JP4070113B2 - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
JP4070113B2
JP4070113B2 JP2003049928A JP2003049928A JP4070113B2 JP 4070113 B2 JP4070113 B2 JP 4070113B2 JP 2003049928 A JP2003049928 A JP 2003049928A JP 2003049928 A JP2003049928 A JP 2003049928A JP 4070113 B2 JP4070113 B2 JP 4070113B2
Authority
JP
Japan
Prior art keywords
power supply
battery
voltage
auxiliary
supply unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003049928A
Other languages
Japanese (ja)
Other versions
JP2004260948A (en
Inventor
竹三 杉村
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Battery Co Ltd
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Battery Co Ltd filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2003049928A priority Critical patent/JP4070113B2/en
Publication of JP2004260948A publication Critical patent/JP2004260948A/en
Application granted granted Critical
Publication of JP4070113B2 publication Critical patent/JP4070113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、主電源部の異常などの非常時に、主電源部に代わって補助電源部から補機に電源を供給して、補機の動作を保証するための電源供給装置に関するものである。
【0002】
【従来の技術】
近年では、PL法(製造物責任法)の施行を受けて車両の安全運行に対する取り組みや基準作りが重要視されてきている。この安全対策として従来では、たとえばメーデーシステムと称される緊急通報装置が導入されたものがあり、この装置では、車両の発電系および蓄電池、電源線などが破損などにより電力供給能力を失った場合に、主電源部に代わって緊急通報装置の動作を保証するための補助電源部を採用するものがある。
【0003】
また、車両の安全運行を図るためには、今後はバイワイヤ技術と呼ばれる技術を用いた電子制御系が、エンジン、ブレーキ、操舵などの走行系の制御に使用され、主電源部からの電源異常時に補助電源部から電源を供給するようにして事故を回避する技術が重要となりつつある。
【0004】
この補助電源部に用いられる電源としては、たとえば蓄電池およびキャパシタなどが挙げられるが、放電性能のコスト比においては蓄電池が優れている。さらに、地球の外部環境条件を考慮した−30℃〜−40℃という極低温状態での放電特性においては、これらの電源のうち、鉛蓄電池が最も優れている。そこで、このような理由から上述した緊急通報装置でも、補助電源として鉛蓄電池が使用されていた。このような補助電源供給装置としては、たとえば特許文献1に示すようなものがあった。
【0005】
【特許文献1】
特開平5−244704号公報(第2−3頁、図1)
【0006】
【発明が解決しようとする課題】
しかしながら、上記鉛蓄電池は、体積または重量あたりの放電性能が他の蓄電池やキャパシタと比べて劣っており、この放電性能を上げるためには、その結果として大型化や重量の増大化を招くこととなる。すなわち、たとえば12V電池で使用される車両の電源電圧は、図7に示す範囲で規定されており、10V以下の領域では、電圧不足により補機のシステムの動作が保証されない動作不能状態となり、また16V以上の領域では、補機部品の耐電圧を超えてしまう。したがって、このことから、車両の電源電圧は、10V〜16Vの範囲が適正な許容範囲とされている。
【0007】
この車両で使用される一般的な12V鉛蓄電池(6セル構成)の出力電圧特性を模式的に示すと、図8に示すような関係になり、補機が動作するのに必要とされる電流値を、必要な時間の間、10V以上の電圧が保証される容量が選定される。この図において、通常放電をかけると、瞬間的に12V電池の電圧が最高電圧の約13.2Vに上がり、後はその電圧が緩やかに下がっていく特性となる。この現象は、放電時に流れる電流が小または蓄電池の容量が大の一点鎖線Aの場合には、この電圧は高くなり、放電時に流れる電流が大または蓄電池の容量が小の一点鎖線Bの場合には、この電圧は低くなる。
【0008】
したがって、図7に示した補機耐電圧上限値16Vに対しては、まだ余裕がある。しかし、図8の一点鎖線Bに示した場合には、補機動作保証下限値の10Vに対しては、これを下回ってしまう事態が発生し、補機の動作限界に達しないことがある。このため、電流が固定の場合には、蓄電池の容量を大きくして、電池の電圧を上げる必要があり、その結果として電源供給装置の大型化や重量の増大化を招くこととなって、車両の設置スペースや重量に影響を及ぼすこととなるという問題点があった。
【0009】
この発明は、上記問題点に鑑みなされたもので、蓄電池の体積や重量を軽減して、装置全体の小型および軽量化を図ることができる電源供給装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、請求項1にかかる電源供給装置では、補機に電源を供給して、該補機を動作させる主電源部を有する電源供給装置において、前記主電源部の電圧より大きく、かつ前記補機の連続定格の上限電圧以下である電圧を供給する補助電源部と、前記主電源部と前記補助電源部から供給される電圧を切り替えて、前記補機に供給する切替手段とを備えたことを特徴とする電源供給装置が提供される。
【0011】
この請求項1の発明によれば、補助電源部から供給される電圧が、主電源部の電圧(たとえば13.2V)より大きく、かつ補機の連続定格の上限電圧(たとえば16V)以下に設定することで、蓄電池の体積や重量を軽減する。
【0012】
また、請求項2にかかる電源供給装置では、前記補助電源部は、所定セル数の蓄電池と、前記蓄電池を前記主電源部の電圧より大きく、かつ前記補機の連続定格の上限電圧以下である電圧に充電する充電手段とをさらに備えたことを特徴とする。
【0013】
この請求項2の発明によれば、蓄電池の充電手段(充電回路)を装備する場合には、補助電源部の蓄電池をこの請求項1に設定された範囲内の電圧で充電することで、充電電流が小さくなって、充電回路の小型、低コスト化を図る。
【0014】
また、請求項3にかかる電源供給装置では、前記補助電源部は、前記蓄電池の内部抵抗値を測定し、該測定結果に基づいて該蓄電池の劣化状態を検知する検知手段をさらに備えたことを特徴とする。
【0015】
この請求項3の発明によれば、たとえば多セル化で高くなった電池の内部抵抗を求め、この内部抵抗値に基づいて電池の劣化状態を精度良く検知する。
【0016】
【発明の実施の形態】
以下の図1〜図6に添付図面を参照して、この発明にかかる電源供給装置の好適な実施の形態を説明する。
【0017】
(実施の形態1)
図1は、この発明にかかる電源供給装置の構成の一例を示す構成図である。図において、主電源部10は、発電機11、バッテリ12、ヒューズ13〜15とからなり、発電機11およびバッテリ12からの電源線16,17がヒューズ13,14を介してメイン電源線18に接続されており、このメイン電源線18は、電源切り替え回路30を介して補機31と接続されている。したがって、通常時には、メイン電源線18を介して発電機11およびバッテリ12から補機31に電源が供給されている。
【0018】
補助電源部20は、充電回路21、補助バッテリ22とからなり、充電回路21は、電源線19を介してバッテリ12と接続され、通常時にバッテリ12から供給される電源によって、補助バッテリ22の充電を行っている。また、バッテリ22は、電源切り替え回路30を介して補機31と接続されている。そして、主電源部10の異常などの非常時には、電源切り替え回路30が切り替わり、バッテリ22から補機31に電源が供給されている。なお、主電源部10および補助電源部20の各バッテリ12,22は、たとえば鉛蓄電池から構成されており、車両で使用される一般的な主電源部10の12Vの鉛蓄電池は、6セル構成になっている。
【0019】
このような構成の電源供給装置に対して、この発明の発明者らは、以下の検証を行った。すなわち、図2に示すように、鉛蓄電池において、25A放電時に10秒間の最低電圧が10V以上となる電池容量を、セル数との関係で求めた。この結果、5セルから6セル間では、容量が50Ahから3.6Ahに急激に減少するが、6セルからは、7セルが1.9Ah、8セルが1.3Ah、9セルが1.1Ahとなだらかに減少していくことが解った。
【0020】
さらに、この関係から各セル構成で必要性能を満たした場合の体積比率を図3に、また重量比率を図4に示す。ここで、体積比率においては、6セルの場合には100%で、7セルの場合には約67%で、8セルの場合には約55%で、9セル以上は、8セルの場合からなだらかに減少していた。重量比率においては、6セルの場合には100%で、7セルの場合には約55%で、8セルの場合には約38%で、9セル以上は、8セルの場合からなだらかに減少していた。
【0021】
これらの関係から鉛蓄電池が6セル構成と比べて7セル構成にすると、体積比率では、約2/3に、重量比率では、約1/2に大幅改善されることが解った。また、8セルや9セル構成の場合には、さらに改善されるが、その改善率は小さくなる。
【0022】
また、図5に各セル構成での出力電圧範囲を示すが、この図から明らかなように、8セル構成以上のものは、既存の補機耐電圧上限値16Vを超えてしまうため、補機システムの全面的な再設計が必要となるだけでなく、これに伴い部品定格アップによるコスト増も伴い、結果として一般的な6セル構成の鉛蓄電池と比べて車両全体としてのコストはかえって高価になることが解った。
【0023】
そこで、この実施の形態では、上述した検出結果から考察して、補助電源部20のバッテリ(鉛蓄電池)22を主電源部10のバッテリ12の6セル構成よりも1つ多い、7セル構成とする。さらに、この実施の形態では、バッテリ22から供給される電圧が、主電源部10のバッテリ12から供給される電圧(たとえば6セル構成の場合の最高電圧13.2V)より大きく、かつ補機の連続定格の上限電圧(たとえば補機耐電圧上限値16V)以下に設定する。
【0024】
このように、この実施の形態では、補助電源用の蓄電池を、主電源用の蓄電池のセル数より1つ多い7セル構成とし、さらに補助電源用の蓄電池から供給される電圧が、主電源部の蓄電池から供給される電圧より大きく、かつ補機耐電圧上限値以下に設定するので、図3、図4に示すように蓄電池の体積や重量を軽減することができ、これにより電源供給装置全体の小型および軽量化を図ることができる。
【0025】
また、この実施の形態にかかる補助電源部20においては、この設定に伴い、バッテリ22の充電回路21は、バッテリ22から供給される電圧が、主電源部10のバッテリ12から供給される電圧より大きく、かつ補機耐電圧上限値以下になるように、補助電源部20のバッテリ22を充電している。
【0026】
ここで、図2に示した各セル数における出力電圧10Vを保証するための単セル容量値の場合に、車両が平均温度40℃で1ヶ月間放置されたとすると、その間の自己放電は、約10%となる。これを1Aを充電電流の上限とする定電流充電器で満充電まで充電するのに要する時間tは、5セルの場合には、自己放電量10%は、50Ah×10%=5Ahで、充電効率を90%とすると、t=5Ah/(1A/90%)=5.6時間となる。
【0027】
同様に、6セルの場合には、自己放電量10%は、3.6Ah×10%=0.36Ahで、満充電までの時間t=0.36Ah/(1A/90%)=0.4時間、7セルの場合には、自己放電量10%は、1.9Ah×10%=0.19Ahで、満充電までの時間t=0.19Ah/(1A/90%)=0.21時間、8セルの場合には、自己放電量10%は、1.3Ah×10%=0.13Ahで、満充電までの時間t=0.13Ah/(1A/90%)=0.14時間、9セルの場合には、1.1Ah×10%=0.11Ahで、満充電までの時間t=0.11Ah/(1A/90%)=0.12時間となる。
【0028】
ただし、7セルで1Aで充電をかけると、容量率としては0.53Cとなる。通常、充電電流の上限は、電池の劣化を防ぐために0.2〜0.3Cに抑えるのが通例になっている。ここで、容量率0.3Cを上限とすると、7セルでは、1.9Ah×0.3C=0.57Aで、0.33時間で、同様に8セルおよび9セルでも、0.33時間となり充電時間は変化しなくなる。
【0029】
このように、この実施の形態では、補助電源用の蓄電池を7セル構成とし、さらに補助電源用の蓄電池から供給される電圧が、主電源部の蓄電池から供給される電圧より大きく、かつ補機耐電圧上限値以下になるように、バッテリを充電するので、充電時間が短縮され、車両のわずかな走行時間でも充電が可能となり、たとえば暖機中に補助電源部のバッテリに必要な電気量を迅速に補充することができるようになり、常に非常時用の電力を確保することができる。
【0030】
また、この実施の形態では、自己放電量と電池容量は、比例関係にあり、多セル化により蓄電池の容量が小さくなれば、充電電流を小さくできるので、充電回路の小型、低コスト化を図ることができる。
【0031】
なお、この実施の形態では、主電源部のバッテリが12V電池の場合について説明したが、この発明はこれに限らず、たとえば主電源部のバッテリが24V電池や36V電池の場合でも、上述した設定条件、すなわち補助電源用の蓄電池から供給される電圧が、主電源部の蓄電池から供給される電圧より大きく、かつ補機耐電圧上限値以下に設定するという設定条件と同様の設定条件によって補助電源部のバッテリを構成することで、上述した実施の形態1と同様の効果を得ることができる。
【0032】
(実施の形態2)
図6は、この発明にかかる電源供給装置の構成の他例を示す構成図である。図において、図1に実施の形態1の構成と異なる点は、補助電源部20に電池状態検知回路23を設けて、バッテリ22の電池劣化状態を検知する点である。
【0033】
この電池状態検知回路23は、鉛蓄電池であるバッテリ22のインピーダンス、たとえば電池の内部抵抗値を測定することで、電池の劣化状態を検知するもので、定電流放電回路と電池電圧測定回路とから構成されている。次に、この電池状態検知回路23による電池の内部抵抗値の測定法について説明する。
【0034】
ここで、放電電流をI、補助電源部20に組み込まれた電池全体の内部抵抗値をR(R6は6セル構成の場合、R7は7セル構成の場合)、定電流放電時の電圧変化をΔV、単位セルの内部抵抗値をr、単位セルの容量(組み込まれた電池の容量)をAhとすると、
内部抵抗値R=ΔV/I …(1)
より求められる。ここで、25A放電時に10秒間の最低電圧が10V以上を保証すると、電池容量は、6セル構成では約3.6Ahとなり、測定されるRは、おおよそ100mΩ前後になる。これを7セル構成とすれば、電池容量は、1.9Ahとなり、内部抵抗値は容量にほぼ反比例関係にあるので、Rは約2倍になる。
【0035】
つまり、
R6=r6×6 …(2)
r7=r6×1.9 …(3)
R7=r7×7 …(4)
となり、(2)、(3)式から、7セルにおける単位セルの内部抵抗値r7は、
r7=R6×(1.9/6) …(5)
となり、この(5)式を(4)式に代入すると、
R7=R6×(1.9/6)×7=R6×2.2
となる。この計算結果から明らかなように、たとえば同じ放電電流値Iで測定した場合には、(1)式から7セルの場合の定電流放電時の電圧変化ΔVは、6セルの場合の定電流放電時の電圧変化の2.2倍となる。
【0036】
このように、この実施の形態では、7セル構成における補助電源部のバッテリの内部抵抗値は、6セル構成における補助電源部のバッテリの内部抵抗値の2.2倍となり、これに比例して電圧変化も、2.2倍となるので、ノイズの影響を受けにくくなって測定精度が高くなり、これに伴って電池の劣化を精度良く検知することが可能となる。
【0037】
また、この実施の形態では、測定する電圧変化が6セル構成と7セル構成で同じ変化量で良い場合には、7セル構成の場合には放電電流値Iを半分にできるため、定電流放電回路を小型、軽量化することができる。
【0038】
この発明は、これら実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲で種々の変形実施が可能である。
【0039】
【発明の効果】
以上説明したように、この発明では、補助電源部から供給される電圧が、主電源部から供給される電圧より大きく、かつ補機の連続定格の上限電圧以下に設定するので、蓄電池の体積や重量を軽減して、装置全体の小型および軽量化を図ることができる。
【0040】
また、この発明では、蓄電池の充電回路を装備する場合には、多セル化により蓄電池の容量が小さくなり、補助電源部の蓄電池をこの請求項1に設定された範囲内の電圧で充電するので、充電電流が小さくなり、おれによって充電回路の小型、低コスト化を図ることができる。
【0041】
また、この発明では、多セル化により電池の内部抵抗が高くなり、これに比例して電圧変化も大きくなるので、ノイズの影響を受けにくくなって測定精度が高くなり、これに伴って電池の劣化を精度良く検知することが可能となる。
【図面の簡単な説明】
【図1】この発明にかかる電源供給装置の構成の一例を示す構成図である。
【図2】各セル数において、出力電圧10Vを保証するための単セル容量値を示す関係図である。
【図3】各セル構成による体積比率を示す関係図である。
【図4】各セル構成による重量比率を示す関係図である。
【図5】各セル構成での出力電圧範囲を示す関係図である。
【図6】この発明にかかる電源供給装置の構成の他例を示す構成図である。
【図7】12V電池で使用される車両の電源電圧の適正範囲を示す図である。
【図8】蓄電池の放電電圧特性を示す図である。
【符号の説明】
10 主電源部
11 発電機
12,22 バッテリ
13〜15 ヒューズ
16,17,19 電源線
18 メイン電源線
20 補助電源部
21 充電回路
23 電池状態検知回路
30 電源切り替え回路
31 補機
I 放電電流値
R 内部抵抗値
r 内部抵抗値
t 時間
ΔV 電圧変化
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply device for supplying power to an auxiliary machine from an auxiliary power supply unit in place of the main power supply unit in an emergency such as an abnormality of the main power supply unit to guarantee the operation of the auxiliary machine.
[0002]
[Prior art]
In recent years, with the enforcement of the PL Act (Product Liability Act), efforts and standards creation for safe driving of vehicles have been regarded as important. As a safety measure, for example, an emergency call device called a Mayday system has been introduced in the past. In this device, if the power generation capacity of the vehicle, the storage battery, the power line, etc. are lost, the power supply capacity is lost. In some cases, an auxiliary power supply is used instead of the main power supply to guarantee the operation of the emergency call device.
[0003]
In addition, in order to ensure safe operation of vehicles, electronic control systems using technology called by-wire technology will be used for the control of traveling systems such as engines, brakes, and steering. Technology for avoiding accidents by supplying power from an auxiliary power supply is becoming important.
[0004]
Examples of the power source used for the auxiliary power supply unit include a storage battery and a capacitor, but the storage battery is excellent in terms of the cost ratio of the discharge performance. Furthermore, among these power supplies, lead-acid batteries are the most excellent in discharge characteristics in a very low temperature state of −30 ° C. to −40 ° C. in consideration of the external environmental conditions of the earth. For this reason, lead storage batteries have been used as an auxiliary power supply in the emergency call device described above. As such an auxiliary power supply device, for example, there is one as shown in Patent Document 1.
[0005]
[Patent Document 1]
JP-A-5-244704 (page 2-3, FIG. 1)
[0006]
[Problems to be solved by the invention]
However, the lead storage battery has inferior discharge performance per volume or weight compared to other storage batteries and capacitors, and in order to increase this discharge performance, as a result, it leads to an increase in size and weight. Become. That is, for example, the power supply voltage of a vehicle used with a 12V battery is regulated within the range shown in FIG. 7, and in the region of 10V or less, the operation of the auxiliary system is not guaranteed due to insufficient voltage, In the region of 16V or more, the withstand voltage of auxiliary machine parts is exceeded. Therefore, from this, the power supply voltage of the vehicle is set to a proper allowable range of 10V to 16V.
[0007]
When the output voltage characteristics of a general 12V lead acid battery (6-cell configuration) used in this vehicle are schematically shown, the relationship shown in FIG. 8 is established, and the current required for the operation of the auxiliary machine A value is chosen that ensures a voltage of 10V or more for the required time. In this figure, when normal discharge is applied, the voltage of the 12V battery instantaneously increases to the maximum voltage of about 13.2V, and thereafter, the voltage gradually decreases. This phenomenon occurs when the current flowing at the time of discharge is small or the capacity of the storage battery is the one-dot chain line A, and this voltage is high, and when the current flowing at the time of discharging is large or the capacity of the storage battery is the one-dot chain line B This voltage is low.
[0008]
Therefore, there is still room for the auxiliary withstand voltage upper limit 16V shown in FIG. However, in the case of the one-dot chain line B shown in FIG. 8, there is a case where the auxiliary machine operation guarantee lower limit value of 10V falls below this, and the auxiliary machine operation limit may not be reached. For this reason, when the current is fixed, it is necessary to increase the capacity of the storage battery and increase the voltage of the battery, resulting in an increase in the size and weight of the power supply device. There was a problem that it would affect the installation space and weight.
[0009]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a power supply device that can reduce the volume and weight of a storage battery and reduce the overall size and weight of the device.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, in the power supply apparatus according to claim 1, in the power supply apparatus having a main power supply unit that supplies power to the auxiliary machine and operates the auxiliary machine, the power supply apparatus is larger than the voltage of the main power supply unit. And an auxiliary power supply that supplies a voltage that is less than or equal to the upper limit voltage of the continuous rating of the auxiliary machine, and a switching means that switches the voltage supplied from the main power supply and the auxiliary power supply and supplies the auxiliary machine to the auxiliary machine. A power supply device is provided.
[0011]
According to the first aspect of the present invention, the voltage supplied from the auxiliary power supply unit is set to be greater than the voltage of the main power supply unit (eg, 13.2V) and lower than the upper limit voltage (eg, 16V) of the continuous rating of the auxiliary machine. By doing so, the volume and weight of the storage battery are reduced.
[0012]
Moreover, in the power supply device according to claim 2, the auxiliary power supply unit has a storage battery having a predetermined number of cells, and the storage battery is larger than a voltage of the main power supply unit and is not more than an upper limit voltage of a continuous rating of the auxiliary machine. And charging means for charging to a voltage.
[0013]
According to the second aspect of the present invention, when the storage battery charging means (charging circuit) is provided, charging is performed by charging the storage battery of the auxiliary power supply unit with a voltage within the range set in the first aspect. The current is reduced, and the charging circuit is reduced in size and cost.
[0014]
Further, in the power supply device according to claim 3, the auxiliary power supply unit further includes a detection unit that measures an internal resistance value of the storage battery and detects a deterioration state of the storage battery based on the measurement result. Features.
[0015]
According to the third aspect of the present invention, for example, the internal resistance of the battery that has been increased due to the increase in the number of cells is obtained, and the deterioration state of the battery is accurately detected based on the internal resistance value.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of a power supply apparatus according to the present invention will be described with reference to the accompanying drawings in FIGS.
[0017]
(Embodiment 1)
FIG. 1 is a configuration diagram showing an example of a configuration of a power supply device according to the present invention. In the figure, a main power supply unit 10 includes a generator 11, a battery 12, and fuses 13 to 15, and power lines 16 and 17 from the generator 11 and battery 12 are connected to a main power supply line 18 via fuses 13 and 14, respectively. The main power line 18 is connected to the auxiliary machine 31 via the power switching circuit 30. Therefore, power is supplied to the auxiliary machine 31 from the generator 11 and the battery 12 through the main power line 18 at normal times.
[0018]
The auxiliary power supply unit 20 includes a charging circuit 21 and an auxiliary battery 22, and the charging circuit 21 is connected to the battery 12 via the power line 19, and charges the auxiliary battery 22 with power supplied from the battery 12 at normal times. It is carried out. The battery 22 is connected to the auxiliary machine 31 via the power supply switching circuit 30. In an emergency such as an abnormality of the main power supply unit 10, the power supply switching circuit 30 is switched, and power is supplied from the battery 22 to the auxiliary machine 31. In addition, each battery 12 and 22 of the main power supply part 10 and the auxiliary power supply part 20 is comprised, for example from the lead acid battery, and the 12V lead acid battery of the general main power supply part 10 used with a vehicle is 6 cell structure. It has become.
[0019]
The inventors of the present invention performed the following verification on the power supply device having such a configuration. That is, as shown in FIG. 2, in a lead storage battery, the battery capacity at which the minimum voltage for 10 seconds was 10 V or more during 25 A discharge was determined in relation to the number of cells. As a result, the capacity decreases rapidly from 50 Ah to 3.6 Ah between 5 cells and 6 cells, but from 6 cells, 7 cells are 1.9 Ah, 8 cells are 1.3 Ah, and 9 cells are 1.1 Ah. It turns out that it decreases gradually.
[0020]
Furthermore, from this relationship, the volume ratio when the required performance is satisfied in each cell configuration is shown in FIG. 3, and the weight ratio is shown in FIG. Here, the volume ratio is 100% in the case of 6 cells, about 67% in the case of 7 cells, about 55% in the case of 8 cells, and more than 9 cells from the case of 8 cells. It was decreasing slowly. The weight ratio is 100% in the case of 6 cells, about 55% in the case of 7 cells, about 38% in the case of 8 cells, and more than 9 cells is gradually reduced from the case of 8 cells. Was.
[0021]
From these relationships, it was found that when the lead storage battery has a 7-cell configuration as compared to the 6-cell configuration, the volume ratio is greatly improved to about 2/3 and the weight ratio to about 1/2. Further, in the case of the 8-cell or 9-cell configuration, the improvement is further improved, but the improvement rate becomes small.
[0022]
Also, FIG. 5 shows the output voltage range in each cell configuration. As is apparent from this figure, those having an 8-cell configuration or more exceed the existing auxiliary device withstand voltage upper limit 16V, Not only does the system need to be completely redesigned, but it also increases costs due to increased component ratings. As a result, the overall cost of the vehicle is higher than that of a typical 6-cell lead acid battery. I understood that
[0023]
Therefore, in this embodiment, in consideration of the detection results described above, the battery (lead storage battery) 22 of the auxiliary power supply unit 20 is one more than the 6-cell configuration of the battery 12 of the main power supply unit 10, To do. Further, in this embodiment, the voltage supplied from the battery 22 is larger than the voltage supplied from the battery 12 of the main power supply unit 10 (for example, the maximum voltage 13.2 V in the case of the 6-cell configuration), and the auxiliary machine The upper limit voltage of the continuous rating (for example, auxiliary machine withstand voltage upper limit value 16V) is set below.
[0024]
Thus, in this embodiment, the auxiliary power storage battery has a 7-cell configuration, one more than the number of main power storage batteries, and the voltage supplied from the auxiliary power storage battery is the main power supply unit. Is set to be larger than the voltage supplied from the storage battery and less than or equal to the auxiliary withstand voltage upper limit value, the volume and weight of the storage battery can be reduced as shown in FIG. 3 and FIG. Can be reduced in size and weight.
[0025]
In addition, in the auxiliary power supply unit 20 according to this embodiment, the charging circuit 21 of the battery 22 causes the voltage supplied from the battery 22 to be higher than the voltage supplied from the battery 12 of the main power supply unit 10 with this setting. The battery 22 of the auxiliary power supply unit 20 is charged so as to be large and less than or equal to the auxiliary device withstand voltage upper limit value.
[0026]
Here, in the case of a single cell capacity value for guaranteeing an output voltage of 10 V in each cell number shown in FIG. 2, if the vehicle is left at an average temperature of 40 ° C. for one month, the self-discharge during that time is approximately 10%. The time t required to fully charge with a constant current charger with 1A as the upper limit of the charging current is 5 cells, and the self-discharge amount 10% is 50 Ah × 10% = 5 Ah. If the efficiency is 90%, t = 5 Ah / (1 A / 90%) = 5.6 hours.
[0027]
Similarly, in the case of 6 cells, the self-discharge amount 10% is 3.6 Ah × 10% = 0.36 Ah, and the time until full charge t = 0.36 Ah / (1 A / 90%) = 0.4 In the case of 7 cells, the self-discharge amount 10% is 1.9 Ah × 10% = 0.19 Ah, and the time until full charge t = 0.19 Ah / (1 A / 90%) = 0.21 hours In the case of 8 cells, the self-discharge amount 10% is 1.3 Ah × 10% = 0.13 Ah, the time until full charge t = 0.13 Ah / (1 A / 90%) = 0.14 hours, In the case of 9 cells, 1.1 Ah × 10% = 0.11 Ah, and the time to full charge t = 0.11 Ah / (1 A / 90%) = 0.12 hours.
[0028]
However, if charging is performed at 1A with 7 cells, the capacity ratio is 0.53C. Usually, the upper limit of the charging current is usually suppressed to 0.2 to 0.3 C in order to prevent deterioration of the battery. Here, assuming that the capacity ratio is 0.3C, in 7 cells, 1.9Ah × 0.3C = 0.57A is 0.33 hours, and similarly in 8 cells and 9 cells, it is 0.33 hours. The charging time will not change.
[0029]
Thus, in this embodiment, the auxiliary power storage battery has a seven-cell configuration, and the voltage supplied from the auxiliary power storage battery is larger than the voltage supplied from the main power storage battery, and the auxiliary machine. Since the battery is charged so that the withstand voltage value is below the upper limit of the withstand voltage, the charging time is shortened and charging is possible even with a short running time of the vehicle.For example, the amount of electricity required for the battery of the auxiliary power supply unit during warm-up It becomes possible to replenish quickly, and always ensure emergency power.
[0030]
Further, in this embodiment, the self-discharge amount and the battery capacity are in a proportional relationship, and if the capacity of the storage battery is reduced by increasing the number of cells, the charging current can be reduced, so that the charging circuit is reduced in size and cost. be able to.
[0031]
In this embodiment, the case where the battery of the main power supply unit is a 12V battery has been described. However, the present invention is not limited to this, and for example, the above-described setting is possible even when the battery of the main power supply unit is a 24V battery or a 36V battery. Auxiliary power supply according to the same setting condition as the condition that the voltage supplied from the storage battery for the auxiliary power supply is set to be larger than the voltage supplied from the storage battery of the main power supply unit and not more than the auxiliary device withstand voltage upper limit value. By configuring the part battery, it is possible to obtain the same effects as those of the first embodiment described above.
[0032]
(Embodiment 2)
FIG. 6 is a block diagram showing another example of the configuration of the power supply device according to the present invention. 1 is different from the configuration of the first embodiment in FIG. 1 in that a battery state detection circuit 23 is provided in the auxiliary power supply unit 20 to detect a battery deterioration state of the battery 22.
[0033]
The battery state detection circuit 23 detects the deterioration state of the battery by measuring the impedance of the battery 22 which is a lead storage battery, for example, the internal resistance value of the battery. The battery state detection circuit 23 includes a constant current discharge circuit and a battery voltage measurement circuit. It is configured. Next, a method for measuring the internal resistance value of the battery by the battery state detection circuit 23 will be described.
[0034]
Here, the discharge current is I, the internal resistance value of the whole battery incorporated in the auxiliary power supply unit R is R (R6 is a 6-cell configuration, R7 is a 7-cell configuration), and the voltage change during constant current discharge is When ΔV, the internal resistance value of the unit cell is r, and the capacity of the unit cell (the capacity of the built-in battery) is Ah,
Internal resistance value R = ΔV / I (1)
More demanded. Here, if the minimum voltage for 10 seconds is guaranteed to be 10 V or more during 25 A discharge, the battery capacity is about 3.6 Ah in the 6-cell configuration, and the measured R is about 100 mΩ. If this is a 7-cell configuration, the battery capacity is 1.9 Ah, and the internal resistance value is approximately inversely proportional to the capacity, so R is approximately doubled.
[0035]
That means
R6 = r6 × 6 (2)
r7 = r6 × 1.9 (3)
R7 = r7 × 7 (4)
From the equations (2) and (3), the internal resistance value r7 of the unit cell in 7 cells is
r7 = R6 × (1.9 / 6) (5)
When substituting this equation (5) into equation (4),
R7 = R6 × (1.9 / 6) × 7 = R6 × 2.2
It becomes. As is apparent from this calculation result, for example, when measured at the same discharge current value I, the voltage change ΔV during the constant current discharge in the case of 7 cells from the equation (1) is the constant current discharge in the case of 6 cells. It becomes 2.2 times the voltage change at the time.
[0036]
Thus, in this embodiment, the internal resistance value of the battery of the auxiliary power supply unit in the 7-cell configuration is 2.2 times the internal resistance value of the battery of the auxiliary power supply unit in the 6-cell configuration, and is proportional to this. Since the voltage change is also 2.2 times, it is less affected by noise and the measurement accuracy is increased. Accordingly, it is possible to accurately detect battery deterioration.
[0037]
In this embodiment, when the voltage change to be measured can be the same amount of change in the 6-cell configuration and the 7-cell configuration, the discharge current value I can be halved in the case of the 7-cell configuration. The circuit can be reduced in size and weight.
[0038]
The present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention.
[0039]
【The invention's effect】
As described above, in the present invention, the voltage supplied from the auxiliary power supply unit is set to be larger than the voltage supplied from the main power supply unit and lower than the upper limit voltage of the continuous rating of the auxiliary machine. The weight can be reduced, and the entire apparatus can be reduced in size and weight.
[0040]
In the present invention, when a storage battery charging circuit is provided, the capacity of the storage battery is reduced due to the increase in the number of cells, and the storage battery of the auxiliary power supply unit is charged with a voltage within the range set in claim 1. The charging current is reduced, and the charging circuit can be reduced in size and cost.
[0041]
In addition, in the present invention, the increase in the number of cells increases the internal resistance of the battery, and the voltage change increases in proportion to this, so that it is less susceptible to noise and the measurement accuracy is increased. It becomes possible to detect deterioration with high accuracy.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an example of a configuration of a power supply device according to the present invention.
FIG. 2 is a relationship diagram showing a single cell capacity value for guaranteeing an output voltage of 10 V in each cell number.
FIG. 3 is a relationship diagram showing a volume ratio according to each cell configuration.
FIG. 4 is a relationship diagram showing a weight ratio according to each cell configuration.
FIG. 5 is a relationship diagram showing an output voltage range in each cell configuration.
FIG. 6 is a configuration diagram showing another example of the configuration of the power supply device according to the present invention.
FIG. 7 is a diagram showing an appropriate range of a power supply voltage of a vehicle used with a 12V battery.
FIG. 8 is a diagram showing discharge voltage characteristics of a storage battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Main power supply part 11 Generator 12, 22 Battery 13-15 Fuse 16, 17, 19 Power supply line 18 Main power supply line 20 Auxiliary power supply part 21 Charging circuit 23 Battery state detection circuit 30 Power supply switching circuit 31 Auxiliary machine I Discharge current value R Internal resistance value r Internal resistance value t Time ΔV Voltage change

Claims (3)

補機に電源を供給して、該補機を動作させる主電源部を有する電源供給装置において、
内部抵抗値を前記主電源部の内部抵抗値よりも大きくし、前記主電源部の電圧より大きく、かつ前記補機の連続定格の上限電圧以下である電圧を供給する補助電源部と、
前記主電源部と前記補助電源部から供給される電圧を切り替えて、前記補機に供給する切替手段と、
を備えたことを特徴とする電源供給装置。
In a power supply device having a main power supply unit for supplying power to an auxiliary machine and operating the auxiliary machine,
An auxiliary power supply unit that supplies an internal resistance value larger than the internal resistance value of the main power supply unit, greater than the voltage of the main power supply unit, and less than or equal to the upper limit voltage of the continuous rating of the auxiliary machine;
Switching means for switching the voltage supplied from the main power supply unit and the auxiliary power supply unit to supply to the auxiliary machine,
A power supply device comprising:
前記補助電源部は、
前記主電源部のセル数よりも多いセル数を有した蓄電池と、
前記蓄電池を前記主電源部の電圧より大きく、かつ前記補機の連続定格の上限電圧以下である電圧に充電する充電手段と、
を備えたことを特徴とする請求項1に記載の電源供給装置。
The auxiliary power unit is
A storage battery having more cells than the number of cells of the main power supply unit ;
Charging means for charging the storage battery to a voltage that is greater than the voltage of the main power supply unit and not more than the upper limit voltage of the continuous rating of the auxiliary machine;
Power supply device according to claim 1, further comprising a.
前記補助電源部は、
前記蓄電池の内部抵抗値を測定し、該測定結果に基づいて該蓄電池の劣化状態を検知する検知手段をさらに備えたことを特徴とする請求項2に記載の電源供給装置。
The auxiliary power unit is
The power supply apparatus according to claim 2, further comprising a detecting unit that measures an internal resistance value of the storage battery and detects a deterioration state of the storage battery based on the measurement result.
JP2003049928A 2003-02-26 2003-02-26 Power supply device Expired - Fee Related JP4070113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049928A JP4070113B2 (en) 2003-02-26 2003-02-26 Power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049928A JP4070113B2 (en) 2003-02-26 2003-02-26 Power supply device

Publications (2)

Publication Number Publication Date
JP2004260948A JP2004260948A (en) 2004-09-16
JP4070113B2 true JP4070113B2 (en) 2008-04-02

Family

ID=33115507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049928A Expired - Fee Related JP4070113B2 (en) 2003-02-26 2003-02-26 Power supply device

Country Status (1)

Country Link
JP (1) JP4070113B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158276A (en) * 2014-09-09 2014-11-19 无锡市翱宇特新科技发展有限公司 Power supply device of clothes dryer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179239A (en) * 1974-12-30 1976-07-10 Sawafuji Electric Co Ltd SHARYO ODENGENSOCHI
JPS5236735A (en) * 1975-09-18 1977-03-22 Sawafuji Electric Co Ltd Power source device for vehicles
JPS53127646A (en) * 1977-04-01 1978-11-08 Toyota Motor Co Ltd Battery condition monitor
JPS5523869U (en) * 1978-07-28 1980-02-15
JPH05189096A (en) * 1991-02-26 1993-07-30 Ricoh Co Ltd Power control circuit for computer system
JPH05244704A (en) * 1992-02-26 1993-09-21 Honda Motor Co Ltd Auxiliary power supply for motor vehicle
JPH05336670A (en) * 1992-06-02 1993-12-17 Nippondenso Co Ltd Power supply for vehicle
JP2000014042A (en) * 1998-06-19 2000-01-14 Kokusai Electric Co Ltd Uninterruptive power supply
JP2001171445A (en) * 1999-12-15 2001-06-26 Isao Karaki Electric power unit for automobile
JP2002064946A (en) * 2000-08-11 2002-02-28 Sony Corp Power supply
JP4057276B2 (en) * 2001-10-26 2008-03-05 古河電気工業株式会社 Method and apparatus for determining the state of a secondary storage battery mounted on a vehicle

Also Published As

Publication number Publication date
JP2004260948A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP6697869B2 (en) State determination device and state determination method
US7902829B2 (en) Battery management system and driving method thereof
US7923969B2 (en) State of charge equalizing device and assembled battery system including same
US8154299B2 (en) Deterioration determination circuit, power supply apparatus, and deterioration determination method of secondary battery
US11346887B2 (en) Method and apparatus for calculating SOH of battery power pack, and electric vehicle
EP2416166B1 (en) Method and apparatus for diagnosing an abnormality of a current-measuring unit of a battery pack
US9634498B2 (en) Electrical storage system and equalizing method
WO2012132246A1 (en) Battery power supply apparatus and battery power supply system
WO2010047046A1 (en) Failure diagnosis circuit, power supply device, and failure diagnosis method
US20150219720A1 (en) Relay Control System and Method for Controlling Same
EP2717415A1 (en) Electricity storage system
WO2010103816A1 (en) Charging/discharging control circuit, power source device and method for controlling a power source device
US10343524B2 (en) Weld detection apparatus and weld detection method
JP5301036B2 (en) On-board electric system for vehicle and control device for on-board electric system
WO2008065910A1 (en) Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
US20180006340A1 (en) Problem detection apparatus
WO2008053969A1 (en) Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium containing abnormality detecting program for storage element is recorded
JP2010098866A (en) Imbalance determination circuit, imbalance reduction circuit, battery power supply, and imbalance evaluation method
EP3719917B1 (en) Chargeable battery abnormality detection apparatus and chargeable battery abnormality detection method
JP2009065795A (en) Battery pack and battery system
US20090256526A1 (en) Apparatus and method for pre-charging in charging/discharging equipment for an energy-storage device
JP2004194410A (en) Power supply device and its control method
DE102014224608A1 (en) Battery control device
US20160118818A1 (en) Lithium Battery System and Control Method Therefor
JP2009300362A (en) Soc calculation circuit, charge system, and soc calculation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees