JP4069669B2 - Method for crystallizing copolyester resin - Google Patents

Method for crystallizing copolyester resin Download PDF

Info

Publication number
JP4069669B2
JP4069669B2 JP2002131339A JP2002131339A JP4069669B2 JP 4069669 B2 JP4069669 B2 JP 4069669B2 JP 2002131339 A JP2002131339 A JP 2002131339A JP 2002131339 A JP2002131339 A JP 2002131339A JP 4069669 B2 JP4069669 B2 JP 4069669B2
Authority
JP
Japan
Prior art keywords
acid
resin
dicarboxylic acid
component
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002131339A
Other languages
Japanese (ja)
Other versions
JP2003327680A (en
Inventor
紀郎 神戸
猛 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002131339A priority Critical patent/JP4069669B2/en
Publication of JP2003327680A publication Critical patent/JP2003327680A/en
Application granted granted Critical
Publication of JP4069669B2 publication Critical patent/JP4069669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、共重合ポリエステル樹脂の結晶化方法に関し、更に詳しくは、溶融重縮合後のポリエステル樹脂を、乾燥、固相重縮合、或いは成形等に供するに先立って加熱結晶化処理するにおいて、ポリエステル樹脂粒状体同士の融着を抑制し、均一、且つ効率的に結晶化させることができる、共重合ポリエステル樹脂の結晶化方法に関する。
【0002】
【従来の技術】
従来より、ポリエステル樹脂、代表的にはポリエチレンテレフタレート樹脂は、機械的強度、化学的安定性、透明性、ガスバリア性、安全衛生性等に優れ、又、比較的安価で軽量であるために、フィルムや繊維、及びボトル等として広く用いられており、又、ジカルボン酸成分としてのテレフタル酸又はそのエステル形成性誘導体とジオール成分としてのエチレングリコールからなるホモポリエチレンテレフタレート樹脂が高結晶性、高融点であるが故に成形加工性が劣ることや用途によっては剛直過ぎること等の点に対して、例えば、イソフタル酸等のジカルボン酸成分や、ブタンジオール、シクロヘキサンジメチロール等のジオール成分を共重合成分として用い、成形加工性を改良し、或いは柔軟性等を付与した共重合ポリエチレンテレフタレート樹脂も、それぞれの特性に適したフィルムやシート等の分野において用いられている。
【0003】
一方、ポリエチレンテレフタレート樹脂は、テレフタル酸又はそのエステル形成性誘導体を主成分とするジカルボン酸成分と、エチレングリコールを主成分とするジオール成分とを、エステル化反応或いはエステル交換反応を経て、重縮合触媒の存在下に溶融重縮合させた後、通常、乾燥させ、或いは、更に高重合度化させる等のために加熱して固相重縮合させて、成形に供せられるが、それらの乾燥或いは固相重縮合等に先立って樹脂を加熱結晶化処理することが行われており、その結晶化処理において、前述の如き共重合樹脂は、ホモ重合体樹脂に比して低結晶性、低融点であること等により、樹脂粒状体同士の融着が往々にして起こり、作業効率を低下させるばかりでなく、均一な結晶化を阻害することとなっていた。
【0004】
これに対して、結晶化処理における樹脂粒状体同士の融着を防止すべく、従来より種々の防止策が提案されており、例えば、特開平9−241360号公報では、特定温度及び時間下で水分を供給して樹脂粒状体表面に水分を存在させることによって融着を防止する方法が提案されている。しかしながら、本発明者等の検討によると、この方法は、吸水により樹脂が分子量低下を起こすという問題を内在するものであるばかりか、この方法による水分の供給量は、全体重量の5〜30重量%と多量に用いる必要があることから、それに付随する設備面及び該処理後の水分除去面等での経済的不利さは避けられないものであった。
【0005】
【発明が解決しようとする課題】
本発明は、前述の現状に鑑みてなされたもので、従って、本発明は、溶融重縮合後のポリエステル樹脂を、乾燥、固相重縮合、或いは成形等に供するに先立って加熱結晶化処理するにおいて、ポリエステル樹脂粒状体同士の融着を抑制し、分子量の低下もなく、均一、且つ効率的に結晶化させることができる、共重合ポリエステル樹脂の結晶化方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者等は、前述の課題を解決すべく鋭意検討した結果、樹脂の吸水率を特定範囲に調湿することにより前記目的を達成できることを見出し本発明を完成したもので、即ち、本発明は、全ジカルボン酸成分に対するテレフタル酸又はそのエステル形成性誘導体以外のジカルボン酸成分のモル%(A)と、全ジオール成分に対するエチレングリコール以外のジオール成分のモル%(B)との和(A+B)が22〜80であり、エチレンテレフタレート単位を主たる構成繰り返し単位とする共重合ポリエステル樹脂を、0.10〜2.0重量%の含水率に調湿した後、加熱結晶化処理する共重合ポリエステル樹脂の結晶化方法、を要旨とする。
【0007】
【発明の実施の形態】
本発明の共重合ポリエステル樹脂の結晶化方法におけるポリエステル樹脂は、ジカルボン酸成分としてテレフタル酸又はそのエステル形成性誘導体を、ジオール成分としてエチレングリコールを、それぞれ主成分とし、全ジカルボン酸成分に対するテレフタル酸又はそのエステル形成性誘導体以外のジカルボン酸成分のモル%(A)と、全ジオール成分に対するエチレングリコール以外のジオール成分のモル%(B)との和(A+B)を22〜80とした、ジカルボン酸成分とジオール成分とを、エステル化反応或いはエステル交換反応を経て、重縮合触媒の存在下に溶融重縮合させることにより製造された、エチレンテレフタレート単位を主たる構成繰り返し単位とする共重合ポリエステル樹脂であるのが好ましいが、前記範囲外のジカルボン酸成分とジオール成分とからなるポリエステル樹脂を、全ジカルボン酸成分に対するテレフタル酸又はそのエステル形成性誘導体以外のジカルボン酸成分のモル%(A)と、全ジオール成分に対するエチレングリコール以外のジオール成分のモル%(B)との和(A+B)が22〜80となるように溶融混練したものも含むこととする。
【0008】
ここで、全ジカルボン酸成分に対するテレフタル酸又はそのエステル形成性誘導体以外のジカルボン酸成分のモル%(A)と、全ジオール成分に対するエチレングリコール以外のジオール成分のモル%(B)との和(A+B)が22〜70であるのが好ましく、23〜60であるのが更に好ましい。又、「エチレンテレフタレート単位を主たる構成繰り返し単位とする」とは、エチレンテレフタレート単位が全構成繰り返し単位中で最多であることを意味し、そのエチレンテレフタレート単位が構成繰り返し単位の30〜80モル%を占めるのが好ましく、50〜80モル%を占めるのが更に好ましい。
【0009】
ここで、テレフタル酸のエステル形成性誘導体としては、例えば、炭素数1〜4程度のアルキルエステル、及びハロゲン化物等が挙げられる。又、テレフタル酸又はそのエステル形成性誘導体以外のジカルボン酸共重合成分としては、例えば、フタル酸、イソフタル酸、フェニレンジオキシジカルボン酸、4,4’−ジフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、4,4’−ジフェニルケトンジカルボン酸、4,4’−ジフェノキシエタンジカルボン酸、4,4’−ジフェニルスルホンジカルボン酸、2,6−ナフタレンジカルボン酸等の芳香族ジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等の脂環式ジカルボン酸、及び、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカジカルボン酸、ドデカジカルボン酸等の脂肪族ジカルボン酸、並びに、これらの炭素数1〜4程度のアルキルエステル、及びハロゲン化物、等が挙げられ、中で、本発明においては、イソフタル酸、2,6−ナフタレンジカルボン酸、及びそれらのエステル形成性誘導体等が好ましい。
【0010】
又、エチレングリコール以外のジオール共重合成分としては、例えば、トリメチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、オクタメチレングリコール、デカメチレングリコール、ネオペンチルグリコール、ジエチレングリコール、ポリエチレングリコール、ポリテトラメチレンエーテルグリコール等の脂肪族ジオール、1,2−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,1−シクロヘキサンジメチロール、1,4−シクロヘキサンジメチロール等の脂環式ジオール、及び、キシリレングリコール、4,4’−ジヒドロキシビフェニル、2,2−ビス(4’−ヒドロキシフェニル)プロパン、2,2−ビス(4’−β−ヒドロキシエトキシフェニル)プロパン、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−β−ヒドロキシエトキシフェニル)スルホン酸等の芳香族ジオール、等が挙げられ、中で、本発明においては、ジエチレングリコール、テトラメチレングリコール、シクロヘキサンジメチロール等が好ましい。
【0011】
又、例えば、グリコール酸、p−ヒドロキシ安息香酸、p−β−ヒドロキシエトキシ安息香酸等のヒドロキシカルボン酸やアルコキシカルボン酸、及び、ステアリルアルコール、ベンジルアルコール、ステアリン酸、安息香酸、t−ブチル安息香酸、ベンゾイル安息香酸等の単官能成分、トリカルバリル酸、トリメリット酸、トリメシン酸、ピロメリット酸、没食子酸、トリメチロールエタン、トリメチロールプロパン、グリセロール、ペンタエリスリトール等の三官能以上の多官能成分が、共重合成分として用いられていてもよい。
【0012】
本発明における前記共重合ポリエステル樹脂の製造は、基本的には、ポリエステル樹脂の慣用の製造方法による。即ち、テレフタル酸又はそのエステル形成性誘導体とエチレングリコールとを、前記共重合成分と共にスラリー調製槽に投入して攪拌下に混合して原料スラリーとなした後にエステル化反応槽に移送するか、又は、その際、原料の一部をエステル化反応槽に直接投入し、エステル化反応槽で常圧〜加圧下、加熱下で、エステル化反応或いはエステル交換反応させた後、得られたエステル化反応或いはエステル交換反応生成物としてのポリエステル低分子量体を重縮合槽に移送し、重縮合触媒の存在下に、常圧から漸次減圧としての減圧下、加熱下で、溶融重縮合させる。尚、これらは連続式、又は回分式でなされ、又、エステル化反応槽、及び重縮合槽は、それぞれ一段としても多段としてもよい。
【0013】
ここで、原料スラリーの調製は、通常、テレフタル酸又はそのエステル形成性誘導体とエチレングリコールとを、前記共重合成分と共に、ジカルボン酸成分に対するジオール成分のモル比を、好ましくは1.05〜3.0、更に好ましくは1.2〜2.0の範囲として、通常、常温〜100℃、好ましくは30〜80℃の温度で、均一に混合することによりなされる。
【0014】
又、エステル化反応或いはエステル交換反応は、エステル交換反応の場合にはエステル交換触媒の存在下に、通常240〜280℃程度の温度、通常0〜4×105 Pa程度の加圧下で、攪拌下に1〜10時間程度でなされ、又、溶融重縮合は、重縮合触媒及び安定剤の存在下に、通常250〜290℃程度の温度、常圧から漸次減圧として最終的に通常1333〜13.3Pa程度の減圧下で、攪拌下に1〜20時間程度でなされる。
【0015】
又、重縮合触媒としては、例えば、二酸化ゲルマニウム、四酸化ゲルマニウム、水酸化ゲルマニウム、蓚酸ゲルマニウム、ゲルマニウムテトラエトキシド、ゲルマニウムテトラ−n−ブトキシド等のゲルマニウム化合物、三酸化アンチモン、酢酸アンチモン、メトキシアンチモン等のアンチモン化合物、テトラ−n−プロピルチタネート、テトラ−i−プロピルチタネート、テトラ−n−ブチルチタネート、蓚酸チタン、蓚酸チタンカリウム等のチタン化合物等が用いられる。
【0016】
尚、重縮合時には、前記重縮合触媒と共に、正燐酸、トリス(トリエチレングリコール)ホスフェート、エチルジエチルホスホノアセテート、エチルアシッドホスフェート、トリエチレングリコールアシッドホスフェート、亜燐酸等の燐化合物を安定剤として共存させるのが好ましい。
【0017】
これらの重縮合触媒及び安定剤の反応系への添加は、前記スラリー調製工程、前記エステル化反応或いはエステル交換反応工程の任意の段階、又は、溶融重縮合工程の初期の段階のいずれであってもよいが、安定剤は、スラリー調製槽に添加するのが好ましく、又、重縮合触媒は、エステル化反応槽(多段の場合は最終段の反応槽)、又は、エステル化反応生成物を重縮合槽に移送する配管等、又は、重縮合槽に添加するのが好ましい。
【0018】
溶融重縮合された樹脂は、通常、重縮合槽の底部に設けられた抜き出し口からストランド状に抜き出して、水冷しながら若しくは水冷後、カッターで切断されてペレット状、チップ状等の粒状体とされる。その際の粒状体の1粒当たりの平均重量は、本発明においては、後述する調湿性等の面から、10〜500mgの範囲とするのが好ましい。
【0019】
又、前記溶融重縮合後の樹脂粒状体は、その後の乾燥、固相重縮合、或いは成形等に供するに先立って加熱結晶化処理する。その乾燥は、好ましくは除湿空気或いは乾燥窒素下に、好ましくは90〜160℃、更に好ましくは100〜150℃の加熱下に、樹脂粒状体の含水率を、好ましくは0.05重量%以下、更に好ましくは0.03重量%以下となるまで乾燥させる。又、その固相重縮合は、ポリエステル樹脂を更に高重合度化させると共に、環状三量体等の反応副生成物を低減化すること等を目的として、窒素、二酸化炭素、アルゴン等の不活性ガス雰囲気下、大気圧以下の条件下で、通常190〜230℃、好ましくは195〜225℃の温度でなされる。
【0020】
本発明の共重合ポリエステル樹脂の結晶化方法における加熱結晶化処理は、前記溶融重縮合後の粒状体を、乾燥状態で、又は、窒素、二酸化炭素、アルゴン等の不活性ガス雰囲気下、或いは水蒸気雰囲気下、或いは水蒸気含有不活性ガス雰囲気下で、好ましくは、樹脂のガラス転移点より10℃高い温度から150℃までの温度範囲で、更に好ましくは、140℃迄の温度範囲で、加熱して樹脂粒状体表面を結晶化させる。又、その際の結晶化装置としては、回転円錐型乾燥機、攪拌機付きホッパー型乾燥機、攪拌機付き横型円筒結晶化機、通気回転乾燥機等の攪拌型乾燥機タイプのものが好ましく、回転円筒に熱風を通し加熱しながら攪拌する通気回転乾燥機が特に好ましい。
【0021】
そして、本発明の共重合ポリエステル樹脂の結晶化方法は、その加熱結晶化処理に先立ち、溶融重縮合後の共重合ポリエステル樹脂粒状体を、0.10〜2.0重量%の含水率に調湿することを必須とし、含水率を0.20〜1.0重量%とするのが好ましく、0.30〜0.50重量%とするのが更に好ましい。
【0022】
調湿の含水率が前記範囲未満では、樹脂粒状体の結晶化処理時の結晶化速度が小さく、結晶化に長時間を要するため、樹脂粒状体同士の融着が生じ易くなり、一方、前記範囲超過では、樹脂粒状体表面に水分が存在することとなって、その水分が配管移送時等に支障を来すこととなる。
【0023】
尚、その調湿は、樹脂粒状体同士の融着防止を確実にするため、100℃以下の温度で行うのが好ましく、80℃以下とするのが更に好ましく、60℃以下とするのが特に好ましい。
【0024】
尚、前記調湿方法としては、特に限定されるものではなく、例えば、樹脂粒状体を水に浸漬する方法、樹脂粒状体に水を噴霧する方法、或いは、溶融重縮合後のぺレット状、チップ状等の粒状体化時の冷却水を一部残存させる方法等が挙げられる。
【0025】
本発明の共重合ポリエステル樹脂の結晶化方法により得られる樹脂の固有粘度は、フェノール/1,1,2,2−テトラクロロエタン(重量比1/1)の混合溶媒中で30℃で測定した値として、0.55〜0.80dl/gであるのが好ましく、0.60〜0.75dl/gであるのが更に好ましい。
【0026】
【実施例】
以下、実施例により本発明を更に詳細に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。
【0027】
実施例1
ジメチルテレフタレート80重量部、ジメチルイソフタレート20重量部、及びエチレングリコール64重量部と、エステル交換触媒としての酢酸カルシウム0.090重量部との混合物を、エステル化反応槽に投入して、150℃から240℃まで3時間かけて昇温し、更に1時間保持してエステル交換反応させ、そのエステル化反応生成物を重縮合槽に移送し、安定剤としての正燐酸0.040重量部、及び重縮合触媒としての三酸化アンチモン0.040重量部とを添加した後、減圧下で240〜280℃で4時間かけて重縮合させた後、水槽中にストランド状に吐出し、ペレタイザーでチップ化することにより、1粒当たりの平均重量35mgの共重合ポリエステル樹脂粒状体を製造した。
【0028】
得られた共重合ポリエステル樹脂粒状体について、以下に示す方法で、共重合成分(エチレングリコールから副生したジエチレングリコールも含む。)量、固有粘度、及び含水率を測定し、結果を表1に示した。
【0029】
<共重合成分量>
樹脂試料をトリフルオロ酢酸に溶解させた溶液について、核磁気共鳴装置(日本電子社製「JNM−EX270型」)を用いて、1 H−NMRを測定して各ピークを帰属し、ピークの積分値から、全ジカルボン酸成分に対するテレフタル酸又はそのエステル形成性誘導体以外のジカルボン酸成分のモル%(A)、及び、全ジオール成分に対するエチレングリコール以外のジオール成分のモル%(B)を算出し、その和(A+B)を算出した。
【0030】
<固有粘度>
樹脂試料をフェノール/1,1,2,2−テトラクロロエタン(重量比1/1)の混合溶媒に110℃で溶解させた後、30℃まで冷却し、ウベローデ型粘度計を用いて30℃で測定した。
【0031】
<含水率>
内径80mm、高さ25mmの秤量用のアルミニウム製カップを熱風式電気定温乾燥機(いすず製作所社製「DSF−11S型」)にて140℃で2時間乾燥させ、シリカゲルデシケータ内で1時間放置後、秤量し〔A(g)〕、次いで、そのアルミ製カップに樹脂試料約20gを入れ、秤量した〔B(g)〕後、同上乾燥機にて140℃で2時間乾燥させ、シリカゲルデシケータ内で1時間放置後、秤量した〔C(g)〕。それらの秤量結果から、以下の式により、樹脂中の含水率を算出した。
含水率(重量%)=〔(B−C)/(B−A)〕×100
【0032】
次いで、得られた樹脂粒状体をステンレス製容器に投入し、0.40重量%相当の純水を加えて30℃で一昼夜保持して、樹脂粒状体の含水率を0.44重量%とした後、樹脂粒状体を通気回転乾燥機に滞留時間が1時間となるように連続的に投入して、回転円筒に140℃の熱風を通し加熱、攪拌しながら結晶化処理を施した。その際、以下に示す方法で、樹脂粒状体同士の融着率、及び、得られた樹脂粒状体の結晶化度を測定し、又、前記と同様の方法で固有粘度を測定し、結果を表1に示した。
【0033】
<樹脂粒状体同士の融着率>
結晶化処理後の樹脂粒状体100g中に2粒以上が融着、連結している粒状体を目視選別し、その重量割合をもって融着率とした。
【0034】
<結晶化度>
結晶化処理後の樹脂粒状体の結晶化による白化度を目視観察し、以下の基準に従って5段階評価した。
1;殆ど全ての粒状体が未結晶化状態と同様に透明で、全く結晶化していない状態。
2;一部曇りが発生している粒状体が混在し、結晶化が始まっている状態。
3;殆ど全ての粒状体がうっすら白化している状態。
4;白化した粒状体の中に、うっすら白化している粒状体が混在している状態。
5;殆ど全ての粒状体が白化しており、完全に結晶化している状態。
【0035】
実施例2〜3、比較例1〜3
ジカルボン酸成分及びジオール成分の使用量、並びに反応時間を表1に示すように変えた外は実施例1と同様にして、表1に示す1粒当たりの平均重量、共重合成分量、固有粘度、及び含水率の共重合ポリエステル樹脂を製造し、更に、表1に示す条件で調湿、結晶化処理した外は、実施例1と同様にして調湿し、結晶化処理し、結晶化処理後の樹脂粒状体同士の融着率、及び樹脂粒状体の結晶化度、並びに固有粘度を測定し、結果を表1に示した。
【0036】
【表1】

Figure 0004069669
【0037】
【発明の効果】
本発明によれば、溶融重縮合後のポリエステル樹脂を、乾燥、固相重縮合、或いは成形等に供するに先立って加熱結晶化処理するにおいて、ポリエステル樹脂粒状体同士の融着を抑制し、分子量の低下もなく、均一、且つ効率的に結晶化させることができる、共重合ポリエステル樹脂の結晶化方法を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for crystallizing a copolyester resin. More specifically, the polyester resin after melt polycondensation is subjected to heat crystallization treatment before being subjected to drying, solid-phase polycondensation, molding, or the like. The present invention relates to a method for crystallizing a copolyester resin, which can suppress the fusion of resin granules and allows uniform and efficient crystallization.
[0002]
[Prior art]
Conventionally, polyester resins, typically polyethylene terephthalate resins, have excellent mechanical strength, chemical stability, transparency, gas barrier properties, safety and hygiene, etc., and are relatively inexpensive and lightweight. Homopolyethylene terephthalate resin composed of terephthalic acid as a dicarboxylic acid component or its ester-forming derivative and ethylene glycol as a diol component has high crystallinity and high melting point. Therefore, for the point that molding processability is inferior and it is too rigid depending on the application, for example, a dicarboxylic acid component such as isophthalic acid or a diol component such as butanediol or cyclohexanedimethylol is used as a copolymer component, Copolymerized polyethylene teres with improved processability or flexibility Tallates resins have been used in the field of films or sheets suitable for the respective characteristics.
[0003]
On the other hand, a polyethylene terephthalate resin is a polycondensation catalyst that undergoes an esterification reaction or a transesterification reaction between a dicarboxylic acid component mainly composed of terephthalic acid or an ester-forming derivative thereof and a diol component mainly composed of ethylene glycol. After the melt polycondensation in the presence of the polymer, it is usually dried, or heated for solidification polycondensation to increase the degree of polymerization, etc. and used for molding. Prior to phase polycondensation or the like, the resin is subjected to heat crystallization treatment, and in the crystallization treatment, the copolymer resin as described above has lower crystallinity and lower melting point than the homopolymer resin. For some reasons, fusion of resin particles frequently occurs, which not only lowers work efficiency but also hinders uniform crystallization.
[0004]
On the other hand, various preventive measures have been proposed in the past in order to prevent fusion of the resin particles in the crystallization process. For example, in JP-A-9-241360, under a specific temperature and time. There has been proposed a method for preventing fusion by supplying moisture and causing moisture to be present on the surface of the resin granules. However, according to the study by the present inventors, this method not only has a problem that the molecular weight of the resin decreases due to water absorption, but the amount of water supplied by this method is 5 to 30% of the total weight. %, It is inevitable that there will be an economic disadvantage in terms of equipment and water removal after the treatment.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned present situation. Therefore, the present invention heat-crystallizes the polyester resin after melt polycondensation prior to drying, solid-phase polycondensation, or molding. The purpose of the present invention is to provide a method for crystallizing a copolyester resin, which can suppress the fusion of the polyester resin granules and can uniformly and efficiently crystallize without lowering the molecular weight.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the object can be achieved by adjusting the water absorption rate of the resin to a specific range, and thus the present invention has been completed. Is the sum of mol% (A) of dicarboxylic acid components other than terephthalic acid or its ester-forming derivatives relative to all dicarboxylic acid components and mol% (B) of diol components other than ethylene glycol to all diol components (A + B) Is a copolymer polyester resin having a moisture content of 0.10 to 2.0% by weight and then heat-crystallization treatment after the copolymer polyester resin having an ethylene terephthalate unit as a main structural repeating unit is 22 to 80 The crystallization method is summarized as follows.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The polyester resin in the method for crystallizing a copolyester resin of the present invention comprises terephthalic acid or an ester-forming derivative thereof as a dicarboxylic acid component, ethylene glycol as a diol component, respectively, and terephthalic acid for all dicarboxylic acid components or Dicarboxylic acid component having a sum (A + B) of 22 to 80 of mol% (A) of dicarboxylic acid component other than the ester-forming derivative and mol% (B) of diol component other than ethylene glycol with respect to all diol components And a diol component, which are produced by melt polycondensation in the presence of a polycondensation catalyst through an esterification reaction or a transesterification reaction, and are copolymer polyester resins mainly composed of ethylene terephthalate units. Is preferred, but dicals outside the above range A polyester resin composed of a boronic acid component and a diol component, a mol% (A) of a dicarboxylic acid component other than terephthalic acid or an ester-forming derivative thereof with respect to the total dicarboxylic acid component, and a diol component other than ethylene glycol with respect to the total diol component the sum of the mol% (B) (a + B ) is to be also include those melt-kneaded so as to be 22 to 80.
[0008]
Here, the sum (A + B) of mol% (A) of dicarboxylic acid components other than terephthalic acid or its ester-forming derivatives relative to all dicarboxylic acid components and mol% (B) of diol components other than ethylene glycol with respect to all diol components ) Is preferably 22-70, more preferably 23-60. Further, “the ethylene terephthalate unit as the main constituent repeating unit” means that the ethylene terephthalate unit is the largest among all the constituent repeating units, and the ethylene terephthalate unit accounts for 30 to 80 mol% of the constituent repeating units. It is preferable to occupy, more preferably 50 to 80 mol%.
[0009]
Here, examples of the ester-forming derivative of terephthalic acid include alkyl esters having about 1 to 4 carbon atoms and halides. Examples of dicarboxylic acid copolymerization components other than terephthalic acid or ester-forming derivatives thereof include, for example, phthalic acid, isophthalic acid, phenylenedioxydicarboxylic acid, 4,4′-diphenyldicarboxylic acid, and 4,4′-diphenyletherdicarboxylic acid. Acid, aromatic dicarboxylic acid such as 4,4′-diphenylketone dicarboxylic acid, 4,4′-diphenoxyethanedicarboxylic acid, 4,4′-diphenylsulfone dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, hexahydroterephthalate Acid, alicyclic dicarboxylic acid such as hexahydroisophthalic acid, and aliphatic dicarboxylic acid such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecadicarboxylic acid, dodecadicarboxylic acid Acids, and alkyl esters having about 1 to 4 carbon atoms. Ether, and halide, etc., and in that, in the present invention include isophthalic acid, 2,6-naphthalenedicarboxylic acid, and the like ester-forming derivatives thereof are preferred.
[0010]
Examples of diol copolymerization components other than ethylene glycol include trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, octamethylene glycol, decamethylene glycol, neopentyl glycol, diethylene glycol, polyethylene glycol, and polytetraethylene. Aliphatic diols such as methylene ether glycol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,1-cyclohexanedimethylol, alicyclic diols such as 1,4-cyclohexanedimethylol, and xylylene glycol 4,4′-dihydroxybiphenyl, 2,2-bis (4′-hydroxyphenyl) propane, 2,2-bis (4′-β-hydroxyethoxyphenyl) propane, Aromatic diols such as bis (4-hydroxyphenyl) sulfone, bis (4-β-hydroxyethoxyphenyl) sulfonic acid, and the like. Among them, in the present invention, diethylene glycol, tetramethylene glycol, cyclohexane dimethylol, etc. Is preferred.
[0011]
Further, for example, hydroxycarboxylic acids and alkoxycarboxylic acids such as glycolic acid, p-hydroxybenzoic acid, p-β-hydroxyethoxybenzoic acid, and stearyl alcohol, benzyl alcohol, stearic acid, benzoic acid, t-butylbenzoic acid Monofunctional components such as benzoyl benzoic acid, trifunctional or more polyfunctional components such as tricarbaric acid, trimellitic acid, trimesic acid, pyromellitic acid, gallic acid, trimethylolethane, trimethylolpropane, glycerol, pentaerythritol , And may be used as a copolymerization component.
[0012]
The production of the copolyester resin in the present invention is basically based on a conventional method for producing a polyester resin. That is, terephthalic acid or an ester-forming derivative thereof and ethylene glycol are put into a slurry preparation tank together with the copolymer component and mixed under stirring to form a raw material slurry, which is then transferred to an esterification reaction tank, or In this case, a part of the raw material is directly charged into the esterification reaction tank, and the esterification reaction or transesterification reaction is carried out in the esterification reaction tank under normal pressure to under pressure, under heating, and then the esterification reaction obtained. Alternatively, the polyester low molecular weight product as a transesterification reaction product is transferred to a polycondensation tank, and melt polycondensed in the presence of a polycondensation catalyst under normal pressure from a normal pressure to gradually reduced pressure. In addition, these are made | formed by a continuous type or a batch type, and an esterification reaction tank and a polycondensation tank are good also as a single stage or a multistage, respectively.
[0013]
Here, the raw material slurry is usually prepared by mixing terephthalic acid or its ester-forming derivative and ethylene glycol together with the copolymer component, and the molar ratio of the diol component to the dicarboxylic acid component, preferably 1.05-3. 0, more preferably in the range of 1.2 to 2.0, usually by mixing uniformly at a temperature of normal temperature to 100 ° C, preferably 30 to 80 ° C.
[0014]
In the case of transesterification, the esterification reaction or transesterification reaction is carried out in the presence of a transesterification catalyst, usually at a temperature of about 240 to 280 ° C. and usually under a pressure of about 0 to 4 × 10 5 Pa. The melt polycondensation is usually carried out in the presence of a polycondensation catalyst and a stabilizer, usually at a temperature of about 250 to 290 ° C. and gradually reduced from normal pressure to 1333 to 13 in the end. It is made in about 1 to 20 hours under stirring under a reduced pressure of about 3 Pa.
[0015]
Examples of the polycondensation catalyst include germanium dioxide, germanium tetroxide, germanium hydroxide, germanium oxalate, germanium tetraethoxide, germanium tetra-n-butoxide, and other germanium compounds, antimony trioxide, antimony acetate, methoxyantimony, and the like. Antimony compounds, tetra-n-propyl titanate, tetra-i-propyl titanate, tetra-n-butyl titanate, titanium compounds such as titanium oxalate and potassium titanium oxalate are used.
[0016]
During polycondensation, together with the polycondensation catalyst, phosphoric compounds such as orthophosphoric acid, tris (triethylene glycol) phosphate, ethyl diethyl phosphonoacetate, ethyl acid phosphate, triethylene glycol acid phosphate, phosphorous acid coexist as stabilizers. It is preferable to do so.
[0017]
The addition of these polycondensation catalyst and stabilizer to the reaction system may be any stage of the slurry preparation process, the esterification reaction or the transesterification process, or the initial stage of the melt polycondensation process. However, the stabilizer is preferably added to the slurry preparation tank, and the polycondensation catalyst is an esterification reaction tank (the final reaction tank in the case of multiple stages) or an esterification reaction product. It is preferable to add to a polycondensation tank or the like to be transferred to a condensation tank.
[0018]
The melt-polycondensed resin is usually extracted in the form of a strand from the outlet provided at the bottom of the polycondensation tank, and after being cooled with water or with water, it is cut with a cutter and pellets, chips, etc. Is done. In this invention, it is preferable that the average weight per granule at that time is in the range of 10 to 500 mg from the viewpoint of humidity control described later.
[0019]
Further, the resin granules after the melt polycondensation are subjected to heat crystallization treatment prior to subsequent drying, solid phase polycondensation, molding or the like. The drying is preferably performed under dehumidified air or dry nitrogen, preferably 90 to 160 ° C., more preferably 100 to 150 ° C., and the moisture content of the resin granules, preferably 0.05% by weight or less, More preferably, it is dried until it becomes 0.03% by weight or less. In addition, the solid-phase polycondensation is carried out to increase the degree of polymerization of the polyester resin and to reduce the reaction by-products such as cyclic trimer, etc., and inert such as nitrogen, carbon dioxide and argon. It is usually performed at a temperature of 190 to 230 ° C, preferably 195 to 225 ° C under a gas atmosphere under atmospheric pressure.
[0020]
The heat crystallization treatment in the crystallization method of the copolyester resin of the present invention is carried out by subjecting the granules after the melt polycondensation to a dry state or an inert gas atmosphere such as nitrogen, carbon dioxide, argon, or water vapor. In an atmosphere or an inert gas atmosphere containing water vapor, it is preferably heated in a temperature range from 10 ° C. to 150 ° C. above the glass transition point of the resin, more preferably in a temperature range up to 140 ° C. The resin granule surface is crystallized. In addition, as the crystallization apparatus at that time, a rotary type dryer, a hopper type dryer with a stirrer, a horizontal cylindrical crystallizer with a stirrer, a stirrer type dryer such as an aeration rotary dryer, etc. are preferable. Particularly preferred is an aeration rotary dryer that stirs while heating through hot air.
[0021]
And the crystallization method of the copolyester resin of the present invention is to adjust the water content of 0.10 to 2.0% by weight of the copolyester resin granules after the melt polycondensation prior to the heat crystallization treatment. It is essential to moisten, and the moisture content is preferably 0.20 to 1.0% by weight, more preferably 0.30 to 0.50% by weight.
[0022]
When the moisture content of the humidity control is less than the above range, the crystallization speed during the crystallization treatment of the resin granules is small, and it takes a long time to crystallize. If the range is exceeded, moisture will be present on the surface of the resin granules, and this moisture will hinder the transfer of piping.
[0023]
The humidity adjustment is preferably performed at a temperature of 100 ° C. or less, more preferably 80 ° C. or less, and particularly preferably 60 ° C. or less in order to ensure prevention of fusion between the resin particles. preferable.
[0024]
The humidity control method is not particularly limited, for example, a method of immersing the resin granules in water, a method of spraying water on the resin granules, or a pellet shape after melt polycondensation, Examples thereof include a method in which a part of the cooling water at the time of granulation such as a chip is left.
[0025]
The intrinsic viscosity of the resin obtained by the crystallization method of the copolyester resin of the present invention is a value measured at 30 ° C. in a mixed solvent of phenol / 1,1,2,2-tetrachloroethane (weight ratio 1/1). Is preferably 0.55 to 0.80 dl / g, and more preferably 0.60 to 0.75 dl / g.
[0026]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded.
[0027]
Example 1
A mixture of 80 parts by weight of dimethyl terephthalate, 20 parts by weight of dimethyl isophthalate and 64 parts by weight of ethylene glycol and 0.090 parts by weight of calcium acetate as a transesterification catalyst was charged into an esterification reaction vessel, The temperature was raised to 240 ° C. over 3 hours, and further maintained for 1 hour for transesterification, the esterification reaction product was transferred to a polycondensation tank, 0.040 parts by weight of normal phosphoric acid as a stabilizer, and heavy After adding 0.040 parts by weight of antimony trioxide as a condensation catalyst, polycondensation is performed at 240 to 280 ° C. for 4 hours under reduced pressure, and then discharged into a strand in a water tank and chipped with a pelletizer. As a result, a copolymerized polyester resin granule having an average weight of 35 mg per grain was produced.
[0028]
The obtained copolymer polyester resin granules were measured for the amount of copolymerization component (including diethylene glycol by-produced from ethylene glycol), intrinsic viscosity, and water content by the method shown below, and the results are shown in Table 1. It was.
[0029]
<Amount of copolymerization component>
Using a nuclear magnetic resonance apparatus (“JNM-EX270 type” manufactured by JEOL Ltd.), a 1 H-NMR is assigned to a solution in which a resin sample is dissolved in trifluoroacetic acid, and each peak is assigned. From the value, the mol% (A) of the dicarboxylic acid component other than terephthalic acid or its ester-forming derivative with respect to the total dicarboxylic acid component, and the mol% (B) of the diol component other than ethylene glycol with respect to the total diol component are calculated. The sum (A + B) was calculated.
[0030]
<Intrinsic viscosity>
The resin sample was dissolved in a mixed solvent of phenol / 1,1,2,2-tetrachloroethane (weight ratio 1/1) at 110 ° C., cooled to 30 ° C., and then at 30 ° C. using an Ubbelohde viscometer. It was measured.
[0031]
<Moisture content>
An aluminum cup for weighing with an inner diameter of 80 mm and a height of 25 mm was dried at 140 ° C. for 2 hours with a hot air type electric constant temperature dryer (“DSF-11S type” manufactured by Isuzu Seisakusho), and left in a silica gel desiccator for 1 hour. Then, weigh [A (g)], then put about 20 g of resin sample into the aluminum cup, weigh [B (g)], and then dry it at 140 ° C. for 2 hours in the same dryer, inside the silica gel desiccator And then weighed [C (g)]. From these weighing results, the water content in the resin was calculated by the following formula.
Water content (% by weight) = [(BC) / (BA)] × 100
[0032]
Next, the obtained resin granules were put into a stainless steel container, 0.40% by weight of pure water was added, and kept at 30 ° C. all day and night, so that the moisture content of the resin granules was 0.44% by weight. Thereafter, the resin granules were continuously put into a ventilation rotary dryer so that the residence time was 1 hour, and crystallization was performed while heating and stirring the hot cylinder at 140 ° C. through the rotating cylinder. At that time, the fusion rate between the resin granules and the crystallinity of the obtained resin granules are measured by the method shown below, and the intrinsic viscosity is measured by the same method as described above. It is shown in Table 1.
[0033]
<Fusion rate between resin granules>
Granules in which two or more grains were fused and connected in 100 g of the resin granules after crystallization treatment were visually selected, and the weight ratio was used as the fusion rate.
[0034]
<Crystallinity>
The degree of whitening due to crystallization of the resin granules after the crystallization treatment was visually observed and evaluated in five stages according to the following criteria.
1: almost all the granular materials are transparent as in the uncrystallized state, and are not crystallized at all.
2; A state in which the granular material partially clouded is mixed and crystallization is started.
3: Almost all the granular materials are slightly whitened.
4: State in which whitened granular materials are mixed in whitened granular materials.
5: A state in which almost all the granular materials are whitened and completely crystallized.
[0035]
Examples 2-3 and Comparative Examples 1-3
The average weight per one grain shown in Table 1, the amount of copolymerization component, and the intrinsic viscosity, except that the amounts of dicarboxylic acid component and diol component used and the reaction time were changed as shown in Table 1, were the same as in Example 1. In addition to the above, a polyester resin having a water content was produced, and the moisture was adjusted and crystallized in the same manner as in Example 1 except that the humidity was adjusted and crystallized under the conditions shown in Table 1. The fusion rate between the subsequent resin granules, the crystallinity of the resin granules, and the intrinsic viscosity were measured, and the results are shown in Table 1.
[0036]
[Table 1]
Figure 0004069669
[0037]
【The invention's effect】
According to the present invention, the polyester resin after melt polycondensation is subjected to heat crystallization treatment prior to being subjected to drying, solid-phase polycondensation, molding, etc., and the fusion between the polyester resin granules is suppressed, and the molecular weight It is possible to provide a method for crystallizing a copolyester resin, which can be uniformly and efficiently crystallized without lowering the temperature.

Claims (4)

全ジカルボン酸成分に対するテレフタル酸又はそのエステル形成性誘導体以外のジカルボン酸成分のモル%(A)と、全ジオール成分に対するエチレングリコール以外のジオール成分のモル%(B)との和(A+B)が22〜80であり、エチレンテレフタレート単位を主たる構成繰り返し単位とする共重合ポリエステル樹脂を、0.10〜2.0重量%の含水率に調湿した後、加熱結晶化処理することを特徴とする共重合ポリエステル樹脂の結晶化方法。The sum (A + B) of the mol% (A) of the dicarboxylic acid component other than terephthalic acid or its ester-forming derivative to the total dicarboxylic acid component and the mol% (B) of the diol component other than ethylene glycol to the total diol component is 22 The copolyester resin having an ethylene terephthalate unit as a main constituent repeating unit is -80 to 80% by weight, and then subjected to heat crystallization treatment. A method for crystallizing a polymerized polyester resin. 含水率の調湿を100℃以下の温度で行う請求項1に記載の共重合ポリエステル樹脂の結晶化方法。  The method for crystallizing a copolyester resin according to claim 1, wherein the moisture content is adjusted at a temperature of 100 ° C or lower. 加熱結晶化処理時の温度を150℃以下とする請求項1又は2に記載の共重合ポリエステル樹脂の結晶化方法。  The method for crystallization of a copolyester resin according to claim 1 or 2, wherein the temperature during the heat crystallization treatment is 150 ° C or lower. 全ジカルボン酸成分に対するテレフタル酸又はそのエステル形成性誘導体以外のジカルボン酸成分のモル%(A)と、全ジオール成分に対するエチレングリコール以外のジオール成分のモル%(B)との和(A+B)が22〜70である請求項1ないし3のいずれか1項に記載の共重合ポリエステル樹脂の結晶化方法。  The sum (A + B) of the mol% (A) of the dicarboxylic acid component other than terephthalic acid or its ester-forming derivative to the total dicarboxylic acid component and the mol% (B) of the diol component other than ethylene glycol to the total diol component is 22 It is -70. The crystallization method of the copolyester resin of any one of Claims 1 thru | or 3.
JP2002131339A 2002-05-07 2002-05-07 Method for crystallizing copolyester resin Expired - Fee Related JP4069669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002131339A JP4069669B2 (en) 2002-05-07 2002-05-07 Method for crystallizing copolyester resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002131339A JP4069669B2 (en) 2002-05-07 2002-05-07 Method for crystallizing copolyester resin

Publications (2)

Publication Number Publication Date
JP2003327680A JP2003327680A (en) 2003-11-19
JP4069669B2 true JP4069669B2 (en) 2008-04-02

Family

ID=29695864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002131339A Expired - Fee Related JP4069669B2 (en) 2002-05-07 2002-05-07 Method for crystallizing copolyester resin

Country Status (1)

Country Link
JP (1) JP4069669B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7329723B2 (en) 2003-09-18 2008-02-12 Eastman Chemical Company Thermal crystallization of polyester pellets in liquid
CA2482056A1 (en) 2003-10-10 2005-04-10 Eastman Chemical Company Thermal crystallization of a molten polyester polymer in a fluid
US20060047102A1 (en) 2004-09-02 2006-03-02 Stephen Weinhold Spheroidal polyester polymer particles
JP2006249132A (en) * 2005-03-08 2006-09-21 Teijin Fibers Ltd Method of producing polyester
US7875184B2 (en) 2005-09-22 2011-01-25 Eastman Chemical Company Crystallized pellet/liquid separator

Also Published As

Publication number Publication date
JP2003327680A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
US9714320B2 (en) Process for preparing a high molecular weight heteroaromatic polyester or copolyester
JP5288676B2 (en) Catalyst for producing polyester, method for producing polyester, and polyester
JP2004224858A (en) Catalyst for polyester production and polyester produced therewith
US6699545B2 (en) Method for increasing solid state polymerization rate of polyester polymers
JP3617340B2 (en) Polyester production method
JPH06322082A (en) Polyester and hollow container made using the same
KR20070108385A (en) Process for continuous production of polyester, polyester prepolymer granule and polyester
JP2006241294A (en) Polyester resin and method for producing the same
JP2004067997A (en) Method for manufacturing polyester resin
WO2003106532A1 (en) Process for producing polyester resin
JP4069669B2 (en) Method for crystallizing copolyester resin
WO1992018554A1 (en) Process for the preparation of crystalline copolyesters
JP3648912B2 (en) Polyester container manufacturing method
JP4013571B2 (en) Polyester manufacturing method
JP5045216B2 (en) Method for producing polyester polycondensation catalyst, and method for producing polyester using the catalyst
JP2004123917A (en) Method for manufacturing polyester resin
JP2002097262A (en) Production method for polyester resin
TW200302237A (en) Method for treating polyester polymers and polyester polymers with low content of low-boiling components
JP2004307597A (en) Method for producing polyethylene terephthalate
JPH0770299A (en) Production of high-molecular-weight polyester resin from 2,6-naphthalenedicarboxylic acid
JP3395423B2 (en) polyester
JP3617324B2 (en) Polyester and stretch blow molded article comprising the same
JPS6055536B2 (en) Method for producing polyester hollow molded body or its precursor molded body
JP2008174579A (en) Method for producing copolyester resin
JP2005041903A (en) Method for producing polyester

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4069669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees