JP4069183B2 - Spiral membrane module - Google Patents

Spiral membrane module Download PDF

Info

Publication number
JP4069183B2
JP4069183B2 JP2003067564A JP2003067564A JP4069183B2 JP 4069183 B2 JP4069183 B2 JP 4069183B2 JP 2003067564 A JP2003067564 A JP 2003067564A JP 2003067564 A JP2003067564 A JP 2003067564A JP 4069183 B2 JP4069183 B2 JP 4069183B2
Authority
JP
Japan
Prior art keywords
cylindrical container
membrane
membrane module
spiral
seal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003067564A
Other languages
Japanese (ja)
Other versions
JP2004275817A (en
Inventor
浩志 吉川
直樹 多田
竜士 斉藤
高司 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2003067564A priority Critical patent/JP4069183B2/en
Publication of JP2004275817A publication Critical patent/JP2004275817A/en
Application granted granted Critical
Publication of JP4069183B2 publication Critical patent/JP4069183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、透過液集水管のまわりに膜と流路材が多層に巻き付けられたスパイラル膜エレメントの外周と円筒型容器の内周との隙間において液の滞留が生じにくいスパイラル型膜モジュールに関するものである。
【0002】
【従来の技術】
スパイラル型エレメントを円筒型容器に装着した膜モジュールでは、膜エレメント内の原液側流路を原液が通過しながら分離を行うため、原液入口と濃縮液出口を膜モジュールの両端に設ける構造では、円筒型容器と膜エレメントとの隙間に濃縮液が滞留するという問題がある。このため、膜エレメントから下流側に流出した濃縮液をリターンさせて、膜エレメントの上流側端付近に設けた濃縮液出口から排出することで、膜モジュール内部の液の滞留を生じにくくした構造が幾つか知られている(例えば、特許文献1〜2参照)。
【0003】
これらはともに、図3に代表されるような構造となっている。この構造では、図3に示すように、透過液集水管11のまわりに膜と流路材が多層に巻き付けられたスパイラル膜エレメント1が円筒型容器2内に装填され、該スパイラル膜エレメント1の上流側端の外周と円筒型容器2の内周との間にシール部材5が装着されている。円筒型容器2の上流側端には、原液入口31を備えた円盤状の端板3が、他端には透過液出口41を備えた円盤状の端板4がそれぞれクランプまたはボルトなどで装着され、全体としてスパイラル型膜モジュールを形成している。該スパイラル型膜モジュールでは、円筒型容器2の外周部で且つシール部材5の裏側近傍に濃縮液出口21が設けられている。
【0004】
そして、原液入口31から膜モジュール内に流入した液は、スパイラル膜エレメント1内を通過する過程で透過液と濃縮液に分離され、透過液は透過液集水管11に集められて透過液出口41より流出する。一方、濃縮液はスパイラル型膜エレメント1の他端から出て、該スパイラル膜エレメント1の外周と円筒型容器2の内周との隙間を流れ、濃縮液出口21より流出する。
【0005】
これにより、膜モジュール内部、特に膜エレメント1の外周と円筒型容器2の内周との隙間の液の滞留が解消されるとされており、被処理液が主に食品に代表されるような有機物水溶液であって、滞留部の腐敗や菌の繁殖が問題となる場合や、被処理液を切り替えて運転するときに、滞留部に残留した前被処理液との混合が問題となる場合などに主として使用されている。
【0006】
【特許文献1】
実開昭63−164903号公報(第1頁、図1)
【特許文献2】
実公平6−28178号公報(第1頁、図1)
【0007】
【発明が解決しようとする課題】
しかしながら、内部に滞留が生じない上記スパイラル型膜モジュールを主として使用する際の食品などの被処理液は、しばしば高濃度、高粘性であり、また懸濁質を含む場合もある。このため、モジュール内の流路抵抗が大きく、原液投入流量を増やすと、原液と濃縮液との圧力損失が膜エレメントの上限規定値を上回ることになる。一般に、かかる圧力損失の上限規定値は、膜エレメントの上流側と下流側の圧力差によって、膜エレメントが竹の子状に変形して膜が破損するのを防止するために決められており、その規定値を超えて運転することはできない。
【0008】
一方、膜処理においては、透過液の分離にともなって膜面近傍で濃縮液濃度が極端に高くなり膜の透過性能が低下する、いわゆる濃度分極現象の防止や、膜の汚染防止の観点から、一定以上の流量を膜エレメントに投入することが処理効率上望ましい。しかし、投入流量を増やすと上記圧力損失が大きくなるため、実際には、膜エレメントの圧力損失が上限規定値を超えない範囲で投入流量を制限しながら運転されている。
【0009】
このようなスパイラル型膜モジュールの圧力損失は、主として膜エレメント内の原液流路の圧力損失と、濃縮液が膜エレメント外周と円筒型容器の内周との隙間を流れる際の圧力損失との和で表される。膜エレメント外周と円筒型容器の内周との隙間は、図3におけるシール部材5の厚みによって決まるため、この隙間を流れる流量は、圧力損失の上限規定値によって制限される。これに対し、後者の圧力損失を低減するために膜エレメントの外径を小さくすると、膜の有効面積が小さくなって分離効率が悪くなり、またシール部材のシール性が損なわれ、原液入口から流入した原液はシール部分をバイパスして直接濃縮液出口から流出する結果となる。
【0010】
一方、前者の圧力損失の改善策として、原液流路断面積を広くする工夫がなされた低圧損タイプの膜エレメントが市販されているが、原液流路断面積が広いため、通常タイプと同等の膜面線速を得るためにはより高流速で原液を投入する必要があり、後者の圧力損失をさらに増大させるという矛盾が生じる。
【0011】
従って、上記スパイラル型膜モジュールでは、低流量での処理を余儀なくされており、液だまりがなく食品などの処理に最適なモジュール構造でありながら、最適流量条件で使用できない欠点があった。
【0012】
そこで、本発明の目的は、シール部分のシール性や分離効率を損なうことなく、高濃度、高粘性の濃縮液に対しても圧力損失を低減させて、最適な流量条件で運転することができるスパイラル型膜モジュールを提供することにある。
【0013】
【課題を解決するための手段】
上記目的は、下記の如き本発明により達成できる。
即ち、本発明のスパイラル型膜モジュールは、透過液集水管のまわりに膜と流路材が多層に巻き付けられたスパイラル膜エレメントが円筒型容器内に装填され、そのスパイラル膜エレメントの上流側端の外周と円筒型容器の内周との間に、流入した原液と流出する濃縮液とを隔てるシール部材が装着されており、円筒型容器の一端側に原液入口が設けられ、濃縮液出口が円筒型容器の外周部で上記シール部材の裏側近傍に設けられているスパイラル型膜モジュールであって、前記シール部材が接する箇所の円筒型容器内径に比べ、濃縮液出口が設けられている箇所から他端側の円筒型容器内径が大きいことを特徴とする。
【0014】
本発明によると、スパイラル膜エレメントの回りの円筒型容器内径が大きくなっているため、膜エレメントの外周と円筒型容器の内周との隙間が従来よりも広くなっているので、有効膜面積を低下させずに、圧力損失を低く抑えることができる。このため、前記低圧損タイプの膜エレメントを装着し、食品のような高濃度、高粘性または懸濁質を含む液を流す場合にも、膜エレメントの圧力損失上限規定値を上回ることなく容易に適正な流量を流すことができる。これにより、液だまりがなく食品などの処理に最適な構造のスパイラル型膜モジュールを最適な流量条件で運転することが可能となる。一方、シール部材が接する箇所の円筒型容器内径はより小さいため、シール部材の作用を損なうことなく、膜モジュール内に導入された原液をすべて膜エレメントに流入させることができる。
【0015】
上記において、前記シール部材が接する箇所の近傍から円筒型容器内径が大きい部分にかけて、テーパ状に円筒型容器内径が拡径していることが好ましい。これによって、内径が異なるために生じる段差部を鈍角にして、段差部へ濃縮液が滞留するのを抑制することができる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。図1は、本発明のスパイラル型膜モジュールの一例を示す断面図である。
【0017】
本発明のスパイラル型膜モジュールは、図1に示すように、スパイラル型膜エレメント1、これを収納・充填する円筒型容器2、円筒型容器2の両端を塞ぐ端板3および4、スパイラル型膜エレメント1と円筒型容器2との間に設けられ、原液と濃縮液を隔てるシール部材5から構成されている。
【0018】
スパイラル型膜エレメント1は、透過液集水管11のまわりに膜と流路材が多層に巻き付けられて構成され、例えば、封筒状に端辺がシールされ内部に透過側流路材を有する膜と原液側流路材とが、有孔の透過液集水管11のまわりにスパイラル状に巻回された構造や、このような封筒状の膜材(膜リーフ)の複数が、複数の原液側流路材と共に透過液集水管11のまわりにスパイラル状に巻回された構造が挙げられる。更に、例えば膜エレメント1の上流側端には、その外周にシール部材5を保持しつつエレメント内への流動が可能なように、有孔の又はハブ状の端部材が設けられる。また、例えば下流側端には、端部形状を保持しつつエレメントから流動が可能なように有孔の又はハブ状の端部材が設けられる。
【0019】
上記の膜としては、各種材質の限外濾過膜、ナノ濾過膜、逆浸透膜などが使用できる。なお、透過液集水管11の上流側端には、一端を封止するためのキャップ材などを設けてもよい。
【0020】
原液入口31はシール部材5が設置されている一端側の端板3に設けられ、濃縮液出口21はシール部材裏側近傍の円筒型容器2の外周部に設けられている。端板3,4は、例えばクランプまたはボルトなどで、円筒型容器2に装着される。透過液出口41は他端側の端板4に設けられている。透過液出口41は透過液集水管11の下流側端を内挿してシール・固定できる開口を有する。本発明では、このような端板3,4を含めて円筒型容器と呼ぶことがあり、端板3,4の一方が溶接等によって円筒型容器2と一体となっていてもよい。
【0021】
シール部材5は原液入口31から流入した原液が、膜エレメント1をバイパスして濃縮液出口21へ流出するのを防ぐためのものであり、シール部材5の装着部分の膜エレメント外周と円筒型容器内周は、シールが損なわれない程度に近接している。このようなシール部材5のシール性を十分得る上で、両者の隙間は0.5〜1.5mmが好ましい。
【0022】
本発明では、シール部材5が接する箇所の円筒型容器内径に比べ、濃縮液出口21が設けられている箇所から他端側の円筒型容器内径は大きく形成されており、その結果、両者の箇所で段差が生じる。この段差が大きいほど、高濃度、高粘性の濃縮液に対しても圧力損失を低く抑えることができるが、段差が大きすぎると流れが不均一となり、逆に滞留部が生じ易くなることから、1.0〜10.0mmが好ましい。
【0023】
本実施形態では、濃縮液出口21が設けられている箇所から端板4が設置されている他端側にかけての円筒型容器内径は、シール部材5が装着されている箇所よりテーパ状に拡径しており、膜エレメント1から流出した濃縮液が濃縮液出口21に向かって容易に流れ、濃縮液が滞留しにくい構造となっている。円筒型容器内周の段差は、階段状となっていてもよいが、図1のようなテーパー状となっている方が望ましい。テーパ面は縦断面が曲線をなす曲面でもよく、円筒型容器の軸心に対するテーパ面の角度(上記曲面の場合は両端を結ぶ直線の角度)は、段差による滞留を有効に防止する上で、30〜70°が好ましく、40〜60°がより好ましい。
【0024】
円筒型容器2やその他の部材には、ステンレス鋼などの金属や繊維強化等された樹脂などが使用されるが、特に食品関係の用途ではステンレス鋼などの金属が好適に使用される。また、シール部材5には、シール用のゴムや樹脂等が使用される。
【0025】
従来の円筒型容器2は、例えば所定の寸法に切断された円管の両端にフランジ部を溶接等により接合する一方で、濃縮液出口21の穿孔部分に管を接合する方法で製造することができる。本発明のように内径に、円筒型容器2に段差を設けるには、縮径部を形成するためのリング状部材を円筒型容器2に内接一体化すればよく、熱膨張を利用して内嵌する方法や、溶接等の接合により一体化させることができる。このときリング状部材としては下流側端のみがテーパ状に拡径したものや、下流側端と上流側端がテーパ状に拡径したものが使用できる。従って、本発明では、スパイラル型膜モジュールの製造の容易性の観点から、テーパ状に拡径した内面を有するリング状部材を、内径が一定の管に内接一体化した円筒型容器2を採用するのが好ましい。
【0026】
図1において、まず原液が原液入口31から膜モジュール内に導入され、次にシール部材5の作用により導入された原液はすべて膜エレメント1内に流入する。原液は膜エレメント1内を通過する過程で、透過液と濃縮液に分離され、透過液は透過液集水管11に集められて透過液出口41より流出する。一方、濃縮液は膜エレメント1の下流側端から出てリターンし、該膜エレメント1の外周と円筒型容器2の内周との隙間を流れ、濃縮液出口21より流出する。
【0027】
本発明のスパイラル型膜モジュールは、被処理液が主に食品に代表されるような有機物水溶液であって、滞留部の腐敗や菌の繁殖が問題となる場合や、被処理液を切り替えて運転するときに、好適に使用できる。特に、懸濁質を含む醤油、糖液、発酵液、調味液、染料、果汁、エキスなどの高濃度、高粘性の被処理液、または懸濁質を含む被処理液に対して有効である。
【0028】
[他の実施形態]
(1)前述の実施形態では、円筒型容器外周に段差がないスパイラル型膜モジュールの例を示したが、本発明では、例えば図2に示すように、円筒型容器2の肉厚を変えずに、内周の段差とともに外周部に段差がある構造でもかまわない。このような形状の円筒型容器2は、例えばテーパ状の管と2種の径の異なる管とを溶接等で接合する方法などで製造することができる。
【0029】
(2)前述の実施形態では、1本の膜エレメントが充填されたスパイラル型膜モジュールの例を示したが、本発明では、複数本の膜エレメントが充填されたスパイラル型膜モジュールであってもよい。その場合、従来と同様に、透過液集水管用の連結部材を用いると共に、膜エレメントの外周部同士を連結して濃縮液を内部に流通させる連結部材を用いて、膜エレメント同士を連結すればよい。その場合、連結する膜エレメントの端部とその連結部材の内周の間にはシール部材を介在させるのが好ましい。
【0030】
【実施例】
以下、本発明の構成と効果を具体的に示す実施例等について説明する。
【0031】
(実施例)
図1に示す本発明のスパイラル型膜モジュールを用いて、火入れオリ(懸濁質)を含む醤油のろ過試験を行った。スパイラル型膜エレメントは、低圧損タイプ、4インチサイズのUF膜エレメントを使用した。円筒型容器の内周段差は3.9mmとし、段差部にはテーパーを設けた。
【0032】
表1はろ過試験の結果を示したものである。なお、表1の比較例は、同タイプのUF膜エレメントを装着した、図3に示すような従来型の膜モジュール(内径は102mmで一定)のろ過試験結果を示したものである。
【0033】
【表1】

Figure 0004069183
ろ過試験に使用した膜モジュールの圧力損失上限値は0.084MPaであるが、表1の結果が示すように、低圧損タイプの膜エレメントでは、濃縮液流量を50L/min以上とすることが望ましいところ、従来型膜モジュールでは40L/minが限界であった。これに対し、本発明の膜モジュールでは、圧力損失を低減することができ、65L/min以上の高流量でも運転が可能となった。
【図面の簡単な説明】
【図1】本発明のスパイラル型膜モジュールの一例を示す断面図
【図2】本発明のスパイラル型膜モジュールの他の例を示す断面図
【図3】従来のスパイラル型膜モジュール(リターンタイプ)を示す断面図
【符号の説明】
1 スパイラル型膜エレメント
11 透過液集水管
2 円筒型容器
21 濃縮液出口
3 端板
31 原液入口
4 端板
41 透過液出口
5 シール部材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spiral membrane module in which liquid does not easily stay in a gap between an outer periphery of a spiral membrane element in which a membrane and a flow path material are wound in multiple layers around a permeate collecting pipe and an inner periphery of a cylindrical container. It is.
[0002]
[Prior art]
In a membrane module in which a spiral type element is mounted on a cylindrical container, separation is performed while the stock solution passes through the stock solution side flow channel in the membrane element. Therefore, in the structure in which the stock solution inlet and the concentrate solution outlet are provided at both ends of the membrane module, There is a problem that the concentrate stays in the gap between the mold container and the membrane element. For this reason, the concentrated liquid that has flowed downstream from the membrane element is returned and discharged from the concentrated liquid outlet provided in the vicinity of the upstream end of the membrane element, thereby making it difficult for liquid to stay inside the membrane module. Some are known (for example, refer to Patent Documents 1 and 2).
[0003]
Both of these have a structure represented by FIG. In this structure, as shown in FIG. 3, a spiral membrane element 1 in which a membrane and a channel material are wound in multiple layers around a permeate collecting pipe 11 is loaded in a cylindrical container 2. A seal member 5 is attached between the outer periphery of the upstream end and the inner periphery of the cylindrical container 2. A disc-shaped end plate 3 having a stock solution inlet 31 is attached to the upstream end of the cylindrical container 2 and a disc-like end plate 4 having a permeate outlet 41 is attached to the other end with a clamp or a bolt, respectively. As a whole, a spiral membrane module is formed. In the spiral membrane module, a concentrate outlet 21 is provided on the outer periphery of the cylindrical container 2 and in the vicinity of the back side of the seal member 5.
[0004]
The liquid flowing into the membrane module from the raw liquid inlet 31 is separated into a permeated liquid and a concentrated liquid in the process of passing through the spiral membrane element 1, and the permeated liquid is collected in the permeated liquid collecting pipe 11 to be permeated liquid outlet 41. More outflow. On the other hand, the concentrate comes out of the other end of the spiral membrane element 1, flows through the gap between the outer periphery of the spiral membrane element 1 and the inner periphery of the cylindrical container 2, and flows out from the concentrate outlet 21.
[0005]
As a result, it is said that the retention of liquid in the gap between the outer periphery of the membrane module, particularly the outer periphery of the membrane element 1 and the inner periphery of the cylindrical container 2, is eliminated, and the liquid to be treated is mainly represented by food. When it is an organic aqueous solution and the rot of the stagnant part and the propagation of bacteria become a problem, or when the liquid to be treated is mixed and mixed with the pre-treated liquid remaining in the stagnant part when operating It is mainly used for.
[0006]
[Patent Document 1]
Japanese Utility Model Publication No. 63-164903 (first page, FIG. 1)
[Patent Document 2]
Japanese Utility Model Publication No. 6-28178 (first page, FIG. 1)
[0007]
[Problems to be solved by the invention]
However, liquids to be treated such as foods when using the spiral membrane module that does not retain inside are often highly concentrated and highly viscous, and may contain suspended solids. For this reason, if the flow resistance in the module is large and the stock solution input flow rate is increased, the pressure loss between the stock solution and the concentrated solution exceeds the upper limit specified value of the membrane element. In general, the upper limit specified value of such pressure loss is determined in order to prevent the membrane element from being deformed into a bamboo shoot shape due to the pressure difference between the upstream side and the downstream side of the membrane element, and the regulation You cannot drive beyond the value.
[0008]
On the other hand, in the membrane treatment, the concentration of the concentrated solution becomes extremely high near the membrane surface with the separation of the permeate, and the permeation performance of the membrane decreases. It is desirable in terms of processing efficiency that a flow rate of a certain level or more is input to the membrane element. However, since the pressure loss increases when the input flow rate is increased, the operation is actually performed while the input flow rate is limited within a range where the pressure loss of the membrane element does not exceed the upper limit specified value.
[0009]
The pressure loss of such a spiral membrane module is mainly the sum of the pressure loss of the stock solution flow path in the membrane element and the pressure loss when the concentrate flows through the gap between the membrane element outer periphery and the cylindrical container inner periphery. It is represented by Since the gap between the outer periphery of the membrane element and the inner circumference of the cylindrical container is determined by the thickness of the seal member 5 in FIG. 3, the flow rate flowing through this gap is limited by the upper limit specified value of pressure loss. On the other hand, if the outer diameter of the membrane element is reduced in order to reduce the latter pressure loss, the effective area of the membrane is reduced, the separation efficiency is deteriorated, and the sealing performance of the seal member is impaired, and the flow from the stock solution inlet is reduced. As a result, the undiluted solution bypasses the seal portion and directly flows out from the concentrate outlet.
[0010]
On the other hand, as a measure for improving the former pressure loss, a low-pressure loss type membrane element that is devised to widen the cross-sectional area of the concentrate flow path is commercially available. In order to obtain the linear velocity of the membrane surface, it is necessary to input the stock solution at a higher flow rate, resulting in a contradiction that the pressure loss of the latter is further increased.
[0011]
Therefore, the spiral membrane module has been forced to be processed at a low flow rate, and has a drawback that it cannot be used at an optimal flow rate condition although it has a module structure that is free from liquid accumulation and optimal for processing foods.
[0012]
Accordingly, an object of the present invention is to reduce pressure loss even for a concentrated solution having a high concentration and a high viscosity without impairing the sealing performance and separation efficiency of the seal portion, and can be operated at an optimal flow rate condition. It is to provide a spiral membrane module.
[0013]
[Means for Solving the Problems]
The above object can be achieved by the present invention as described below.
That is, in the spiral membrane module of the present invention, a spiral membrane element in which a membrane and a channel material are wound in multiple layers around a permeate collecting pipe is loaded into a cylindrical container, and the upstream end of the spiral membrane element is loaded. A seal member is provided between the outer periphery and the inner periphery of the cylindrical container to separate the inflowing stock solution and the outflowing concentrated solution, and a stock solution inlet is provided at one end of the cylindrical container, and the concentrated solution outlet is cylindrical. A spiral membrane module provided in the vicinity of the back side of the seal member on the outer periphery of the mold container, and the other is from the location where the concentrate outlet is provided compared to the inner diameter of the cylindrical vessel where the seal member is in contact The inner diameter of the cylindrical container on the end side is large.
[0014]
According to the present invention, since the inner diameter of the cylindrical container around the spiral membrane element is larger, the gap between the outer periphery of the membrane element and the inner periphery of the cylindrical container is wider than before, so the effective membrane area is reduced. The pressure loss can be kept low without reducing it. For this reason, even when the low pressure loss type membrane element is installed and a liquid containing a high concentration, high viscosity or suspended matter such as food is allowed to flow, the pressure loss upper limit specified value of the membrane element can be easily exceeded. An appropriate flow rate can be flowed. As a result, it is possible to operate a spiral membrane module having no structure of a liquid pool and having an optimum structure for processing food or the like under an optimum flow rate condition. On the other hand, since the inner diameter of the cylindrical container where the seal member is in contact is smaller, all of the stock solution introduced into the membrane module can flow into the membrane element without impairing the action of the seal member.
[0015]
In the above, it is preferable that the cylindrical container inner diameter is increased in a tapered shape from the vicinity of the portion where the seal member is in contact to the portion where the cylindrical container inner diameter is large. As a result, the stepped portion caused by the different inner diameters can be made obtuse, and the concentrated liquid can be prevented from staying in the stepped portion.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of a spiral membrane module of the present invention.
[0017]
As shown in FIG. 1, the spiral membrane module of the present invention includes a spiral membrane element 1, a cylindrical container 2 that houses and fills it, end plates 3 and 4 that close both ends of the cylindrical container 2, and a spiral membrane. The seal member 5 is provided between the element 1 and the cylindrical container 2 and separates the stock solution and the concentrated solution.
[0018]
The spiral membrane element 1 is configured by winding a membrane and a channel material around a permeate collecting pipe 11 in multiple layers. For example, a membrane having a permeate side channel material sealed inside in an envelope shape A structure in which the stock solution side channel material is spirally wound around the perforated permeate collecting pipe 11 and a plurality of such envelope-like membrane materials (membrane leaves) are formed into a plurality of stock solution side flows. A structure wound around the permeate collecting pipe 11 together with the road material in a spiral shape is exemplified. Further, for example, a perforated or hub-like end member is provided at the upstream end of the membrane element 1 so as to allow the flow into the element while holding the seal member 5 on the outer periphery thereof. Further, for example, a perforated or hub-like end member is provided at the downstream end so as to allow flow from the element while maintaining the end shape.
[0019]
As said membrane, the ultrafiltration membrane of various materials, a nanofiltration membrane, a reverse osmosis membrane etc. can be used. A cap material or the like for sealing one end may be provided at the upstream end of the permeate collecting pipe 11.
[0020]
The stock solution inlet 31 is provided on the end plate 3 on one end side where the seal member 5 is installed, and the concentrate outlet 21 is provided on the outer peripheral portion of the cylindrical container 2 near the back side of the seal member. The end plates 3 and 4 are attached to the cylindrical container 2 with, for example, clamps or bolts. The permeate outlet 41 is provided on the end plate 4 on the other end side. The permeate outlet 41 has an opening that can be sealed and fixed by inserting the downstream end of the permeate collector 11. In the present invention, such end plates 3 and 4 may be referred to as a cylindrical container, and one of the end plates 3 and 4 may be integrated with the cylindrical container 2 by welding or the like.
[0021]
The seal member 5 is for preventing the stock solution flowing in from the stock solution inlet 31 from bypassing the membrane element 1 and flowing out to the concentrate outlet 21. The seal member 5 is attached to the outer periphery of the membrane element and the cylindrical container. The inner circumference is close enough that the seal is not compromised. In order to obtain sufficient sealing performance of the sealing member 5, the gap between the two is preferably 0.5 to 1.5 mm.
[0022]
In the present invention, the inner diameter of the cylindrical container on the other end side is larger than the position where the concentrate outlet 21 is provided, compared to the inner diameter of the cylindrical container where the seal member 5 is in contact. A step occurs. The larger this step, the lower the pressure loss even for highly concentrated and highly viscous concentrates.However, if the step is too large, the flow becomes non-uniform, and conversely, a stagnant portion is likely to occur. 1.0-10.0 mm is preferable.
[0023]
In the present embodiment, the cylindrical container inner diameter from the location where the concentrate outlet 21 is provided to the other end where the end plate 4 is installed is increased in a tapered shape from the location where the seal member 5 is installed. Thus, the concentrated liquid that has flowed out of the membrane element 1 easily flows toward the concentrated liquid outlet 21, and the concentrated liquid is less likely to stay. The step on the inner circumference of the cylindrical container may be stepped, but it is desirable that the step be tapered as shown in FIG. The taper surface may be a curved surface having a curved longitudinal section, and the angle of the taper surface with respect to the axis of the cylindrical container (in the case of the curved surface, the angle of the straight line connecting both ends) is effective in effectively preventing retention due to a step. 30 to 70 ° is preferable, and 40 to 60 ° is more preferable.
[0024]
For the cylindrical container 2 and other members, a metal such as stainless steel or a resin reinforced with fiber is used, but a metal such as stainless steel is preferably used for food-related applications. The seal member 5 is made of rubber or resin for sealing.
[0025]
The conventional cylindrical container 2 can be manufactured by, for example, a method in which a flange is joined to both ends of a circular pipe cut to a predetermined size by welding or the like, while a pipe is joined to a perforated portion of the concentrate outlet 21. it can. In order to provide a step in the cylindrical container 2 at the inner diameter as in the present invention, a ring-shaped member for forming a reduced diameter portion may be inscribed and integrated with the cylindrical container 2, and thermal expansion is utilized. They can be integrated by a method of internal fitting or by joining such as welding. At this time, as the ring-shaped member, one in which only the downstream end has a diameter increased in a taper shape, or one in which the downstream end and the upstream end have a diameter increased in a taper shape can be used. Therefore, in the present invention, from the viewpoint of ease of manufacturing the spiral membrane module, the cylindrical container 2 in which the ring-shaped member having the tapered inner surface is inscribed and integrated with the pipe having a constant inner diameter is employed. It is preferable to do this.
[0026]
In FIG. 1, the stock solution is first introduced into the membrane module from the stock solution inlet 31, and then all the stock solution introduced by the action of the seal member 5 flows into the membrane element 1. In the course of passing through the membrane element 1, the stock solution is separated into a permeate and a concentrate, and the permeate is collected in the permeate collection pipe 11 and flows out from the permeate outlet 41. On the other hand, the concentrated solution returns from the downstream end of the membrane element 1, flows through the gap between the outer periphery of the membrane element 1 and the inner periphery of the cylindrical container 2, and flows out from the concentrated solution outlet 21.
[0027]
The spiral-type membrane module of the present invention is an organic aqueous solution whose treatment liquid is mainly represented by food, and when the rot of the staying part or the propagation of bacteria becomes a problem, or the treatment liquid is switched to operate. Can be suitably used. In particular, it is effective for high-concentration, high-viscosity liquids such as soy sauce, sugar liquid, fermentation liquid, seasoning liquid, dyes, fruit juices, and extracts containing suspensions, or liquids containing suspensions. .
[0028]
[Other Embodiments]
(1) In the above-described embodiment, an example of a spiral membrane module having no step on the outer periphery of the cylindrical container has been shown. However, in the present invention, for example, as shown in FIG. 2, the thickness of the cylindrical container 2 is not changed. In addition, a structure having a step on the outer periphery as well as a step on the inner periphery may be used. The cylindrical container 2 having such a shape can be manufactured by, for example, a method of joining a tapered tube and two types of tubes having different diameters by welding or the like.
[0029]
(2) In the above-described embodiment, an example of a spiral membrane module filled with one membrane element has been shown. However, in the present invention, a spiral membrane module filled with a plurality of membrane elements may be used. Good. In that case, as in the conventional case, if the connection member for the permeate collecting pipe is used, the membrane elements are connected to each other by using the connection member that connects the outer peripheral portions of the membrane elements and distributes the concentrated liquid inside. Good. In that case, it is preferable to interpose a sealing member between the end of the membrane element to be connected and the inner periphery of the connecting member.
[0030]
【Example】
Examples and the like specifically showing the configuration and effects of the present invention will be described below.
[0031]
(Example)
Using the spiral membrane module of the present invention shown in FIG. 1, a filtration test of soy sauce containing fired oil (suspension) was performed. The spiral type membrane element used was a low pressure loss type, 4 inch size UF membrane element. The inner peripheral step of the cylindrical container was 3.9 mm, and the step was tapered.
[0032]
Table 1 shows the results of the filtration test. In addition, the comparative example of Table 1 shows the filtration test result of a conventional membrane module (inner diameter is constant at 102 mm) as shown in FIG. 3 in which the same type of UF membrane element is mounted.
[0033]
[Table 1]
Figure 0004069183
The upper limit of the pressure loss of the membrane module used in the filtration test is 0.084 MPa, but as shown in the results of Table 1, it is desirable that the flow rate of the concentrate is 50 L / min or more in the low pressure loss type membrane element. However, 40 L / min was the limit in the conventional membrane module. In contrast, the membrane module of the present invention can reduce pressure loss and can be operated even at a high flow rate of 65 L / min or more.
[Brief description of the drawings]
1 is a cross-sectional view showing an example of a spiral membrane module of the present invention. FIG. 2 is a cross-sectional view showing another example of a spiral membrane module of the present invention. FIG. 3 is a conventional spiral membrane module (return type). Sectional view showing [signs]
DESCRIPTION OF SYMBOLS 1 Spiral type | mold membrane element 11 Permeate liquid collecting pipe 2 Cylindrical container 21 Concentrated liquid outlet 3 End plate 31 Stock solution inlet 4 End plate 41 Permeated liquid outlet 5 Seal member

Claims (2)

透過液集水管のまわりに膜と流路材が多層に巻き付けられたスパイラル膜エレメントが円筒型容器内に装填され、そのスパイラル膜エレメントの上流側端の外周と円筒型容器の内周との間に、流入した原液と流出する濃縮液とを隔てるシール部材が装着されており、円筒型容器の一端側に原液入口が設けられ、濃縮液出口が円筒型容器の外周部で上記シール部材の裏側近傍に設けられているスパイラル型膜モジュールであって、前記シール部材が接する箇所の円筒型容器内径に比べ、濃縮液出口が設けられている箇所から他端側の円筒型容器内径が大きいことを特徴とするスパイラル型膜モジュール。A spiral membrane element, in which a membrane and a channel material are wound in multiple layers around a permeate collecting pipe, is loaded into a cylindrical container, and between the outer periphery of the upstream end of the spiral membrane element and the inner periphery of the cylindrical container Is attached with a seal member for separating the inflowing stock solution from the outflowing concentrate, a stock solution inlet is provided on one end side of the cylindrical container, and the concentrate outlet is at the outer periphery of the cylindrical container and on the back side of the seal member It is a spiral membrane module provided in the vicinity, and the inner diameter of the cylindrical container on the other end side is larger than the inner diameter of the cylindrical container at the position where the seal member contacts. Spiral type membrane module. 前記シール部材が接する箇所の近傍から円筒型容器内径が大きい部分にかけて、テーパ状に円筒型容器内径が拡径している請求項1記載のスパイラル型膜モジュール。2. The spiral membrane module according to claim 1, wherein the cylindrical container inner diameter is increased in a taper shape from a vicinity of a portion where the seal member is in contact to a portion where the cylindrical container inner diameter is large.
JP2003067564A 2003-03-13 2003-03-13 Spiral membrane module Expired - Fee Related JP4069183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003067564A JP4069183B2 (en) 2003-03-13 2003-03-13 Spiral membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003067564A JP4069183B2 (en) 2003-03-13 2003-03-13 Spiral membrane module

Publications (2)

Publication Number Publication Date
JP2004275817A JP2004275817A (en) 2004-10-07
JP4069183B2 true JP4069183B2 (en) 2008-04-02

Family

ID=33285130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003067564A Expired - Fee Related JP4069183B2 (en) 2003-03-13 2003-03-13 Spiral membrane module

Country Status (1)

Country Link
JP (1) JP4069183B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102380316B (en) * 2011-09-22 2013-09-25 张慧春 Horizontal pressure leaching composite membrane filtering system
JP6723824B2 (en) 2016-05-23 2020-07-15 日東電工株式会社 Spiral membrane module

Also Published As

Publication number Publication date
JP2004275817A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
CN100475319C (en) Pressure vessels for holding cylindrical filtration cartridges
JP4213039B2 (en) Method for preventing axial displacement of membrane elements and filter elements wound spirally
CA2691927C (en) Spiral wound filter assembly
US6673242B1 (en) Open-channeled spiral-wound membrane module
US8696904B2 (en) Multi-leaf reverse osmosis element
US9975090B2 (en) Double pass reverse osmosis separator module
US20070138082A1 (en) Filtration assembly and methods for making and using same
EP3554676B1 (en) Pleated, tapered, and spiral-wound cross-flow filter element
US20150144560A1 (en) Separation membrane unit and method for using the same to produce fresh water
US5858229A (en) Spiral wound type membrane module
KR100626901B1 (en) Spiral separation membrane element
EP2108443B1 (en) Spirally wound membrane module with flow control means and its application for fluid treatment
JP2538409B2 (en) Method and device for concentrating high-concentration solution by reverse osmosis membrane for low pressure
JP4069183B2 (en) Spiral membrane module
WO2012125505A1 (en) Interconnector for filtration apparatus with reduced permeate pressure loss
US20020134724A1 (en) Apparatus for filtering and separating fluids
CN105771666A (en) Membrane filtration assembly
EP2821123B1 (en) Separation membrane module and replacement method for separation membrane element
JP2004275822A (en) Spiral membrane module
JP3829447B2 (en) Backwashing method for spiral membrane module
JP2001191071A (en) Operation method of membrane separator
EP0504598A1 (en) Filtration module for filtration plants of wines or fruit juices, and filtration plant provided with such module
JPH09313899A (en) Fluid separator
JP4106714B2 (en) Operation method of spiral membrane module
JPH11197467A (en) Membrane separator having spiral membrane module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4069183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees