない整流状態で加速された流動速度の破砕された研材粒群が加圧空気とともに投射される。
【0053】
一方、請求項6に記載の発明の構成により、投射手段の投射側の面積が一の触媒ピ−スの上面面積より小さく研材が投網状に流動開始するのが研材導入部材であるため、劣化触媒再生用の投射装置の全体構成が細身にコンパクト化された。係るコンパクト化により、作業者は劣化触媒再生用の投射装置を携帯して、排煙脱硝装置の縁部や梁部材等が間近に設けられた狭い隙間空間にも容易に入り込め、縁部や梁部材近くの一の触媒ピ−スの上面に接近した位置から投射開始可能となる。
【0054】
つぎに、一の触媒ピ−スの汚れのある一定範囲、又は、排煙脱硝装置の縁部若しくは梁部材が邪魔をしている一の触媒ピ−スの一定範囲と、投射手段の投射側とを若干距離をあけて対面なさしめる等の再生工事の準備をする。この後、請求項又は請求項3に記載の発明の実施の形態の項で説示したと同様にして、研材は空気とともに研材導入部材からケ−シング部材側に流入する。そして、該ケ−シング部材内を投網状に拡散流動して投射区画部位の流入側に到達し、傾斜面に対して斜め衝突する。係る斜め衝突により、研材は、衝突エネルギ−が減殺され、傾斜面上を周辺部側に向けて滑動し間近の狭小投射穴に流動速度を大幅に減じて流入する。
【0055】
この後、多数の狭小投射穴中をそれぞれ流動案内されて更に減速されつつ整流されて、研材は、空気とともに多数の狭小投射穴それぞれから、極めて多数の細投射帯となってシャワ−状に投射手段の下方に投射され、単位投射面積当たりの衝突エネルギ−が抑制されて、研材は空気とともに、一の触媒ピ−スの前記した一定間隔に到達する。
【0056】
すると、投射手段が汚れた一の触媒ピ−スの一定範囲と対面された場合には、触媒の上面を損傷させることなく、上面に付着している汚れと衝突して飛散せさるので、該一定範囲は清浄な状態となる。一方、一の劣化触媒の施工が困難な一の触媒ピ−スの一定範囲に対面された場合には、極めて多数の細投射帯の一部は、触媒の上面と衝突して上面に付着された汚れと衝突して飛散させ、その他は触媒中に流入して前記した研作用をなすので、触媒の上面が清浄な状態となるととともに前記した劣化触媒の再生がなされる。
【0057】
【実施例】
つぎに請求項1に記載の発明の一実施例を、図面を参照しながら説明する。図1は請求項1に記載の発明の一実施例に係る劣化触媒再生用の投射装置を正面からみた場合を示し、図2は投射部材の一例を投射側上方からみた場合を示し、図3は差込ノズルの一例を斜め前方からみた場合を拡大して示し、図4は差込ノズルがノズル取付穴に脱着可能に装着されているとともに投射部材と過大摩耗阻止・流動調整手段及びケ−シング部材とが連結された状態を一部省略して拡大するとともに切断してみた場合を示し、図5はケ−シング部材の一例を斜め前方からみた場合を示し、図6は投網状拡散流動構造の研材供給手段の一例を一部省略するとともに縦方向から切断してみた場合を拡大して示し、図7は触媒パックの構成の一例を一部切欠いて斜め前方からみた場合を示したものである。
【0058】
図1、図2、図4及び図7に示すように、3は、一の触媒パック5内に立設されて内蔵された36本の触媒ピ−ス7のうちの、一の触媒ピ−ス7の上面7aに現れた正方形配設態様の触媒8群から、最も外周に配設された一部の触媒群8Nを除いた他の触媒群8Mの正方形配設領域Sより若干大きくして一定の厚みの板状に形成された正方形投射区画部位である。また、9は、該正方形投射区画部位3の四隅外側端から最も外周に位置する一部の触媒群8Nと対面可能な外方位置より更に若干外方位置まで延伸され、正方形投射区画部位3と同一厚みの板状に形成された連結部位である。
【0059】
図1乃至図4に示すように、該正方形投射区画部位3には、一の触媒ピ−ス7を構成する前記した他の触媒群8Mと同数同一間隔で投射側10aから流入側10bに向けて所定深さだけ垂直に掘設なさしめた支持・投射方向誘導穴部11aと、該支持・投射方向誘導穴部11aの流入側終端位置から流入側10bに向けて若干づつ拡径なさしめて円錐状に形成された取付・支持用円錐穴部11b、及び該取付・支持用円錐穴部11bの流入側寄り終端と流入側10b間を該取付・支持用円錐穴部11bの最大径と同一径とした導入穴部11cとが投射側10aから流入側10bに向け順次連通なさしめて設けられて構成されたノズル取付穴11が設けられている。
【0060】
連結部位9には、四箇所の角部近傍それぞれの二箇所と正方形投射区画部位3と対面する四箇所の中間位置にそれぞれ連結螺子穴13が螺設されている。そして、前記した如くして形成された正方形投射区画部位3と、連結部位9とが一体的に構成されて本実施例に係る一定厚みの投射部材15が構成されている。
【0061】
図1、図3及び図4に示すように、17は、ノズル取付穴11に装着された際に、導入穴部11cを設けたことにより形成された導入円形壁部3cと密着可能に形成された短円柱部17aと、取付・支持用円錐穴部11bを設けたことにより形成された取付・支持壁部3bと密着可能に形成された円錐部17bとからなり、中心部に研材を加圧空気とともに投射側10aにスム−ズに流動可能ならしめる内径の流動穴18が設けられた装着・抜止め部位である。
【0062】
また、19は、外径を支持・投射方向誘導穴部11aの穴径より僅かに小さくしスム−ズに差込可能であって触媒8の廃ガス流通穴8aに差込可能な径となす一方、中心側に流動穴18が設けられ、装着・抜止め部位17とともにノズル取付穴11に装着された際に、筒長が、前記投射部材3の投射側10aより適宜長さ投射側3aから突出可能に形成された差込部位である。
【0063】
図3及び図4に示すように、該装着・抜止め部位17と該差込部位19とが一体的に構成されて本実施例に係る差込ノズル21が構成されている。そして、図1及び図4に示すように、投射部材15と、前記した如く多数穿設されたノズル取付穴11に後述する如く脱着可能に装着された多数の差込ノズル21とから本実施例に係る投射手段23が構成されている。
【0064】
尚、図4に示すように、本実施例では投射部材15と対面接触する一の触媒ピ−ス7を構成する多数の触媒8に損傷がなく、多数の差込ノズル21それぞれの差込部位19の投射側10aからの突出長さが最も短くても、多数の触媒8それぞれの廃ガス流通穴8a内にもれなく一定長さ差込可能な場合である。
【0065】
図1及び図4に示すように、25は、前記した投射部材15と同じ大きさの正方形であって、加圧空気とともに流動する研材に対して整流作用を引き起こさせるに充分な流動距離が確保された板厚の過大摩耗阻止・流動調整手段である。
【0066】
該過大摩耗阻止・流動調整手段25には、該過大摩耗阻止・流動調整手段25の流出側26aと投射部材15の流入側10bとが対面接触する際に、投射部材15に前記した如くして設けられた多数のノズル取付穴11それぞれの中心軸線と同一軸線となる多数の位置それぞれに、流出側26aから流入側26bに向けて前記流動穴18と略同一穴径の整流誘導流動穴部27aと、該整流誘導流動穴部27aの流入側端終端近傍を先開状に拡径された流入案内穴部27bとからなる流動調整穴27が穿設されるとともに、投射部材15に前記した如くして設けられた多数の連結螺子穴13それぞれの中心軸線と同一軸線となる多数の位置それぞれに連結螺子穴29が螺設されている。尚、流入案内穴部27bを設けたことにより、該過大摩耗阻止・流動調整手段25に、円錐状の過大摩擦力受け壁部25aが形成される。
【0067】
そして、図1、図3及び図4に示すように、差込ノズル21を、投射部材15の流入側10bからノズル取付穴11に近接なさしめ、頭部19aを投射部材15の投射側10aから適宜長さ突出するまで差込部位19を支持・投射方向誘導穴部11aに挿入するとともに、短円柱部17aを導入円形壁部3cと、円錐部17bを取付・支持壁部3bとそれぞれ密着させて装着・抜止め部位17を密着支持して多数の差込ノズル21を脱着可能に装着なさしめた状態で、過大摩耗阻止・流動調整手段25の流出側26aと投射部材15の流入側10bとが対面接触される。
【0068】
図1、図4及び図5に示すように、31は、外形形状を前記過大摩耗阻止・流動調整手段25の外形形状と同一の大きさの正方形となし、中心部に、過大摩耗阻止・流動調整手段25に前記した如くして設けられた多数の流動調整穴27群のうち最も外周位置にあるグル−プの流動調整穴27の配設位置より若干外方となる外側正方形位置を切断して正方形通過穴33が設けられた適宜板厚の取付部位である。尚、該取付部位31の外方には、該取付部位31が前記過大摩耗阻止・流動調整手段25の流入側21Bと対面接触した際に、多数の連結螺子穴29それぞれの中心軸線と同一軸線となる12か所に連結穴35が設けられている。
【0069】
図1、図4、図5及び図6に示すように、37は、流出側38aを前記正方形連結穴33より僅かに大きい正方形形状となし、流入側38bを流出側38aの一辺の長さの略三分の一若しくは四分の一程度の直径の円形形状となすとともに、流出側38aの正方形形状の四隅から流入側38bの円形形状の周囲四箇所に向けて曲面をつけ、流入側38bから流出側38aに向かってラッパ状の外形形状となし、内部空間を研材が加圧空気とともに後述するように投網状に拡散流動可能に流動断面積が流入側38bから流出側38aに向けて漸次広くなるように形成された流動案内部位である。
【0070】
また、39は、内径が流動案内部位37の流入側38aと略同一径とされた薄体状の円筒形に形成され、周囲四ヶ所に均等間隔にて連結螺子穴41が設けられた円筒形連結部位である。図5に示すように、前記した取付部位31と、流動案内部位37と、円筒形連結部位39とから本実施例に係るケ−シング部材43が構成されている。
【0071】
図1及び図6に示すように、45は、外側が前記円筒形連結部位39の内径より僅かに小さい円形に形成されるとともに外周四箇所に均等間隔にて前記連結螺子穴41と同一螺子穴径の取付螺子穴47が螺設され、内側が凹状曲面に形成された滑動・連結曲面状穴49となされた軸受基台である。
【0072】
また、51は、外側が軸受基台45の滑動・連結曲面状穴49と滑動可能に密着するように凸状曲面に形成され、内側に差込穴53が設けられ、前面52aと後面52bをストレ−トに形成された回動子である。そして、該回動子51の凸状曲面と軸受基台45の滑動・連結曲面状穴49とが滑動自在に密着結合され、該回動子51が流入中心軸Gに対して任意の方向に振り子状に滑動可能なようになして、該回動子51と軸受基台45とが連結されて構成されているのが本実施例に係る振り子状に回動自在な軸受部材55である。
【0073】
このように構成された振り子状に回動自在な軸受部材55は、取付螺子57を、前記連結螺子穴41、取付螺子穴47に順次螺入なさしめることにより、ケ−シング部材43を構成する円筒形連結部位39と連結されている。
【0074】
図1及び図6に示すように、59は、外側前部60aを前記差込穴53より若干径を小さくした円形に、外側中間部60bを外側前部60aより段階的に径を大きくした段状円形にそれぞれ形成され、外側後部60cを最も径を大きくした圧送配管取付雄螺子61が螺設され、中心側に流入側62aの内径を大きくし流出側62bの内径を小さくした流動案内テ−パ穴63が設けられた研材導入部材である。
【0075】
尚、本実施例では特別に、流動案内テ−パ穴63内に、外側を該流動案内テ−パ穴63より若干小さい差込流動テ−パ穴65が設けられて中空長円錐状に形成された研材差込導入部材67が挿入されている。
【0076】
図6に示すように、前記した振り子状に回動自在に軸受部材55と、研磨材導入部材59とから本実施例に係る投網状拡散流動構造の研材供給手段69が構成されている。そして、図1及び図4に示すように、連結ボルト70を前記した連結穴35に挿入した後、連結螺子穴29と連結螺子穴13に順次螺入なさしめる連結方法により連結された前記した投射手段23と、過大摩耗阻止・流動調整手段25と、投網状拡散流動構造の研材供給手段69とから本実施例に係る劣化触媒再生用の投射装置1が構成されている。
【0077】
尚、本実施例では、触媒8が一定間隔にて正方形に多数配設された触媒ピ−ス7に対して触媒機能の再生をなす場合について説明したが、本発明はこれに限定されず、触媒8が一定間隔にて長方形、六角形等の多角形、円形、楕円形等の形状に多数配設された触媒ピ−スに対して触媒機能の再生をなす場合であっても勿論適用可能である。係る場合、前記した正方形投射区画部位3、過大摩耗阻止・流動調整手段25、ケ−シング部材43の流出側の形状も、触媒8が多数配設された形状に対応した外形形状となるものである。
【0078】
つぎに、請求項1に記載の発明の一実施例に係る劣化触媒再生用の投射装置1に研材を圧送する役割を担う研材送給装置並びに劣化触媒再生工事システムについて説明する。
【0079】
図8は研材送給装置の一例を正面からみた場合を示し、図9は劣化触媒再生工事システムの一例を模式的に示し、図10は請求項1に記載の発明の一実施例に係る劣化触媒再生用の投射装置が劣化触媒再生工事システムの圧送下流側端位置に配置された状態を斜め前方からみた場合を示し、図11は研材連続定量落流機構を縦方向から切断するとともに拡大してみた場合を示し、図12は研材連続圧送部材を斜め上方から拡大してみた場合を示したものである。
【0080】
図8に示すように、71は、一端が連結軸73を介して主車輪75により移動可能に支持されている長方形板状台77と、一端が補助車輪79により移動可能に支持され連結部材81を介して長方形板状台77と連結された制御盤側台83とからなる架台である。
【0081】
図8及び図11に示すように、85は、落流傾斜角を略30度とした落流部位86の一側面が前記連結軸73と連結された支持部位87により、該落流部位86の他側面が長方形板状台77の一端と連結された補助支持部材88によりそれぞれ支持され、また該落流部位86の下側中央に中空円筒状に形成された排出部位89が突設され、更に該排出部位89の下側周囲に中空円盤状に形成された取付フランジ90が設けられるとともに、一定量(触媒機能の再生工事を施工する対象の触媒パック5の触媒機能を再生させるに必要な量)の研材を収容可能な内容積を有し、側面の略中間高さ位置に加圧空気導入口91が、側面のやや上方位置に加圧空気排気口92がそれぞれ設けられた研材収容容器である。
【0082】
図8に示すように、93は、加圧空気供給配管系であって上流側が後述するコンプレッサ−167と連通され、下流側流通路途上で分岐し一方の下流側が前記加圧空気導入口91とスットプバルブ94を介して連通され、他方の下流側が後述する中継ホ−ス139を介して研材連続圧送部材137に設けられた研材を含む加圧空気流通路147と連通されている。また、95は、加圧空気排気配管系であって上流側がストップバルブ96を介して加圧空気排気口92と連通されている。
【0083】
図8及び図11に示すように、97は、円筒の側面が横方向に張出されて円筒形に近似して形成されたロ−タリ−フィ−ダ−収容部位、99は、該ロ−タリ−フィ−ダ−収容部位97の上方側と下方側それぞれと一体的に構成され、前記取付フランジ90と同様に形成されるとともに中心部に受渡し落流穴101が穿設された上流側ケ−ス付設取付フランジである。また、103は、該上流側ケ−ス付設取付フランジ99と同様に形成された中継フランジであって取付ボルト105により前記下方側に位置する上流側ケ−ス付設取付フランジ99と連結されている。
【0084】
さらに、107は、該中継フランジ103と一体的に構成され中心部に前記受渡し落流穴101と連通されたノズル側受渡し落流穴109が設けられ下流側に取付フランジ111が配設された受渡しノズル部位である。そして、これらから本実施例に係る上流側ケ−ス113が構成されている。尚、前記ロ−タリ−フィ−ダ−収容部位97内の上方側の壁にはシ−ルケ−ス115が設けられている。
【0085】
また、117は、前記ロ−タリ−フィ−ダ−収容部位97内に上方側が前記シ−ルケ−ス115と接して配設されているとともに回転羽根118を軸着する図示を省略した受動軸が突設された本実施例に係るロ−タリ−フィダ−である。
【0086】
そして、図8及び図11に示すように、前記した上流側ケ−ス113とロ−タリフィ−ダ−117と、モ−タ119とから本実施例に係る研材連続定量落流機構127が構成されており、前記取付フランジ90と前記上流側ケ−ス付設取付フランジ99とが取付ボルト129を介して連結されることにより、前記研材収容容器85を構成する排出部位89の下方位置に配設されている。
【0087】
図12に示すように、131は、外形が前記取付フランジ111と略同一幅であって若干上下に高めに形成され、中心部に比較的大きい径であって適宜深さのインナ−ノズル据付凹座133と、該インナ−ノズル据付凹座133と上下に隣接してノズル部据付穴135が設けられたケ−スである。
【0088】
図8及び図12に示すように、137は、一側に中継ホ−ス139を介して前記した加圧空気供給配管系93と連結された円形近似のホ−ス連結部位141が、他側に該円形近似のホ−ス連結部位141より水平側が拡幅された菱形近似のホ−ス連結部位143が、中間に外形形状が円形から楕円径に連続して変化する胴部位145がそれぞれ配設され、内側に一側から他側に向け研材を含む加圧空気流通路147が略水平に穿設され、更に、前記胴部位145の上方中間部に前記ケ−ス131が乗っかるようなして一体的に構成された研材連続圧送部材である。
【0089】
そして、図8、図11及び図12に示すように、取付ボルト148により、前記取付フランジ111とケ−ス131の取付フランジ部位151とが連結されて、該研材連続圧送部材137は、前記上流側ケ−ス113の下方に吊持されている。
【0090】
図8、図9及び図11に示すように、149は、長方形板状台77上の主車輪75配設位置近くに設けられたエアシリンダ151内臓のピンチバルブであって、作業者Mが、スイッチ156を操作することによりエアシリンダ151を動作させ、上流側端が前記菱形近似のホ−ス連結部位143と連結ボルト153により連結された研材を含む加圧空気圧送ホ−ス155の流路を、適宜遮断する作用をなすものである。
【0091】
図8に示すように、157は、前記制御盤側台83上の一端と他端にそれぞれ立設された一対の支持脚159により支持され、カウンタ−セットボタン161と、モ−タ119の回転数をカウントする回転数カウンタ−163とが備えられ、一の触媒ピ−ス7に対する触媒機能の再生に必要な量の研材を圧送する相当の回転数だけモ−タ119が回転したか否かを、モ−タ119に付設された回転数検地部125を介してカウントし、図示を省略したリレ−とともにモ−タ119の動作を制御する制御盤である。
【0092】
図8に示すように、前記した架台77と、研材収容容器85と、加圧空気供給配管系93と、加圧空気排気配管系95と、研材連続定量落流機構127と、ケ−ス131を含む研材連続圧送部材137と、ピンチバルブ149と、制御盤157とから研材送給装置165が構成されている。
【0093】
図9に示すように、167は、車輪169により移動可能に支持され大気を吸引して圧縮することにより加圧空気を生起するコンプレッサ−であって、加圧空気圧送ホ−ス171を介して前記加圧空気供給配管系93と連結されている。
【0094】
そして、図9に示すように、前記した研材送給装置165と、コンプレッサ−167と、加圧空気圧送ホ−ス171と、研材を含む加圧空気圧送ホ−ス155と、該研材を含む加圧空気圧送ホ−ス155の下流側端と研材導入部材59の圧送配管取付雄螺子61とが連結されることにより研材を含む加圧空気圧送ホ−ス155の下流側端に配設された劣化触媒再生用の投射装置1とから、劣化触媒再生工事システム173が構成されている。
【0095】
つぎに、劣化触媒再生工事システムに組み込まれた請求項の発明の一実施例に係る劣化触媒再生用の投射装置の実施の形態について説明する。図13は研材が加圧空気とともに流動調整穴内に流入する段階から流動調整穴と差込ノズル内を順次流動した後に差込ノズルから触媒に向けて投射されるに至るまでの研材の流動挙動を模式的に示したものである。
【0096】
まず、触媒パック5を構成する一の触媒ピ−ス7の触媒機能を再生させるに必要な研材の量と、触媒機能を再生する工事をなす触媒バック5の数から、再生工事を施工するのに必要な研材の総量を算出するとともに、研材送給装置165の前記した定量落流並びに圧送構造、使用する研材の粒径や重量等の物理的特性、コンブレッサ−167が生起する加圧空気の圧力等から、モ−タ119の単位回転数当たりの研材の圧送量を予め設定する。
【0097】
つぎに、ストップバルブ96を開き研磨材収容容器85内の圧力を大気圧と同圧とした状態で研磨材収容容器85内に研磨材を投入すると、排出部位89、上流側ケ−ス113内の上方の受渡し落流穴101を順次経由して落流し回動停止しているロ−タリ−フィダ−117に備えられた受渡し落流穴101と対面する回転羽根118と出会って以降の落流を阻止されて集積される。そして。一定時間研磨材を投入すると、算出された量の研磨材が収納される。
【0098】
ついで、図9及び図10に示すように、作業者Mは劣化触媒再生用の投射装置1を携帯して、劣化触媒の再生工事の対象となっている排煙脱硝装置175の特定階層の建屋175A内の劣化触媒の再生工事を施工する触媒パック5の上方空間に移動する。この後、図2乃至図4に示すように、投射装置15の投射側10aに設定された正方形投射区画部位3と、該触媒パック5内に内蔵された一の触媒ピ−ス7の上面7aとを対面させる。
【0099】
そして、一の触媒ピ−ス7の外周に配設された一部の触媒群8Nを除くその他の触媒群8Mそれぞれの排ガス流通穴8a内に、投射部材15の投射側10a面から突出した多数の差込ノズル21の差込部位19の頭部19aを挿入させると、投射部材15の投射側10aの正方形投射区画3と前記した正方形配設領域Sとが対面接触するとともに、連結部位9の投射側10aと前記した一部の触媒群8Nの上面も対面接触し、劣化触媒再生用の投射装置1は投射対象である一の触媒ピ−ス7と極めて正確且つ安定した対面接触状態となり投射準備が整う。
【0100】
この後、図8及び図9に示すように、加圧空気供給配管系93のストップバルブ94を開く一方、加圧空気排気配管系95のストップバルブ96を閉じ、更に、エアシリンダ151を動作させずに、研磨材を含む加圧空気圧送ホ−ス155中のピンチバルブ149が設けられている位置から下流側を、研材を含む加圧空気が流通可能となさしめておく。
【0101】
ついで、図8、図9及び図12に示すように、コンプレッサ−167を動作させると、圧縮されて加圧された空気は、加圧空気圧送ホ−ス171中を加圧空気供給配管系93に向けて流通する。そして、該加圧空気供給配管系93に達すると、一部の加圧空気は、加圧空気導入口91から研磨材収容容器85内に流入する一方、その他の加圧空気は、中継ホ−ス139に流入し研磨材連続圧送部材137に設けられた加圧空気流通路147を経由して、研磨材を含む加圧空気圧送ホ−ス155中を下流側に流通する。すると、エアシリンダ151が動作して研磨材を含む加圧空気圧送ホ−ス155の流路が遮断される。
【0102】
図9、図11及び図12に示すように、これと略同時に、図示を省略したリレ−等の制御機器が制御動作し、モ−タ119が所定の回転速度で回動動作する。すると、該モ−タ119の回動力がロ−タリ−フィダ−117に伝達されて回動するため、回転羽根118も同側への回転を開始する。係る回転羽根118の回転により、回転羽根118により落流を阻止されていた研磨材群は、回転羽根118の回転方向に送られた後、該回転羽根118から滑り落ちてロ−タリ−フィダ−収容部位97内を鉛直下方に落流し、下方の受渡し落流穴101、受渡しノズル部位107のノズル側受渡し落流穴109を順次経由して落流する。
【0103】
そして、この後、加圧空気が流通している加圧空気流通路147に連続して流入する。すると、加圧空気流通路147に向けて流通している加圧空気と混合されて研磨材を含む加圧空気が現出され、研磨材を含む加圧空気は、研磨材を含む加圧空気圧送ホ−ス155側に流通する。
【0104】
尚、図示を省略したがノズル側受渡し落流穴の下流側にインナ−ノズル等を設ければ、ブリッジ現象が全く生じずに一層精密に定量ずつ連続してスム−ズに落流した後、加圧空気流通路147に流入し、より一層均等に研磨材が含まれた加圧空気が現出される。
【0105】
ついで、スイッチ156を開側に操作すると、エアシリンダ151の動作は停止し、ピンチバルブ149配設位置での流路遮断が解除されるので、図8及び図10に示すように、研磨材を含む加圧空気は、研磨材を含む加圧空気圧送ホ−ス155中を流動し、劣化触媒再生用の投射装置1を構成する研磨材導入部材59に達する。
【0106】
この際に、図6及び図10に示すように、作業者Mが、研磨材導入部材59の流動配管取付雄螺子61と螺合されている研磨材を含む加圧空気圧送ホ−ス155の下流側端を振り子状に回動させると、凸状曲面の回動子51は、軸受基台45の凹状曲面状に形成された滑動・連結曲面状穴49中をスム−ズに流入中心軸Gに対して振り子状に回動する。
【0107】
このため、研磨材導入部材59に達して、流動案内テ−パ穴63から、差込流動テ−パ穴65に流入した研磨材を含む加圧空気は、振り子状に回動している研磨材差込導入部材67からケ−シング部材43を構成する流動案内部位37の内部空間に投射される。すると、投射された研磨材を含む加圧空気は、該内部空間中を投網状に拡散流動しながら流動断面積が漸次広くなっている流動案内部位37内を正方形通過穴33に向けて投網状に拡散流動するので、研材の単位時間当たり投射量のバラツキが低減される。
【0108】
つぎに、流動断面形状が正方形であって流動断面積が最大の正方形通過穴33に達すると、図4及び図13に示すように、流動案内部位37の流出側38a端から過大摩耗阻止・流動調整手段25に穿設された多数の流動調整穴27の流入案内穴部27bと出会う。この際に、流動断面積が急減するので、加圧空気とともに流動してきた研磨材の運動量が急増する現象が生じ、この現象下で連続して研磨材が過大摩耗力受け壁部25aに強固に接触して摩擦力を及ぼしつつ強制的に流動断面積を狭く絞られながら、流入案内穴部27bから整流誘導流動穴部27aに流動する。
【0109】
係る流動挙動により、触媒8から遠く離れた過大摩耗力受け壁部25aにおいて摩擦力を受け止めることができるので、触媒8の先端部位8bには摩擦力が直接作用されず、触媒8内の排ガス流通穴8aに研磨材を含む加圧空気が流入する当初の時点での、触媒8に対する過大摩耗が阻止される。また、研磨材を含む加圧空気は、流動速度が加速されて貫徹力が増し、多数の流動調整穴27の整流誘導調整穴部27a中それぞれに流動案内されて、加速された流動速度にて整流され、係る流動状態で流出側26aに向けて流動する。
【0110】
ついで、整流状態で加速された流動速度にて、研磨材を含む加圧空気は、図4及び図13に示すように、多数の流動調整穴27の整流誘導調整穴部27aそれぞれと極めて間近に対面する多数の差込ノズル21の流動穴18中にそれぞれ流入する。この際に、研磨材は、各差込ノズル21それぞれの先端から、流動断面積が差込ノズル21の流動穴18より若干拡大している一の触媒ピ−ス7を構成するそれぞれの触媒8内の排ガス流通穴8aに、単位時間当たり投射量のバラツキが低減されて投射される。すると、投射された研磨材群は、投射中心域B1では最大投射速度で投射周辺域B2では低投射速度となる投射速度分布となって排ガス流通穴8a内を扇状の投射軌跡にて流動する。
【0111】
排ガス流通穴8a内を前記した扇状の投射軌跡にて研磨材群が流動すると、投射周辺域B2の最も周辺寄りにある研磨材群の一部が触媒8の側面8cに低速にて斜め衝突して適宜な研磨作用を及ぼすので、側面8cに損傷を生じさせることなく、側面8cにコ−ティングされたカルシウム成分を主とした触媒被毒物質を研磨除去して、研磨材を空気とともに触媒8外に排出する。
【0112】
排ガス流通穴8a中を、研磨材群が、図示を省略した出口に向けて移動しながら、このような、研磨材の斜め衝突による研磨作用を、投射周辺域B2にある他の研磨材、比較的中心寄りの投射周辺域B1にある研磨材、投射中心部域B1にある一部の研磨材も順次なす。この一方、投射中心域B1にある他の研磨材群は、投射当初の最大投射速度があまり低下せずに排ガス流通穴8a中を流動し、触媒8内を素早く貫通する。
【0113】
図8及び図9に示すように、加圧空気とともに研材を差込ノズル21から投射する間に、制御ケ−ブル123を経由して回転数検知部125からのモ−タ119の回転数の回転数検知情報が回転数カウンタ−163に伝達される。そして、前記した予め設定されたモ−タ119の単位回転数当たりの研材の圧送量から、必要な量の研材が圧送されたと見なされる予定した回転数を回転数カウンタ−163がカウントすると、図示を省略したリレ−の指令により、モ−タ119は回転を停止し、劣化触媒再生用の投射装置1に対する研材の圧送が停止される。
【0114】
このため、一定時間、差込ノズル21から加圧空気のみが噴射され、触媒8内の排ガス流通穴8aを流通し除去されたカルシウム成分を主とした触媒被毒物質を完全に触媒8外に排出する。この後、作業者Mは、スイッチ156を閉側に操作すると、エアシリンダ151が動作し、ピンチバルブ149が配設された位置にある研材を含む加圧空気圧送ホ−ス155の流路が遮断されるので、劣化触媒再生用の投射装置1に対する加圧空気の供給も停止される。係る一連の触媒再生工程により、一の触媒ピ−ス7を構成する最外周囲に位置する触媒群8Nを除く他の触媒群8Mに属する多数の触媒8は迅速に触媒機能が再生される。
【0115】
そして、作業者Mが隣接する他の触媒ピ−ス7に劣化触媒再生用の投射装置1を携帯して移動し、前記した一連の触媒再生工程を反復実行すると、一の触媒パック5が内蔵する全ての触媒ピ−ス7の触媒機能が再生される。このような触媒再生工程を他の触媒パック5についても順次実行すると、排煙脱硝装置175に設置したままで、再生工事の対象の触媒機能が劣化した全ての触媒パック5は、迅速に触媒機能が再生される。
【0116】
つぎに、請求項2に記載の発明の一実施例と実施の形態を、図面を参照しながら説明する。図14は請求項2に記載の発明の一実施例に係る劣化触媒再生用の投射装置を正面からみた場合を示し、図15は長尺差込ノズルがノズル取付穴に脱着可能に装着されているとともに投射部材と過大摩耗阻止・流動調整手段及びケ−シング部材とが連結された状態を一部省略して拡大するとともに切断してみた場合を示し、図16は触媒の損傷の程度に応じて使用する差込ノズルを選択する基準を模式的に示したものである。
【0117】
図15及び図16(ロ)に示すように、177は、最も激しく損傷している触媒8Aであっても差込可能なように、前記した差込ノズル21の差込部位19を大幅に延伸して形成された長尺差込み部位179と、前記した装着・抜止め部位17とが一体的に構成された長尺差込ノズルである。
【0118】
図15に示すように、前記した如く多数穿設されたノズル取付穴11にそれぞれ脱着可能に装着された多数の長尺差込ノズル177と、前記した投射部材15とから本実施例に係る投射手段181が構成されている。そして、図14及び図15に示すように、連結ボルト70を用いた前記した連結方法により連結された、該投射手段181と、前記した過大摩耗阻止・流動調整手段25と、投網状拡散流動構造の研材供給手段69とから請求項2に記載の発明の一実施例に係る劣化触媒再生用の投射装置183が構成されている。
【0119】
排煙脱硝に長期間使用されたため、一の触媒ピ−ス7Aを構成する多数の触媒8の一部に触媒8Aのように上部が激しく損傷生している状況下において、劣化触媒の再生をなすべく、正方形投射区画3の投射側10aから突出した多数の長尺差込ノズル177それぞれの長尺差込部位179を、触媒8A内の排ガス流通穴8Aaの直上の空間位置で待機なさしめる。
【0120】
つぎに、投射部材15を構成する連結部位9の投射側10aと前記した一部の触媒群8Nの上面とを対面接触させると、多数の長尺差込ノズル177それぞれの長尺差込ノズル部位179は、どの激しく損傷している触媒8Aの排ガス流通穴内8Aaに対しても適宜深さ差込まれ、劣化触媒再生用の投射装置183は、投射対象である一の触媒ピ−ス7Aに極めて正確且つ安定した対面接触状態となり投射準備が整う。
【0121】
この後、請求項1に記載の発明の一実施例に係る劣化触媒再生用の投射装置1に代えて、請求項2に記載の発明の一実施例に係る劣化触媒再生用の投射装置183が組み込まれた前記した劣化触媒再生工事システム173と同様の構成の図示を省略した劣化触媒再生工事システムを用いて前記したと同様の触媒再生工程の実行すると、所定の劣化触媒再生工事が施工される。
【0122】
尚、本実施例では、図16(ロ)に示すように、触媒8Aの上部が激しく損傷した場合について説明したが、触媒ピ−ス7を構成している触媒8の損傷の程度によっては、図16(ハ)に示すように、ある程度の損傷が生じている触媒8Bの排ガス流通穴8Baに対して適宜深さ差込可能に、前記した差込ノズル21の差込部位19をある程度延伸なさしめた中尺差込部位185とし、該中尺差込部位185と前記装着・抜止部位17とを一体的に構成せしめた中尺差込ノズル187を用いてもよい。
【0123】
そして、図16(イ)乃至図16(ハ)に示すように、触媒機能の再生工事の対象となる触媒ピ−ス7を構成する触媒8の損傷の有無、損傷の程度に応じて、前記した差込ノズル21、長尺差込ノズル177、中尺差込ノズル187を適宜使い分ければ、どの触媒パック5、触媒ピ−ス7に対する劣化触媒の再生工事をなす場合であっても、常時確実に隣接する触媒8に漏投射することなく、研材は単位時間当たり投射量のバラツキが低減されて加圧空気とともに投射対象である触媒8、8A、8Bそれぞれの排ガス流通穴8a、8Aa、8Baに投射される。
【0124】
つぎに請求項3に記載の発明の一実施例と実施の形態を、図面を参照しながら説明する。図17は請求項3に記載の発明の一実施例に係る劣化触媒再生用の投射装置を正面からみた場合を示し、図18は投網状拡散流動構造の研材供給手段の他の例を一部省略するとともに縦方向から切断してみた場合を拡大して示したものである。
【0125】
図18に示すように、189は、外側が前記円筒形連結部位39の内径より僅かに小さい円形に形成されるとともに外側四箇所に均等間隔にて前記した取付螺子穴47と同様の取付螺子穴191が螺設され、内側に支持穴193が設けられた固定軸受部材であって、前記取付螺子57を、前記連結螺子穴41、取付螺子穴191に順次螺入なさしめることにより、ケ−シング部材43を構成する円筒形連結部位39と連結されている。
【0126】
図18に示すように、195は、外側前部196aから外側中間196bを前記支持穴193より若干外径を小さくした円形に、外側後部196cを径を大きくした圧送配管取付雄螺子197が螺設され、流入側198bから流出側198a近傍にかけて流出側近傍の先端断面形状を半円形とした流動案内穴199が設けられ、流出側近傍から流出側198aに、流入中心軸Gに対して放射状に一定間隔にて導入穴201が複数設けられた研材導入部材である。
【0127】
図17及び図18に示すように、固定軸受部材189と、研磨材導入部材195とから本実施例に係る投網状拡散流動構造の研磨材供給手段203が構成されており、前記した投射手段23と、過大摩耗阻止・流動調整手段25と、投網状拡散流動構造の研材供給手段203とから、請求項(3)の発明の一実施例に係る劣化触媒再生用の投射装置205が構成されている。そして、研材導入部材195の流動配管取付雄螺子197と前記した研材を含む加圧空気圧送ホ−ス155の下流側端とが連結されて、該劣化触媒再生用の投射装置205は、前記した劣化触媒再生工事システム173と同様の構成の図示を省略した劣化触媒再生工事システムに組み込まれるのである。
【0128】
請求項3に記載の発明の一実施例に係る実施の形態において説示したと同様の触媒再生工程の前半段階を経て研材を含む加圧空気が、劣化触媒再生用の投射装置205に到達して流動案内穴199に流入すると、作業者Mが研材を含む加圧空気圧送ホ−ス155の下流側端を支持しているのみで、加圧空気とともに研磨材は、複数の導入穴201にそれぞれ流入した後、ケ−シング部材43を構成する流動案内部位37の内部空間に流入中心軸Gに対して放射状に投射される。
【0129】
すると、加圧空気とともに投射された研材は、該内部空間中を放射状に拡散流動しながら流動断面積が漸次広くなっている流動案内部位37内を正方形通過穴33に向けて投網状に拡散流動する。そして、この後、請求項の発明の一実施例の実施の形態において説示したと同様の触媒再生工程の後半段階を経て、加圧空気とともに研材は多数の差込ノズル21から触媒8の排ガス流動穴8aに単位時間当たりの投射量のバラツキが低減されて投射され、前記したと同様の所定の劣化触媒再生工事が施工されるのである。
【0130】
つぎに、請求項4に記載の発明の一実施例を、図面を参照しながら説明する。図19は請求項4に記載の発明の一実施例に係る劣化触媒再生用の投射装置を一部切り欠いて正面からみた場合を示し、図20は同実施例に係る多角形箱状ケ−シング部材の一例である四角形箱状ケ−シング部材の構造と該四角形箱状ケ−シング部材の側面側に設けられた一側流入口と連通なさしめて取付られた一側導入部材の構造とを図19のA−A線にて切断してみた場合を示し、図21は同実施例に係る円筒形ケ−シング部材の一例の構造と該円筒形ケ−シング部材の周壁に設けられた他側流入口と連通なさしめて取付られた他側導入部材の構造とを図19のB-B線にて切断してみた場合を示したものである。
【0131】
図19及び図20に示すように、207は、前記した取付部位31と同様の形状であって前記正方形通過穴33と同様の開口形状の正方形通過穴209が設けられた取付部位であり、211は、該取付部位207の一辺の長さより若干長さが短く上方側207a上の一方と他方の正面側内方にそれぞれ若干寄せて相対面して立設された一対の正面側枠部材である。
【0132】
また、213は、該正面側枠部材211と同長であって前記した上方側207a上の一方と他方の側面側内方にそれぞれ同程度寄せて相対面して立設された一対の側面側枠部材であり、215は、一対の正面側枠部材211と一対の側面側枠部材213上に設けられ中心位置に円形の通過穴217が穿設された蓋部材である。尚、一対の側面側枠部材213の一方には一側流入口219が設けられている。
【0133】
そして、前記した取付部位207と、一対の正面側枠部材211と、一対の側面側枠部材213と、蓋部材215とから多角形箱状ケ−シング部材の一例である四角形箱状ケ−シング部材221が構成されている。
【0134】
図19及び図21に示すように、223は、内径が前記通過穴217と略同径であって高さが前記四角形ケ−シング部材221の高さの50%より若干低い円筒形に形成され、流入中心軸225を特定周壁位置227Aでの接線227A1と平行になさしめて他側流入口229が周壁227に設けられた円筒形ケ−シング部材である。
【0135】
そして、該円筒形ケ−シング部材223は、流出側223aが前記通過穴217と連通なさしめるとともに、他側流入口229が前記一側流入口219に対して上方からみた場合に直角な位置関係となるようにして前記した四角形箱状ケ−シング部材221上に配設されている。
【0136】
図19及び図20に示すように、231は、内部に図示を省略した圧送ホ−スと連結可能に連結螺子穴233が螺設され、該連結螺子穴233を、前記一側流入口219と連通なさしめて側面側枠部材213に取付られた一側導入部材である。
【0137】
図19及び図21に示すように、235は、正面側枠部材211と一体化され円筒形ケ−シング部材223の高さより若干長く形成された正面側囲い部材であって、略中央部が円筒形ケ−シング部材223の周壁227と接するようにして正面側枠部211上に立設されている。尚、他側流入口229と対面する側の正面側囲い部材には、他側流入口229と連通なさしめた他側流入中継口237が設けられている。
【0138】
また、238は、側面側枠部材213と一体化され正面側囲い部材235と同様に形成されるとともに同様して側面側枠部材213上に立設された側面側囲い部材であり、239は、内側四隅が正面側囲い部材235、側面側囲い部材238それぞれの上端と接するようにして円筒形ケ−シング部材223上に設けられた四角形板状に形成された天井部材である。
【0139】
図19及び図21に示すように、240は、取付側240aのみが傾斜した台形断面形状に形成され、取付側240aが正面側囲い部材235に取付られた際に、流入中心軸225と一致なさしめるとともに他側流入中継口237を介して他側流入口229と連通可能なように取付側寄り中心部に導入流路241が設けられている一方、圧送側寄り中心部に該導入流路241と連通なさしめるとともに図示を周略した圧送ホ−スと連結可能となさしめた連結螺子穴242が螺設された他側導入部材である。
【0140】
図19乃至図21に示すように、前記した四角形箱状ケ−シング部材221と、円筒形ケ−シング部材223と、一側導入部材231と、他側導入部材240とから本実施例に係る研材群の乱流拡散流動構造の研磨材供給手段243が構成されている。尚、本実施例では正面側囲い部材235、側面側囲い部材238、天井部材239が付加的構成要素として必要な場合について説明したが、円筒形ケ−シング部材243がコップをひっくり返したような形状に形成され且つ他側導入部材240が円筒形ケ−シング部材の周壁に直接取付される構成の場合には不用となる。
【0141】
図19に示すように、その他の構成は前記した請求項の発明の一実施例に係る劣化触媒再生用の投射装置1と同様であって、前記した投射手段23と、過大摩耗阻止・流動調整手段25と、研材群の乱流拡散流動構造の研磨材供給手段243とから請求項4に記載の発明の一実施例に係る劣化触媒再生用の投射装置245が構成されている。
【0142】
つぎに、請求項4に記載の発明の一実施例の実施の形態を説明する。図22は研材群が加圧空気とともに乱流拡散流動されて投射方向に流動する過程を模式的に示したものである。
【0143】
前記したと同様の触媒再生工事の準備をした後、コンプレッサ−等の所定の動力源を動作させると、図示を省略した一方の圧送ホ−ス中を圧送されて加圧空気とともに研材群が一側導入部材231を介して一側流入口219に流入する。すると、図20及び図22(ロ)に示すように、該一側流入口219から他方の側面側枠部材213の内壁に向けて四角形箱状ケ−シング部材221内に加圧空気とともに研材群が投射方向と異なる方向に噴射される。
【0144】
係る噴射により、研材群を含む加圧空気は、該一側流入口219と対面する一方の側面側枠部材213の内壁の一定範囲と衝突し、研磨材群は飛散する一方、加圧空気は反射する。そして、図22(ロ)に示すように、飛散した研材は、隣接する一方の正面側枠部材211、遠方の他方の正面側枠部材211、又は他方の側面側枠部材213それぞれの内壁、あるいは一方の側面側枠部材213の内壁での再度の衝突と飛散を連鎖的に繰り返す。また、加圧空気は、これら枠部材それぞれの内壁での反射を繰り返すため、複雑且つ多様な乱流流動状態となる。
【0145】
一方、図示を省略した他方の圧送ホ−ス中を圧送されて加圧空気のみが他側導入部材240を介し、他側流入中継口237を経由して他側流入口229に流入する。すると、図21及び図22(イ)に示すように、流入当初接線方向に流入した加圧空気流は、円筒形ケ−シング部材223内部の円弧状の内壁228と接触するため、強制的に流動方向が連続的に内側に旋回される。
【0146】
また、旋回を開始した空気流は、後続して他側流入口229に流入する加圧空気により押されること、及び通過穴217と連通されている流出側を除いて該円筒形ケ−シング部材223は密閉状態にあることから、渦巻状に回転流動しながら通過穴217側に流動する空気流が引き起こされる。この後、円筒形ケ−シング部材223内を渦巻状に回転流動しながら通過穴217側に流動移動する。
【0147】
そして、円筒形ケ−シング部材223側から渦巻状に回転流動しながら流動移動する加圧空気流が通過穴217を通って四角形箱状ケ−シング部材221内に進入すると、図22(ハ)に示すように、乱流状態にある加圧空気と連鎖的に衝突と飛散を繰り返す研材群に対して、渦巻状に回転流動しながら流動する加圧空気が、回転流動作用力と投射方向に流動移動なさしめる作用力がミックスされた複合流動作用力を付与しつつ、両流動グル−プは入り混じる。
【0148】
すると、図22(ニ)に示すように、四角形箱状ケ−シング部材221内に、更に複雑且つ多様に乱流しつつ投射方向に流動移動する空気流が引き起こされるので、研材群の一部が投射空間の周辺域に回遊し、その他が中心域に回遊する等して、投射空間の周辺域にも中心域と略同一の研材存在密度で該加圧空気の空気流に乗って乱流拡散されながら投射方向に流動する。
【0149】
このようにして、研材群が加圧空気とともに投射方向に乱流拡散流動すると、図22(ニ)に示すように、前記した過大摩耗阻止・流動調整手段25に穿設された多数の流動調整穴27それぞれに単位時間当たりの投射量のバラツキが略生じない研材の投射状態で、研材群を含む加圧空気が到達する。この後、前記したと同様の経路を経て、差込ノズル21を介して、一の触媒ピ−ス7を構成する多数の触媒8内それぞれに、単位時間当たり投射量のバラツキが殆どない整流状態で加速された流動速度の研材群が加圧空気とともに投射される。
【0150】
尚、一側流入口219に加圧空気のみを他側流入口229に加圧空気とともに研材を流入させた場合には、前記したと同様にして、四角形箱状ケ−シング部材221内で加圧空気の乱流が生じる一方、円筒形ケ−シング部材223内で研磨材群が加圧空気とともに渦巻状に回転流動しながら四角形箱状ケ−シング部材221側に流動移動する。
【0151】
この後、図22(ハ)に示すように、四角形箱状ケ−シング部材221内で出会って入り混じり、前記したと同様にして、研材群は、図22(ニ)に示すように、加圧空気とともに乱流拡散されながら投射方向に流動する。
【0152】
また、本実施例では請求項1に記載の発明の一実施例に係る劣化触媒再生用の投射装置1の構成を前提とした場合について説示したが、請求項4に記載の発明はこれに限定されず、請求項2に記載の発明の一実施例に係る劣化触媒再生用の投射装置183の構成を前提とした場合であっても勿論適用可能であって、図16に示すように、触媒8の損傷程度に応じて適宜選択使用された長尺差込ノズル177、又は中尺差込ノズル187を介して、一の触媒ピ−ス7A、7Bをそれぞれ構成する多数の触媒8A、8B内それぞれに、単位時間当たり投射量のバラツキが殆どない整流状態で加速された流動速度の研材群を加圧空気とともに投射可能である。
【0153】
つぎに、請求項5に記載の発明の一実施例を、図面を参照しながら説明する。図23は請求項5に記載の発明の一実施例に係る劣化触媒再生用の投射装置を一部切り欠いて正面からみた場合を示し、図24は同実施例に係る多角形ケ−シング部材の一例である四角形ケ−シング部材の構造と該四角形ケ−シング部材の側面に設けられた一側流入口と連通なさしめて取付られた一側導入部材の構造とを図23のA−A線にて切断してみた場合を示し、図25は同実施例に係る破砕・飛散誘導部材の一例と取付構造を図24のA−A線にて切断し拡大してみた場合を示したたものである。
【0154】
図23及び図25に示すように、246は、前記した正面側枠部材211と同長同幅であって、上下ニ段それぞれの九箇所に一定間隔にて取付螺子穴247が螺設され、前記した取付部位207上に同様にして立設された一対の正面側枠部材である。
【0155】
図24及び図25に示すように、251は、正面側枠部材246より若干短い長さの断面半円状の破砕・飛散誘導部材であって、上下に一定間隔にて平面251aから円弧状面251bに向けて一定深さの取付螺子穴253が螺設されている。そして、円弧状面251aを後述する四角形箱状ケ−シング部材257の内側に向ける一方、取付螺子穴253を前記した正面側枠部材246に螺設された取付螺子穴247の螺設位置と一致なさしめるようにして平面251bを正面側枠部材245と接触させ、取付ボルト255により締め付けて、該破砕・飛散誘導部材251は、正面側枠部材246に取付られている。
【0156】
図23及び図24に示すように、このようにして、破砕・飛散誘導部材251を、一方の正面側枠部材246と他方の正面側枠部材246それぞれの上下ニ段九箇所に取付ることにより、一方と他方の正面側枠部材246に多数の破砕・飛散誘導部材251が隙間なく密集して設けられている。
【0157】
図23に示すように、前記した取付部位207と、一対の正面側枠部材246と、一対の側面側枠部材213と、蓋部材215と、多数の破砕・飛散誘導部材251と、から多数角形箱状ケ−シング部材の一例である四角形箱状ケ−シング部材257が構成され、該四角形箱状ケ−シング部材257と、前記した円筒形ケ−シング部材223と、一側導入部材231と、他側導入部材240とから本実施例に係る破砕研材粒群の乱流拡散流動構造の研材供給手段259が構成されている。
【0158】
図23に示すように、その他の構成は前記した請求項1に記載の発明の一実施例に係る劣化触媒再生用の投射装置1と同様であって、前記した投射手段23と、過大摩耗阻止・流動調整手段25と、破砕研材粒群の乱流拡散流動構造の研磨材供給手段259とから請求項5に記載の発明の一実施例に係る劣化触媒再生用の投射装置261が構成されている。
【0159】
つぎに、請求項5に記載の発明の一実施例の実施の形態を説明する。図26は研材群が破砕されて研材粒群となり加圧空気とともに乱流拡散流動され、投射方向に流動される過程を模式的に示したものである。
【0160】
材群が加圧空気とともに一側導入部材231を介して一側流入口219に流入すると、図24及び図26(ロ)に示すように、該一側流入口219から他方の側面側枠部材213の内壁に向けて四角形箱状ケ−シング部材257内に加圧空気とともに研材群が投射方向と異なる方向に噴射される。
【0161】
係る噴射により、研材群を含む加圧空気は前記したと同様に衝突して、研材群は飛散する一方、加圧空気は反射する。すると、図22(ロ)に示すように、飛散した研材群は、隣接する一方の正面側枠部材246に取付られた破砕・飛散誘導部材251の円弧状面251bと衝突して弾かれる際に衝撃力を受け、一部が破砕され細かな研材粒となり、破砕されなかった研材とともに四方八方に飛散する。
【0162】
この後、一方若しくは他方の正面側枠部材246に取付られた他の破砕・飛散誘導部材251との衝突、あるいは一方若しくは他方の側面側枠部材213の内壁との衝突を連鎖的に繰り返すので、流入した研材は略全てが粒径の小さい研材粒に破砕される。
【0163】
一方、反射された加圧空気は、研材群と同様に破砕・飛散誘導部材251との衝突による多方向への乱反射、一方若しくは他方の側面側枠部材213の内壁との衝突による反射を連鎖的に繰り返すので、流入した加圧空気は乱流状態となる。この結果、四角形箱状ケ−シング部材257内で、研材粒群が、乱流状態の加圧空気の流れに乗り四方八方に飛散する流動挙動をなす。
【0164】
そして、図26(イ)及び図26(ハ)に示すように、他側流入口229に流入した加圧空気が、前記した如くして、円筒形ケ−シング部材223内で渦巻状に回転流動しながら流動移動して通過穴217を通って、四角形箱状ケ−シング部材257内に流入すると、乱流状態の加圧空気の流れに乗り四方八方に飛散している研材粒群に対して、前記したと同様の複合流動作用力を付与しつつ両流動グル−プは入り混じる。
【0165】
すると、四角形箱状ケ−シング部材257内で、請求項4に記載の発明の一実施例の実施の形態の項で説示した加圧空気の流動挙動より、より一層流動状態が多様に変動しつつ投射方向に流動移動する加圧空気の空気流が引き起こされることと、破砕された個々の研材粒は研材より軽量であって多様な空気流の流れの変化に敏感に反応することから、図26(ニ)に示すように、破砕された研材粒群の一部が投射空間の周辺に回遊し、その他が中心域に回遊する等して、投射空間の周辺域にも中心域と略同一の研材粒存在密度で、破砕された研材粒群は、加圧空気の多様な空気流に乗って流動状態が多様に変動しながら投射方向に乱流拡散流動する。
【0166】
すると、前記した過大摩耗阻止・流動調整手段25に穿設された多数の流動調整穴27それぞれに、単位時間当たり投射量のバラツキが請求項4に記載の発明の一実施例の実施の形態の項で説示した場合より、より一層小さい破砕された研材粒群の投射状態で、研材粒を含む加圧空気が到達する。この後、前記したと同様の経路を経て、差込ノズル21を介して、一の触媒ピ−ス7を構成する多数の触媒8内それぞれに、単位時間当たり投射量のバラツキが殆どない整流状態で加速された流動速度の研材粒群が加圧空気とともに投射され、どの触媒に対しても精密且つ一様な研作用をなす。
【0167】
尚、本実施例では請求項1に記載の発明の一実施例に係る劣化触媒再生用の投射装置1に記載の構成を前提とした場合について説示したが、請求項の発明はこれに限定されず、請求項2に記載の発明の一実施例に係る劣化触媒再生用の投射装置183の構成を前提とした場合であっても勿論適用可能であって、図16に示すように、触媒8の損傷程度に応じて適宜選択使用された長尺差込ノズル177、又は中尺差込ノズル187を介して、一の触媒ピ−ス7A、7Bをそれぞれ構成する多数の触媒8A、8B内それぞれに、単位時間当たり投射量のバラツキが殆どない整流状態で加速された流動速度の研材粒群を加圧空気とともに投射可能である。
【0168】
つぎに、請求項6に記載の発明の一実施例を、図面を参照しながら説明する。図27は請求項6に記載の発明の一実施例に係る劣化触媒再生用の投射装置を一部切断して正面からみた場合を示し、図28は同劣化触媒再生用の投射装置を構成する多数の狭小投射穴が穿設された投射手段の一例を投射側上方からみた場合を示し、図29は同劣化触媒再生用の投射装置の投射状態を模式的に示したものである。
【0169】
図27乃至図29に示すように、263は、投射側264aが一の触媒ピ−ス7C又は7Dの上面面積より小さい面積の円形平面に形成する一方、流入側264bが三角錐状に突起なさしめ中心部を厚肉に周囲部を薄肉にして中心部Sを頂点とした傾斜面S1をつけて形成されるとともに、多数の異なるピッチサ−クル毎に一定角度間隔にて多数の狭小投射穴265が流入側264bと投射側264a間とを貫いて穿設された円形投射区画部位である。
【0170】
また、267は、円形投射区画部位263の外周端から一定長さ外方に延伸なさしめて設けられ、流入側264bから投射側264aに向けて一定深さだけ連結雄螺子穴269が螺設された円形連結部位である。そして、円形投射区画部位263と円形連結部位267とが一体的に構成されて本実施例に係る投射手段271が形成されている。
【0171】
図27に示すように、273は、流出側274aを円形連結部位267の外径と略同一の円形形状となす一方、流入側274bを前記した円筒形連結部位39の外径と略同一の円形形状となし、流入側274bと流出側274a間の長さを投射手段271の外径の略1.5倍として、内部空間を研材が空気とともに後述するように流動する流動断面積が漸次広くなるよう円錐中空状に形成された流動案内部位である。尚、該流動案内部位273の流出側274aには、連結雌螺子穴269と螺合可能に連結雄螺子が螺設されている。
【0172】
図27に示すように、流動案内部位273と、前記した円錐形連結部位39とから本実施例に係るケ−シング部材275が構成され、該ケ−シング部材275と、請求項1に記載の発明の実施例において説示した研材導入部材59とから本実施例に係る投網状拡散流動構造の研材供給手段277が構成されている。そして、円形連結部位267に螺設された連結雌螺子穴269と流動案内部位273に突設された連結雄螺子269とを螺合なさしめることにより連結された、投射手段271と、投網状拡散流動構造の研材供給手段277とから請求項6に記載の発明の一実施例に係る劣化触媒再生用の投射装置279が構成されている。
【0173】
つぎに、本実施例の実施の形態について説明する。図27乃至図29に示すように、投射手段271を構成する円形投射区画部位263の投射側264aの面積が一の触媒ピ−ス7C又は7Dの上面7aの面積より小さく、また、円形連結部位267は円形投射区画部位263の外側端から外方に若干だけ延伸して設けられたのと、研材が投網状に拡散流動開始するのが研材導入部材59の流出側であるため、請求項6に記載の発明の一実施例に係る劣化触媒再生用の投射装置279全体構成が細身にコンパクト化される。
【0174】
図9を参照し、また、図29(イ)に示すように、係るコンパクト化により、作業者Mは、同劣化触媒再生用の投射装置279を携帯して、排煙脱硝装置175の縁部175Bや梁部材175C等が突き出た狭い隙間空間にも容易に入り込め、この場所に設置された触媒パック5を構成する一の触媒ピ−ス7Cの上面7aに接近した位置から投射開始可能となる。
【0175】
つぎに、図27及び図29(ロ)に示すように、円形投射区画部位263の投射側264aと、一の触媒ビ−ス7Dの汚Pが付着した一定範囲、又は、図27及び図29(イ)に示すように、排煙脱硝装置175の縁部175B若しくは梁部材175Cが突き出て邪魔をしているため触媒再生工事が困難な場所に配設された一の触媒ピ−ス7Cの一定範囲とを間近な上方空間位置にて水平に対面なさしめての再生工事の準備が整う。
【0176】
この後、劣化触媒の再生工事を開始すると、請求項1に記載の発明の一実施例の実施の形態の項にて説示したと同様にして、研材を空気とともに研材導入部材59からケ−シング部材275を構成する流動案内部位273に流入し、該流動案内部位273の内部空間中を投網状に拡散流動して円形投射区画部位263の流入側264bに到達し、一部の研材は狭小投射穴265にストレ−トに流入するものの大部分の研材は、中心部Sを境として三角錐に形成され全方向が投射側264aに傾斜した傾斜面S1と斜め衝突する。そして、係る斜め衝突により、研材は、運動エネルギ−の一部が散逸され、傾斜面S1上を周辺部S2に向け滑動し間近の狭小投射穴265に流動速度を大幅に減じて流入する。
【0177】
ついで、多数の狭小投射穴265それぞれの内部を、流動断面積が小さいため。研材同士が接触したり内壁と接触して摩擦抵抗力を受け運動エネルギ−を更に削減されながら強制的に流動帯が細められて流動速度が一層減速されつつ整流されて投射側264aに流動案内される。そして、係る流動案内をされた後、研材は空気とともに多数の狭小投射穴265それぞれから、極めて多数の細投射帯となってシャワ−状に投射手段271から下方に投射される。係る投射により、研材は、単位投射面積当たりの衝突エネルギ−が大幅に減殺されて、図29(ロ)に示すように、一の触媒ピ−ス7Dの上面7aの前記した汚れPが付着された一定範囲、図29(イ)に示すように、施工が困難な位置に配置された一の触媒ピ−ス7Cの上面7aの一定範囲と衝突する。
【0178】
すると、図29に示すように、触媒8の上面を損傷させることなく、上面に付着している汚れPは飛散され、該一定範囲は清浄な状態となる。また、多数の細投射帯の一部は触媒8の上面と衝突して上面に付着された汚れを飛散させ、その他の細投射帯は、触媒8中に流入して前記した研作用をなして、触媒8の触媒機能を再生させる。
【0179】
尚、本実施例では、投射区画部位と投射手段が円形の場合について説明したが、一の触媒パックの上面面積より小さければ、楕円形、三角形、四角形等の多角形、長方形等の種々の形状であってもよく、また、図示を省略したが、本実施例のケ−シング部材275が請求項3に記載の発明の一実施例において説示した研材導入部材195とから構成される投網状拡散流動構造の研磨材供給手段であっても本発明は勿論適用可能である。
【0180】
【発明の効果】
本発明は以上詳細に説明した如く構成されているので、下記の如く優れた効果を発揮するものである。請求項1に記載の発明の構成により、一の触媒パックを構成する一の触媒ピ−ス毎に劣化触媒再生工事を施工する方策とし、触媒パックから極めて近い位置を加圧空気とともに研材が投網状に拡散流動開始し得る投射構造の劣化触媒再生用の投射装置としたことから、投射装置の全体構成をコンパクトにすることが可能となり、触媒パックを排煙脱硝装置内の所定位置に設置したままで触媒機能の再生工事を施工することができる。また、流動断面積が急減して研材の運動量が急増する流動挙動となり物体と接触すると物体に対して強力な摩擦力を及ぼす現象を、触媒から遠く離れた投射経路の当初で生ずるように仕向ける投射構造としたことから、研材が触媒に流入する直前・直後の段階で触媒が損傷することがない。更に、研材の投網状の拡散流動により多数の差込ノズルそれぞれに対する研材の単位時間当たり投射量のバラツキが低減できたことと、投射経路の中間経路で流動速度を加速し一方向にのみ整然と流動するように研材を整流誘導し、投射経路の終端であって現実に差込ノズルから研材が投射される段階で投射周辺域は低投射速度であるが投射中心域は最大投射速度となる投射速度分布にて研材を加圧空気とともに触媒内に投射させることができる。係る著効から、全ての触媒を漏れなく、極めて短時間内に、全く損傷を生じさせることなく触媒内にコ−ティングされたように付着しているカルシウム成分を主とした触媒被毒物質を効率よく研除去し触媒機能の再生をはかることができる。
【0181】
請求項2に記載の発明の構成により、長時間の排煙脱硝のために、一の触媒ピ−スを構成する多数の触媒それぞれが様々な損傷度合いであって各触媒毎に触媒機能の再生を図る上端位置が相違しても、隣接の触媒に漏投射されずに研磨材が一の触媒ピ−スを構成する全ての触媒内に確実に投射することができることから、損傷程度が触媒毎に異なる条件下であっても、触媒に全く投射による損傷を生じさせることなく、所定の触媒機能の再生をはかることができる。
【0182】
請求項3に記載の発明の構成により、何人が、加圧空気とともに研材を投射装置内に導入しても、ケ−シング部材中を常に一定の投網状の拡散流動をなさしめることができて一の触媒パックに対する投射状況を均一に保つことができ、何人が触媒再生工事に従事しても、前記した請求項の発明、請求項の発明に係る種々の効果を、より一層安定且つ確実に実現することができる。
【0183】
請求項4に記載の発明の構成により、研材が加圧空気とともに流動するグル−プと加圧空気のみが流動するグル−プに分けて投射方向とは異なる方向から投射装置内に流入させ、投射装置内で、一方のグル−プについては渦巻状に回転流動なさしめながら他方のグル−プ側に流動移動させ、他方のグル−プについては投射装置内の内壁との衝突と飛散を連鎖的に生起せしめた後、両グル−プを入り混じらせて研材群を加圧空気とともに投射方向に向けて乱流拡散流動なさしめるようにしたことから、乱流拡散流動する周辺域にも確実に研材を中心域と同様に均等に回遊させることができ、乱流拡散流動する周辺域も中心域と同様の研材存在密度となさしめることができる。このため、乱流拡散流動域全域にわたり研材群を均等に投射方向に向けて乱流拡散流動なさしめることができ、多数の差込ノズルそれぞれに対する研材の単位時間当たり投射量のバラツキを格段に低減できる。係る顕効から、全ての触媒を漏れなく、極めて短時間内に、より一層確実に全く損傷を生じさせることなく触媒内にコ−ティングされたように付着しているカルシウム成分を主とした触媒被毒物質を研除去し触媒機能の再生をはかることができる。
【0184】
請求項5に記載の発明の構成により、研材が加圧空気とともに流動するグル−プと加圧空気のみが流動するグル−プに分けて投射方向とは異なる方向から投射装置内に流入させ、投射装置内で、加圧空気のみが流動するグル−プについては渦巻状に回転流動なさしめながら研材が加圧空気とともに流動するグル−プが流入した側に流動移動させ、研材が加圧空気とともに流動するグル−プについては投射装置内の内壁及び破砕・飛散誘導部材との衝突により研材を破砕なさしめ四方八方に飛散させるとともに加圧空気も同様の衝突により乱反射させる挙動を連鎖的に生起せしめる状態とした後、両グル−プを入り混じらせて略全ての研材群が破砕された結果生じた研材粒群を、加圧空気とともに投射方向に乱流拡散流動なさしめるようにしたことから、軽量なため加圧空気の流動挙動に敏感に反応する研材粒を、乱流拡散流動する周辺域にも確実に中心域と同様に均等に回遊させることができ、乱流拡散流動する周辺域も中心域と同様の研材粒存在密度となさしめることができる。このため、乱流拡散流動域全域にわたり研材粒群を均等に投射方向に向けて乱流拡散流動なさしめることができ、多数の差込ノズルそれぞれに対する研材粒の単位時間当たり投射量のバラツキが低減され、しかも個々の研材粒を多様な流動挙動となさしめた状態で差込ノズルを介して触媒内に投射することができる。係る著効から、ソフトタッチであるが破砕されて粒面が鋭敏であって様々な方向から研作用をなす個々の触媒材粒が、どの触媒内にコ−ティングされたように付着しているカルシウム成分を主とした触媒被毒物質の研除去を等しくなすことができ、極めて短時間内に、損傷し易い触媒であっても全く損傷なさしめることなく、全ての触媒の触媒機能の再生を漏れなくはかることができる。
【0185】
請求項6に記載の発明の構成により、投射手段の投射側の面積を触媒ピ−スの上面の面積より小さくするとともに、研材を投射する前段階において、触媒パックの上面から極めて近い位置から空気とともに研材が投網状に拡散流動開始し得る構造として劣化触媒再生用の投射装置の全体構造がコンパクト化されたので、作業者は劣化触媒再生用の投射装置を携帯して、排煙脱硝装置の縁部や梁部材等が突き出た狭い隙間空間にも容易に入り込め、研材の投射等の触媒再生工事を施工することができる。また、加圧空気とともに圧送され多大な運動エネルギ−が付与された研材を、投射区画部位の流入側の傾斜面で受け止めて運動エネルギ−の一部を散逸なさしめる運動エネルギ−の第一段の削減と、続いて研材を多数の狭小投射穴それぞれの中を投射側に向けて流動なさしめる間での、狭小投射穴内壁と接触すること及び研材相互と接触することにより摩擦抵抗力を受けて運動エネルギ−の第二段の削減がなされるので、付与された運動エネルギ−を大幅に削減して多数の狭小投射穴それぞれから投射することができる。このため、連続供給される研材は、極めて多数の細投射帯となってシャワ−状に投射され、単位投射面積当たりの衝突エネルギ−が大幅に減殺されて触媒ピ−スの上面と衝突するので、触媒ピ−スには何らの損傷を与えることなく付着した汚れのみを除去することができる。また、投射時間を長めにして、触媒ピ−スの上面に研材を投射するとともに触媒内にも研材を投射すると、触媒ピ−スには何らの損傷を生じさせることなく、上面に付着した汚れの除去と劣化した触媒機能の再生をはかることができる。
【図面の簡単な説明】
【図1】 請求項1に記載の発明の一実施例に係る劣化触媒再生用の投射装置を示した正面図である。
【図2】 投射部材の一例を示した平面図である。
【図3】 差込ノズルの一例を示した拡大斜視図である。
【図4】 差込ノズルがノズル取付穴に脱着可能に装着されたているとともに投射部材と過大摩耗阻止・流動調整手段及びケ−シング部材とが連結されている状態を示した一部省略拡大断面図である。
【図5】 ケ−シング部材の一例を示した斜視図である。
【図6】 投網状流動拡散構造の研材供給手段の一例を示した一部切欠き断面図である。
【図7】 触媒パックの構成の一例を示した一部切欠き斜視図である。
【図8】 研材送給装置の一例を示した正面図である。
【図9】 劣化触媒再生工事システムの一例を示した模式図である。
【図10】 請求項1に記載の発明の一実施例に係る劣化触媒再生用の投射装置が劣化触媒再生工事システムの圧送下流側端位置に配置された状態を示した斜視図である。
【図11】 研材連続定量落流機構を示した拡大断面図である。
【図12】 研材連続圧送部材を示した拡大斜視図である。
【図13】 研材が空気とともに流動調整穴内に流入する段階から流動調整穴と差込ノズル内を順次流動した後に差込ノズルから触媒内に向けて投射されるに至るまでの研材の流動挙動を示した模式図である。
【図14】 請求項2に記載の発明の一実施例に係る劣化触媒再生用の投射装置を示した正面図である。
【図15】 長尺差込ノズルがノズル取付穴に脱着可能に装着されているとともに投射部材と過大摩耗阻止・流動調整手段及びケ−シング部材とが連結された状態を示した一部省略拡大断面図である。
【図16】 触媒の損傷の有無と損傷の程度に応じて使用する差込ノズルを選択する基準を示した模式図である。
【図17】 請求項3に記載の発明の一実施例に係る劣化触媒再生用の投射装置を示した正面図である。
【図18】 投網状流動拡散構造の研材供給手段の他の例を示した一部省略拡大断面図である。
【図19】 請求項4に記載の発明の一実施例に係る劣化触媒再生用の投射装置を示した一部切り欠き正面図である。
【図20】 同実施例に係る多角形ケ−シング部材の一例である四角形ケ−シング部材の構造と、該四角形ケ−シング部材の側面側に設けられた一側流入口と連通なさしめて取付られた一側導入部材の構造とを示した、図19のA−A線での切断による断面図である。
【図21】 同実施例に係る円筒形ケ−シング部材の一例の構成と、該円筒形ケ−シング部材の周壁に設けられた他側流入口と連通なさしめて取付られた他側導入部材の構造とを示した、図19のB−B線での切断による断面図である。
【図22】 研材群が加圧空気とともに乱流拡散流動されて投射方向に流動される過程を示した模式図である。
【図23】 請求項5に記載の発明の一実施例に係る劣化触媒再生用の投射装置を示した一部切り欠き正面図である。
【図24】 同実施例に係る多角形ケ−シング部材の一例である四角形ケ−シング部材の構造と、該四角形ケ−シング部材の側面に設けられた一側流入口と連通なさしめて取付られた一側導入部材の構造とを示した、図23のA−A線での切断による断面図である。
【図25】 同実施例に係る破砕・飛散誘導部材の一例と取付構造を示した、図24のA−A線での切断による拡大断面図である。
【図26】 研材群が破砕されて研材粒群となり加圧空気とともに乱流拡散流動され、投射方向に流動される過程を示した模式図である。
【図27】 請求項6に記載の発明の一実施例に係る劣化触媒再生用の投射装置を示した一部切断正面図である。
【図28】 同劣化触媒再生用の投射装置を構成する多数の狭小投射穴が穿設された投射手段の一例を示した平面図である。
【図29】 同劣化触媒再生用の投射装置の投射状態を示した模式図である。
【符号の説明】
1 請求項1に記載の発明の一実施例に係る劣化触媒再生用の投射装置
5 触媒パック
7 触媒ピ−ス
15 投射部材
21 差込ノズル
23 投射手段
25 過大摩耗阻止・流動調整手段
27 流動調整穴
43 ケ−シング部材
51 回動子
55 振り子状に回動自在な軸受部材
59 研材導入部材
69 投網状拡散流動構造の研材供給手段
85 研材収容容器
117 ロ−タリ−フィダ−
119 モ−タ
125 回転数検知部
127 研材連続定量落流機構
165 研材送給装置
167 コンプレッサ−
173 劣化触媒再生工事システム
177 長尺差込ノズル
181 投射手段
183 請求項2に記載の発明の一実施例に係る劣化触媒再生用の投射装置
187 中尺差込ノズル
195 研材導入部材
203 投網状拡散流動構造の研材供給手段
205 請求項3に記載の発明の一実施例に係る劣化触媒再生用の投射装置
221 四角形箱状ケ−シング部材
223 円筒形ケ−シング部材
231 一側導入部材
240 他側導入部材
243 研材群の乱流拡散流動構造の研磨材供給手段
245 請求項の発明の一実施例に係る劣化触媒再生用の投射装置
251 破砕・飛散誘導部材
257 四角形箱状ケ−シング部材
259 破砕研磨材粒群の乱流拡散流動構造の流動研磨材供給手段
261 請求項5に記載の発明の一実施例に係る劣化触媒再生用の投射装置
265 狭小投射穴
271 投射手段
277 投網状拡散流動構造の研材供給手段
279 請求項6に記載の発明の一実施例に係る劣化触媒再生用の投射装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a projecting apparatus for regeneration of a deteriorated catalyst that enables the construction of a catalyst function that has deteriorated rapidly while the catalyst pack is installed in the flue gas denitration apparatus.
[0002]
[Prior art]
In recent years, Japan's electricity charges are expensive and an important issue for strengthening the international competitiveness of the industry has been closed up in recent years. The demand is loud. Because of this social situation, thermal power plants use coal collected overseas, which has the lowest fuel cost, as fuel for power generation, and then pulverize this coal into fine powder and burn it to obtain the necessary power generation energy. It is in. And, in such a thermal power plant, a flue gas denitration device is installed from the viewpoint of pollution prevention, and the flue gas denitration device has a catalyst pack containing a large number of catalyst pieces in each level. Many are arranged at regular intervals.
[0003]
By the way, since the flue gas denitration device is an expensive facility, it is desirable that the built-in catalyst exhibits a stable high denitration rate catalytic function over a long period of time or it is desirable to reduce facility costs. In order to prolong the time for replacement with a new catalyst as much as possible, technology development for regenerating a catalyst whose catalytic function has deteriorated due to use for a certain period of time has been made. For example, Japanese Patent Laid-Open Nos. 58-150439 and 61-263646 are disclosed. And Japanese Patent Publication No. 7-14486, respectively.
[0004]
The proposal disclosed in Japanese Patent Application Laid-Open No. 58-150439 is based on scraping the clogged portion of the pores of the active part due to ash or the like concentrated on a very small layer close to the surface of the active substance, and the poisoning substance depositing part. In a gas processing apparatus incorporating a parallel flow type catalyst having a gas passage having a predetermined cross-sectional shape in order to recover the performance of the catalyst by dropping, a tube installed opposite to the end face of the catalyst gas passage The gas poison and the powder are simultaneously ejected from the nozzle to forcibly remove the catalyst poisoning substances adhering to the catalyst surface. Ma It is removed by wear.
[0005]
In addition, the proposal disclosed in Japanese Patent Application Laid-Open No. 61-263646 discloses that the calcium component contained in the coal soot gas is coated on the surface of the catalyst to regenerate the catalyst performance, thereby increasing the life of the catalyst. The purpose is to prolong the operation, and air is introduced from a fluidizing air inlet valve disposed near the inlet of the lower hopper provided at a position below the catalyst pack so as to pass through the lower hopper. Circulate to the catalyst pack side, and then polish at the position above the lower hopper. Polishing Supply materials Ma By taking measures to further fluidize the air together with the wear material to the catalyst pack side, it was fluidized on the surface of the catalyst where the denitration performance was degraded (catalyst function was degraded). Ma This is a proposal for removing a catalyst poisoning substance adhering to the catalyst surface by bringing a wear material into contact therewith.
[0006]
Further, the proposal disclosed in Japanese Examined Patent Publication No. 7-14486 discloses the upper surface of the deteriorated catalyst surface. Ma The purpose is to efficiently regenerate the catalyst function without any practical impediment to the catalyst strength by grinding and removing the catalyst surface (side surface) while preventing wear. After attaching the catalyst end face protection porous body to the catalyst, the catalyst and the catalyst end face protection porous body are accommodated in a sealed container, and a blower is connected to the lower part of the sealed container via a cyclone and a filter, and provided at the upper part of the sealed container. The catalyst poisoning substance adhering to the inner surface of the catalyst hole is ground and removed by the flowing silica sand by taking means to introduce the silica sand into the catalyst in the airtight container from the fixed quantity feeder. This is a proposal to regenerate the catalytic function of the deteriorated catalyst formed in a large number of cylinders, honeycombs, or a large number of plates.
[0007]
[Problems to be solved by the invention]
By the way, a flue gas denitration device (corresponding to a gas treatment device disclosed in Japanese Patent Application Laid-Open No. 58-150439) is a catalyst pack (Japanese Patent Publication) that contains a large number of catalyst pieces in a limited installation space. In order to install as many sealed containers as possible as disclosed in Japanese Patent Application Laid-Open No. 7-14486, each is installed in a dense state at a predetermined interval. For this reason, both the same level gap space between adjacent catalyst packs in the same level, and the upper and lower level gap space between adjacent upper and lower level catalyst packs are both extremely narrow (adjustable for adults to sit in and out) In order to support the weight of the large number of catalyst packs and the like, a large number of structural members such as column members and beam members are arranged at predetermined positions.
[0008]
However, the proposal disclosed in Japanese Patent Laid-Open No. 58-150439 is installed opposite to the end face of the gas passage of the catalyst, and the proposal disclosed in Japanese Patent Laid-Open No. 61-263646 is realized. A means for providing a lower hopper at the lower position of the catalyst pack, which is a premise to perform, and a blower through a cyclone and a filter at the lower part of the closed container which is a premise for realizing the proposal disclosed in Japanese Patent Publication No. 7-14486. Connecting and providing means for providing a metering feeder at the top of the sealed container means that, due to the structure of the above-described flue gas denitration device, these means cannot be installed in a narrow same level gap space or upper and lower level gap space. It is impossible to take these measures while keeping the catalyst pack in place in a dense state in the flue gas denitration device because it comes into contact with the pillar member or beam member. That.
[0009]
For this reason, the catalyst regeneration work cannot be performed with the catalyst pack installed in the flue gas denitration device. Each time a large number of catalyst packs are regenerated from the flue gas denitration device, the catalyst regeneration work cannot be performed. The work of regenerating the catalyst function must be performed, and the work of returning to the original position after completion of the regeneration must be repeatedly performed.
[0010]
In addition, each of the above proposals is studied together with air by a pumping force by a pumping means (such as a blower) of normal required power. Polishing After the material is simply pumped and flowed to the upper surface side of one catalyst back, it is subjected to the action of the pumping pressure and projected to each of the catalyst pieces constituting one catalyst pack. However, in such a projection, the pumping pressure and the flow velocity of the air flowing in the projection direction are not the same in the entire projection space. Polishing Variation in the projection amount of the material increases.
[0011]
For this reason, research per unit time Polishing A catalyst piece that has been projected with an excessive amount of material Polishing Before the material acts to remove the catalyst poisoning substance adhering to the catalyst wall, the vicinity of the catalyst hole entrance receives a large wear force in a short time and is damaged. On the other hand, research per unit time Polishing In the case of a catalyst piece where the projection amount of the material is too small, a polishing agent that acts to remove catalyst poisoning substances adhering to the catalyst wall. Polishing Since the amount of the material per unit time is insufficient, it takes a long time to remove the catalyst poisoning substance adhering to the catalyst wall, or a removal leakage occurs.
[0012]
The projection / removal status Polishing If the projection time is set short in consideration of the situation in which the material is overprojected, the catalyst function cannot be regenerated due to residual catalyst poisonous substances remaining in some catalyst groups that make up one catalyst pack. It becomes. In addition, research per unit time Polishing If the projection time is set to be long in consideration of the situation in which the material is projected too small, a part of the catalyst group constituting one catalyst pack is damaged for the reason described above.
[0013]
If you try to remove the poisoned catalyst without damaging all the catalysts that make up one catalyst bag while avoiding this situation, Polishing It is necessary to finely adjust the projection time while observing the state of the catalyst onto which the material has been projected, and this is a very laborious catalyst regeneration work.
[0014]
In addition, the normal required power is pumped by a blower, etc. Polishing Since the material is dispersedly projected onto all the catalyst pieces constituting one catalyst pack depending only on the pumping force, the polishing for each catalyst piece is performed. Polishing The penetration of the material is weakened. For this reason, although there is an effect of improving the flow velocity due to the sudden decrease in the cross-sectional area at the beginning of the flow into the catalyst, the polishing that flows together with air in each of the many catalysts constituting each catalyst piece. Polishing The material flow rate cannot be increased, and the catalyst surface is polished. Polishing There is a certain limit to the improvement of the acting force, and it takes time to regenerate the catalyst function of all the deteriorated catalysts incorporated in one catalyst pack.
[0015]
As mentioned above, since it takes a lot of time and it takes time to regenerate the deteriorated catalyst function, it is unavoidable that the regeneration function period of the catalyst function for the flue gas denitrification device is unavoidable and the regeneration work of the deteriorated catalyst must be performed The cost of renewal work becomes enormous as the overall cost is reduced by abandoning the process from the beginning and adopting a new catalyst pack. In addition, when the moisture that falls on the catalyst pack due to rainfall that is likely to be encountered during a long-term regeneration construction, the catalyst function itself is damaged, and there is a high risk of causing a situation where it cannot be used thereafter.
[0016]
Further, before the catalyst regeneration disclosed in Japanese Patent Publication No. 7-14486 is made, a catalyst protective porous body is attached to the upper end face of the deteriorated catalyst, and polishing is performed. Polishing Excessive in the initial stage of flowing the material with air Ma Although proposals have been made to prevent wear, generally, when the catalyst pack is used for denitration until the catalyst function deteriorates, the upper end face of most of the built-in catalyst is partially damaged, and the degree of damage The state is different for each catalyst.
[0017]
For this reason, even if a catalyst protective porous body having a fixed length from the upper position is uniformly attached to the upper end surface of the catalyst, the abrasive that flows together with air is used. Polishing Since the flow diffusion start position of the material is the lower end of the catalyst protective porous body for any catalyst, Polishing The material collides with an adjacent catalyst that is more severely damaged by denitration and causes wear damage, and the purpose of attaching the catalyst protective porous body to the upper end face of the catalyst cannot be achieved.
[0018]
As described above, in each of the conventional proposals described above, a large number of catalyst pieces built in each of a large number of catalyst packs installed in the flue gas denitration apparatus and whose catalytic function has been reduced by use over a certain period of time are converted into thermal power generation. However, it was virtually impossible to economically regenerate the catalyst function by responding to the operation plan, and there was no choice but to replace it with a new catalyst pack.
[0019]
In view of the above-described circumstances, the present invention can be applied to regenerate a deteriorated catalyst while the catalyst pack is installed in the flue gas denitration apparatus, and reliably regenerates the catalyst function of the deteriorated catalyst in a short time. It is an object of the present invention to provide a projection device for regenerating a deteriorated catalyst that can be easily treated.
[0020]
[Means for Solving the Problems]
Claim Described in 1 The present invention achieves the object by the following two solutions. The first solution is to reconstruct the catalyst function of the deteriorated catalyst for each of a number of catalyst pieces constituting one catalyst pack, in order to reconstruct the catalyst function of one catalyst pack. When regenerating each individual catalyst piece, study with air. Polishing The material is a construction policy for forcibly making a diffusion flow suitable for projection toward a large number of catalysts constituting individual catalyst pieces.
[0021]
In other words, the position very close to the top surface of the catalyst pack is defined as the pumping flow to the throwing diffusive flow conversion position, and the air and the air are polished from the conversion position. Polishing As a projection structure in which the material can flow in a grid pattern toward one catalyst piece, the polishing for each of a number of catalysts constituting one catalyst piece is performed. Polishing Minimize the variation in the projection amount per unit time of the material and make the entire projection device compact, and the operator regenerates the predetermined deteriorated catalyst in the exhaust gas denitration device while the catalyst pack is installed in the exhaust gas denitration device. It is designed to allow work.
[0022]
The second solution is a sharp increase in momentum due to a sudden decrease in the flow cross-sectional area, and a sharpening of the moment when the object is in contact with an object. Polishing In order to prevent the material from coming into direct contact with the catalyst, the flow behavior in which the flow cross-sectional area decreases rapidly is set at the beginning of the projection path, and the flow velocity is accelerated in the intermediate path of the projection path, and the material flows in only one direction. Nassashime, Ken Polishing When pressurized air containing material is projected from the nozzle onto the internal space of the catalyst, the projection peripheral area has a low projection speed, but the projection center area has a projection speed distribution that is the maximum projection speed. By making the best use of the fluid dynamics phenomenon, such as setting, so that the flow behavior is suitable in each of the projection paths, a predetermined catalyst can be obtained without causing any damage to the catalyst. The function has been regenerated, and it has become possible to greatly reduce the time required to regenerate the deteriorated catalyst once.
[0023]
Specifically, the outer shape slightly wider than the arrangement area in which other catalyst groups except for some catalyst groups arranged on the outermost side among the catalyst groups constituting one catalyst piece are arranged. From the outer end of the projection partition part having the same number and the same number of nozzle mounting holes as the number of placement of the catalyst, and the outer end of the projection partition part. A projecting member comprising a connecting portion formed to extend slightly outward from a position where it can face a part of the catalyst group, and a large number of insertion nozzles detachably mounted in a large number of nozzle mounting holes. And the same number of flow adjusting holes formed in the same shape as the inflow side of the projecting means and having the same inner diameter as the inner diameter of the insertion nozzle, and the same number as the nozzle mounting holes. Excessive wear prevention and flow control with the side connected to the inflow side of the connecting part And an outlet formed on the outflow side that has the same opening shape as the opening on the inflow side of the excessive wear prevention / flow adjusting means, the inflow side is substantially the same shape as the pressure-feed pipe, and the flow cross-sectional area flows out from the inflow side. A casing member which is formed so as to gradually become wider toward the side and whose outflow side is connected to the inflow side of the excessive wear prevention / flow adjusting means, and a pendulum shape with respect to the inflow center axis of the inflow side of the casing member A polishing supported on the inflow side of the casing member via a rotatable bearing member. Polishing Of a reticular diffusion flow structure composed of a material introduction member Polishing This is a projection device for regenerating a deteriorated catalyst composed of a material supply means.
[0024]
Claim Described in 2 The solution of the invention of the present invention is that in the field situation, the catalyst whose catalytic function has deteriorated due to the use for a certain period of time is damaged in part on the upper surface and the degree of damage is different for each catalyst. Even if there is Polishing This ensures that the material can flow into the catalyst without damaging any catalyst.
[0025]
In particular, Claim 1 Based on a projection device for regenerating a deteriorated catalyst according to the invention described in claim 1 The length of each of the many insertion nozzles described is made different depending on the degree of damage to the catalyst.
[0026]
Claim Described in 3 The solution provided by the invention of the present invention is the laboratory that becomes the solution described above. Polishing Improves the practicality of the regenerated catalyst regeneration work so that the casted net flow of the material can always be in a constant reticulated flow state regardless of how many people are engaged in the regeneration work of the deteriorated catalyst. It is.
[0027]
Specifically, the claims 1 A projection device for regenerating a deteriorated catalyst according to the described invention, or claim 2 A projection apparatus for regenerating a deteriorated catalyst according to the described invention is assumed. And claims 1 Research on the described reticular diffusion flow structure Polishing Claim instead of material supply means 1 A plurality of introduction holes arranged radially with respect to the inflow central axis from the inflow side to the outflow side are provided and supported by the inflow side of the case member and the fixed bearing member. Further, an abrasive supply means having a reticular diffusion flow structure comprising an abrasive introduction member is used as a constituent element.
[0028]
Claim Described in 4 The solution that the invention of Polishing Immediately after the material is divided into a group in which only the pressurized air flows and a group in which only the pressurized air flows, and both the groups are once flowed into the projection device from a flow direction different from the projection direction. , One of the two groups is mainly studied around the projection space. Polishing A spiral rotating flow that contributes to the migration of the material, while the other is sharpened. Polishing A flow with a collision that contributes to the material being widely scattered and diffused is caused in the projection apparatus. Then, in the flow state where both groups under the flow of such two systems are mixed, the diffusion flow is performed in the projection direction, and the peripheral area of the projection space is also studied in the same way as the central area. Polishing The entire area of the projection space is made so that the material can move around. Polishing We aim to make the density of materials uniform, and study each of a number of catalysts. Polishing This minimizes the variation in projection amount per unit time of the material.
[0029]
Specifically, the claims 1 A projection device for regenerating a deteriorated catalyst according to the invention described in claim or claim 2 A projection apparatus for regenerating a deteriorated catalyst according to the described invention is assumed. And claims 1 Research on the described reticular diffusion flow structure Polishing Claim on the outflow side instead of the material supply means 1 The outlet formed in the same opening shape as the opening on the inflow side of the excessive wear prevention / flow adjusting means described above is provided with a passage hole on the inflow side and a one-side inlet on the side surface, and the outflow side is claimed. 1 The polygonal box-shaped casing member connected to the inflow side of the excessive wear prevention / flow adjusting means described above is connected to the inflow side of the polygonal box-shaped casing member with the outflow side communicating with the aforementioned passage hole. A cylindrical casing member in which the inflow center axis is parallel to a tangent at one location on the peripheral wall and the other side inlet is provided on the peripheral wall, and a polygonal box-shaped casing that is in communication with the one side inlet A polishing member comprising a one-side introduction member attached to the side surface of the member and another-side introduction member attached to the peripheral wall of the cylindrical casing member in communication with the other-side inlet. Polishing Study on turbulent diffusion flow structure of materials Polishing This is a projection device for regenerating a deteriorated catalyst having a material supply means as a constituent element.
[0030]
Claim Described in 5 The solution that the invention of Polishing It is divided into a group in which the material flows together with the pressurized air and a group in which only the pressurized air flows, and immediately after both the groups flow into the projection device from a flow direction different from the projection direction. In addition, the group in which only the pressurized air flows mainly forms a spiral-shaped rotational flow that contributes to migrating abrasive grains around the projection space. Polishing A group in which the material flows with pressurized air Polishing Crush the material Polishing It causes a flow accompanied by a collision in the projection apparatus that contributes to causing the compressed air to scatter in a turbulent state while spreading widely as a grain. Then, in the flow state in which both groups under the flow of the two systems are mixed, the diffusion flow is performed in the projection direction, and the peripheral area of the projection space is also studied in the same way as the central area. Polishing Study the entire projection space so that the grains can move around. Polishing Aiming at a uniform density of the grains, we have studied each of a number of catalysts. Polishing Minimize variation in projection amount per unit time of grain Polishing Grain Polishing It can be used for regeneration work with the same catalytic function as that of the material. Polishing It is designed to work.
[0031]
Specifically, the claims 1 A projection device for regenerating a deteriorated catalyst according to the described invention, or claim 2 A projection apparatus for regenerating a deteriorated catalyst according to the described invention is assumed. And claims 1 Research on the described reticular diffusion flow structure Polishing Claim on the outflow side instead of the material supply means 1 Excessive description Ma An outflow port formed in the same opening shape as the opening on the inflow side of the wear prevention / flow control means is provided with a passage hole on the inflow side and a one-side inflow port on the side surface, and the outflow side is claimed. 1 A polygonal box-shaped casing member that is connected to the inflow side of the excessive wear prevention / flow adjusting means described above and that is provided with a large number of crushing / scattering guiding members on the inner wall. 4 The cylindrical casing member of claim 1 and claim 4 The one-side introduction member according to claim, and the claim 4 Crushing laboratory comprising the other-side introduction member described Polishing Study on turbulent diffusion flow structure of grain group Polishing This is a projection device for regenerating a deteriorated catalyst having a material supply means as a constituent element.
[0032]
Claim Described in 6 The solution taken by the invention is the research that affects the unit projected area. Polishing Minimize the impact energy of the material, Polishing Considering that the catalyst does not wear and break even if the material collides, and if the upper part of the catalyst pack is dirty and it is difficult to start the renovation work of the specified deteriorated catalyst, or the exhaust gas denitration that interferes with the beam member It is arranged at the edge position of the apparatus so that the regeneration work for the deteriorated catalyst can be reliably performed even for the catalyst pack which is difficult to smoothly perform the regeneration work for the predetermined deteriorated catalyst.
[0033]
Specifically, the projection side is formed in a planar shape with an area smaller than the upper surface area of one catalyst piece, and the inflow side is formed with an inclined surface with a thick central portion and a thin peripheral portion and an inflow side. Projecting means consisting of a projection section part having a plurality of narrow projection holes drilled between the projection side and a connecting part provided slightly extending outward from the outer end of the projection partition part, and on the outflow side An outflow port formed in the same opening shape as the opening on the inflow side of the projection means is provided, the inflow side is substantially the same shape as the pressure feed pipe, and the flow cross-sectional area is formed to gradually increase from the inflow side to the outflow side. A casing member connected to the inflow side of the projection means via a connecting portion, and 1 Listed Polishing Material introduction member or claim 3 A polishing net-like flow diffusion structure comprising the abrasive introduction member described above Polishing This is a projection device for regenerating a deteriorated catalyst composed of a material supply means.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Claim 1 To claims Described in 3 According to the configuration of the present invention, the outer shape of the projection means is slightly larger than the outer shape of the upper surface of one catalyst piece constituting one catalyst pack, Polishing The material starts to diffuse and flow in the form of a mesh. Polishing Since it is a material introduction member, the diffusion flow can be started at a position close to the upper surface of one catalyst piece. With this overall configuration, the entire projection apparatus becomes compact, and an operator who carries the projection apparatus for regenerating the deteriorated catalyst can easily enter the upper gap space of one catalyst pack in the flue gas denitration apparatus.
[0035]
Next, a plurality of insertion nozzles are inserted into the catalyst facing each other, and the projection side of the projection partition part constituting the projection member is arranged on the outermost side constituting one catalyst piece. In addition to making contact with the top surfaces of other catalyst groups except for a part of the catalyst group, preparations for catalyst regeneration work such as bringing the connecting part into contact with the top surface of the catalyst group arranged at the outermost position , Laboratory Polishing When the material introduction member is swung in a pendulum shape around the inflow center axis on the inflow side of the casing member, Polishing The laboratory that passed the material introduction member Polishing The pressurized air containing the material flows to the outflow side through the casing in which the flow cross-sectional area is gradually expanded while diffusing in a grid pattern, and reaches the outflow side end where the flow cross-sectional area is maximum.
[0036]
Claims Described in 3 According to the configuration of the invention, Polishing Even if the material introduction member is fixed without rotating, the Polishing When the material passes through each of a plurality of introduction holes provided radially from the inflow side to the outflow side with respect to the inflow center axis, the material always diffuses in the same manner.
[0037]
Next, a large number of flow adjustment holes drilled in the excessive wear prevention / flow adjustment means are encountered from the outflow side end. Polishing A phenomenon in which the material momentum suddenly increases occurs, the penetration force is increased while the friction force is exerted by firmly contacting the inlet wall of the flow adjusting hole, and the flow velocity is accelerated. For this reason, the inlet wall far from the catalyst receives the frictional force, and the frictional force is not directly applied to the catalyst, so that excessive wear on the catalyst when pressurized air containing abrasives flows into the catalyst is prevented. . And research Polishing The pressurized air containing the material is flow-guided by each of a large number of flow adjusting holes, rectified at an accelerated flow velocity, and flows toward the outflow side in such a flow state.
[0038]
Then, at the flow velocity accelerated in the rectified state, Polishing The material flows together with the pressurized air into a number of plug-in nozzles facing each of the number of flow control holes very close. After this, Polishing The material is projected from the tip of each insertion nozzle into each catalyst constituting one catalyst piece whose flow cross-sectional area is slightly larger than the inner diameter of the insertion nozzle. Then, the projected research Polishing The material flows in a fan-shaped projection trajectory in the catalyst in a projection velocity distribution that has a maximum projection velocity in the projection central region and a low projection velocity in the projection peripheral region.
[0039]
Claims Described in 2 According to the configuration of the invention, when the catalyst regeneration is performed on the catalyst part where the catalyst is severely damaged at the upper part of the catalyst, the long insertion nozzle is inserted into the nozzle mounting hole with only slight damage. When regenerating the catalyst part where there is a catalyst that has not occurred, regenerate the medium insertion nozzle in the nozzle mounting hole with respect to the catalyst part made up of a catalyst that is not damaged at all. When performing construction, if the standard-length insertion nozzles are detachably installed in the nozzle mounting holes, the catalyst piece that is subject to regeneration construction can be constructed without being affected by the presence or absence of damage. The tip of the insertion nozzle is always securely inserted into all the catalysts to be Polishing The material is projected along with the air in a fan-shaped projection locus.
[0040]
The catalyst is studied with the fan-shaped projection trajectory described above. Polishing When the material group flows, the laboratory around the projection locus Polishing A part of the material group collides with the side of the catalyst at an oblique angle at a low speed. Polishing As a result, the catalyst poisoning substance mainly composed of the calcium component coated on the side of the catalyst is polished without causing damage to the catalyst surface. Polishing Remove and sharpen Polishing It is discharged out of the catalyst together with materials and air. On the other hand, a laboratory located in the central area of the projection trajectory. Polishing A part of the material group flows through the catalyst without much lowering the maximum projection speed at the beginning of projection, and penetrates through the catalyst quickly. For this reason, the catalytic function of a large number of catalysts constituting one catalyst piece is quickly regenerated.
[0041]
When such a series of catalyst regeneration work is repeatedly performed on other catalyst pieces constituting one catalyst pack, the catalyst functions of all the catalysts contained in the one catalyst pack are regenerated. If the catalyst regeneration work is performed sequentially for other catalyst backs, the regeneration of a predetermined deteriorated catalyst function is performed for all catalyst packs that contain a catalyst with a deteriorated catalyst function while it is installed in the flue gas denitration device. The
[0042]
Claims Described in 4 With the configuration of the present invention, after preparing the catalyst regeneration work similar to that described above, the one side inlet is ground together with the pressurized air through the one side introduction member. Polishing While the material is allowed to flow in, only the pressurized air is allowed to flow into the other side inlet through the other side introduction member.
[0043]
Then, the laboratory that flowed into the one side inlet Polishing The material is injected along with the pressurized air inside the polygonal box-shaped casing member in a direction substantially perpendicular to the projection direction, and on the inner wall in a certain range centering on the inner wall facing the one-side inlet. Collision scatters and scatters Polishing Collision and scattering are repeated in a chain so that the material collides with the inner wall at different positions and further disperses. On the other hand, the pressurized air flowing into the other side inflow port is forced to continuously swivel while contacting the inner wall of the cylindrical casing member, and subsequently flows into the cylindrical casing member. Since it is pushed by the pressurized air flow, the pressurized air that has flowed in the tangential direction at the beginning of inflow flows and moves toward the polygonal box-shaped casing member while rotating and flowing in a spiral shape.
[0044]
Then, when the pressurized air flow that moves while rotating in a spiral shape enters the polygonal box-shaped casing member through the passage hole, the collision and scattering are chained as described above. Repeated research Polishing Combined flow action of compressed air that flows and moves while rotating in a spiral shape against the compressed air containing the material. Both are mixed while giving power. This causes an air flow of pressurized air that moves in the projection direction while causing more complicated and diverse turbulence in the polygonal box-shaped casing member. Polishing The group of materials is also the same in the peripheral area of the projection space as the central area. Polishing It migrates at the density of the material and flows in the projection direction while being diffused turbulently on the air flow of pressurized air.
[0045]
In this way, Polishing When the material group is turbulently diffused and flowed in the projection direction together with the pressurized air, the amount of projection per unit time does not substantially vary in each of the numerous flow adjustment holes formed in the excessive wear prevention / flow adjustment means. Polishing In the projection state of the material, Polishing Pressurized air including the material group arrives. After this, through the same path as described above, acceleration is performed in a rectified state in which there is almost no variation in the projection amount per unit time in each of a large number of catalysts constituting one catalyst piece via an insertion nozzle. Flow rate Polishing A group of materials is projected with the pressurized air.
[0046]
Note that only the pressurized air at the one side inlet is polished with the pressurized air at the other side inlet. Polishing When the material is introduced, the turbulent flow of the pressurized air flow is generated in the polygonal box-shaped casing member in the same manner as described above, while the grinding is performed in the cylindrical casing member. Polishing The material flows and moves toward the polygonal box-shaped casing member while rotating and flowing in a spiral with the pressurized air. After this, they meet and mix in the polygonal box-shaped casing member. Polishing The material flows in the projection direction while being turbulently diffused with the pressurized air.
[0047]
Claims Described in 5 With the configuration of the present invention, the one side inlet is polished with pressurized air. Polishing When a group of materials is introduced, the inside of the polygonal box-shaped casing is injected in a direction substantially perpendicular to the projection direction. First, the inner wall or the crushing / scattering inducing member that is in a positional relationship facing the one side inlet is used. Collide with a certain center range.
[0048]
Then, if it collides with the inner wall, Polishing The material group is scattered in the other direction and collides with the crushing / scattering induction member for the first time. Polishing A part of the material group is crushed to produce a number of small diameter Polishing Remaining polishing that was not crushed as a grain Polishing It is bounced from the crushing / scattering induction member together with the material group and scattered in all directions, and the pressurized air is irregularly reflected by the crushing / scattering induction member. If it collides with the crushing / scattering guide member from the beginning, many of Polishing The grain is the remaining Polishing It is bounced from the crushing / scattering induction member together with the material group and scattered in all directions, and the pressurized air is irregularly reflected by the crushing / scattering induction member.
[0049]
After this, the crushed laboratory Polishing Research including grain Polishing Due to the scattering of the material group and the diffused reflection of the pressurized air, it collides with each of a number of other crushing / scattering guiding members provided at other positions in a chained manner, and the above-mentioned a number of the crushed abrasives caused by the collision. Polishing The same behavior of the abrasive group containing the grains and pressurized air is repeated, and the initial inflow Polishing All materials are crushed to make small diameter Polishing It rides on the flow of pressurized air that diffuses as particles and repeatedly collides with another crushing / scattering guiding member.
[0050]
Then, when the pressurized air that flows into the other side inlet and flows and moves while spirally rotating in the same manner as described above enters the polygonal box-shaped casing member, A crushed laboratory that rides in a stream and scatters in all directions Polishing The compressed air that flows and moves while spirally rotating and flowing to the particle group gives the same composite fluid action force as described above, and both enter and mix.
[0051]
Then, in the polygonal box-shaped casing member, the claim Described in 4 Since the air flow of the pressurized air that flows and moves in the projection direction while causing various changes in the flow state is caused more than in the case of the pressurized air that behaves according to the configuration of the invention of the present invention, Polishing The grain group is also located in the area around the projection space, which is almost the same as the center area. Polishing It moves in the projection direction while being turbulently diffused in various turbulent flows on the air flow of pressurized air by migrating at the density of the particles present.
[0052]
The crushed laboratory Polishing When the particle group turbulently diffuses and flows in the projection direction together with the pressurized air, the projection amount per unit time does not substantially vary in each of the numerous flow adjustment holes formed in the excessive wear prevention / flow adjustment means. Crushed laboratory Polishing In the projected state of the grain, Polishing Pressurized air containing the grain reaches. After this, through the same path as described above, each of the many catalysts constituting one catalyst piece is accelerated in a rectified state with little variation in the projection amount per unit time through the insertion nozzle. Crushed laboratory with high flow rate Polishing A grain group is projected together with pressurized air.
[0053]
Meanwhile, claims Described in 6 With the configuration of this invention, the area on the projection side of the projection means is smaller than the upper surface area of one catalyst piece. Polishing The material starts to flow in the form of a mesh. Polishing Since it is a material introduction member, the entire configuration of the projection device for regenerating the deteriorated catalyst has been reduced to a small size. With this compactness, the operator can carry the projection device for regeneration of the deteriorated catalyst, and can easily enter the narrow gap space where the edge of the flue gas denitration device, the beam member, etc. are provided nearby. Projection can be started from a position close to the upper surface of one catalyst piece near the beam member.
[0054]
Next, a certain range where one catalyst piece is contaminated, or a certain range of one catalyst piece where the edge or beam member of the flue gas denitration device is obstructing, and the projection side of the projection means Prepare for renovation work, such as facing each other at a slight distance. After this, the claim 1 Or claim Described in 3 In the same way as explained in the section of the embodiment of the invention, Polishing The material is polished with air. Polishing It flows from the material introduction member to the casing member side. Then, the casing member diffuses and flows in the form of a mesh, reaches the inflow side of the projection section, and collides obliquely with the inclined surface. Due to the oblique collision, Polishing The material is reduced in collision energy, slides on the inclined surface toward the peripheral side, and flows into the narrow projection hole close to the material while greatly reducing the flow velocity.
[0055]
After this, each of the narrow projection holes is guided by flow and further rectified while being further decelerated, and then polished. Polishing The material, together with air, is projected from the narrow projection holes into a very large number of narrow projection zones in a shower shape below the projection means, and the collision energy per unit projected area is suppressed, and the material is sharpened. Polishing The material, together with the air, reaches the above-mentioned fixed interval of one catalyst piece.
[0056]
Then, when the projection means faces a certain range of one dirty catalyst piece, it collides with the dirt adhering to the upper surface without causing damage to the upper surface of the catalyst, A certain range is in a clean state. On the other hand, when facing a certain range of one catalyst piece where it is difficult to install one deteriorated catalyst, a part of a large number of fine projection bands collide with the upper surface of the catalyst and adhere to the upper surface. It collides with dust and is scattered. Polishing Because of this action, the deteriorated catalyst is regenerated as well as the upper surface of the catalyst becomes clean.
[0057]
【Example】
Then claims Described in 1 An embodiment of the invention will be described with reference to the drawings. FIG. 1 claims Described in 1 2 shows a case where a projection device for regenerating a deteriorated catalyst according to one embodiment of the invention is viewed from the front, FIG. 2 shows a case where an example of a projection member is seen from above the projection side, and FIG. 3 shows an example of an insertion nozzle obliquely FIG. 4 shows a state in which the insertion nozzle is detachably mounted in the nozzle mounting hole, and the projection member is connected to the excessive wear prevention / flow adjusting means and the casing member. Fig. 5 shows an example of the casing member as seen obliquely from the front, and Fig. 6 shows the structure of the throwing net-like diffusion flow structure. Polishing FIG. 7 shows an example in which a part of the configuration of the catalyst pack is cut away and viewed from an oblique front side. .
[0058]
As shown in FIGS. 1, 2, 4, and 7, reference numeral 3 denotes one catalyst piece out of 36 catalyst pieces 7 that are installed upright in one catalyst pack 5. It is slightly larger than the square arrangement region S of the other catalyst group 8M except for a part of the catalyst group 8N arranged on the outermost circumference from the square group of catalyst 8 groups appearing on the upper surface 7a of the catalyst 7. This is a square projection section formed in a plate shape having a constant thickness. Further, 9 is extended from the outer end of the four corners of the square projection section part 3 to a position slightly outward from the outer position that can face a part of the catalyst group 8N located on the outermost periphery. It is the connection part formed in plate shape of the same thickness.
[0059]
As shown in FIGS. 1 to 4, the square projection section 3 has the same number as the other catalyst groups 8M constituting one catalyst piece 7 at the same interval from the projection side 10a to the inflow side 10b. And a support / projection direction guide hole portion 11a dug vertically by a predetermined depth, and a conical shape with a diameter gradually increased from the inflow side terminal position of the support / projection direction guide hole portion 11a toward the inflow side 10b. The mounting / supporting conical hole portion 11b is formed in the shape of a hole, and the same diameter as the maximum diameter of the mounting / supporting conical hole portion 11b is formed between the inflow side end of the mounting / supporting conical hole portion 11b and the inflow side 10b. A nozzle mounting hole 11 is provided in which the introduction hole portion 11c is sequentially connected from the projection side 10a to the inflow side 10b.
[0060]
In the connecting portion 9, connecting screw holes 13 are screwed at two intermediate positions in the vicinity of the four corners and at four intermediate positions facing the square projection partition portion 3. And the square projection division site | part 3 formed as mentioned above and the connection site | part 9 are comprised integrally, and the projection member 15 of the fixed thickness based on a present Example is comprised.
[0061]
As shown in FIGS. 1, 3, and 4, 17 is formed so as to be in close contact with the introduction circular wall portion 3 c formed by providing the introduction hole portion 11 c when the nozzle attachment hole 11 is installed. The short cylindrical portion 17a and the conical portion 17b formed so as to be in close contact with the mounting / supporting wall portion 3b formed by providing the mounting / supporting conical hole portion 11b. Polishing It is a mounting / preventing part provided with a flow hole 18 having an inner diameter that allows the material to flow smoothly together with pressurized air on the projection side 10a.
[0062]
Reference numeral 19 denotes an outer diameter that is slightly smaller than the hole diameter of the support / projection direction guide hole portion 11a so that it can be smoothly inserted and inserted into the waste gas circulation hole 8a of the catalyst 8. On the other hand, when the flow hole 18 is provided on the center side and is attached to the nozzle attachment hole 11 together with the attachment / removal part 17, the tube length is appropriately longer than the projection side 10 a of the projection member 3 from the projection side 3 a. It is the insertion part formed so that protrusion is possible.
[0063]
As shown in FIGS. 3 and 4, the mounting / removal part 17 and the insertion part 19 are integrally formed to constitute the insertion nozzle 21 according to the present embodiment. As shown in FIGS. 1 and 4, the present embodiment includes the projection member 15 and a large number of insertion nozzles 21 that are removably mounted in the nozzle mounting holes 11 that are formed in a large number as described above. The projection means 23 which concerns on this is comprised.
[0064]
As shown in FIG. 4, in this embodiment, a large number of the catalysts 8 constituting the one catalyst piece 7 that is in contact with the projection member 15 are not damaged, and the insertion sites of each of the large number of insertion nozzles 21. In this case, even when the projection length of 19 from the projection side 10a is the shortest, it can be inserted into the waste gas circulation hole 8a of each of the large number of catalysts 8 without fail.
[0065]
As shown in FIGS. 1 and 4, reference numeral 25 denotes a square having the same size as the projection member 15 described above, and the abrasive 25 which flows with pressurized air. Polishing This is a plate thickness excessive wear prevention / flow adjusting means in which a sufficient flow distance is secured to cause a rectifying action on the material.
[0066]
In the excessive wear prevention / flow adjusting means 25, when the outflow side 26a of the excessive wear prevention / flow adjustment means 25 and the inflow side 10b of the projection member 15 are in face-to-face contact, the projection member 15 is treated as described above. The rectification induction flow hole portion 27a having substantially the same diameter as the flow hole 18 from the outflow side 26a toward the inflow side 26b at each of a large number of positions that are in the same axis as the central axis of each of the many nozzle mounting holes 11 provided. In addition, a flow adjustment hole 27 is formed in the vicinity of the inflow side end of the rectifying induction flow hole portion 27a. The connecting screw holes 29 are screwed in a number of positions that are the same axis as the central axis of each of the connecting screw holes 13 provided. In addition, by providing the inflow guide hole 27b, a conical excessive frictional force receiving wall 25a is formed in the excessive wear prevention / flow adjusting means 25.
[0067]
1, 3, and 4, the insertion nozzle 21 is brought close to the nozzle mounting hole 11 from the inflow side 10 b of the projection member 15, and the head 19 a is moved from the projection side 10 a of the projection member 15. The insertion portion 19 is inserted into the support / projection direction guide hole 11a until it protrudes appropriately, and the short cylindrical portion 17a is brought into close contact with the introduction circular wall portion 3c, and the conical portion 17b is brought into close contact with the attachment / support wall portion 3b. In the state in which the mounting / preventing portion 17 is closely supported and a large number of the insertion nozzles 21 are detachably mounted, the outflow side 26a of the excessive wear prevention / flow adjusting means 25 and the inflow side 10b of the projection member 15 Are in face-to-face contact.
[0068]
As shown in FIGS. 1, 4 and 5, 31 has an outer shape that is a square having the same size as the outer shape of the excessive wear prevention / flow adjusting means 25, and has an excessive wear prevention / flow at the center. The outer square position slightly outside the position where the flow adjusting hole 27 of the group located at the outermost periphery is cut out of the group of many flow adjusting holes 27 provided in the adjusting means 25 as described above. Thus, it is an attachment part with an appropriate thickness in which the square passage hole 33 is provided. It should be noted that outside of the attachment portion 31, when the attachment portion 31 comes into contact with the inflow side 21 </ b> B of the excessive wear prevention / flow adjusting means 25, the same axis as the central axis of each of the many connecting screw holes 29. Connecting holes 35 are provided at 12 locations.
[0069]
As shown in FIGS. 1, 4, 5, and 6, 37 has an outflow side 38 a having a square shape slightly larger than the square connecting hole 33, and the inflow side 38 b has a length of one side of the outflow side 38 a. A circular shape having a diameter of about one-third or one-fourth is formed, curved surfaces are formed from the four corners of the square shape on the outflow side 38a toward the four peripheral areas of the circular shape on the inflow side 38b, and from the inflow side 38b. A trumpet-shaped outer shape is formed toward the outflow side 38a, and the internal space is sharpened. Polishing As will be described later together with the pressurized air, the material is a flow guide portion formed so that the flow cross-sectional area gradually increases from the inflow side 38b toward the outflow side 38a so that the material can diffuse and flow in the form of a mesh.
[0070]
Further, 39 is formed in a thin cylindrical shape whose inner diameter is substantially the same as that of the inflow side 38a of the flow guide portion 37, and a cylindrical shape in which connection screw holes 41 are provided at equal intervals around the periphery. It is a linking site. As shown in FIG. 5, a casing member 43 according to the present embodiment is composed of the mounting portion 31, the flow guide portion 37, and the cylindrical connecting portion 39.
[0071]
As shown in FIGS. 1 and 6, 45 is formed in a circular shape whose outer side is slightly smaller than the inner diameter of the cylindrical connecting portion 39 and is the same screw as the connecting screw hole 41 at equal intervals in four outer peripheral positions. This is a bearing base in which a mounting screw hole 47 having a hole diameter is screwed and a sliding / connecting curved hole 49 having a concave curved inner surface is formed.
[0072]
Further, 51 is formed in a convex curved surface so that the outer side is slidably in close contact with the sliding / connecting curved hole 49 of the bearing base 45, and an insertion hole 53 is provided on the inner side, and the front surface 52a and the rear surface 52b are formed. It is a rotator formed in the straight. The convex curved surface of the rotor 51 and the sliding / connecting curved surface hole 49 of the bearing base 45 are slidably tightly coupled so that the rotor 51 is in an arbitrary direction with respect to the inflow center axis G. A bearing member 55 that is configured to be slidable in a pendulum shape and is connected to the rotator 51 and the bearing base 45 is a pendulum-shaped bearing member 55 according to the present embodiment.
[0073]
The pendulum-like rotatable bearing member 55 configured in this way constitutes the casing member 43 by screwing the mounting screw 57 into the connecting screw hole 41 and the mounting screw hole 47 in order. It is connected to a cylindrical connecting part 39.
[0074]
As shown in FIGS. 1 and 6, 59 is a step in which the outer front portion 60a has a circular shape with a diameter slightly smaller than that of the insertion hole 53, and the outer intermediate portion 60b has a stepwise larger diameter than the outer front portion 60a. A flow guide tape which is formed in a circular shape and is provided with a pressure-feeding pipe mounting male screw 61 having an outer rear portion 60c whose diameter is the largest, and has a larger inner diameter on the inflow side 62a and a smaller inner diameter on the outflow side 62b. Lab with hole 63 Polishing It is a material introduction member.
[0075]
In this embodiment, the flow guide taper hole 63 is provided with an insertion flow taper hole 65 slightly smaller than the flow guide taper hole 63 to form a hollow long cone. Lab Polishing A material insertion introducing member 67 is inserted.
[0076]
As shown in FIG. 6, the bearing member 55 and the abrasive introduction member 59 are pivotably rotated in the pendulum shape as described above, and the projecting net-like diffusion flow structure according to this embodiment is polished. Polishing A material supply means 69 is configured. As shown in FIGS. 1 and 4, after the connection bolt 70 is inserted into the connection hole 35, the projection is connected by the connection method in which the connection screw hole 29 and the connection screw hole 13 are sequentially screwed. Means 23, excessive wear prevention / flow adjusting means 25, and a reticular diffusion flow structure. Polishing The material supply means 69 constitutes the projection device 1 for regenerating a deteriorated catalyst according to the present embodiment.
[0077]
In the present embodiment, the case where the catalyst function is regenerated with respect to the catalyst pieces 7 in which a large number of catalysts 8 are arranged in a square at regular intervals has been described. However, the present invention is not limited to this. Needless to say, the present invention can be applied to the case where the catalyst function is regenerated for a plurality of catalyst pieces arranged in a polygonal shape such as a rectangle, a hexagon, etc., a circle, an ellipse, etc. at regular intervals. It is. In such a case, the shape on the outflow side of the square projection section 3, the excessive wear prevention / flow adjusting means 25, and the casing member 43 is also an outer shape corresponding to the shape in which a large number of the catalysts 8 are arranged. is there.
[0078]
Next, the claim Described in 1 The projection device 1 for regenerating a deteriorated catalyst according to an embodiment of the present invention is studied. Polishing A laboratory that plays the role of pumping materials Polishing The material feeding device and the deteriorated catalyst regeneration construction system will be described.
[0079]
Figure 8 shows the research Polishing FIG. 9 schematically shows an example of a deteriorated catalyst regeneration construction system, and FIG. 10 shows a claim. Described in 1 11 shows a state where the projection device for regenerating the deteriorated catalyst according to one embodiment of the present invention is disposed at the downstream end position of the pumping downstream side of the deteriorated catalyst regeneration construction system as viewed obliquely from the front, and FIG. Polishing Fig. 12 shows the case where the material continuous quantitative falling mechanism was cut from the longitudinal direction and expanded. Polishing The case where the material continuous pumping member is enlarged from obliquely upward is shown.
[0080]
As shown in FIG. 8, reference numeral 71 denotes a rectangular plate-like base 77 having one end movably supported by a main wheel 75 via a connecting shaft 73, and a connecting member 81 supported at one end movably by an auxiliary wheel 79. Is a gantry comprising a control board side base 83 connected to a rectangular plate base 77 via
[0081]
As shown in FIG. 8 and FIG. 11, reference numeral 85 denotes the downflow portion 86 by a support portion 87 in which one side surface of the downflow portion 86 having a downflow inclination angle of about 30 degrees is connected to the connecting shaft 73. The other side surface is supported by an auxiliary support member 88 connected to one end of the rectangular plate base 77, and a discharge portion 89 formed in a hollow cylindrical shape protrudes from the lower center of the falling portion 86. A mounting flange 90 formed in the shape of a hollow disk is provided around the lower side of the discharge part 89, and a certain amount (an amount necessary for regenerating the catalyst function of the catalyst pack 5 to be reconstructed for the catalyst function). ) Polishing An inner volume that can accommodate a material, and is provided with a pressurized air introduction port 91 at a substantially intermediate height position on the side surface and a pressurized air exhaust port 92 at a slightly higher position on the side surface. Polishing It is a material container.
[0082]
As shown in FIG. 8, reference numeral 93 denotes a pressurized air supply piping system, whose upstream side communicates with a compressor-167 which will be described later, branches in the downstream flow path, and one downstream side is connected to the compressed air introduction port 91. The other downstream side is communicated via a stop hose 139 which will be described later. Polishing The material provided on the continuous pressure feeding member 137 Polishing The pressurized air flow passage 147 containing the material is communicated with. Reference numeral 95 denotes a pressurized air exhaust piping system, and the upstream side communicates with a pressurized air exhaust port 92 via a stop valve 96.
[0083]
As shown in FIGS. 8 and 11, reference numeral 97 denotes a rotary feeder accommodating portion formed by approximating a cylindrical shape by laterally extending the side surface of the cylinder, and 99 denotes the rotor. The upstream side casing is constructed integrally with the upper and lower sides of the tally feeder receiving portion 97, is formed in the same manner as the mounting flange 90, and is provided with a delivery drop hole 101 at the center. -A mounting flange. Reference numeral 103 denotes a relay flange formed in the same manner as the upstream case attachment flange 99, and is connected to the upstream case attachment flange 99 located on the lower side by an attachment bolt 105. .
[0084]
Further, 107 is a delivery unit which is integrally formed with the relay flange 103 and is provided with a nozzle side delivery fall hole 109 which is communicated with the delivery fall hole 101 at the center and a mounting flange 111 disposed on the downstream side. It is a nozzle part. From these, the upstream case 113 according to the present embodiment is configured. A seal case 115 is provided on the upper wall in the rotary feeder housing part 97.
[0085]
Reference numeral 117 denotes a passive shaft (not shown) that is disposed in the rotary feeder housing portion 97 so that its upper side is in contact with the seal case 115 and is attached to the rotary blade 118. This is a rotary feeder according to the present embodiment in which is protruded.
[0086]
As shown in FIGS. 8 and 11, the upstream case 113, the rotary feeder 117, and the motor 119 described above are used for the polishing according to this embodiment. Polishing A material continuous quantitative falling mechanism 127 is configured, and the mounting flange 90 and the mounting flange 99 with the upstream case are connected via a mounting bolt 129, thereby Polishing The material container 85 is disposed below the discharge portion 89 constituting the material container 85.
[0087]
As shown in FIG. 12, the inner nozzle 131 has an outer shape that is substantially the same width as the mounting flange 111 and is slightly higher in the vertical direction. The inner nozzle 131 has a relatively large diameter at the center and an appropriate depth. This is a case in which a nozzle portion installation hole 135 is provided adjacent to the seat 133 and the inner nozzle installation concave seat 133 in the vertical direction.
[0088]
As shown in FIGS. 8 and 12, reference numeral 137 denotes a circular approximate hose connection portion 141 connected to the above-described pressurized air supply piping system 93 via a relay hose 139 on one side. Further, a rhombus approximate hose connection portion 143 whose horizontal side is wider than the circular approximate hose connection portion 141 is disposed, and a trunk portion 145 whose outer shape continuously changes from a circular shape to an elliptical diameter is disposed in the middle. From one side to the other side Polishing A pressurized air flow passage 147 containing a material is drilled substantially horizontally, and the case 131 is integrally formed so that the case 131 is placed on the upper middle portion of the trunk portion 145. Polishing It is a material continuous pumping member.
[0089]
Then, as shown in FIGS. 8, 11, and 12, the mounting flange 111 and the mounting flange portion 151 of the case 131 are connected by the mounting bolt 148, and the polishing is performed. Polishing The material continuous pumping member 137 is suspended below the upstream case 113.
[0090]
As shown in FIGS. 8, 9, and 11, 149 is a pinch valve built in the air cylinder 151 provided near the position where the main wheel 75 is disposed on the rectangular plate-shaped table 77. The air cylinder 151 is operated by operating the switch 156, and the upstream end is connected to the hose approximated hose connection part 143 by the connection bolt 153. Polishing The flow of the pressurized pneumatic feeding hose 155 containing the material is appropriately blocked.
[0091]
As shown in FIG. 8, 157 is supported by a pair of support legs 159 erected on one end and the other end on the control panel side base 83, and the counter-set button 161 and the motor 119 rotate. A rotation number counter-163 that counts the number of particles, and an amount of polishing necessary for regenerating the catalyst function for one catalyst piece 7 is provided. Polishing Whether or not the motor 119 has rotated by a considerable number of revolutions for pumping the material is counted via a revolution number detection unit 125 attached to the motor 119, and the motor is shown together with a relay (not shown). 119 is a control panel for controlling the operation of 119.
[0092]
As shown in FIG. Polishing A material container 85, a pressurized air supply piping system 93, a pressurized air exhaust piping system 95, Polishing A material continuous quantitative falling mechanism 127 and a laboratory including a case 131 Polishing The material continuous pumping member 137, the pinch valve 149, and the control panel 157 Polishing A material feeding device 165 is configured.
[0093]
As shown in FIG. 9, 167 is a compressor that is supported by wheels 169 so as to be movable, and generates compressed air by sucking and compressing the atmosphere, and is connected via a pressurized pneumatic feeding hose 171. The pressurized air supply piping system 93 is connected.
[0094]
As shown in FIG. Polishing A material feeding device 165, a compressor-167, a pressurized pneumatic feeding hose 171, Polishing A pressurized pneumatic feeding hose 155 containing a material, Polishing And the downstream end of the pressurized pneumatic feed hose 155 containing the material Polishing The material introduction member 59 is connected to the pressure feed pipe mounting male screw 61 to thereby improve the polishing. Polishing A deteriorated catalyst regeneration construction system 173 is composed of the deteriorated catalyst regeneration projection device 1 disposed at the downstream end of the pressurized pneumatic feed hose 155 containing the material.
[0095]
Next, claims incorporated into the deteriorated catalyst regeneration construction system 1 An embodiment of a projection device for regenerating a deteriorated catalyst according to an embodiment of the present invention will be described. Figure 13 shows Polishing From the stage in which the material flows into the flow adjustment hole together with the pressurized air, the flow from the insertion nozzle to the catalyst after flowing through the flow adjustment hole and the insertion nozzle sequentially. Polishing The flow behavior of the material is schematically shown.
[0096]
First, the polishing necessary for regenerating the catalyst function of one catalyst piece 7 constituting the catalyst pack 5 is performed. Polishing Based on the amount of material and the number of catalyst backs 5 that perform the work to regenerate the catalyst function, Polishing Calculate the total amount of materials and Polishing The above-described quantitative downflow and pressure feeding structure of the material feeding device 165 Polishing Based on the physical properties such as the particle size and weight of the material, the pressure of the pressurized air generated by the compressor 167, etc., the polishing per unit revolution of the motor 119 Polishing The pumping amount of the material is set in advance.
[0097]
Next, when the stop valve 96 is opened and the abrasive is put into the abrasive container 85 in a state where the pressure in the abrasive container 85 is equal to the atmospheric pressure, the discharge part 89 and the upstream case 113 are filled. The downstream falling flow after meeting the rotating vane 118 facing the delivery falling hole 101 provided in the rotary feeder 117 that has been stopped and rotated by passing through the passing falling hole 101 above. Is blocked and accumulated. And then. When the abrasive is introduced for a certain period of time, the calculated amount of abrasive is stored.
[0098]
Next, as shown in FIG. 9 and FIG. 10, the worker M carries the projection device 1 for regenerating the deteriorated catalyst, and a building at a specific level of the flue gas denitration device 175 that is the target of the regenerated construction of the deteriorated catalyst. It moves to the upper space of the catalyst pack 5 where the regeneration work for the deteriorated catalyst in 175A is applied. Thereafter, as shown in FIGS. 2 to 4, the square projection section 3 set on the projection side 10 a of the projection device 15 and the upper surface 7 a of one catalyst piece 7 built in the catalyst pack 5. And face each other.
[0099]
A large number of the projecting members 15 protrude from the projection side 10a surface in the exhaust gas flow holes 8a of the other catalyst groups 8M except for a part of the catalyst group 8N disposed on the outer periphery of the catalyst piece 7. When the head portion 19a of the insertion portion 19 of the insertion nozzle 21 is inserted, the square projection section 3 on the projection side 10a of the projection member 15 and the above-described square arrangement region S face each other, and the connection portion 9 The projection side 10a and the upper surface of the above-mentioned part of the catalyst group 8N are also in contact with each other, and the projection device 1 for regenerating the deteriorated catalyst is in an extremely accurate and stable face-to-face contact state with one catalyst piece 7 as a projection target. I'm ready.
[0100]
Thereafter, as shown in FIGS. 8 and 9, the stop valve 94 of the pressurized air supply piping system 93 is opened, the stop valve 96 of the pressurized air exhaust piping system 95 is closed, and the air cylinder 151 is further operated. In addition, the downstream side from the position where the pinch valve 149 in the pressurized pneumatic feed hose 155 containing the abrasive is provided is polished. Polishing It is assumed that the pressurized air containing the material can be distributed.
[0101]
Next, as shown in FIGS. 8, 9 and 12, when the compressor-167 is operated, the compressed and pressurized air passes through the pressurized air supply hose 171 through the pressurized air supply piping system 93. Circulate towards When the pressurized air supply piping system 93 is reached, a part of the pressurized air flows into the abrasive container 85 from the pressurized air inlet 91, while the other pressurized air passes through the relay hoses. Then, the air flows through the pressurized air feeding hose 155 containing the abrasive material through the pressurized air flow passage 147 provided in the abrasive continuous pressure feeding member 137 and flows downstream. Then, the air cylinder 151 operates and the flow path of the pressurized pneumatic feed hose 155 containing the abrasive is blocked.
[0102]
As shown in FIG. 9, FIG. 11 and FIG. 12, a control device such as a relay (not shown) performs a control operation substantially simultaneously with this, and the motor 119 rotates at a predetermined rotational speed. Then, since the rotational power of the motor 119 is transmitted to the rotary feeder 117 and rotates, the rotary blade 118 also starts to rotate to the same side. The abrasive material group that has been prevented from flowing down by the rotating blades 118 due to the rotation of the rotating blades 118 is sent in the rotating direction of the rotating blades 118, and then slides down from the rotating blades 118 to rotate the rotary feeder. The inside of the storage part 97 flows down vertically, and then flows down through the lower delivery downhole 101 and the nozzle side delivery downhole 109 of the delivery nozzle part 107 sequentially.
[0103]
Thereafter, the air continuously flows into the pressurized air flow passage 147 through which the pressurized air flows. Then, it is mixed with the pressurized air flowing toward the pressurized air flow passage 147, and the pressurized air containing the abrasive appears. The pressurized air containing the abrasive is pressurized air pressure containing the abrasive. It distributes to the sending hose 155 side.
[0104]
Although not shown, if an inner nozzle or the like is provided on the downstream side of the nozzle-side delivery spill hole, the bridge phenomenon does not occur at all, and after falling down into the smooth continuously, quantitatively, The pressurized air that flows into the pressurized air flow passage 147 and contains the abrasive material more evenly appears.
[0105]
Next, when the switch 156 is operated to the open side, the operation of the air cylinder 151 is stopped, and the blockage of the flow path at the position where the pinch valve 149 is disposed is released. Therefore, as shown in FIGS. The pressurized air contained flows through the pressurized pneumatic feed hose 155 containing the abrasive and reaches the abrasive introduction member 59 constituting the projection device 1 for regenerating the deteriorated catalyst.
[0106]
At this time, as shown in FIG. 6 and FIG. 10, the operator M moves the pressurized pneumatic feeding hose 155 including the abrasive screwed with the flow pipe mounting male screw 61 of the abrasive introduction member 59. When the downstream end is rotated like a pendulum, the convex curved rotator 51 smoothly flows into the sliding / connecting curved hole 49 formed in the concave curved shape of the bearing base 45 and flows into the central axis. It pivots with respect to G in a pendulum shape.
[0107]
For this reason, the pressurized air containing the abrasive that reaches the abrasive introduction member 59 and flows into the insertion flow taper hole 65 from the flow guide taper hole 63 is polished in a pendulum shape. It is projected from the material insertion introducing member 67 to the internal space of the flow guiding portion 37 constituting the casing member 43. Then, the pressurized air containing the projected abrasive material is projected into the square passage hole 33 in the flow guide portion 37 where the flow cross-sectional area gradually increases while diffusing and flowing in the internal space in the form of a mesh. Because it diffuses and flows into Polishing Variation in projection amount per unit time of the material is reduced.
[0108]
Next, when the flow cross-sectional shape reaches a square passage hole 33 having a square flow cross-sectional area and the largest flow cross-sectional area, as shown in FIGS. 4 and 13, excessive wear prevention / flow is started from the end of the outflow side 38 a of the flow guide portion 37. It meets the inflow guide hole portions 27b of a number of flow adjustment holes 27 formed in the adjusting means 25. At this time, since the flow cross-sectional area decreases rapidly, a phenomenon occurs in which the momentum of the abrasive that has flowed with the pressurized air rapidly increases. Under this phenomenon, the abrasive continuously and strongly adheres to the excessive wear force receiving wall portion 25a. It flows from the inflow guide hole 27b to the rectifying induction flow hole 27a while forcibly narrowing the flow cross-sectional area while making contact and exerting a frictional force.
[0109]
Due to the flow behavior, the frictional force can be received at the excessive wear force receiving wall portion 25a far away from the catalyst 8, so that the frictional force does not act directly on the tip portion 8b of the catalyst 8, and the exhaust gas flow in the catalyst 8 flows. Excessive wear on the catalyst 8 at the initial point when pressurized air containing an abrasive flows into the hole 8a is prevented. Further, the pressurized air containing the abrasive is accelerated in flow rate and increased in penetration force, and is guided to flow through the rectification induction adjusting hole portions 27a of the large number of flow adjusting holes 27 at an accelerated flow rate. It is rectified and flows toward the outflow side 26a in such a flow state.
[0110]
Next, at the flow velocity accelerated in the rectification state, the pressurized air containing the abrasive is very close to each of the rectification induction adjustment hole portions 27a of the multiple flow adjustment holes 27 as shown in FIGS. It flows into the flow holes 18 of the many insertion nozzles 21 facing each other. At this time, the abrasive material has the respective catalyst 8 constituting one catalyst piece 7 whose flow sectional area is slightly larger than the flow hole 18 of the insertion nozzle 21 from the tip of each insertion nozzle 21. The variation of the projection amount per unit time is reduced and projected to the exhaust gas circulation hole 8a. Then, the projected abrasive material group flows in the exhaust gas distribution hole 8a in a fan-shaped projection locus with a projection speed distribution that is a maximum projection speed in the projection center area B1 and a low projection speed in the projection peripheral area B2.
[0111]
When the abrasive material group flows in the exhaust gas circulation hole 8a along the fan-shaped projection locus described above, a part of the abrasive material group closest to the periphery of the projection peripheral area B2 obliquely collides with the side surface 8c of the catalyst 8 at a low speed. Therefore, the catalyst poisoning substance mainly composed of the calcium component coated on the side surface 8c is polished and removed without causing damage to the side surface 8c, and the abrasive together with the air is removed from the catalyst 8 without causing damage to the side surface 8c. Drain outside.
[0112]
While the abrasive group moves toward the outlet (not shown) in the exhaust gas circulation hole 8a, the abrasive action due to the oblique collision of the abrasive is compared with other abrasives in the projection peripheral area B2. The abrasive in the projection peripheral area B1 closer to the target center and a part of the abrasive in the projection central area B1 are also sequentially formed. On the other hand, the other abrasive group in the projection center region B1 flows through the exhaust gas circulation hole 8a without causing a significant decrease in the maximum projection speed at the beginning of projection, and penetrates through the catalyst 8 quickly.
[0113]
As shown in FIG. 8 and FIG. Polishing While the material is projected from the insertion nozzle 21, the rotational speed detection information of the rotational speed of the motor 119 from the rotational speed detection unit 125 is transmitted to the rotational speed counter-163 via the control cable 123. . Then, the polishing per unit rotational speed of the above-mentioned preset motor 119 is performed. Polishing The necessary amount of grinding is determined from the pumping amount of the material. Polishing When the rotation speed counter-163 counts the rotation speed scheduled to be considered that the material has been pumped, the motor 119 stops rotating in response to a relay command (not shown) to the projection device 1 for regenerating the deteriorated catalyst. Research Polishing The pumping of the material is stopped.
[0114]
For this reason, only pressurized air is injected from the insertion nozzle 21 for a certain period of time, and the catalyst poisoning substance mainly composed of the calcium component that has been circulated through the exhaust gas circulation hole 8 a in the catalyst 8 and removed is completely removed from the catalyst 8. Discharge. Thereafter, when the operator M operates the switch 156 to the close side, the air cylinder 151 is operated, and the polishing at the position where the pinch valve 149 is disposed. Polishing Since the flow path of the pressurized pneumatic feed hose 155 containing the material is blocked, the supply of pressurized air to the projection device 1 for regenerating the deteriorated catalyst is also stopped. Through such a series of catalyst regeneration steps, the catalyst functions of a large number of the catalysts 8 belonging to the other catalyst group 8M excluding the catalyst group 8N located at the outermost periphery constituting the one catalyst piece 7 are quickly regenerated.
[0115]
Then, when the operator M moves the projection device 1 for regenerating the deteriorated catalyst to another adjacent catalyst piece 7 and moves it repeatedly to repeatedly execute the above-described series of catalyst regeneration steps, one catalyst pack 5 is built in. Thus, the catalytic function of all the catalyst pieces 7 is regenerated. When such a catalyst regeneration process is sequentially executed for the other catalyst packs 5, all the catalyst packs 5 whose catalytic functions to be regenerated are deteriorated while being installed in the flue gas denitration device 175 are rapidly Is played.
[0116]
Next, the claim Described in 2 An embodiment and an embodiment of the invention will be described with reference to the drawings. FIG. 14 claims Described in 2 FIG. 15 shows a case where a projection device for regenerating a deteriorated catalyst according to an embodiment of the present invention is viewed from the front, and FIG. 15 shows a projection member and excessive wear prevention while a long insertion nozzle is detachably attached to a nozzle mounting hole.・ Shows the case where the flow adjusting means and the casing member are partially omitted and enlarged and cut, and FIG. 16 selects the insertion nozzle to be used according to the degree of catalyst damage. The standard to perform is shown typically.
[0117]
As shown in FIG. 15 and FIG. 16 (B), 177 greatly extends the insertion portion 19 of the insertion nozzle 21 so that even the most severely damaged catalyst 8A can be inserted. This is a long insertion nozzle in which the long insertion portion 179 formed in this manner and the above-described mounting / removal portion 17 are integrally formed.
[0118]
As shown in FIG. 15, the projection according to the present embodiment is composed of a large number of long insertion nozzles 177 removably mounted in the nozzle mounting holes 11 formed in a large number as described above and the projection member 15 described above. A means 181 is configured. 14 and 15, the projection means 181 connected by the connecting method using the connecting bolt 70, the excessive wear prevention / flow adjusting means 25, and the reticular diffusion flow structure. The laboratory Polishing Claims from the material supply means 69 Described in 2 A projection device 183 for regenerating a deteriorated catalyst according to an embodiment of the present invention is configured.
[0119]
Since it has been used for a long time for flue gas denitration, the degraded catalyst can be regenerated in a situation where the upper part is severely damaged like the catalyst 8A in some of the many catalysts 8 constituting one catalyst piece 7A. Therefore, the long insertion portions 179 of the many long insertion nozzles 177 protruding from the projection side 10a of the square projection section 3 are put on standby at a spatial position immediately above the exhaust gas circulation hole 8Aa in the catalyst 8A.
[0120]
Next, when the projection side 10a of the connecting portion 9 constituting the projection member 15 and the upper surface of the above-described part of the catalyst group 8N are brought into contact with each other, the long insertion nozzle portions of each of the long insertion nozzles 177 are arranged. 179 is appropriately inserted into the exhaust gas flow hole 8Aa of any severely damaged catalyst 8A, and the projection device 183 for regenerating the deteriorated catalyst is extremely attached to one catalyst piece 7A to be projected. Accurate and stable face-to-face contact is achieved, and projection preparation is complete.
[0121]
After this, the claim Described in 1 Instead of the projection device 1 for regenerating a deteriorated catalyst according to an embodiment of the present invention, Described in 2 The same as described above using the deteriorated catalyst regeneration construction system in which the same configuration as the above-described deteriorated catalyst regeneration work system 173 in which the projection device 183 for the deterioration catalyst regeneration according to one embodiment of the invention is incorporated is omitted. When the catalyst regeneration step is executed, a predetermined deteriorated catalyst regeneration work is performed.
[0122]
In this embodiment, as shown in FIG. 16B, the case where the upper portion of the catalyst 8A is severely damaged has been described. However, depending on the degree of damage to the catalyst 8 constituting the catalyst piece 7, As shown in FIG. 16C, the insertion portion 19 of the insertion nozzle 21 is not extended to some extent so that the depth can be appropriately inserted into the exhaust gas circulation hole 8Ba of the catalyst 8B where some damage has occurred. A medium-sized insertion nozzle 187 in which the medium-sized insertion portion 185 and the mounting / removal portion 17 are integrally formed may be used as the medium-sized insertion portion 185 that has been crimped.
[0123]
Then, as shown in FIGS. 16 (a) to 16 (c), according to the presence / absence of the damage of the catalyst 8 constituting the catalyst piece 7 to be subjected to the regeneration work of the catalyst function and the degree of the damage, As long as the inserted nozzle 21, the long insertion nozzle 177, and the medium insertion nozzle 187 are properly used, any catalyst pack 5 and catalyst piece 7 can be regenerated with a deteriorated catalyst. Without leaking onto the adjacent catalyst 8 without fail, Polishing The variation of the projection amount per unit time is reduced, and the material is projected together with the pressurized air to the exhaust gas circulation holes 8a, 8Aa, 8Ba of the catalysts 8, 8A, 8B that are projection targets.
[0124]
Then claims Described in 3 An embodiment and an embodiment of the invention will be described with reference to the drawings. FIG. 17 claims Described in 3 18 shows a case where the projection device for regenerating a deteriorated catalyst according to an embodiment of the present invention is viewed from the front, and FIG. Polishing The other example of a material supply means is abbreviate | omitted, and the case where it cut | disconnects from the vertical direction is expanded and shown.
[0125]
As shown in FIG. 18, reference numeral 189 denotes a mounting screw hole similar to the mounting screw hole 47 described above, which is formed in a circular shape whose outer side is slightly smaller than the inner diameter of the cylindrical connecting portion 39 and is equally spaced at the four outer locations. A fixed bearing member 191 is screwed and a support hole 193 is provided on the inner side thereof, and the mounting screw 57 is sequentially screwed into the connection screw hole 41 and the mounting screw hole 191, thereby making the casing. It is connected to a cylindrical connecting part 39 constituting the member 43.
[0126]
As shown in FIG. 18, reference numeral 195 designates an outer middle portion 196b from the outer front portion 196a in a circular shape having a slightly smaller outer diameter than the support hole 193, and a pressure feed pipe mounting male screw 197 in which the outer rear portion 196c has a larger diameter. A flow guide hole 199 having a semicircular tip sectional shape in the vicinity of the outflow side is provided from the inflow side 198b to the outflow side 198a, and is constant radially from the outflow side to the outflow side 198a. A laboratory with a plurality of introduction holes 201 provided at intervals. Polishing It is a material introduction member.
[0127]
As shown in FIGS. 17 and 18, the fixed bearing member 189 and the abrasive introduction member 195 constitute an abrasive supply means 203 having a reticular diffusion flow structure according to this embodiment, and the projection means 23 described above. And an excessive wear prevention / flow adjusting means 25, and a polishing net-like diffusion flow structure. Polishing The material supply means 203 constitutes a projection device 205 for regeneration of a deteriorated catalyst according to an embodiment of the invention of claim (3). And research Polishing The flow pipe mounting male screw 197 of the material introducing member 195 and the above-mentioned polishing Polishing The compressed air feeding hose 155 containing the material is connected to the downstream end of the pressurized pneumatic feeding hose 155, and the deterioration catalyst regeneration projecting device 205 has the same structure as that of the above-described deteriorated catalyst regeneration construction system 173. It is built into the catalyst regeneration construction system.
[0128]
Claim Described in 3 After the first half of the catalyst regeneration process similar to that explained in the embodiment according to one embodiment of the present invention, Polishing When the pressurized air containing the material reaches the projection device 205 for regenerating the deteriorated catalyst and flows into the flow guide hole 199, the worker M is sharpened. Polishing Only the downstream end of the pressurized pneumatic feed hose 155 containing the material is supported, and the abrasive together with the pressurized air forms the casing member 43 after flowing into the plurality of introduction holes 201 respectively. Projected radially into the inner space of the flow guide portion 37 with respect to the inflow center axis G.
[0129]
Then, the research projected with the pressurized air Polishing The material diffuses and flows in a mesh pattern toward the square passage hole 33 in the flow guide portion 37 whose flow cross-sectional area gradually increases while diffusing and flowing radially in the internal space. And after this, the claim 1 After the latter half of the catalyst regeneration process similar to that explained in the embodiment of the embodiment of the present invention, the polishing with pressurized air is performed. Polishing The material is projected from a large number of insertion nozzles 21 to the exhaust gas flow holes 8a of the catalyst 8 with reduced variation in the projection amount per unit time, and the same deteriorated catalyst regeneration work as described above is performed.
[0130]
Next, the claim Described in 4 An embodiment of the invention will be described with reference to the drawings. FIG. 19 claims Described in 4 FIG. 20 shows a case in which a projection device for regenerating a deteriorated catalyst according to an embodiment of the present invention is partially cut away and viewed from the front, and FIG. 20 is a rectangular box which is an example of a polygonal box-shaped casing member according to the embodiment. 19 shows the structure of the cylindrical casing member and the structure of the one-side introduction member attached so as to communicate with the one-side inlet provided on the side surface of the rectangular box-shaped casing member. FIG. 21 shows a structure of an example of the cylindrical casing member according to the same embodiment and the attachment by connecting to the other side inlet provided on the peripheral wall of the cylindrical casing member. FIG. 20 shows a case where the structure of the obtained other-side introduction member is cut along line BB in FIG. 19.
[0131]
As shown in FIGS. 19 and 20, reference numeral 207 denotes an attachment part having the same shape as the attachment part 31 described above and provided with a square passage hole 209 having the same opening shape as the square passage hole 33. Is a pair of front-side frame members that are slightly shorter than the length of one side of the attachment portion 207 and are erected so as to face each other slightly toward the inner side of one side and the other side on the upper side 207a. .
[0132]
Reference numeral 213 denotes a pair of side surfaces which are the same length as the front side frame member 211 and are erected so as to face each other on the upper side 207a. The frame member 215 is a lid member provided on the pair of front side frame members 211 and the pair of side surface frame members 213 and having a circular passage hole 217 formed at the center position. One side inlet 219 is provided on one of the pair of side surface side frame members 213.
[0133]
Then, a rectangular box-shaped casing which is an example of a polygonal box-shaped casing member from the mounting portion 207, the pair of front-side frame members 211, the pair of side-side frame members 213, and the lid member 215. A member 221 is configured.
[0134]
As shown in FIGS. 19 and 21, 223 is formed in a cylindrical shape whose inner diameter is substantially the same as that of the passage hole 217 and whose height is slightly lower than 50% of the height of the rectangular casing member 221. A cylindrical casing member in which the inflow center axis 225 is parallel to the tangent 227A1 at the specific peripheral wall position 227A and the other side inlet 229 is provided in the peripheral wall 227.
[0135]
The cylindrical casing member 223 has a right-angle positional relationship when the outflow side 223a communicates with the passage hole 217 and the other side inflow port 229 is viewed from above with respect to the one side inflow port 219. Thus, the rectangular box-shaped casing member 221 is disposed.
[0136]
As shown in FIGS. 19 and 20, a connecting screw hole 233 is screwed into the inner portion 231 so as to be connected to a pumping hose (not shown), and the connecting screw hole 233 is connected to the one-side inlet 219. It is a one-side introduction member that is attached to the side surface side frame member 213 without being communicated.
[0137]
As shown in FIGS. 19 and 21, reference numeral 235 denotes a front side enclosing member that is integrated with the front side frame member 211 and is formed slightly longer than the height of the cylindrical casing member 223. It is erected on the front side frame portion 211 so as to be in contact with the peripheral wall 227 of the shape casing member 223. In addition, the other side inflow relay port 237 communicated with the other side inlet port 229 is provided in the front side surrounding member facing the other side inlet port 229.
[0138]
Reference numeral 238 denotes a side-side enclosure member that is integrated with the side-side frame member 213 and is formed in the same manner as the front-side enclosure member 235 and is also erected on the side-side frame member 213. The ceiling member is formed in the shape of a square plate provided on the cylindrical casing member 223 so that the inner four corners are in contact with the upper ends of the front side enclosure member 235 and the side enclosure member 238, respectively.
[0139]
As shown in FIGS. 19 and 21, 240 is formed in a trapezoidal cross-sectional shape in which only the attachment side 240a is inclined, and when the attachment side 240a is attached to the front side enclosure member 235, it does not coincide with the inflow center axis 225. The introduction channel 241 is provided at the center near the mounting side so that it can be connected to the other side inlet 229 via the other side inflow relay port 237, while the introduction channel 241 is provided at the center near the pumping side. The other-side introduction member is provided with a connecting screw hole 242 that is connected to a pumping hose that is not shown in the figure and that can be connected to the pumping hose.
[0140]
As shown in FIGS. 19 to 21, the rectangular box-shaped casing member 221, the cylindrical casing member 223, the one-side introduction member 231, and the other-side introduction member 240 according to the present embodiment. Research Polishing Abrasive material supply means 243 having a turbulent diffusion flow structure of the material group is configured. In this embodiment, the case where the front-side enclosure member 235, the side-side enclosure member 238, and the ceiling member 239 are required as additional components has been described. However, the cylindrical casing member 243 may be turned over. This is unnecessary in the case where the other-side introduction member 240 is directly attached to the peripheral wall of the cylindrical casing member.
[0141]
As shown in FIG. 19, the other structure is as described above. 1 This is the same as the projection device 1 for regenerating a deteriorated catalyst according to an embodiment of the present invention, wherein the projection means 23, the excessive wear prevention / flow adjustment means 25, Polishing Abrasive material supply means 243 having a turbulent diffusion flow structure of the material group Described in 4 A projection device 245 for regenerating a deteriorated catalyst according to an embodiment of the present invention is configured.
[0142]
Next, the claim Described in 4 An embodiment of one embodiment of the present invention will be described. Figure 22 shows the research Polishing FIG. 4 schematically shows a process in which a group of materials is turbulently diffused and flowed with pressurized air and flows in a projection direction.
[0143]
After preparing the same catalyst regeneration work as described above, when a predetermined power source such as a compressor is operated, one of the pumping hoses (not shown) is pumped and polished with pressurized air. Polishing The material group flows into the one-side inlet 219 via the one-side introduction member 231. Then, as shown in FIG. 20 and FIG. 22 (B), the rectangular box-shaped casing member 221 is polished together with the pressurized air from the one side inlet 219 toward the inner wall of the other side surface side frame member 213. Polishing The material group is injected in a direction different from the projection direction.
[0144]
The injection Polishing The pressurized air containing the material group collides with a certain range of the inner wall of the one side frame member 213 facing the one-side inlet 219, the abrasive material group is scattered, and the pressurized air is reflected. Then, as shown in FIG. Polishing The material collides with the inner wall of each of the adjacent one front side frame member 211, the other front side frame member 211, or the other side side frame member 213, or the inner wall of one side side frame member 213 again. Repeatedly and scattered. Moreover, since the pressurized air repeatedly reflects on the inner walls of each of these frame members, it becomes a complicated and diverse turbulent flow state.
[0145]
On the other hand, only the pressurized air is pumped through the other pumping hose (not shown) and flows into the other inlet 229 via the other inlet member 240 and the other inlet relay port 237. Then, as shown in FIGS. 21 and 22 (a), the pressurized air flow that flows in the tangential direction at the beginning of the inflow comes into contact with the arc-shaped inner wall 228 in the cylindrical casing member 223, so The flow direction is continuously swung inward.
[0146]
In addition, the cylindrical casing member except for the outflow side that is communicated with the passage hole 217 and that the air flow that has started to be swung is subsequently pushed by the pressurized air that flows into the other side inflow port 229. Since 223 is in a hermetically sealed state, an air flow that flows toward the passage hole 217 while causing a spiral flow is generated. Thereafter, it flows and moves toward the passage hole 217 while rotating and flowing in the cylindrical casing member 223 in a spiral shape.
[0147]
Then, when the pressurized air flow that moves while spirally rotating from the cylindrical casing member 223 side enters the rectangular box-shaped casing member 221 through the passage hole 217, FIG. As shown in Fig. 4, the sharpness of the collision and scattering is repeated in a chain with the pressurized air in the turbulent state. Polishing The compressed air flowing while rotating in a spiral shape is applied to the material group while providing a combined flow acting force in which the rotating flow acting force and the acting force flowing and moving in the projection direction are mixed. -P is mixed.
[0148]
Then, as shown in FIG. 22 (d), an air flow is generated in the rectangular box-shaped casing member 221 that flows and moves in the projection direction while turbulently flowing in a more complicated and diverse manner. Polishing Some parts of the material group migrate to the surrounding area of the projection space, and others move to the central area. Polishing It flows in the projection direction while being turbulently diffused on the air flow of the pressurized air at a material density.
[0149]
In this way, Polishing When the material group turbulently diffuses and flows in the projection direction together with the pressurized air, as shown in FIG. 22 (d), a unit is formed in each of the large number of flow adjusting holes 27 formed in the excessive wear prevention / flow adjusting means 25 described above. Research that does not cause variations in projection amount per hour Polishing In the projection state of the material, Polishing Pressurized air including the material group arrives. Thereafter, the rectified state in which there is almost no variation in the projection amount per unit time in each of the many catalysts 8 constituting one catalyst piece 7 through the insertion nozzle 21 through the same path as described above. Accelerated flow velocity Polishing A group of materials is projected with the pressurized air.
[0150]
Note that only one side inlet 219 is pressurized air and the other side inlet 229 is polished with pressurized air. Polishing When a material is introduced, a turbulent flow of pressurized air occurs in the rectangular box-shaped casing member 221 as described above, while an abrasive material group is added in the cylindrical casing member 223. It flows and moves toward the rectangular box-shaped casing member 221 while rotating and flowing in a spiral with the compressed air.
[0151]
Thereafter, as shown in FIG. 22 (c), they meet and mix in the rectangular box-shaped casing member 221, and the same as described above. Polishing The material group flows in the projection direction while being turbulently diffused with the pressurized air, as shown in FIG.
[0152]
In this embodiment, the claims Described in 1 Although the case of assuming the configuration of the projection device 1 for regenerating a deteriorated catalyst according to an embodiment of the present invention has been explained, Described in 4 The invention is not limited to this, Described in 2 Of course, the present invention can be applied even when the structure of the projection device 183 for regenerating the deteriorated catalyst according to one embodiment of the present invention is assumed. As shown in FIG. Projection amount per unit time into each of a large number of catalysts 8A and 8B constituting one catalyst piece 7A and 7B through the long insertion nozzle 177 or the medium insertion nozzle 187 selected and used. Of flow velocity accelerated in a rectified state with little fluctuation Polishing A group of materials can be projected together with pressurized air.
[0153]
Next, the claim Described in 5 An embodiment of the invention will be described with reference to the drawings. FIG. 23 claims Described in 5 FIG. 24 shows a case where a projection device for regenerating a deteriorated catalyst according to an embodiment of the present invention is partially cut away and viewed from the front, and FIG. 24 is a rectangular casing which is an example of a polygon casing member according to the embodiment. A case in which the structure of the member and the structure of the one-side introduction member attached so as to communicate with the one-side inlet provided on the side surface of the rectangular casing member are cut along line AA in FIG. FIG. 25 shows an example of the crushing / scattering guiding member and the mounting structure according to the same embodiment cut along the line AA in FIG. 24 and enlarged.
[0154]
As shown in FIGS. 23 and 25, 246 has the same length and the same width as the front side frame member 211 described above, and mounting screw holes 247 are screwed at nine positions in the upper and lower two steps at regular intervals. It is a pair of front side frame members that are erected in the same manner on the mounting portion 207 described above.
[0155]
As shown in FIGS. 24 and 25, reference numeral 251 denotes a crushing / scattering guiding member having a semicircular cross section having a length slightly shorter than that of the front side frame member 246. The 251 is an arcuate surface from the flat surface 251a vertically. A mounting screw hole 253 having a certain depth is screwed toward 251b. The arcuate surface 251a faces the inside of a rectangular box-shaped casing member 257, which will be described later, and the mounting screw hole 253 coincides with the screwing position of the mounting screw hole 247 screwed into the front frame member 246 described above. The flattened surface 251 b is brought into contact with the front side frame member 245 as shown, and the crushing / scattering guide member 251 is attached to the front side frame member 246 by tightening with the mounting bolt 255.
[0156]
As shown in FIGS. 23 and 24, the crushing / scattering guide member 251 is thus attached to the upper and lower two steps of each of the front side frame member 246 and the other front side frame member 246. A large number of crushing / scattering guiding members 251 are densely provided on the one and other front side frame members 246 without gaps.
[0157]
As shown in FIG. 23, a plurality of squares are formed from the mounting portion 207, a pair of front side frame members 246, a pair of side surface side frame members 213, a lid member 215, and a number of crushing / scattering induction members 251. A rectangular box-shaped casing member 257, which is an example of a box-shaped casing member, is configured. The rectangular box-shaped casing member 257, the cylindrical casing member 223 described above, and the one-side introduction member 231 The crushing laboratory according to this example from the other side introduction member 240 Polishing Study on turbulent diffusion flow structure of grain group Polishing A material supply means 259 is configured.
[0158]
As shown in FIG. 23, the other structure is as described above. Described in 1 This is the same as the projection device 1 for regenerating a deteriorated catalyst according to one embodiment of the invention, and includes the projection means 23, the excessive wear prevention / flow adjustment means 25, and the crushing laboratory. Polishing Abrasive material supply means 259 having a turbulent diffusion flow structure of particle groups Described in 5 A projection device 261 for regenerating a deteriorated catalyst according to an embodiment of the present invention is configured.
[0159]
Next, the claim Described in 5 An embodiment of one embodiment of the present invention will be described. Figure 26 shows Polishing The material group is crushed and polished. Polishing FIG. 4 schematically shows a process of becoming a grain group and turbulently diffusing and flowing together with pressurized air and flowing in the projection direction.
[0160]
Research Polishing When the material group flows into the one-side inlet 219 together with the pressurized air through the one-side introduction member 231, as shown in FIGS. 24 and 26 (b), the other side-side frame member from the one-side inlet 219. Along with the pressurized air in the rectangular box-shaped casing member 257 toward the inner wall of 213 Polishing The material group is injected in a direction different from the projection direction.
[0161]
The injection Polishing The pressurized air containing the material group collides in the same manner as described above, and the Polishing The material group is scattered while the pressurized air is reflected. Then, as shown in FIG. Polishing The material group receives an impact force when it collides with the arcuate surface 251b of the crushing / scattering guiding member 251 attached to one adjacent front side frame member 246 and is partially crushed and finely polished. Polishing A grain that has not been crushed. Polishing Splashes in all directions along with the material.
[0162]
After that, since the collision with the other crushing / scattering guide member 251 attached to the one or other front side frame member 246 or the collision with the inner wall of the one or other side frame member 213 is repeated in a chain manner. Lab that flowed Polishing Almost all of the materials are small grain size Polishing It is crushed into grains.
[0163]
On the other hand, the reflected pressurized air is Polishing Like the group of materials, the diffused reflection in multiple directions due to the collision with the crushing / scattering guiding member 251 and the reflection due to the collision with the inner wall of the one or the other side surface side frame member 213 are repeated in a chain manner. It becomes a turbulent state. As a result, in the rectangular box-shaped casing member 257, the polishing is performed. Polishing A group of particles has a flow behavior in which turbulent pressurized air flows and scatters in all directions.
[0164]
Then, as shown in FIGS. 26 (a) and 26 (c), the pressurized air that has flowed into the other inlet 229 rotates in a spiral manner within the cylindrical casing member 223 as described above. When flowing through the passage hole 217 and flowing into the rectangular box-shaped casing member 257, the scouring air flows in all directions on the turbulent pressurized air flow. Polishing Both fluid groups enter and mix while giving the same composite fluid action force as described above to the grain group.
[0165]
Then, in the rectangular box-shaped casing member 257, the claim Described in 4 According to the flow behavior of the pressurized air explained in the embodiment of the embodiment of the invention of the present invention, an air flow of the pressurized air that moves and moves in the projecting direction while causing various changes in the flow state is caused. Crushed individual laboratory Polishing Grain Polishing Because it is lighter than the material and responds sensitively to changes in the flow of various airflows, as shown in FIG. Polishing Some of the grain groups migrate around the projection space and others migrate around the central area. Polishing Crushed abrasives with grain density Polishing The particle group turbulently diffuses and flows in the projection direction while variously changing the flow state on various air flows of pressurized air.
[0166]
Then, there is a variation in the projection amount per unit time in each of the large number of flow adjustment holes 27 formed in the excessive wear prevention / flow adjustment means 25. Described in 4 A smaller crushed abrasive than the case described in the embodiment of the embodiment of the present invention. Polishing In the projection state of the grain group, Polishing Pressurized air containing the grain reaches. Thereafter, the rectified state in which there is almost no variation in the projection amount per unit time in each of the many catalysts 8 constituting one catalyst piece 7 through the insertion nozzle 21 through the same path as described above. Accelerated flow velocity Polishing A group of grains is projected along with pressurized air to provide precise and uniform polishing for any catalyst. Polishing It works.
[0167]
In this embodiment, the claims Described in 1 Projector 1 for regenerating a deteriorated catalyst according to an embodiment of the present invention Described in The explanation is based on the assumption that 5 The invention is not limited to this, Described in 2 Of course, the present invention can be applied even when the structure of the projection device 183 for regenerating the deteriorated catalyst according to one embodiment of the present invention is assumed. As shown in FIG. Projection amount per unit time into each of a large number of catalysts 8A and 8B constituting one catalyst piece 7A and 7B through the long insertion nozzle 177 or the medium insertion nozzle 187 selected and used. Of flow velocity accelerated in a rectified state with little fluctuation Polishing A group of particles can be projected together with pressurized air.
[0168]
Next, the claim Described in 6 An embodiment of the invention will be described with reference to the drawings. 27 claims Described in 6 28 shows a case where the projection device for regenerating a deteriorated catalyst according to an embodiment of the present invention is partly cut and viewed from the front, and FIG. 28 is provided with a large number of narrow projection holes constituting the projection device for regenerating the deteriorated catalyst. FIG. 29 schematically shows the projection state of the projection device for regenerating the deteriorated catalyst when an example of the projected projection means is viewed from above the projection side.
[0169]
As shown in FIGS. 27 to 29, in the H.263, the projection side 264a is formed in a circular plane having an area smaller than the upper surface area of one catalyst piece 7C or 7D, while the inflow side 264b is not projected in a triangular pyramid shape. It is formed with an inclined surface S1 having a thickened central portion and a thin peripheral portion and a central portion S as an apex, and a large number of narrow projection holes 265 at a fixed angular interval for a large number of different pitch cycles. Is a circular projection section portion drilled through between the inflow side 264b and the projection side 264a.
[0170]
Further, 267 is provided to extend outward by a certain length from the outer peripheral end of the circular projection partition part 263, and a connecting male screw hole 269 is threaded by a certain depth from the inflow side 264b toward the projection side 264a. It is a circular connection part. And the circular projection division site | part 263 and the circular connection site | part 267 are comprised integrally, and the projection means 271 which concerns on a present Example is formed.
[0171]
As shown in FIG. 27, the reference numeral 273 indicates that the outflow side 274a has a circular shape substantially the same as the outer diameter of the circular connection portion 267, while the inflow side 274b has a circular shape substantially the same as the outer diameter of the cylindrical connection portion 39 described above. The inner space is sharpened by making the length between the inflow side 274b and the outflow side 274a approximately 1.5 times the outer diameter of the projection means 271. Polishing It is a flow guide portion formed in a conical hollow shape so that the flow cross-sectional area where the material flows together with air gradually increases as will be described later. A connecting male screw is screwed on the outflow side 274a of the flow guide portion 273 so as to be screwed into the connecting female screw hole 269.
[0172]
As shown in FIG. 27, a casing member 275 according to the present embodiment is constituted by a flow guide portion 273 and the conical connecting portion 39, and the casing member 275 is provided. Described in 1 The laboratory described in the examples of the invention Polishing Of the reticular diffusion flow structure according to this embodiment from the material introduction member 59 Polishing A material supply means 277 is configured. Then, the projecting means 271 connected by screwing the connecting female screw hole 269 screwed into the circular connecting portion 267 and the connecting male screw 269 protruding from the flow guide portion 273, and the net-like diffusion Fluid structure research Polishing Claims from the material supply means 277 Described in 6 A projection device 279 for regenerating a deteriorated catalyst according to an embodiment of the present invention is configured.
[0173]
Next, an embodiment of the present embodiment will be described. As shown in FIGS. 27 to 29, the area of the projection side 264a of the circular projection partition part 263 constituting the projection means 271 is smaller than the area of the upper surface 7a of one catalyst piece 7C or 7D, and the circular connection part. 267 is provided to be slightly extended outward from the outer end of the circular projection section 263, and to be polished. Polishing The material starts to diffuse and flow in the form of a mesh. Polishing Since it is the outflow side of the material introduction member 59, the claim Described in 6 The entire structure of the projection device 279 for regenerating the deteriorated catalyst according to the embodiment of the present invention is made thin and compact.
[0174]
Referring to FIG. 9 and as shown in FIG. 29 (a), the operator M carries the projection device 279 for regenerating the deteriorated catalyst and, as shown in FIG. 175B, the beam member 175C, etc. can easily enter the narrow gap space protruding, and projection can be started from a position close to the upper surface 7a of one catalyst piece 7C constituting the catalyst pack 5 installed in this place. Become.
[0175]
Next, as shown in FIG. 27 and FIG. 29 (B), a certain range where the projection side 264a of the circular projection section 263 and the dirt P of one catalyst bead 7D are attached, or FIG. 27 and FIG. As shown in (a), the edge 175B or the beam member 175C of the flue gas denitration device 175 protrudes and obstructs the catalyst piece 7C disposed at a place where the catalyst regeneration work is difficult. Preparations for renovation work are completed, where a certain range is horizontally faced at a close upper space position.
[0176]
After this, when renewal work of the deteriorated catalyst is started, the claim Described in 1 In the same manner as described in the section of the embodiment of the embodiment of the present invention, Polishing Study materials with air Polishing The material introduction member 59 flows into the flow guide portion 273 constituting the casing member 275, diffuses and flows through the inner space of the flow guide portion 273 in a net-like manner, and reaches the inflow side 264b of the circular projection partition portion 263. , Some laboratories Polishing The material flows into the narrow projection hole 265 into the straight, but most of the material is polished. Polishing The material obliquely collides with the inclined surface S1 formed in a triangular pyramid with the central portion S as a boundary and inclined in all directions toward the projection side 264a. Then, due to the oblique collision, Polishing Part of the kinetic energy is dissipated, the material slides on the inclined surface S1 toward the peripheral portion S2, and flows into the narrow projection hole 265 that is close to the material, with a greatly reduced flow velocity.
[0177]
Next, the inside of each of the many narrow projection holes 265 has a small flow cross-sectional area. Research Polishing While the materials come into contact with each other or contact with the inner wall and receive frictional resistance, the kinetic energy is further reduced, the flow band is forcibly reduced, the flow velocity is further reduced, and the flow is further rectified and flow guided to the projection side 264a. The After receiving such flow guidance, Polishing Along with the air, the material is projected from the projection means 271 downwardly in the form of a shower with a very large number of narrow projection zones from each of the numerous narrow projection holes 265. With this projection, Polishing In the material, the collision energy per unit projected area is greatly reduced, and, as shown in FIG. 29 (b), the above-mentioned dirt P on the upper surface 7a of one catalyst piece 7D is adhered, As shown in FIG. 29 (a), it collides with a certain range of the upper surface 7a of one catalyst piece 7C arranged at a position where construction is difficult.
[0178]
Then, as shown in FIG. 29, the dirt P adhering to the upper surface is scattered without damaging the upper surface of the catalyst 8, and the certain range becomes clean. Also, some of the fine projection bands collide with the upper surface of the catalyst 8 to scatter dirt adhering to the upper surface, and the other fine projection bands flow into the catalyst 8 to cause the above-described polishing. Polishing The action of the catalyst 8 is regenerated.
[0179]
In this embodiment, the case where the projecting section and the projecting means are circular has been described. However, various shapes such as an ellipse, a triangle, a quadrilateral polygon, and a rectangle can be used if they are smaller than the upper surface area of one catalyst pack. Although not shown, the casing member 275 of the present embodiment is claimed. Described in 3 The laboratory demonstrated in one embodiment of the invention Polishing Of course, the present invention is also applicable to an abrasive material supply means having a reticular diffusion flow structure composed of the material introduction member 195.
[0180]
【The invention's effect】
Since the present invention is configured as described in detail above, the following excellent effects are exhibited. Claim Described in 1 With the configuration of the present invention, a method for reconstructing a deteriorated catalyst for each catalyst piece constituting one catalyst pack is used, and a position very close to the catalyst pack is studied together with pressurized air. Polishing Since the projection device for regeneration of the deteriorated projection structure with which the material can start to diffuse and flow in the form of a mesh, the overall configuration of the projection device can be made compact, and the catalyst pack can be placed at a predetermined position in the flue gas denitration device. The regeneration function of the catalyst function can be performed with the installation in place. In addition, the flow cross-sectional area decreases rapidly and Polishing The projecting structure is designed so that the phenomenon in which the momentum of the material increases rapidly and the phenomenon that exerts a strong frictional force on the object when it comes into contact with the object is generated at the beginning of the projection path far away from the catalyst. Polishing The catalyst is not damaged immediately before and after the material flows into the catalyst. In addition, Polishing For each of a large number of insertion nozzles by a net-like diffusive flow of material. Polishing The variation of the projection amount per unit time of the material was reduced, and the flow velocity was accelerated in the intermediate path of the projection path so that it flowed in only one direction. Polishing The material is rectified and guided to the end of the projection path and is actually polished from the plug nozzle. Polishing At the stage where the material is projected, the area around the projection has a low projection speed, but the center area of the projection is sharpened with a projection speed distribution that is the maximum projection speed. Polishing The material can be projected into the catalyst with pressurized air. Because of this remarkable effect, a catalyst poisoning substance mainly composed of calcium components adhering as coated in the catalyst without causing any damage in a very short time without leaking all the catalysts. Efficient research Polishing It can be removed to regenerate the catalyst function.
[0181]
Claim Described in 2 With the configuration of the present invention, for the long-term flue gas denitration, each of a large number of catalysts constituting one catalyst piece has various degrees of damage, and the upper end position for regenerating the catalyst function for each catalyst is provided. Even if there is a difference, since the abrasive can be reliably projected into all the catalysts constituting one catalyst piece without leaking to adjacent catalysts, the degree of damage varies depending on the catalyst. Even in such a case, it is possible to regenerate the predetermined catalyst function without causing any damage to the catalyst due to projection.
[0182]
Claim Described in 3 With the configuration of the invention, how many people work together with pressurized air? Polishing Even if the material is introduced into the projection device, it is possible to always achieve a constant net-like diffusion flow in the casing member, and to maintain a uniform projection situation for one catalyst pack. Even if engaged in renovation work, the above-mentioned claim 1 Invention, claims 2 Various effects according to the present invention can be realized more stably and reliably.
[0183]
Claim Described in 4 The structure of the invention Polishing The group is divided into a group in which the material flows with pressurized air and a group in which only the pressurized air flows, and is allowed to flow into the projection device from a direction different from the projection direction. Is swirled and moved to the other group while rotating and flowing, and the other group is caused to collide with the inner wall in the projection device and scatter, and then to both groups. And mix Polishing Since the material group is made to turbulently diffuse and flow in the projection direction together with the pressurized air, the surrounding area where turbulent and diffused flow is surely studied. Polishing The material can be evenly migrated in the same way as the central area, and the peripheral area where turbulent diffusion flows is the same as the central area. Polishing It can be expressed as material density. Therefore, the entire turbulent diffusion flow region is studied. Polishing The material group can be evenly directed in the direction of projection and turbulent diffusion flow can be achieved. Polishing Variation in projection amount per unit time of the material can be greatly reduced. From this effect, the catalyst mainly composed of the calcium component adhering as coated in the catalyst without leaking all the catalyst in a very short time and without causing any damage even more reliably. Research poison substances Polishing It can be removed to regenerate the catalyst function.
[0184]
Claim Described in 5 The structure of the invention Polishing It is divided into a group in which the material flows with pressurized air and a group in which only the pressurized air flows, and flows into the projection device from a direction different from the projection direction, and only the pressurized air flows in the projection device. As for the group to be rotated, it is studied while rotating in a spiral. Polishing The material flows and moves to the side where the group that flows with pressurized air flows, Polishing The group in which the material flows together with the pressurized air is sharpened by collision with the inner wall of the projection device and the crushing / scattering induction member. Polishing After the material is crushed and scattered in all directions and the behavior of the pressurized air is diffusely reflected by the same collision, the two groups are mixed and mixed to make almost all the study. Polishing Research that results from crushed materials Polishing Since the grain group is made to turbulently diffuse and flow in the projection direction together with the pressurized air, it is lightweight and is sensitive to the flow behavior of the pressurized air. Polishing The particles can be reliably migrated to the peripheral area where turbulent diffusion flows as well as the central area, and the peripheral areas where turbulent diffusion flows are the same as the central area. Polishing It can be expressed as the density of grain. Therefore, the entire turbulent diffusion flow region is studied. Polishing Grain group can be uniformly directed in the projection direction and turbulent diffusion flow can be achieved. Polishing Variation in the projection amount per unit time of the grain is reduced, and Polishing The particles can be projected into the catalyst through the insertion nozzle in a state where the particles have various flow behaviors. From this remarkable effect, it is soft touch, but it is crushed and its grain surface is sharp, and it is sharpened from various directions. Polishing Each catalyst material particle that acts is a catalyst poisoning substance mainly composed of calcium components that are attached as coated in which catalyst. Polishing The removal can be performed equally, and the regeneration of the catalytic function of all the catalysts can be performed in a very short time without causing any damage even if the catalyst is easily damaged.
[0185]
Claim Described in 6 With this configuration, the area on the projection side of the projection means is made smaller than the area of the upper surface of the catalyst piece, and Polishing In the previous stage of projecting the material, grinding with air from a position very close to the top surface of the catalyst pack. Polishing Since the entire structure of the projecting device for regenerating the deteriorated catalyst has been made compact so that the material can start to diffuse and flow in the form of a net, the operator must carry the projecting device for regenerating the deteriorated catalyst and connect the exhaust gas denitration device. Easy entry into narrow gaps where protruding parts and beam members Polishing Catalyst regeneration work such as material projection can be performed. In addition, it is fed with pressurized air and applied with a great deal of kinetic energy. Polishing The material is received by the inclined surface on the inflow side of the projection section and the kinetic energy is dissipated in a part of the kinetic energy, followed by grinding. Polishing The material is in contact with the inner wall of the narrow projection hole and polished while the material is flowing in the narrow projection hole toward the projection side. Polishing Since the second stage of kinetic energy is reduced due to frictional resistance due to contact with the materials, the applied kinetic energy can be greatly reduced and projected from each of a number of narrow projection holes. it can. For this reason, the continuously supplied laboratory Polishing The material is projected into a shower shape as an extremely large number of fine projection bands, and the collision energy per unit projected area is greatly reduced and collides with the upper surface of the catalyst piece. Only attached dirt can be removed without causing any damage. Also, increase the projection time and sharpen the upper surface of the catalyst piece. Polishing The material is projected and the catalyst is also polished. Polishing When the material is projected, it is possible to remove the dirt adhering to the upper surface and regenerate the deteriorated catalyst function without causing any damage to the catalyst piece.
[Brief description of the drawings]
FIG. 1 Claim Described in 1 It is the front view which showed the projection apparatus for deterioration catalyst reproduction which concerns on one Example of this invention.
FIG. 2 is a plan view showing an example of a projection member.
FIG. 3 is an enlarged perspective view showing an example of an insertion nozzle.
FIG. 4 is a partially omitted enlarged view showing a state where the insertion nozzle is detachably mounted in the nozzle mounting hole and the projection member is connected to the excessive wear prevention / flow adjusting means and the casing member. It is sectional drawing.
FIG. 5 is a perspective view showing an example of a casing member.
[Fig. 6] Research of the projectile flow diffusion structure Polishing It is a partially cutaway sectional view showing an example of the material supply means.
FIG. 7 is a partially cutaway perspective view showing an example of the structure of a catalyst pack.
[Figure 8] Research Polishing It is the front view which showed an example of the material feeding apparatus.
FIG. 9 is a schematic diagram showing an example of a deteriorated catalyst regeneration construction system.
FIG. 10 Claim Described in 1 It is the perspective view which showed the state by which the projection apparatus for the deterioration catalyst reproduction | regeneration which concerns on one Example of this invention was arrange | positioned in the pumping downstream end position of the deterioration catalyst regeneration construction system.
[Figure 11] Research Polishing It is an expanded sectional view showing a material continuous fixed fall mechanism.
[Figure 12] Research Polishing It is the expansion perspective view which showed the material continuous pumping member.
[Figure 13] Research Polishing From the stage in which the material flows into the flow adjustment hole together with the air, the flow from the flow adjustment hole and the insertion nozzle sequentially flows to the point where the material is projected from the insertion nozzle toward the catalyst. Polishing It is the schematic diagram which showed the flow behavior of material.
FIG. 14 claims Described in 2 It is the front view which showed the projection apparatus for deterioration catalyst reproduction which concerns on one Example of this invention.
FIG. 15 is a partially omitted enlarged view showing a state in which a long insertion nozzle is detachably mounted in a nozzle mounting hole and a projection member is connected to an excessive wear prevention / flow adjusting means and a casing member. It is sectional drawing.
FIG. 16 is a schematic diagram showing a criterion for selecting an insertion nozzle to be used in accordance with the presence / absence of damage to the catalyst and the degree of damage.
FIG. 17 claims Described in 3 It is the front view which showed the projection apparatus for deterioration catalyst reproduction which concerns on one Example of this invention.
[Fig.18] Research of a thrown mesh flow diffusion structure Polishing It is a partially omitted enlarged sectional view showing another example of the material supply means.
FIG. 19 claims Described in 4 It is the partially cutaway front view which showed the projection apparatus for degradation catalyst reproduction which concerns on one Example of this invention.
FIG. 20 shows a structure of a rectangular casing member, which is an example of a polygonal casing member according to the embodiment, and is attached by being connected to a one-side inlet provided on a side surface of the rectangular casing member. It is sectional drawing by the cutting | disconnection in the AA line of FIG. 19 which showed the structure of the obtained 1 side introduction member.
FIG. 21 shows a configuration of an example of a cylindrical casing member according to the same embodiment, and an other-side introduction member that is attached in communication with the other-side inlet provided on the peripheral wall of the cylindrical casing member. It is sectional drawing by the cutting | disconnection in the BB line of FIG. 19 which showed the structure.
[Fig.22] Laboratory Polishing It is the schematic diagram which showed the process in which a group of materials is turbulently diffused and flowed with pressurized air and flows in the projection direction.
FIG. 23 claims Described in 5 It is the partially cutaway front view which showed the projection apparatus for degradation catalyst reproduction which concerns on one Example of this invention.
FIG. 24 is a view showing a structure of a rectangular casing member which is an example of a polygonal casing member according to the same embodiment, and a structure connected to a one-side inlet provided on a side surface of the rectangular casing member. FIG. 24 is a cross-sectional view taken along line AA of FIG. 23, showing the structure of the one-side introduction member.
25 is an enlarged cross-sectional view taken along line AA of FIG. 24, showing an example of the crushing / scattering guiding member and the mounting structure according to the same embodiment.
[Fig.26] Research Polishing The material group is crushed and polished. Polishing It is the schematic diagram which showed the process by which it becomes a grain group, is turbulently diffused and flowed with pressurized air, and flows in the projection direction.
FIG. 27 claims Described in 6 It is the partially cut front view which showed the projection apparatus for deterioration catalyst reproduction which concerns on one Example of this invention.
FIG. 28 is a plan view showing an example of a projecting unit having a large number of narrow projecting holes forming the projecting device for regenerating the deteriorated catalyst.
FIG. 29 is a schematic view showing a projection state of the deterioration catalyst regeneration projection device.
[Explanation of symbols]
1 claim Described in 1 Projector for regenerating deteriorated catalyst according to an embodiment of the invention
5 Catalyst pack
7 Catalyst part
15 Projection member
21 Insert nozzle
23 Projection means
25 Means to prevent excessive wear and adjust flow
27 Flow adjustment hole
43 Case members
51 Rotator
55 Bearing member that can pivot freely in a pendulum shape
59 Lab Polishing Material introduction member
69 Research on Throwing and Netting Diffusion Flow Structure Polishing Material supply means
85 Lab Polishing Material container
117 Rotary feeder
119 motor
125 RPM detector
127 Lab Polishing Continuous quantitative falling mechanism
165 Lab Polishing Material feeder
167 Compressor
173 Deterioration catalyst regeneration system
177 Long insertion nozzle
181 Projection means
183 claims Described in 2 Projector for regenerating deteriorated catalyst according to an embodiment of the invention
187 Medium-sized insertion nozzle
195 Lab Polishing Material introduction member
203 Research on Throwing Network Diffusion Flow Structure Polishing Material supply means
205 claims Described in 3 Projector for regenerating deteriorated catalyst according to an embodiment of the invention
221 Rectangular box-shaped casing member
223 Cylindrical casing member
231 One side introduction member
240 Other side introduction member
243 Lab Polishing Abrasive supply means of turbulent diffusion flow structure of material group
245 claims 4 Projector for regenerating deteriorated catalyst according to an embodiment of the invention
251 Crushing / scattering guide member
257 Square box-shaped casing member
259 Fluid Abrasive Supply Unit with Turbulent Diffusion Flow Structure of Crushed Abrasive Particles
261 claims Described in 5 Projector for regenerating deteriorated catalyst according to an embodiment of the invention
265 Narrow projection hole
271 Projection means
277 Research of throwing net type diffusion flow structure Polishing Material supply means
279 claims Described in 6 Projector for regenerating deteriorated catalyst according to an embodiment of the invention

Claims (6)

一の触媒ピ−スを構成する触媒群のうち最も外方に配設された一部の触媒群を除いた他の触媒群が配設された配設領域より若干広い外形形状であって他の触媒群を構成する多数の触媒の配設間隔と同一間隔で且つ配設数と同数のノズル取付穴が穿設された投射区画部位と該投射区画部位の外側端から前記一部の触媒群と対面可能な位置より更に若干外方まで延伸されて形成された連結部位からなる投射部材と、多数のノズル取付穴それぞれに脱着可能に装着された多数の差込ノズルとからなる投射手段と、該投射手段の流入側と同一形状に形成され、前記差込ノズルの内径と略同一内径の流動調整穴が前記ノズル取付穴と同一間隔にて同数穿設され、流出側が該連結部位の流入側と連結された過大耗阻止・流動調整手段と、流出側に該過大耗阻止・流動調整手段の流入側の開口と同一開口形状に形成された流出口が設けられ流入側が圧送配管と略同形であって、流動断面積が流入側から流出側に向けて漸次広くなるように形成され、流出側が過大耗阻止・流動調整手段の流入側と連結されたケ−シング部材と、該ケ−シング部材の流入側の流入中心軸に対して振り子状に回動自在な軸受部材を介して該ケ−シング部材の流入側に支持された研磨材導入部材と、からなる投網状拡散流動構造の研磨材供給手段と、から構成されていることを特徴とする劣化触媒再生用の投射装置。Out of the catalyst group constituting one catalyst piece, the outer shape is slightly wider than the arrangement area where the other catalyst groups except the one part of the most arranged catalyst group are arranged. And a part of the catalyst group from the outer end of the projection partition part, wherein the same number of nozzle mounting holes as the number of the catalyst mounting holes are provided. A projecting means comprising a connecting member formed by extending a part further outward than a position capable of facing and a number of insertion nozzles detachably mounted in a number of nozzle mounting holes, respectively. The flow adjustment holes are formed in the same shape as the inflow side of the projection means, and have the same number of flow adjustment holes as the inner diameter of the insertion nozzle at the same interval as the nozzle mounting holes, and the outflow side is the inflow of the connecting portion. and excessive wear preventing-flow adjusting means connected to the side,該過large outflow side A substantially the same shape inflow side and pumping pipe outlet port formed in the opening of the same opening shape of the inflow side is provided with Worn blocking-flow adjusting means, the flow cross-sectional area becomes gradually wider toward the outlet side from the inlet side and Sing member,該Ke - - is formed so, Quai coupled with the inflow side of the outflow-side excessive wear preventing-flow adjusting means which pivotally like a pendulum relative to the inflow central axis of the inflow side of the single member A regeneration of a deteriorated catalyst comprising: an abrasive introduction member supported on the inflow side of the casing member via a bearing member; and an abrasive supply means having a reticular diffusion flow structure. Projection device. 請求項1に記載の多数の差込ノズルそれぞれの長さが触媒の損傷程度に応じて異なることを特徴とする請求項1に記載の劣化触媒再生用の投射装置。Numerous deteriorated catalyst projection apparatus for reproducing according to claim 1, each of length insertion nozzles are different from each other depending on the degree of damage of the catalyst according to claim 1. 請求項1に記載の投網状拡散流動構造の研磨材供給手段に代え、請求項1に記載のケ−シング部材と、流入側から流出側に向けて流入中心軸に対して放射状に配設された複数の導入穴が設けられ、ケ−シング部材の流入側と固定軸受部材を介して支持された研磨材導入部材と、からなる投網状拡散流動構造の研磨材供給手段を構成要素としたことを特徴とする請求項又は請求項2に記載の劣化触媒再生用の投射装置。Instead of the abrasive supplying means cast net-like diffusion flow structure according to claim 1, Ke according to claim 1 - and the single member, disposed radially with respect to the inflow central axis toward the outlet side from the inlet side A plurality of introduction holes are provided, and an abrasive supply means having a reticular diffusion flow structure comprising an inflow side of the casing member and an abrasive introduction member supported via a fixed bearing member is used as a constituent element The projection device for regenerating a deteriorated catalyst according to claim 1 or 2, characterized in that: 請求項1に記載の投網状拡散流動構造の研材供給手段に代えて、流出側に請求項1に記載の過大摩耗阻止・流動調整手段の流入側の開口と同一開口形状に形成された流出口が流入側に通過穴が側面側に一側流入口がそれぞれ設けられ流出側が請求項1に記載の過大摩耗阻止・流動調整手段の流入側と連結された多角形箱状ケ−シング部材と、流出側が前記通過穴と連通なさしめて該多角形箱状ケ−シング部材の流入側と連結され流入中心軸が周壁上の一個所での接線と平行となさしめて他側流入口が周壁に設けられた円筒形ケ−シング部材と、一側流入口と連通なさしめて多角形箱状ケ−シング部材の側面に取付られた一側導入部材と、他側流入口と連通なさしめて円筒形ケ−シング部材の周壁に取付られた他側導入部材と、からなる研材群の乱流拡散流動構造の研材供給手段を構成要素としたことを特徴とする請求項又は請求項2に記載の劣化触媒再生用の投射装置。Instead of Migaku Ken material supply means cast net-like diffusion flow structure according to claim 1, formed on the inlet side of the opening and the same opening shape of the excessive wear preventing-flow adjusting means according to claim 1 to the outlet side 2. A polygonal box-shaped casing member in which an outflow port is provided on the inflow side and a through hole is provided on the side surface side, and the outflow side is connected to the inflow side of the excessive wear prevention / flow adjusting means according to claim 1. The outlet side is in communication with the passage hole and connected to the inflow side of the polygonal box-shaped casing member, the inflow center axis is parallel to a tangent at one point on the peripheral wall, and the other inlet is connected to the peripheral wall. A cylindrical casing member provided, a one-side introduction member attached to the side surface of the polygonal box-shaped casing member in communication with the one-side inlet, and a cylindrical case in communication with the other-side inlet. - the other side introduction member attached to the peripheral wall of the single member, made of Migaku Ken Group of turbulent diffusion flow deteriorated catalyst projection apparatus for reproducing according to that the components Migaku Ken material supply means to claim 1 or claim 2, wherein the structure. 請求項1に記載の投網状拡散流動構造の研材供給手段に代えて、流出側に請求項1に記載の過大磨耗阻止・流動調整手段の流入側の開口と同一開口形状に形成された流出口が流入側に通過穴が側面側に一側流入口がそれぞれ設けられ流出側が請求項1に記載の過大摩耗阻止・流動調整手段の流入側と連結されるとともに内壁に多数の破砕・飛散誘導部材が密集して設けられた多角形箱状ケ−シング部材と、請求項4に記載の円筒形ケ−シング部材と、請求項4に記載の一側導入部材と、請求項4に記載の他側導入部材と、からなる破砕研材粒群の乱流拡散流動構造の研材供給手段を構成要素としたことを特徴とする請求項又は請求項2に記載の劣化触媒再生用の投射装置。Instead of Migaku Ken material supply means cast net-like diffusion flow structure according to claim 1, formed on the inlet side of the opening and the same opening shape of the excessive wear preventing-flow adjusting means according to claim 1 to the outlet side An outlet is provided on the inflow side, a passage hole is provided on the side surface, and a one-side inlet is provided on the side surface. The outflow side is connected to the inflow side of the excessive wear prevention / flow control means according to claim 1 and induction member densely polygonal box-shaped Ke provided - and single member, cylindrical case according to claim 4 - the single member, and one side introduction member according to claim 4, claim 4 other side introduction member and degradation catalyst regeneration according to claim 1 or claim 2, characterized in that the components Migaku Ken material supply means turbulent diffusion flow structure of crushed Migaku Ken material particle group consisting of Projection device. 投射側が一の触媒ピ−スの上面面積より小さい面積の平面状に形成され流入側が中心部を厚肉に周辺部を薄肉にして傾斜面をつけて形成されるとともに流入側と投射側間を貫いて多数の狭小投射穴が穿設された投射区画部位と、該投射区画部位の外側端から外方に若干延伸なさしめて設けられた連結部位からなる投射手段と、流出側に該投射手段の流入側の開口と同一開口形状に形成された流出口が設けられ、流入側が圧送配管と略同形であって流動断面積が流入側から流出側に向けて漸次広くなるように形成され、連結部位を介して投射手段の流入側と連結されたケ−シング部材と、請求項1に記載の研磨材導入部材又は請求項3に記載の研磨材導入部材とからなる投網状拡散流動構造の研材供給手段と、から構成されていることを特徴とする劣化触媒再生用の投射装置。The projection side is formed in a planar shape with an area smaller than the upper surface area of one catalyst piece, the inflow side is formed with an inclined surface with a thick central part and a thin peripheral part, and between the inflow side and the projection side. A projecting section having a plurality of narrow projecting holes drilled therethrough, a projecting means comprising a connecting section provided slightly extending outward from the outer end of the projecting section section, and a projection means on the outflow side. An outflow port having the same opening shape as the opening on the inflow side is provided, the inflow side is substantially the same shape as the pressure feeding pipe, and the flow cross-sectional area is formed so as to gradually increase from the inflow side to the outflow side, coupled with the inlet side of the projection means through the Ke - and single member, Migaku Ken of cast net-like diffusion flow structure composed of abrasive introduction member according to the abrasive introduction member or claim 3 according to claim 1 And material supply means The aged catalyst projection apparatus for reproducing the.
JP14104999A 1999-05-21 1999-05-21 Projection device for regeneration of deteriorated catalyst Expired - Lifetime JP4072578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14104999A JP4072578B2 (en) 1999-05-21 1999-05-21 Projection device for regeneration of deteriorated catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14104999A JP4072578B2 (en) 1999-05-21 1999-05-21 Projection device for regeneration of deteriorated catalyst

Publications (2)

Publication Number Publication Date
JP2000325801A JP2000325801A (en) 2000-11-28
JP4072578B2 true JP4072578B2 (en) 2008-04-09

Family

ID=15283072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14104999A Expired - Lifetime JP4072578B2 (en) 1999-05-21 1999-05-21 Projection device for regeneration of deteriorated catalyst

Country Status (1)

Country Link
JP (1) JP4072578B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7696125B2 (en) 2005-07-06 2010-04-13 Lee Chang Yung Chemical Industry Corporation Catalyst and process for preparing carboxylic acid esters

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4476222B2 (en) 2003-12-11 2010-06-09 中国電力株式会社 Performance recovery method for exhaust gas treatment equipment
KR101377256B1 (en) * 2011-12-22 2014-04-18 (주)코벡이엔지 Movable Cleaning Machine for Honeycomb SCR Catalyst
WO2013022158A1 (en) * 2011-08-10 2013-02-14 주식회사 코벡이엔지 Mobile catalyst recycling apparatus
KR101317398B1 (en) 2011-08-10 2013-10-11 (주)코벡이엔지 Movable Cleaning Machine for Honeycomb SCR Catalyst
JP5844943B2 (en) * 2013-03-28 2016-01-20 中国電力株式会社 Denitration catalyst regeneration method
WO2018211549A1 (en) * 2017-05-15 2018-11-22 中国電力株式会社 Grinding device for denitrification catalysts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7696125B2 (en) 2005-07-06 2010-04-13 Lee Chang Yung Chemical Industry Corporation Catalyst and process for preparing carboxylic acid esters
US8053593B2 (en) 2005-07-06 2011-11-08 Lee Chang Yung Chemical Industry Corporation Catalyst and process for preparing carboxylic acid esters

Also Published As

Publication number Publication date
JP2000325801A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
JP4072578B2 (en) Projection device for regeneration of deteriorated catalyst
US9364845B2 (en) Painting installation and method for operating a painting installation
JP5844943B2 (en) Denitration catalyst regeneration method
JP2007503915A5 (en)
JP5530316B2 (en) Oil mist removal device
KR101884134B1 (en) Spray apparatus for inhibiting generation of flying dust
JPH0724732B2 (en) Oil mist removal device
JPS6053648B2 (en) Device for removing pollutant particles from contaminated gas
TWI680707B (en) Device and method for coating seeds
JPH07116523A (en) Method and device for regenerating denox catalyst
CN107362476A (en) A kind of fire-fighting unmanned plane with air-cleaning function for forest
JP3168316B2 (en) Tube and equipment cleaning method, and tube and equipment cleaning apparatus used for implementing the method
JPH04116215A (en) Solid matter recovery device for exhaust of diesel engine
CN210097238U (en) Foam type dust removal foaming injection apparatus
JP2536535B2 (en) Sandblasting equipment
JPS5820217A (en) Centrifugal projecting apparatus
CN206184202U (en) Auto -excitation type water curtain unit burnishing and polishing dust remover
JPS6025182B2 (en) Granulation method and equipment
JPH031063Y2 (en)
JP4509767B2 (en) Cleaning equipment for recycled resin
CN106272009A (en) A kind of tablet polissoir for polishing cattle colostrums chewable tablet
JP2003027920A (en) Method and device for disposing exhaust gas
CN218251073U (en) Anti-blocking spray gun nozzle for expansion type coating
JPH10230462A (en) Blasting machine
JPS6261670A (en) Apparatus for preventing rebounding of spinner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20200201

Year of fee payment: 12

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term