JP4069527B2 - Cement-based ground improvement material - Google Patents

Cement-based ground improvement material Download PDF

Info

Publication number
JP4069527B2
JP4069527B2 JP33830398A JP33830398A JP4069527B2 JP 4069527 B2 JP4069527 B2 JP 4069527B2 JP 33830398 A JP33830398 A JP 33830398A JP 33830398 A JP33830398 A JP 33830398A JP 4069527 B2 JP4069527 B2 JP 4069527B2
Authority
JP
Japan
Prior art keywords
cement
sodium sulfate
soil
ground improvement
improvement material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33830398A
Other languages
Japanese (ja)
Other versions
JP2000160159A (en
Inventor
英二 丸屋
茂生 岡林
行雄 田坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP33830398A priority Critical patent/JP4069527B2/en
Publication of JP2000160159A publication Critical patent/JP2000160159A/en
Application granted granted Critical
Publication of JP4069527B2 publication Critical patent/JP4069527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00112Mixtures characterised by specific pH values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セメント系地盤改良材に関するものである。より具体的には、幅広い土質に適用可能で、且つ、短期及び長期にわたり強度発現性に優れ、安価に製造できるセメント系地盤改良材に関するものである。
【0002】
【従来の技術】
従来、セメント系地盤改良材は、主材であるセメントに、硬化促進剤等の各種添加剤(材)を混合して使用するのが一般的である。この場合、添加剤(材)の種類および添加量は、固化処理の対象となる軟弱土の性状(粒度、含水比、有機物含有量等)に応じて調整されている。
しかしながら、それらの添加剤(材)は、高含水有機質土や火山灰質粘土等、特定の土質にのみ硬化促進効果を発揮するものが多く、対象外の土に使用した場合には、ほとんど効果が得られないという問題があった。また、目標強度を達成するために添加量を増やすと必然的にコスト高となることから、幅広い土質に対して少量添加でより効果的に硬化促進機能を発揮する材料の開発が望まれていた。
【0003】
【発明が解決しようとする課題】
本発明は、短期および長期にわたる硬化促進効果を有していることは勿論、幅広い土質に対して適用可能であり、且つ安価な地盤改良材の提供を目的としている。
【0004】
【課題を解決するための手段】
本発明者等は、その飽和水溶液のpHが特定の範囲にある硫酸ナトリウムが優れたセメント硬化促進機能を有し、それを添加して調製したセメント組成物が目的とする特性を備えた地盤改良材となることを見出し、本発明を完成した。
すなわち、本発明は、セメントと、酸性不純物を含み飽和水溶液のpHが4.5〜6.5である硫酸ナトリウムとから構成されるセメント系地盤改良材に関する。
以下に本発明を説明する。
【0005】
【発明の実施の形態】
本発明のセメント系地盤改良材は、ベースとなるセメントに、その飽和水溶液のpHが4.5〜6.5である硫酸ナトリウムを添加することにより、幅広い土質に対して効果的にセメントの硬化を促進し、短期のみならず長期においても高い強度発現性を示す様にしたものである。
ベースに用いるセメント種としては、JIS規格のポルトランドセメント、ポルトランドセメントに高炉スラグ、フライアッシュ、シリカフューム、せっこう等の混和材を1種以上混合して製造される混合セメントを挙げることが出来る。
【0006】
本発明の地盤改良材を構成するもう一つの成分である硫酸ナトリウムには様々な製法が在り、製法に依存して、粒度、純度等が異なる生成物が得られる事になる。硫酸ナトリウムは強酸と強塩基の塩であることから、飽和水溶液は中性を示すと一般には思われているが、製造法によっては硫酸分やその他の不純物の残留・付着が生じるため、中性でないものが多いのが現状である。
本発明では、硫酸等の酸性不純物を含み、その飽和水溶液のpHが4.5〜6.5、好ましくは5.0〜6.0と弱酸性の領域にある硫酸ナトリウムを使用することを大きな特徴とする。
【0007】
硫酸ナトリウムが、セメントの硬化促進剤として有効である事は公知であるが、この硬化促進作用の本質は、主に液相中のカルシウムイオンの飽和濃度を低下させ、珪酸カルシウム鉱物の活発な水和反応の時期を早めるためであるといわれている。本発明で使用する、その飽和溶液が中性ではなく弱酸性を示す硫酸ナトリウムを添加した場合には、公知の珪酸カルシウム水和反応促進作用に加えて、硬化初期に生成するエトリンガイト結晶のアスペクト比が適度に大きくなり、軟弱土の土粒子を拘束し易い形態になるという優れた効果を示す。これは弱酸の混入がもたらす液相イオン濃度の変化によるものと推測される。更に、その詳細は不明であるが、多量の有機物を含むような軟弱土に対する効果の発現は、セメントの水和反応を阻害する有機酸アニオンの発生が、その飽和水溶液が弱酸性を示す硫酸ナトリウムのもたらす弱酸の影響で硬化初期において抑制されるためと推測される。
すなわち、珪酸カルシウム硬化促進作用以上の付加効果は、その飽和水溶液が弱酸性を示す硫酸ナトリウムを添加した場合にのみ発現するのである。
【0008】
本発明で使用する硫酸ナトリウムは、酸性不純物を含むため飽和水溶液にした時に4.5〜6.5のpH値を示すものであれば、無水塩、含水塩の何れをも使用することができる。
【0009】
飽和水溶液のpHが4.5〜6.5である硫酸ナトリウムの添加量は、セメント系地盤改良材100重量%中、無水塩換算で1〜6重量%とするのが良い。この範囲より少ない量では十分な添加効果が発現しないし、逆にこれより多くしても、添加効果は頭打ちになることから添加量に見合った効果が発現せず、コスト的に好ましいものでなくなるだけでなく、逆に強度低下を招く場合がある。特に、2〜4重量%の添加は、強度特性的にもまたコスト的にも非常に好ましい結果を与える。
【0010】
本発明において、硫酸ナトリウムの添加方法・時期は特に制限されるものではない。セメント製造時に添加したり、既成セメントと予め混合して置く等のプリミックス法、または、土壌改良施工現場で各成分を混合する方法の何れでも行うことが出来る。
【0011】
本発明の地盤改良材使用して軟弱土の改良を行うに当っては、粉体のまま土と混合する乾式工法、予め地盤改良材と水とを混合してスラリー状とした後に土と混合する湿式工法の何れをも選択することが出来る。また、スタビライザー等を用いる浅層処理工法、CDM・DJMに代表される深層処理工法、建設発生土や浚渫土等の固化処理等にも適用可能である。
地盤改良材の軟弱土への添加量は、軟弱土の含水比・有機物含有量等によっても異なるが、通常は土1m3当たり、砂質系の土で50〜200kg、粘土質系の土で50〜300kg、高含水土や高有機質土で100〜500kg程度の範囲で選択して使用する。
【0012】
【実施例】
以下、具体例を示し、本発明を更に詳しく説明する。
(1)セメント系地盤改良材の調製
セメント系地盤改良材は、普通ポルトランドセメントと所定種の硫酸ナトリウムの所定量を添加し、卓上混合機で2分間混練して調製した。
(2)土壌の固化改良、改良後土壌の評価
表1に示した4種の処理対象土に、上記(1)で調製したセメント系地盤改良材を所定量を添加し、ホバートミキサで5分間混練した後、径50mm*長さ100mmの円筒形型枠に入れ養生した。尚、地盤改良材の添加量は、処理対象土種に応じて、表1中最右欄に示すように変化させた。
材齢3日、7日および28日後の改良土の一軸圧縮強さを、「JIS A1216 土の一軸圧縮試験方法」に準拠して測定した。
【0013】
【表1】

Figure 0004069527
【0014】
実施例1〜6および比較例1〜4
飽和水溶液の示すpH(以後、単にpHと称す)が互いに異なる硫酸ナトリウムを使用して地盤改良材を調製し、粘性土▲1▼および浚渫土を対象にpHの効果を調べたものである。硫酸ナトリウムの量は、地盤改良材全体の3.0重量%とした。結果は、硫酸ナトリウムを添加しなかった場合の例(比較例4)と共に、表2に示す。
【0015】
【表2】
Figure 0004069527
【0016】
また、硫酸ナトリウムを含まない地盤改良材を使用した場合(比較例4)の一軸圧縮強さを100として示される各一軸圧縮強さの相対値を、硫酸ナトリウム飽和水溶液pHに対してプロットしたものが図1である。
低pHの硫酸ナトリウムでは、添加効果は低く、発現効果は土壌種に依存して変化する。例えば、pH4.2の硫酸ナトリウムは、粘性土に対しては極めて低いながらも正の添加効果が発現するが、高含水率の浚渫土では、硫酸ナトリウムの添加で短期材齢における一軸圧縮強さが、無添加の場合よりも低下している。pH値の上昇と共に硫酸ナトリウム添加効果は大きくなり、pH値5〜6の範囲で最大値を示した後、減少に転じ、6.5以降は減少傾向も底を打ち、低値安定となる。この傾向は土壌種によらない。
土壌種に関係なく、硫酸ナトリウムの添加効果が発現するのはpH4.5〜6.5の範囲であり、特にpH5.0〜6.0においては、土壌種に依存しない顕著な添加効果が発現する。
【0017】
実施例7〜13および比較例5
ここでは、硫酸ナトリウム種を、実施例4で用いた飽和水溶液のpH値が5.4のものに固定して、その添加量を変化させた地盤改良材を調製し、砂質土および粘性土▲2▼を対象に、硫酸ナトリウム含有量と地盤改良効果との関係を調べた。結果を表3および図2に示す。
【0018】
【表3】
Figure 0004069527
【0019】
改良土の一軸圧縮強度は、砂質土、粘性土▲2▼何れの土においても、短期、長期ともに、硫酸ナトリウム含有量6重量%までは硫酸ナトリウム量の増大と共に高くなる。添加効果は1重量%でも明確に認められ、2重量%以上で更に顕著となるが、4重量%を越えると徐々に頭打ちとなり、6重量%を越えると逆に低下する傾向にある。すなわち、発現効果と添加量とを考慮した好ましい硫酸ナトリウムの含有量は1〜6重量%であり、特に、2〜4重量%の組成物は好ましい結果を与える。
【0020】
【発明の効果】
本発明のセメント系地盤改良材は、セメントに、飽和水溶液が特定の領域のpH値を示す硫酸ナトリウムを添加するという簡便且つ安価な方法で調製可能であり、幅広い土質に対して優れた短期および長期強度発現性を示す。
【図面の簡単な説明】
【図1】改良土一軸圧縮強さの、硫酸ナトリウム飽和水溶液pH値依存性の例を示す図である。
【図2】改良土一軸圧縮強さの地盤改良材中硫酸ナトリウム含有量への依存性例を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cement-based ground improvement material. More specifically, the present invention relates to a cement-based ground improvement material that can be applied to a wide range of soils, has excellent strength development over a short period and a long period, and can be manufactured at low cost.
[0002]
[Prior art]
Conventionally, cement-based ground improvement materials are generally used by mixing various additives (materials) such as a hardening accelerator with cement as a main material. In this case, the kind and addition amount of the additive (material) are adjusted according to the properties (particle size, water content, organic content, etc.) of the soft soil to be solidified.
However, many of these additives (materials) have a hardening-promoting effect only on specific soils, such as highly hydrous organic soils and volcanic ash clays. There was a problem that it could not be obtained. In addition, since increasing the amount added to achieve the target strength inevitably increases the cost, the development of a material that effectively demonstrates the hardening accelerating function with a small amount added to a wide range of soil properties has been desired. .
[0003]
[Problems to be solved by the invention]
The object of the present invention is to provide an inexpensive ground improvement material that can be applied to a wide range of soils, as well as having a short-term and long-term hardening promoting effect.
[0004]
[Means for Solving the Problems]
The inventors of the present invention have found that sodium sulfate having a pH of a saturated aqueous solution in a specific range has an excellent cement hardening accelerating function, and a cement composition prepared by adding the same has improved properties with the desired characteristics. As a result, the present invention was completed.
That is, the present invention relates to a cement-based ground improvement material composed of cement and sodium sulfate containing acidic impurities and having a saturated aqueous solution with a pH of 4.5 to 6.5.
The present invention will be described below.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The cement-based ground improvement material of the present invention effectively hardens the cement to a wide range of soil properties by adding sodium sulfate having a saturated aqueous solution pH of 4.5 to 6.5 to the base cement. It is intended to show high strength expression not only in the short term but also in the long term.
Examples of the cement type used for the base include JIS standard Portland cement, and mixed cement produced by mixing one or more admixtures such as blast furnace slag, fly ash, silica fume, and gypsum with Portland cement.
[0006]
There are various production methods for sodium sulfate, which is another component constituting the ground improvement material of the present invention, and products having different particle sizes, purity, and the like are obtained depending on the production method. Since sodium sulfate is a salt of strong acid and strong base, it is generally considered that saturated aqueous solution is neutral. However, depending on the production method, residual sulfuric acid and other impurities may remain and adhere. There are many things that are not.
In the present invention, it is important to use sodium sulfate which contains acidic impurities such as sulfuric acid and has a pH of 4.5 to 6.5, preferably 5.0 to 6.0, in a weakly acidic region. Features.
[0007]
Although sodium sulfate is known to be effective as a hardening accelerator for cement, the essence of this hardening-promoting action is mainly to reduce the saturated concentration of calcium ions in the liquid phase, and the active water of calcium silicate minerals. It is said that this is to accelerate the timing of the Japanese reaction. When sodium sulfate, which is used in the present invention and its saturated solution shows weak acidity instead of neutrality, is added, in addition to the known calcium silicate hydration accelerating action, the aspect ratio of ettringite crystals formed at the initial stage of curing Is moderately large, and exhibits an excellent effect that the soil particles of soft soil are easily restrained. This is presumed to be due to a change in the liquid phase ion concentration caused by the mixing of the weak acid. Furthermore, although the details are unknown, the expression of the effect on soft soil containing a large amount of organic matter is due to the generation of organic acid anions that inhibit the hydration reaction of cement, and sodium sulfate whose saturated aqueous solution is weakly acidic. It is presumed that it is suppressed in the early stage of curing due to the influence of the weak acid caused by.
That is, the additional effect more than the calcium silicate hardening accelerating effect is manifested only when sodium sulfate whose saturated aqueous solution is weakly acidic is added.
[0008]
As the sodium sulfate used in the present invention, any anhydrous salt or hydrated salt can be used as long as it has a pH value of 4.5 to 6.5 when it is made into a saturated aqueous solution because it contains acidic impurities. .
[0009]
The addition amount of sodium sulfate having a saturated aqueous solution having a pH of 4.5 to 6.5 is preferably 1 to 6% by weight in terms of anhydrous salt in 100% by weight of the cementitious ground improvement material. If the amount is less than this range, a sufficient addition effect will not be exhibited. Conversely, if the amount is larger than this range, the addition effect will reach its peak, so the effect commensurate with the addition amount will not be exhibited, and it will not be preferable in terms of cost. In addition, the strength may be reduced. In particular, addition of 2 to 4% by weight gives very favorable results in terms of strength characteristics and cost.
[0010]
In the present invention, the addition method and timing of sodium sulfate are not particularly limited. Either a premixing method such as adding at the time of cement production or premixing with existing cement, or a method of mixing each component at the soil improvement construction site can be performed.
[0011]
When using the ground improvement material of the present invention to improve soft soil, the dry method of mixing with the soil in powder form, mixing the ground improvement material and water beforehand in a slurry form and then mixing with the soil Any of the wet methods can be selected. Further, the present invention can also be applied to a shallow layer processing method using a stabilizer or the like, a deep layer processing method represented by CDM / DJM, and a solidification processing of construction generated soil or dredged soil.
The amount of ground improvement material added to the soft soil varies depending on the moisture content of the soft soil, the organic matter content, etc., but usually 50 to 200 kg of sandy soil per 1 m 3 of soil, clay soil. 50 to 300 kg, high water-containing soil or high organic soil is selected and used in the range of about 100 to 500 kg.
[0012]
【Example】
Hereinafter, the present invention will be described in more detail with reference to specific examples.
(1) Preparation of cement-based ground improvement material Cement-based ground improvement material was prepared by adding a predetermined amount of normal Portland cement and a predetermined type of sodium sulfate and kneading for 2 minutes with a desktop mixer.
(2) Evaluation of soil solidification and improved soil A predetermined amount of the cement-based ground improvement material prepared in (1) above was added to the four types of soil to be treated shown in Table 1 for 5 minutes using a Hobart mixer. After kneading, it was cured in a cylindrical form having a diameter of 50 mm * length of 100 mm. In addition, the addition amount of the ground improvement material was changed as shown in the rightmost column in Table 1 according to the soil type to be treated.
The uniaxial compressive strength of the improved soil after 3 days, 7 days and 28 days of age was measured according to “JIS A1216 soil uniaxial compressive test method”.
[0013]
[Table 1]
Figure 0004069527
[0014]
Examples 1-6 and Comparative Examples 1-4
A ground improvement material was prepared using sodium sulfate having different pH values (hereinafter, simply referred to as pH) indicated by a saturated aqueous solution, and the effect of pH was investigated on viscous soil (1) and dredged soil. The amount of sodium sulfate was 3.0% by weight of the entire ground improvement material. The results are shown in Table 2 together with an example in which sodium sulfate was not added (Comparative Example 4).
[0015]
[Table 2]
Figure 0004069527
[0016]
Moreover, when the ground improvement material which does not contain sodium sulfate is used (comparative example 4), the relative value of each uniaxial compressive strength shown as 100 is plotted against sodium sulfate saturated aqueous solution pH. Is FIG.
With low pH sodium sulfate, the effect of addition is low, and the expression effect varies depending on the soil species. For example, sodium sulfate at pH 4.2 exhibits a very low but positive addition effect on viscous soils, but in dredged soils with high water content, the addition of sodium sulfate increases the uniaxial compressive strength at short-term ages. However, it is lower than the case of no addition. As the pH value rises, the effect of adding sodium sulfate increases. After the maximum value is shown in the range of pH values 5 to 6, it starts to decrease, and after 6.5, the decreasing trend bottoms out and becomes stable at a low value. This trend is independent of soil species.
Regardless of the soil type, the effect of adding sodium sulfate is manifested in the range of pH 4.5 to 6.5, and particularly in the range of pH 5.0 to 6.0, the remarkable effect of addition independent of the soil type is exhibited. To do.
[0017]
Examples 7 to 13 and Comparative Example 5
Here, a soil improvement material was prepared by fixing the sodium sulfate species to the saturated aqueous solution having the pH value of 5.4 used in Example 4 and changing the addition amount thereof. In (2), the relationship between the sodium sulfate content and the ground improvement effect was investigated. The results are shown in Table 3 and FIG.
[0018]
[Table 3]
Figure 0004069527
[0019]
The uniaxial compressive strength of the improved soil increases with increasing amount of sodium sulfate in both sandy and cohesive soils (2) up to 6% by weight of sodium sulfate in both short and long term. The effect of addition is clearly recognized even at 1% by weight, and becomes more prominent at 2% by weight or more, but gradually reaches a peak when it exceeds 4% by weight, and tends to decrease when it exceeds 6% by weight. That is, the preferable content of sodium sulfate in consideration of the expression effect and the added amount is 1 to 6% by weight, and in particular, the composition of 2 to 4% by weight gives preferable results.
[0020]
【The invention's effect】
The cement-based ground improvement material of the present invention can be prepared by a simple and inexpensive method in which a saturated aqueous solution of sodium sulfate having a pH value in a specific region is added to cement. Shows long-term strength development.
[Brief description of the drawings]
FIG. 1 is a graph showing an example of dependence of improved soil uniaxial compressive strength on pH value of a saturated aqueous solution of sodium sulfate.
FIG. 2 is a diagram showing an example of dependency of improved soil uniaxial compressive strength on the content of sodium sulfate in the ground improvement material.

Claims (2)

セメントと、酸性不純物を含み飽和水溶液のpHが4.5〜6.5である硫酸ナトリウムとから構成されるセメント系地盤改良材。A cement-based ground improvement material composed of cement and sodium sulfate containing acidic impurities and having a saturated aqueous solution with a pH of 4.5 to 6.5. 硫酸ナトリウム含有量が1〜6重量%である、請求項1に記載のセメント系地盤改良材。The cementitious ground improvement material of Claim 1 whose sodium sulfate content is 1 to 6 weight%.
JP33830398A 1998-11-30 1998-11-30 Cement-based ground improvement material Expired - Lifetime JP4069527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33830398A JP4069527B2 (en) 1998-11-30 1998-11-30 Cement-based ground improvement material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33830398A JP4069527B2 (en) 1998-11-30 1998-11-30 Cement-based ground improvement material

Publications (2)

Publication Number Publication Date
JP2000160159A JP2000160159A (en) 2000-06-13
JP4069527B2 true JP4069527B2 (en) 2008-04-02

Family

ID=18316875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33830398A Expired - Lifetime JP4069527B2 (en) 1998-11-30 1998-11-30 Cement-based ground improvement material

Country Status (1)

Country Link
JP (1) JP4069527B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104674786A (en) * 2015-01-21 2015-06-03 内蒙古科技大学 Soil improving method for rectangular-pipe jacking construction in gravel soil layer
JP6937199B2 (en) * 2017-09-11 2021-09-22 太平洋セメント株式会社 Solidification treatment method of organic soil

Also Published As

Publication number Publication date
JP2000160159A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
JP2788834B2 (en) Hydraulic cement hardening accelerating admixture incorporating glycol
AU690430B2 (en) Corrosion inhibiting formulations with calcium nitrite
JP4069519B2 (en) Solidified material for hydrous soil and method for improving solidification of hydrous soil
JP4069527B2 (en) Cement-based ground improvement material
JP4069518B2 (en) Solidified material for hydrous soil and method for improving solidification of hydrous soil
JP3285802B2 (en) Slow hardening material containing fine stimulating material
JPH10245555A (en) Cemental solidifier for organic soil
JP2006016543A (en) Grouting material
JP4145418B2 (en) Method for producing hexavalent chromium-containing solidified product
JP4786219B2 (en) High iron oxide type cement composition
JP3118415B2 (en) Cement admixture and its manufacturing method
JP4069517B2 (en) Solidified material for hydrous soil and method for improving solidification of hydrous soil
JPH0288451A (en) Waterproof cement admixture
JP4069520B2 (en) Solidified material for hydrous soil and method for improving solidification of hydrous soil
JPH10273662A (en) Solidifying material for water-containing soil and solidification and improvement of water-containing soil
JP4174818B2 (en) Granulated soil
JP3284764B2 (en) Manufacturing method of solidified material
JP2004315662A (en) Soil conditioner and soil conditioning method
JP2006008765A (en) Soil-reinforcing material and method for reinforcing soil
JP2001172064A (en) Cement admixture and cement composition
JPH0415288A (en) Solid stabilizer for 'shirasu' soil (a soil of volcanic ashes) and its use
KR100515118B1 (en) Self-levelling mortar containing waste casting sand
RU2187477C1 (en) Binding agent
AU7209987A (en) Volume-stable hardened hydraulic cement
JP2000120059A (en) Ground improvement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term