JP4070516B2 - Visible light-responsive sulfide photocatalyst for hydrogen production from water - Google Patents

Visible light-responsive sulfide photocatalyst for hydrogen production from water Download PDF

Info

Publication number
JP4070516B2
JP4070516B2 JP2002165483A JP2002165483A JP4070516B2 JP 4070516 B2 JP4070516 B2 JP 4070516B2 JP 2002165483 A JP2002165483 A JP 2002165483A JP 2002165483 A JP2002165483 A JP 2002165483A JP 4070516 B2 JP4070516 B2 JP 4070516B2
Authority
JP
Japan
Prior art keywords
visible light
water
photocatalyst
nains
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002165483A
Other languages
Japanese (ja)
Other versions
JP2004008922A (en
Inventor
昭彦 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002165483A priority Critical patent/JP4070516B2/en
Publication of JP2004008922A publication Critical patent/JP2004008922A/en
Application granted granted Critical
Publication of JP4070516B2 publication Critical patent/JP4070516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

【0001】
【発明の属する技術分野】
本発明は、NaIn 基本とする可視光領域の光に活性を有する光触媒、特にSO 2−とS2−イオンが存在する水溶液から可視光下に水素を発生させる水分解光触媒に関する。
【0002】
【従来の技術】
光で触媒反応を行う技術としては、光触媒能を有する固体化合物に光を照射し、生成した励起電子やホールで反応物を酸化、あるいは還元して目的物を得る方法が既に知られている。
中でも、水の光分解反応は光エネルギー変換の観点から興味が持たれている。また、水の光分解反応に活性を示す光触媒は、光吸収、電荷分離、表面での水の酸化還元反応といった機能を備えた高度な光機能材料と見ることができる。
工藤、加藤等は、タンタル酸アルカリ、アルカリ土類等が、水の完全光分解反応に高い活性を示す光触媒であることを多くの先行文献を挙げて説明している〔例えば、Catal.Lett.,58(1999).153−155、Chem.Phys.Lett.331(5/6)373−377(2000),J.,Phys.Chem.B,105(19),4285−4292 (2001)、表面,Vol.36,No.12(1998),625−645(文献A類という)〕。前記文献A類においては、水を水素または/および酸素に分解する反応を進めるのに有用な光触媒材料について解説しており、水の発生した電子の還元による水素生成反応、または発生したホールの酸化による酸素生成反応および水の完全光分解反応用光触媒についての多くの示唆をしている。
また、白金、NiOなどの助触媒またはプロモータを担持した光触媒などについても言及している。
【0003】
しかしながら、ここで解説されているものは、非金属としては酸素を含むものが主である。また、多くの固体光触媒は価電子帯と伝導帯の間にある禁制帯の幅、即ち、バンドギャップエネルギ−が3eVよりも大きいため、3eV未満の低いエネルギーの可視光で作動させることができない。一方、バンドギャップエネルギーが小さく、可視光で電子、ホールを生ずることのできる従来の固体光触媒のほとんどは水の光分解反応等の反応条件下で不安定である。例えばCdS、Cu−ZnS等のバンドギャップは2.4eVであるが酸化的な光腐食作用を受けるため、触媒反応が限定されている。
地表に到達する太陽光のほとんどはエネルギーの小さい可視光であり、太陽光で効率的に多様な触媒反応を進行させるためには可視光で作動しかつ安定な光触媒が必要不可欠である。
【0004】
この様な中で、光触媒の研究に携わっている多くの研究者が、より長波長の可視光に活性を持つ光触媒、特に前記水の分解に活性を持つ光触媒の開発に努力している。しかしながら、犠牲薬を必用としない、実用性のある水の可視光による分解を可能にする光触媒を提供するところまでには至っていない。
前記可視光に活性を有する光触媒の開発では、先ず、より長波長の可視光において活性を示す光半導体の開発が重要であり、これに更に微量の活性化元素と組み合わせて、より長波長域への活性特性の改善、及び安定性の改善を図ることである。また、水の完全分解(全分解)の触媒とはいかなくても少なくとも一方の効率的な分解が可能な光触媒が見出せれば、これらのライブラリーを構成し、多くの触媒の中から前記完全分解の触媒系、たとえばZスキーム型触媒系の構築への可能性を提供する点で重要である。
【0005】
前記したように地表で利用できる太陽光のほとんどは可視光であるので、可視光で励起電子とホールを生成でき、かつ少なくとも還元反応が高効率で進行する光触媒を提供することの多くの提案がなされている。
前記従来の光触媒のほとんどは金属酸化物、すなわち非金属元素として酸素を含むものである。金属酸化物は、伝導帯及び価電子帯のエネルギー的な位置関係は酸素の価電子、O2p軌道のエネルギーによって大きく支配されるため、バンドギャップエネルギ−は3eVより大きく、可視光で光触媒機能を発現させることができない。そこで、価電子帯がO2pより高い準位にあるN2pで構成することによって可視光で水を分解できる触媒材料が作れるのではないかと考え、オキシナイトライド化合物からなる光触媒の検討が堂免、原らによって既になされている〔マテリアルインテグレーションVol.14,No.2(2001)、文献B〕。
また、価電子帯S3pもO2pより高い準位にあることに着目してオキシサルファイド化合物からなる光触媒の検討も堂免、原らによって既になされている〔日本化学会79回大会における講演予稿集、Vol.79th、No.1、pp366;オキシサルファイドによる水の可視光分解の検討、文献C〕。また、O2p以外の価電子帯形成元素としてBi3+やAgも候補としてあがっていることが工藤らによって提案されている。BiVOやAgNbOは可視光照射下で水溶液から酸素生成に活性を示す光触媒である〔J.Am.Chem.Soc.,121(49),11459−11467(1999〕,マテリアルステージ,No.5,21−26(2002)、文献D類〕。前記酸素生成触媒は、前記Zスキーム触媒系の一方の系をなす触媒としての可能性を持つものである。
【0006】
これに対して、微量の活性化元素または化合物と組み合わせて、光活性特性の改善、及び安定性の改善を図る検討もなされている。例えば、SrTiOに関しては、Lehnらは、貴金属助触媒と組み合わせて、例えばRh/SrTiOにつて水の完全光分解に光活性を示すことを証明している。特開2000−189806には、光触媒の可視光活性を改善するために、Pt、Ru、Rh、Ir、Niなどの金属または金属酸化物を担持させることが開示されている。しかしながら、これらにおける貴金属類は光触媒上に担持されたものであり、エネルギーバンドを可視光領域に拡げる効果は期待できない。
【0007】
前記技術に対して、Cr3+とSb5+またはTa5+を共ドープしたSrTiOやTiOは、可視光照射下で、それぞれメタノール水溶液からの水素生成と硝酸銀水溶液からの酸素生成させる触媒活性を示すことが知られており〔J.Phys. Chem., 106(19),5029−5034 (2002)、マテリアルステージ,No.5,21−26(2002)、文献E類〕、前記元素のドープはエネルギーバンドを可視光領域に拡げるだけでなく、HまたはOの生成の活性を付与する効果があることを示している。更に、InあるいはInとZnの酸化物からなる層構造の化合物が可視光下にいてメタノール水溶液から水素を発生させる活性を持つことも報告されている〔A.KudoandI.Mikami,Chem.Lett.,1027(1998)、文献F〕。更に、ZnSに種々の金属元素をドープして可視光における活性を改善する試みも多々行われている〔Catal.Lett.,58〔4〕,241−243(1999),Chem.Commun.,1371−1372(2000);文献G類〕
【0008】
【発明が解決しようとする課題】
本願発明の課題は、前記可視光活性を持つ光触媒の豊富化を実現するために、少なくとも水の光分解によるHの生成において効率の良い新規な触媒を提案することである。また、環境に対する配慮をした毒性のない前記光触媒として有用な物質を提供することである。そこで、前記価電子帯S3pの特性を利用と前記層構造の化合物が可視光活性とを組み合わせた光触媒が設計できないかと検討する中で、硫化物である、NaInS、及びAgInZn化合物が可視光の下で水素を発生すること、更にPtを担持させることにより飛躍的に前記活性が向上され、可視光照射下での量子収率でそれぞれ6,15%という値が得られること、また、ZnSにBiまたはPbおよびClを共ドープした化合物が可視光に活性があるこが分かり、前記課題を解決することができた。
【0009】
【課題を解決するための手段】
本発明は、NaInSからなることを特徴とする可視光活性を有する光触媒である。好ましくは、貴金属、例えば白金触媒を担持させたことを特徴とする請求項1に記載の可視光活性を有する光触媒である。本発明の第2は、SO 2−とS2−イオンが存在する水溶液から可視光下に水素を発生させるNaInSからなる可視光活性水分解光触媒であり、好ましくは、貴金属、例えば白金触媒を担持させたことを特徴とする前記SO 2−とS2−イオンが存在する水溶液から可視光下に水素を発生させる可視光活性水分解光触媒である。
【0010】
【本発明の実施の態様】
本発明をより詳細に説明する。
A.本発明の第1のNaInSは図1aで模式的に示す層構造を持ち、bに示す八面体がつながった硫化物層間にNaが存在する層構造を持っている。
酸化物に対して、硫化物は光半導体CdSと同様に酸化に対して安定性が劣るが、可視光領域に吸収性を持つことから光触媒としては魅力のある化合物である。そこでInの硫化物の合成法を検討し、硝酸インジウムと硝酸ナトリウムの混合水溶液に硫化ナトリウム水溶液を徐々に加えてた後、室温で反応させてNaInSのXRD測定においてアモルファスの前駆体を得(Na存在下での沈殿反応ではInは生成しなかった。)、この前駆体を窒素気流中において150℃(432K)で乾燥後、300℃(573K)で熱処理することにより結晶性NaInSを得た。
XRD測定により、単一相であり、BET表面積は14m/gであった。光触媒としての活性は、前記結晶性NaInSを室温の水中で処理することによって得られた。
前記結晶性NaInSは貴金属、例えばPtを担持させることにより触媒活性を著しく改善することができる。
【0011】
B.本発明の硫化物光触媒は、石油化学工業で副生する、または地球上に多量に存在する硫黄系還元剤の利用と組み合わせれば有効であることが予想される。
【0012】
【実施例】
以下、実施例により本発明を具体的に説明するが、この例示により本発明が限定的に解釈されるものではない。
得られた光触媒の特性の測定装置の説明;
XRDは、理学社製のMiniFlexを用いた。
BETは、Coulter社製のSA3100Bを用いた。
拡散反射スペクトル測定は、日本分光社製のUbestV570を用いた。
【0013】
実施例1
NaInSからなる光触媒の調製
99.99%の高純度硝酸インジウムと99.0%の硝酸ナトリウムのそれぞれの濃度が0.25モル/Lの混合水溶液80mLに、1.25モル/Lの濃度の硫化ナトリウム溶液120mLを徐々に加えた後、室温で20時間反応させてNaInSの前駆体を得た。前記前駆体はXRD測定からアモルファスであった。前記Na存在下での沈殿反応では、Inは生成しなかった。得られた前駆体粉末を窒素気流中において150℃で0.5時間乾燥し、ついで、300℃(573K)で、2時間熱処理した。これにより結晶性のNaInSを得た。薄い黄色を呈する。XDR測定により単一相であり、BET表面積は14m/gであった。この結晶性NaInSを更に室温の水中で約10時間処理した。得られたNaInS粉末0.7gを、濃度0.5モル/L、容積320mLの亜硫酸カリウム(KSO)中に懸濁させ、300W キセノンランプと紫外光カットフイルターを用いて可視光照射した。生成したHは、閉鎖循環系に直結したガスクロにより定量した。紫外可視近赤外分光光度計により拡散反射スペクトルを測定した。図1にNaFeO型のNaInSの構造を示す。これは、InS八面体が稜共有したアニオン層とその層間のナトリウムイオン層から成り立っている。この構造は、MoSのような層状の半導体とは異なる。NaInSの吸収は、そのインジウム硫化物アニオン層で起こっており、この伝導体と価電子帯、それぞれIn5sとS3pなっていると考えられる。
【0014】
NaInSの拡散スペクトルを図2に示す。アモルファス前駆体は白色であるが、熱処理した結晶体は薄い黄色であった。更に水処理したNaInSはオレンジ−黄色をしており、可視光領域に大きな吸収を持っていた。NaInSのバンドギャップは、吸収端波長から2.3eVと見積もることができる。前記水処理前後でXDRパターンは変化がなかった。
図3に、水処理したNaInSの可視光照射下での亜硫酸ナトリウム水溶液からの28μmol/1時間のH生成活性を示す。Pt助触媒を担持しなくてもH生成活性を示した。図3から理解されるようにPt助触媒の担持により活性が飛躍的に増加することが分かる。このことは、NaInS の伝導帯レベルが、水の還元電位よりも少し高いことを示している。初期には470μmol/1時間の速度でHが生成した。このときの量子収率は、440nmの波長において約6%であった。熱処理した触媒でも、反応中に水処理と同様に色が変わり光触媒活性が得られた。水処理した結晶性のNaInS を用いたH生成反応の活性スペクトルは拡散反射スペクトルとよく一致しており、水素の発生がバンドギャップ励起により進行していることを証明している。
【発明の効果】
以上述べたように、本発明の硫化物光触媒のバンドギャップは2.5eV〜2.3eVと顕著な光活性を示す触媒を提供できたという優れた効果がもたらされる。
【図面の簡単な説明】
【図1】NaInS ウルツァイト層構造aと八面体がつながった硫化物層b
【図2】300℃(573K)熱処理及び熱処理後水処理したNaInSの拡散反射スペクトル
【図3】300℃(573K)熱処理NaInS光触媒による可視光照射下でのKSO水溶液からのH生成反応
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photocatalyst having activity in light in the visible light region based on NaIn S 2 , and more particularly to a water-splitting photocatalyst that generates hydrogen under visible light from an aqueous solution containing SO 3 2− and S 2− ions.
[0002]
[Prior art]
As a technique for performing a catalytic reaction with light, a method is known in which a solid compound having a photocatalytic activity is irradiated with light, and the reaction product is oxidized or reduced with the generated excited electrons or holes to obtain a target product.
Among them, the photodecomposition reaction of water is of interest from the viewpoint of light energy conversion. In addition, a photocatalyst exhibiting activity in water photolysis reaction can be regarded as an advanced photofunctional material having functions such as light absorption, charge separation, and water oxidation-reduction reaction on the surface.
Kudo, Kato, et al. Have cited many prior literatures that alkali tantalates, alkaline earths, and the like are photocatalysts that exhibit high activity in the complete photolysis of water [see, for example, Catal. Lett. , 58 (1999). 153-155, Chem. Phys. Lett. 331 (5/6) 373-377 (2000), J. MoI. Phys. Chem. B, 105 (19), 4285-4292 (2001), Surface, Vol. 36, no. 12 (1998), 625-645 (referred to as Document A)]. In the above-mentioned documents A, a photocatalytic material useful for proceeding with a reaction for decomposing water into hydrogen and / or oxygen is described. Hydrogen generation reaction by reduction of water-generated electrons, or oxidation of generated holes There are many suggestions for photocatalysts for oxygen production reaction and complete photolysis of water.
It also refers to photocatalysts carrying promoters or promoters such as platinum and NiO.
[0003]
However, what is described here is mainly non-metal containing oxygen. In addition, many solid photocatalysts cannot be operated with visible light having a low energy of less than 3 eV because the width of the forbidden band between the valence band and the conduction band, that is, the band gap energy is larger than 3 eV. On the other hand, most of the conventional solid photocatalysts having a small band gap energy and capable of generating electrons and holes with visible light are unstable under reaction conditions such as water photolysis. For example, although the band gap of CdS, Cu—ZnS, etc. is 2.4 eV, the catalytic reaction is limited because of the oxidative photocorrosion action.
Most of the sunlight that reaches the earth's surface is visible light with low energy, and a stable photocatalyst that operates with visible light and is indispensable in order to allow various catalytic reactions to proceed efficiently with sunlight.
[0004]
Under such circumstances, many researchers who are engaged in the research of photocatalysts are striving to develop photocatalysts that are active in visible light having a longer wavelength, particularly photocatalysts that are active in the decomposition of water. However, a photocatalyst that does not require a sacrificial agent and that can be practically decomposed by visible light has not yet been provided.
In developing a photocatalyst having activity in visible light, it is first important to develop a photo-semiconductor that is active in visible light having a longer wavelength, and in combination with a small amount of an activating element, further to a longer wavelength region. It is intended to improve the activity characteristics and stability of the. If a photocatalyst capable of efficiently decomposing at least one of water is found even if it is not a catalyst for complete decomposition of water (total decomposition), these libraries are constructed and the complete catalyst is selected from many catalysts. It is important in that it offers the potential for the construction of cracking catalyst systems, such as Z-scheme type catalyst systems.
[0005]
As described above, since most of the sunlight that can be used on the ground surface is visible light, there are many proposals for providing a photocatalyst that can generate excited electrons and holes with visible light, and at least the reduction reaction proceeds with high efficiency. Has been made.
Most of the conventional photocatalysts contain metal oxide, that is, oxygen as a nonmetallic element. In the metal oxide, the energy positional relationship between the conduction band and the valence band is largely governed by the valence electrons of oxygen and the energy of the O2p orbital. Therefore, the band gap energy is larger than 3 eV, and the photocatalytic function is expressed with visible light. I can't let you. Therefore, we thought that a catalyst material capable of decomposing water with visible light could be made by comprising N2p with a valence band higher than O2p. [Material Integration Vol. 14, no. 2 (2001), literature B].
In addition, focusing on the fact that the valence band S3p is also at a higher level than O2p, studies on photocatalysts composed of oxysulfide compounds have already been made by Domen and Hara et al. . 79th, No. 1, pp366; examination of visible light decomposition of water with oxysulfide, literature C]. In addition, Kudo et al. Have proposed that Bi 3+ and Ag + are also candidates as valence band forming elements other than O2p. BiVO 4 and AgNbO 3 are photocatalysts that exhibit activity in oxygen generation from aqueous solutions under visible light irradiation [J. Am. Chem. Soc. 121 (49), 11459-11467 (1999), Material Stage, No. 5, 21-26 (2002), Documents D.] The oxygen generation catalyst is a catalyst that forms one of the Z scheme catalyst systems. It has the potential as
[0006]
On the other hand, studies are being made to improve the photoactive characteristics and the stability in combination with a small amount of activating element or compound. For example, for SrTiO 3 , Lehn et al. Have demonstrated photoactivity for complete photolysis of water, eg, for Rh / SrTiO 3 , in combination with a noble metal promoter. Japanese Patent Application Laid-Open No. 2000-189806 discloses that a metal or metal oxide such as Pt, Ru, Rh, Ir, or Ni is supported in order to improve the visible light activity of the photocatalyst. However, these precious metals are supported on a photocatalyst, and an effect of expanding the energy band in the visible light region cannot be expected.
[0007]
In contrast to the above technique, SrTiO 3 and TiO 2 co-doped with Cr 3+ and Sb 5+ or Ta 5+ show catalytic activity to generate hydrogen from aqueous methanol and oxygen from aqueous silver nitrate under visible light irradiation, respectively. It is known [J. Phys. Chem. 106 (19), 5029-5034 (2002), Material Stage, No. 5, 21-26 (2002), literature E)], showing that the doping of the element not only broadens the energy band in the visible light region but also imparts the activity of generating H 2 or O 2. Yes. Furthermore, it has also been reported that a compound having a layer structure composed of In or In and Zn oxide has an activity of generating hydrogen from an aqueous methanol solution under visible light [A. KudoandI. Mikami, Chem. Lett. 1027 (1998), Literature F]. Furthermore, many attempts have been made to improve the activity in visible light by doping ZnS with various metal elements [Cataly. Lett. 58 [4], 241-243 (1999), Chem. Commun. , 1371- 1372 (2000); Document G]
[0008]
[Problems to be solved by the invention]
An object of the present invention is to propose a novel catalyst that is efficient at least in the production of H 2 by photolysis of water in order to realize enrichment of the photocatalyst having visible light activity. Another object of the present invention is to provide a substance useful as the photocatalyst that is environmentally friendly and has no toxicity. Therefore, while examining whether the photocatalyst combining the characteristics of the valence band S3p and the compound having the layer structure with visible light activity can be designed, NaInS 2 and AgInZn 7 S 9 compounds which are sulfides are used. Generation of hydrogen under visible light, and further support of Pt significantly improve the activity, and a quantum yield under visible light irradiation of 6 and 15%, respectively, As a result, it was found that a compound obtained by co-doping BiS, Pb, and Cl into ZnS was active in visible light.
[0009]
[Means for Solving the Problems]
This onset Ming is a photocatalyst having a visible light activity, characterized in that it consists NaInS 2. 2. The photocatalyst having visible light activity according to claim 1, wherein a noble metal such as a platinum catalyst is supported. The second aspect of the present invention is a visible light active water-splitting photocatalyst composed of NaInS 2 that generates hydrogen under visible light from an aqueous solution containing SO 3 2− and S 2− ions, preferably a noble metal such as a platinum catalyst. A visible light active water-splitting photocatalyst that generates hydrogen under visible light from an aqueous solution containing the SO 3 2− and S 2− ions.
[0010]
[Embodiments of the present invention]
The present invention will be described in more detail.
A. The first NaInS 2 of the present invention has a layer structure schematically shown in FIG. 1a, and has a layer structure in which Na is present between sulfide layers connected to the octahedron shown in b.
Compared to oxides, sulfides are inferior in stability to oxidation like the optical semiconductor CdS, but are attractive compounds as photocatalysts because they have absorptivity in the visible light region. Therefore, we studied the synthesis method of In sulfide, and gradually added the aqueous sodium sulfide solution to the mixed aqueous solution of indium nitrate and sodium nitrate, and then reacted at room temperature to obtain an amorphous precursor in the XRD measurement of NaInS 2 ( In 2 S 3 was not produced in the precipitation reaction in the presence of Na + .), This precursor was dried at 150 ° C. (432 K) in a nitrogen stream, and then heat treated at 300 ° C. (573 K) for crystallinity. NaInS 2 was obtained.
According to the XRD measurement, it was a single phase and the BET surface area was 14 m 2 / g. The activity as a photocatalyst was obtained by treating the crystalline NaInS 2 in water at room temperature.
The crystalline NaInS 2 can significantly improve the catalytic activity by supporting a noble metal such as Pt.
[0011]
B. The sulfide photocatalyst of the present invention is expected to be effective when combined with the use of a sulfur-based reducing agent by-produced in the petrochemical industry or present in large quantities on the earth.
[0012]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not interpreted limitedly by this illustration.
Description of the device for measuring the characteristics of the obtained photocatalyst;
For XRD, MiniFlex manufactured by Rigaku Corporation was used.
As BET, Coulter SA3100B was used.
The diffuse reflection spectrum was measured using Ubest V570 manufactured by JASCO Corporation.
[0013]
Example 1
Preparation of a photocatalyst comprising NaInS 2 In 80 mL of a mixed aqueous solution of 99.99% high-purity indium nitrate and 99.0% sodium nitrate each having a concentration of 0.25 mol / L, a concentration of 1.25 mol / L After gradually adding 120 mL of a sodium sulfide solution, the mixture was reacted at room temperature for 20 hours to obtain a NaInS 2 precursor. The precursor was amorphous from XRD measurement. In 2 S 3 was not generated in the precipitation reaction in the presence of Na + . The obtained precursor powder was dried at 150 ° C. for 0.5 hours in a nitrogen stream, and then heat-treated at 300 ° C. (573 K) for 2 hours. As a result, crystalline NaInS 2 was obtained. Light yellow. It was a single phase by XDR measurement, and the BET surface area was 14 m 2 / g. This crystalline NaInS 2 was further treated in room temperature water for about 10 hours. 0.7 g of the obtained NaInS 2 powder was suspended in potassium sulfite (K 2 SO 3 ) having a concentration of 0.5 mol / L and a volume of 320 mL, and irradiated with visible light using a 300 W xenon lamp and an ultraviolet light cut filter. did. The produced H 2 was quantified by gas chromatography directly connected to the closed circulation system. The diffuse reflection spectrum was measured with an ultraviolet-visible near-infrared spectrophotometer. FIG. 1 shows the structure of NaFeO 2 type NaInS 2 . This is composed of an anion layer shared by edges of an InS 6 octahedron and a sodium ion layer between the anion layers. This structure is different from a layered semiconductor such as MoS 2 . Absorption of NaInS 2 occurs in the indium sulfide anion layer, and this conductor and valence band are considered to be In5s and S3p, respectively.
[0014]
The diffusion spectrum of NaInS 2 is shown in FIG. The amorphous precursor was white, but the heat-treated crystal was light yellow. Further, NaInS 2 treated with water had an orange-yellow color, and had a large absorption in the visible light region. The band gap of NaInS 2 can be estimated as 2.3 eV from the absorption edge wavelength. There was no change in the XDR pattern before and after the water treatment.
FIG. 3 shows 28 μmol / 1 hour H 2 production activity from aqueous sodium sulfite aqueous solution of NaInS 2 treated with water under visible light irradiation. Even when no Pt promoter was supported, H 2 production activity was exhibited. As can be seen from FIG. 3, it can be seen that the activity is dramatically increased by loading the Pt promoter. This indicates that the conduction band level of NaInS 2 is slightly higher than the reduction potential of water. Initially, H 2 was produced at a rate of 470 μmol / hour. The quantum yield at this time was about 6% at a wavelength of 440 nm. Even with the heat-treated catalyst, the color changed during the reaction in the same manner as the water treatment, and photocatalytic activity was obtained. The activity spectrum of the H 2 production reaction using crystalline NaInS 2 treated with water is in good agreement with the diffuse reflectance spectrum, demonstrating that hydrogen generation proceeds by band gap excitation.
【The invention's effect】
As described above, the sulfide photocatalyst of the present invention has an excellent effect that a bandgap of 2.5 eV to 2.3 eV was able to be provided.
[Brief description of the drawings]
FIG. 1 is a sulfide layer b in which a NaInS 2 wurtzite layer structure a and an octahedron are connected.
[2] 300 ° C. (573K) heat treatment and diffuse reflectance spectra of the heat treatment after the hydrothermal treatment was NaInS 2 [3] 300 ° C. (573K) heat treatment NaInS 2 photocatalyst H from K 2 SO 3 aqueous solution under visible light irradiation by 2 production reaction

Claims (4)

NaInSからなることを特徴とする可視光活性を有する光触媒。Photocatalyst with visible light activity, characterized in that it consists NaInS 2. 白金触媒を担持させたことを特徴とする請求項1に記載の可視光活性を有する光触媒。The photocatalyst having visible light activity according to claim 1, wherein a platinum catalyst is supported. SO 2−とS2−イオンが存在する水溶液から可視光下に水素を発生させるNaInSからなる可視光活性水分解光触媒。A visible light active water splitting photocatalyst composed of NaInS 2 that generates hydrogen under visible light from an aqueous solution containing SO 3 2− and S 2− ions. 白金触媒を担持させたことを特徴とする請求項3記載の可視光活性水分解触媒。 Visible light activated water decomposition catalysts according to claim 3, characterized in that platinum is supported catalysts.
JP2002165483A 2002-06-06 2002-06-06 Visible light-responsive sulfide photocatalyst for hydrogen production from water Expired - Fee Related JP4070516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002165483A JP4070516B2 (en) 2002-06-06 2002-06-06 Visible light-responsive sulfide photocatalyst for hydrogen production from water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002165483A JP4070516B2 (en) 2002-06-06 2002-06-06 Visible light-responsive sulfide photocatalyst for hydrogen production from water

Publications (2)

Publication Number Publication Date
JP2004008922A JP2004008922A (en) 2004-01-15
JP4070516B2 true JP4070516B2 (en) 2008-04-02

Family

ID=30433314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002165483A Expired - Fee Related JP4070516B2 (en) 2002-06-06 2002-06-06 Visible light-responsive sulfide photocatalyst for hydrogen production from water

Country Status (1)

Country Link
JP (1) JP4070516B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005105663A1 (en) * 2004-04-30 2008-07-31 財団法人電力中央研究所 Hydrogen storage, hydrogen fuel and hydrogen production method
JP4608693B2 (en) * 2004-12-17 2011-01-12 学校法人東京理科大学 Black photocatalyst for hydrogen production with total absorption of visible light
JP4915719B2 (en) * 2005-11-28 2012-04-11 学校法人東京理科大学 ZnS-CuX solid solution photocatalyst exhibiting high activity in hydrogen production from aqueous solution containing sulfur compound under sunlight irradiation
KR100682033B1 (en) 2005-12-30 2007-02-12 포항공과대학교 산학협력단 Photocatalyst complex and composition comprising same for producting hydrogen through water splitting
CN104248977B (en) * 2014-08-29 2016-08-24 中国科学院新疆理化技术研究所 Method and the purposes of composite photo-catalyst prepared by a kind of photosensitizer
CN106000424A (en) * 2016-06-03 2016-10-12 牛和林 Indium sulfide photocatalyst with ultrahigh photocatalytic activity and preparation method and application thereof
KR102080029B1 (en) * 2017-03-09 2020-02-21 성균관대학교 산학협력단 Catalyst for hydrogen evolution reaction
KR102080027B1 (en) * 2017-11-15 2020-02-21 성균관대학교 산학협력단 Catalyst for hydrogen generation reaction containing copper promoter
CN108336168A (en) * 2018-01-19 2018-07-27 上海电机学院 A kind of structure NaInS2The method of carrying semiconductor material among base
CN108380169B (en) * 2018-02-11 2020-07-14 华北电力大学 Layered metal sulfide NaInS for removing radionuclide U (VI)2And preparation thereof
CN113856709B (en) * 2021-09-26 2023-04-11 广东轻工职业技术学院 Preparation method of catalyst for photocatalytic decomposition of pure water

Also Published As

Publication number Publication date
JP2004008922A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
Kudo et al. Strategies for the development of visible-light-driven photocatalysts for water splitting
Tahir et al. Synergistic effect in plasmonic Au/Ag alloy NPs co-coated TiO2 NWs toward visible-light enhanced CO2 photoreduction to fuels
Yuzawa et al. Reaction mechanism of ammonia decomposition to nitrogen and hydrogen over metal loaded titanium oxide photocatalyst
Ulagappan et al. Mechanistic study of CO2 photoreduction in Ti silicalite molecular sieve by FT-IR spectroscopy
JP4107807B2 (en) Oxysulfide photocatalyst for visible light decomposition of water
Zou et al. Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M= Mn, Fe, Co, Ni and Cu) photocatalysts
JP6370371B2 (en) NATAO3: LA2O3 catalyst with cocatalyst composition for photocatalytic reduction of carbon dioxide
Petala et al. Hysteresis phenomena and rate fluctuations under conditions of glycerol photo-reforming reaction over CuOx/TiO2 catalysts
Kudo et al. H2 evolution from aqueous potassium sulfite solutions under visible light irradiation over a novel sulfide photocatalyst NaInS2 with a layered structure
Kozlova et al. Photocatalytic oxidation of ethanol vapors under visible light on CdS–TiO2 nanocatalyst
JP4070516B2 (en) Visible light-responsive sulfide photocatalyst for hydrogen production from water
US9718695B2 (en) Visible light sensitive photocatalyst, method of producing the same, and electrochemical water decomposition cell, water decomposition system, and organic material decomposition system each including the same
US20170072391A1 (en) Photocatalytic hydrogen production from water over mixed phase titanium dioxide nanoparticles
JP4000374B2 (en) Semiconductor metal oxide photocatalyst and method for decomposing hazardous chemicals using the same
Vasilchenko et al. Photoinduced deposition of platinum from (Bu4N) 2 [Pt (NO3) 6] for a low Pt-loading Pt/TiO2 hydrogen photogeneration catalyst
Chen et al. Metal selenides for photocatalytic Z-scheme pure water splitting mediated by reduced graphene oxide
JP4064065B2 (en) Photocatalyst for visible light decomposition of water
JP4076793B2 (en) Rh and / or Ir doped SrTiO3 photocatalyst producing hydrogen from water under visible light irradiation
Akhoondi et al. Hydrogen evolution via noble metals based photocatalysts: A review
JP2003019437A (en) Photocatalyst, method for producing hydrogen using the photocatalyst, and method for decomposing harmful matter
Platero et al. Tuning the co-catalyst loading for the optimization of thermo-photocatalytic hydrogen production over Cu/TiO2
Barroso-Martín et al. Recent advances in photo-assisted preferential CO oxidation in H2-rich stream
JP2012016697A (en) Photocatalyst and method of manufacturing the same
Ozawa et al. TiO x N y/TiO2 Photocatalyst for Hydrogen Evolution under Visible-Light Irradiation. I: Characterization of N in TiO x N y/TiO2 Photocatalyst
FR3026963A1 (en) PHOTOCATALYTIC COMPOSITION COMPRISING METALLIC PARTICLES AND TWO SEMICONDUCTORS INCLUDING COPPER OXIDE

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees