JP4068919B2 - Cell culture apparatus and method - Google Patents

Cell culture apparatus and method Download PDF

Info

Publication number
JP4068919B2
JP4068919B2 JP2002226436A JP2002226436A JP4068919B2 JP 4068919 B2 JP4068919 B2 JP 4068919B2 JP 2002226436 A JP2002226436 A JP 2002226436A JP 2002226436 A JP2002226436 A JP 2002226436A JP 4068919 B2 JP4068919 B2 JP 4068919B2
Authority
JP
Japan
Prior art keywords
light
projection
cultured cells
image
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002226436A
Other languages
Japanese (ja)
Other versions
JP2004065051A (en
Inventor
広司 土屋
文 秋草
政和 勝又
仁 鈴木
陽平 岡野
万祐子 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2002226436A priority Critical patent/JP4068919B2/en
Publication of JP2004065051A publication Critical patent/JP2004065051A/en
Application granted granted Critical
Publication of JP4068919B2 publication Critical patent/JP4068919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、細胞培養装置及び細胞培養方法に関するものである。
【0002】
【従来の技術】
近年、植物による物質生産など、産業上及び環境対策上有用な植物品種を開発する研究において、対象植物の培養細胞から植物体を再生させる技術が重要な要素となっている。
【0003】
植物組織の一部より脱分化した培養細胞から植物体を再生させる過程における細胞培養の生長条件は、物理的、化学的及び生物的条件により影響を受ける。そのため、細胞培養は、温度、湿度、光、炭酸ガス濃度及び肥料等の生長条件が制御された無菌環境下で行われ、それぞれの生長条件を適切に調整することで分化が制御される。しかし、これらの生長条件は、植物の品種によって異なり、条件設定が難しいため分化技術が確立されている植物は少ない。特に、光の照射条件については、強度、波長及び照射時間の3つの要素それぞれが分化に影響していると考えられており、分化に最適な光の照射条件を見つけ出すことが困難である。
【0004】
【発明が解決しようとする課題】
本発明は、上記問題点を解消する為になされたものであり、複数の培養細胞それぞれに対して投射領域並びに強度、波長及び投射時間それぞれが異なった光を投射することができ、培養細胞の生長もしくは分化に適した光の投射条件を複数の培養細胞において同時に並行して探索することができる細胞培養装置及び細胞培養方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明に係る細胞培養装置は、(1)複数の培養容器と、(2)複数の培養容器及び複数の培養容器それぞれに容れられた培養細胞の画像を取得する画像取得手段と、(3)画像取得手段により取得された複数の培養容器及び培養細胞の画像に基づいて光を投射する投射領域を求める画像処理手段と、(4)画像処理手段により求められた投射領域に応じて培養細胞に三原色光源による光を選択的に投射する投射手段と、(5)画像取得手段により取得された培養細胞の画像及び投射手段により光の投射された投射領域並びに光の強度、波長及び投射時間それぞれを記憶する培養条件記憶手段と、を備え、画像取得手段は、培養細胞に対して適宜の時間光を投射手段により投射した後に、複数の培養容器及び光投射後の培養細胞の画像を取得し、画像処理手段は、培養条件記憶手段に記憶されている培養細胞の画像と画像取得手段により取得された光投射後の培養細胞の画像とにおける培養細胞の形態差に基づいて培養細胞の生長状態及び分化状態を判断し、培養細胞の生長状態、分化状態及び培養条件記憶手段に記憶されている光の投射領域並びに光の強度、波長及び投射時間それぞれに基づいて培養細胞の生長もしくは分化に適した光の強度、波長及び投射時間それぞれを判定する、ことを特徴とする。
【0006】
本発明に係る細胞培養装置によれば、複数の培養容器及び複数の培養容器それぞれに容れられた培養細胞の画像が画像取得手段により取得され、画像取得手段により取得された複数の培養容器及び培養細胞の画像に基づいて光を投射する投射領域が画像処理手段により求められる。そして、画像処理手段により求められた投射領域に応じて培養細胞に三原色光源による光が投射手段により選択的に投射される。
【0007】
また、画像取得手段により取得された培養細胞の画像及び投射手段により投射された光の投射領域並びに光の強度、波長及び投射時間それぞれが培養条件記憶手段により記憶される。
【0008】
次に、培養細胞に対して適宜の時間光を投射手段により投射した後に、複数の培養容器及び光投射後の培養細胞の画像が画像取得手段により取得され、培養条件記憶手段に記憶されている培養細胞の画像と画像取得手段により取得された光投射後の培養細胞の画像とにおける培養細胞の形態差に基づいて培養細胞の生長状態及び分化状態が画像処理手段により判断される。
【0009】
そして、培養細胞の生長状態、分化状態及び培養条件記憶手段に記憶されている光の投射領域並びに光の強度、波長及び投射時間それぞれに基づいて培養細胞の生長もしくは分化に適した光の強度、波長及び投射時間それぞれが画像処理手段により判定される。
【0010】
本発明に係る細胞培養装置は、(1)複数の区画を有する培養容器と、(2)培養容器及び複数の区画それぞれに容れられた培養細胞の画像を取得する画像取得手段と、(3)画像取得手段により取得された培養容器及び培養細胞の画像に基づいて光を投射する投射領域を求める画像処理手段と、(4)画像処理手段により求められた投射領域に応じて培養細胞に三原色光源による光を選択的に投射する投射手段と、(5)画像取得手段により取得された培養細胞の画像及び投射手段により光の投射された投射領域並びに光の強度、波長及び投射時間それぞれを記憶する培養条件記憶手段と、を備え、画像取得手段は、培養細胞に対して適宜の時間光を投射手段により投射した後に、培養容器及び光投射後の培養細胞の画像を取得し、画像処理手段は、培養条件記憶手段に記憶されている培養細胞の画像と画像取得手段により取得された光投射後の培養細胞の画像とにおける培養細胞の形態差に基づいて培養細胞の生長状態及び分化状態を判断し、培養細胞の生長状態、分化状態及び培養条件記憶手段に記憶されている光の投射領域並びに光の強度、波長及び投射時間それぞれに基づいて培養細胞の生長もしくは分化に適した光の強度、波長及び投射時間それぞれを判定する、ことを特徴とする。
【0011】
本発明に係る細胞培養装置によれば、複数の区画を有する培養容器及び複数の区画それぞれに容れられた培養細胞の画像が画像取得手段により取得され、画像取得手段により取得された培養容器及び培養細胞の画像に基づいて光を投射する投射領域が画像処理手段により求められる。そして、画像処理手段により求められた投射領域に応じて培養細胞に三原色光源による光が投射手段により選択的に投射される。
【0012】
また、画像取得手段により取得された培養細胞の画像及び投射手段により投射された光の投射領域並びに光の強度、波長及び投射時間それぞれが培養条件記憶手段により記憶される。
【0013】
次に、培養細胞に対して適宜の時間光を投射手段により投射した後に、培養容器及び光投射後の培養細胞の画像が画像取得手段により取得され、培養条件記憶手段に記憶されている培養細胞の画像と画像取得手段により取得された光投射後の培養細胞の画像とにおける培養細胞の形態差に基づいて培養細胞の生長状態及び分化状態が画像処理手段により判断される。
【0014】
そして、培養細胞の生長状態、分化状態及び培養条件記憶手段に記憶されている光の投射領域並びに光の強度、波長及び投射時間それぞれに基づいて培養細胞の生長もしくは分化に適した光の強度、波長及び投射時間それぞれが画像処理手段により判定される。
【0015】
本発明に係る細胞培養装置は、培養細胞に対して投射する光の強度、波長及び投射時間それぞれの投射条件を設定する投射条件設定手段をさらに有し、投射手段は、画像処理手段により求められた光の投射領域並びに投射条件設定手段により設定された光の強度、波長及び投射時間それぞれに応じて培養細胞に対して光を選択的に投射する、ことが好ましい。この場合には、培養細胞に対して投射する光の強度、波長及び投射時間それぞれの投射条件が投射条件設定手段により設定され、画像処理手段により求められた光の投射領域並びに投射条件設定手段により設定された光の強度、波長及び投射時間それぞれに基づいて培養細胞に対して光が投射手段により選択的に投射される。
【0016】
本発明に係る細胞培養装置は、投射手段が画像取得手段に並んで設置されている、ことが好ましい。このようにすれば、画像取得手段により取得された培養容器及び培養細胞の画像情報に対して角度補正等の情報処理を行うことなく光の投射領域を求めることができる。
【0017】
本発明に係る細胞培養装置は、投射手段が培養細胞に励起光を投射し、画像取得手段が培養細胞から発生した蛍光を取得し、画像処理手段が蛍光に基づいて培養細胞の生長もしくは分化の状態を判定する、ことが好ましい。この場合には、培養細胞に励起光が投射手段により投射され、励起光が投射されることにより培養細胞から発生した蛍光が画像取得手段により取得され、その蛍光に基づいて培養細胞の生長もしくは分化の状態が画像処理手段により判定される。
【0018】
本発明に係る細胞培養方法は、複数の培養容器を備え、複数の培養容器それぞれに容れられた培養細胞に光を投射して培養細胞の生長もしくは分化に適した光の投射条件を判定する細胞培養方法であって、(1)複数の培養容器及び複数の培養容器それぞれに容れられた培養細胞の画像を画像取得手段により取得し、(2)画像取得手段により取得された複数の培養容器及び培養細胞の画像に基づいて光を投射する投射領域を画像処理手段により求め、(3)画像処理手段により求められた投射領域に応じて培養細胞に三原色光源による光を選択的に投射手段により投射し、(4)画像取得手段により取得された培養細胞の画像及び投射手段により投射された光の投射領域並びに光の強度、波長及び投射時間それぞれを培養条件記憶手段により記憶し、(5)培養細胞に対して適宜の時間光を投射手段により投射した後に、複数の培養容器及び光投射後の培養細胞の画像を画像取得手段により取得し、(6)培養条件記憶手段に記憶されている培養細胞の画像と画像取得手段により取得された光投射後の培養細胞の画像とにおける培養細胞の形態差に基づいて培養細胞の生長状態及び分化状態を判断し、(7)培養細胞の生長状態、分化状態及び培養条件記憶手段に記憶されている光の投射領域並びに光の強度、波長及び投射時間それぞれに基づいて培養細胞の生長もしくは分化に適した光の強度、波長及び投射時間それぞれを画像処理手段により判定する、ことを特徴とする。
【0019】
本発明に係る細胞培養方法によれば、複数の培養容器及び複数の培養容器それぞれに容れられた培養細胞の画像が画像取得手段により取得され、画像取得手段により取得された複数の培養容器及び培養細胞の画像に基づいて光を投射する投射領域が画像処理手段により求められる。そして、画像処理手段により求められた投射領域に応じて培養細胞に三原色光源による光が選択的に投射手段により投射される。
【0020】
また、画像取得手段により取得された培養細胞の画像及び投射手段により投射された光の投射領域並びに光の強度、波長及び投射時間それぞれが培養条件記憶手段により記憶される。
【0021】
次に、培養細胞に対して適宜の時間光を投射手段により投射した後に、複数の培養容器及び光投射後の培養細胞の画像が画像取得手段により取得され、培養条件記憶手段に記憶されている培養細胞の画像と画像取得手段により取得された光投射後の培養細胞の画像とにおける培養細胞の形態差に基づいて培養細胞の生長状態及び分化状態が判断される。
【0022】
そして、培養細胞の生長状態、分化状態及び培養条件記憶手段に記憶されている光の投射領域並びに光の強度、波長及び投射時間それぞれに基づいて培養細胞の生長もしくは分化に適した光の強度、波長及び投射時間それぞれが画像処理手段により判定される。
【0023】
本発明に係る細胞培養方法は、複数の区画を有する培養容器を備え、培養容器の複数の区画それぞれに容れられた培養細胞に光を投射して培養細胞の生長もしくは分化に適した光の投射条件を判定する細胞培養方法であって、(1)培養容器及び複数の区画それぞれに容れられた培養細胞の画像を画像取得手段により取得し、(2)画像取得手段により取得された培養容器及び培養細胞の画像に基づいて光を投射する投射領域を画像処理手段により求め、(3)画像処理手段により求められた投射領域に応じて培養細胞に三原色光源による光を選択的に投射手段により投射し、(4)画像取得手段により取得された培養細胞の画像及び投射手段により投射された光の投射領域並びに光の強度、波長及び投射時間それぞれを培養条件記憶手段により記憶し、(5)培養細胞に対して適宜の時間光を投射手段により投射した後に、培養容器及び光投射後の培養細胞の画像を画像取得手段により取得し、(6)培養条件記憶手段に記憶されている培養細胞の画像と画像取得手段により取得された光投射後の培養細胞の画像とにおける培養細胞の形態差に基づいて培養細胞の生長状態及び分化状態を判断し、(7)培養細胞の生長状態、分化状態及び培養条件記憶手段に記憶されている光の投射領域並びに光の強度、波長及び投射時間それぞれに基づいて培養細胞の生長もしくは分化に適した光の強度、波長及び投射時間それぞれを画像処理手段により判定する、ことを特徴とする。
【0024】
本発明に係る細胞培養方法によれば、培養容器及び複数の区画それぞれに容れられた培養細胞の画像が画像取得手段により取得され、画像取得手段により取得された培養容器及び培養細胞の画像に基づいて光を投射する投射領域が画像処理手段により求められる。そして、画像処理手段により求められた投射領域に応じて培養細胞に三原色光源による光が選択的に投射手段により投射される。
【0025】
また、画像取得手段により取得された培養細胞の画像及び投射手段により投射された光の投射領域並びに光の強度、波長及び投射時間それぞれが培養条件記憶手段により記憶される。
【0026】
次に、培養細胞に対して適宜の時間光を投射手段により投射した後に、培養容器及び光投射後の培養細胞の画像が画像取得手段により取得され、培養条件記憶手段に記憶されている培養細胞の画像と画像取得手段により取得された光投射後の培養細胞の画像とにおける培養細胞の形態差に基づいて培養細胞の生長状態及び分化状態が判断される。
【0027】
そして、培養細胞の生長状態、分化状態及び培養条件記憶手段に記憶されている光の投射領域並びに光の強度、波長及び投射時間それぞれに基づいて培養細胞の生長もしくは分化に適した光の強度、波長及び投射時間それぞれが画像処理手段により判定される。
【0028】
本発明に係る細胞培養方法は、培養細胞に投射する光の強度、波長及び投射時間それぞれの投射条件を投射条件設定手段によりさらに設定し、画像処理手段により求められた光の投射領域並びに投射条件設定手段により設定された光の強度、波長及び投射時間それぞれに応じて培養細胞に対して光を投射手段により選択的に投射する、ことが好ましい。この場合には、培養細胞に投射する光の強度、波長及び投射時間それぞれの投射条件が投射条件設定手段によりさらに設定され、画像処理手段により求められた光の投射領域並びに投射条件設定手段により設定された光の強度、波長及び投射時間それぞれに基づいて培養細胞に対して光が投射手段により選択的に投射される。
【0029】
本発明に係る細胞培養方法は、培養細胞に励起光を投射手段により投射し、励起光が投射されることにより培養細胞から発生した蛍光を画像取得手段により取得し、蛍光に基づいて培養細胞の生長もしくは分化の状態を画像処理手段により判定する、ことが好ましい。この場合には、培養細胞に励起光が投射手段により投射され、励起光が投射されることにより培養細胞から発生した蛍光が画像取得手段により取得され、その蛍光に基づいて培養細胞の生長もしくは分化の状態が画像処理手段により判定される。
【0030】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
【0031】
まず、本実施形態に係る細胞培養装置1の構成について説明する。図1は、本実施形態に係る細胞培養装置1の全体構成を示す図である。細胞培養装置1は、培養容器配置用トレイ10、培養容器20、CCDカメラ30(画像取得手段)、演算部40(画像処理手段及び投射条件設定手段)、プロジェクタ50(投射手段)及びメモリ部60(培養条件記憶手段)を備えている。
【0032】
培養容器配置用トレイ10は、反射光の影響を最小限にするため黒い仕切りで区切られた複数の区画を有するトレイであり、その複数の区画それぞれに培養容器20が容れられている。この培養容器配置用トレイ10は、それぞれの培養容器20の光条件を独立して管理可能となっており、黒い仕切りは、培養容器20の高さよりも高い。
【0033】
図2は、本実施形態に係る細胞培養装置1に含まれる培養容器配置用トレイ10、培養容器20及びカルス110(培養細胞)を上方から見た図である。培養容器配置用トレイ10は、マトリックス状に16の区画に区分されており、その区画それぞれに培養容器20が設置され、培養容器20それぞれにカルス110が容れられている。
【0034】
使用される培養容器配置用トレイ10の区画数は16に限定されるものではない。また、培養容器20が配置されるトレイ10のマトリックス上の区画は格子状の区画となっているが、これも限定されるものではない。また、培養容器配置トレイ10および培養容器20は、市販のマイクロタイタープレートであってもよい。
【0035】
CCDカメラ30は、培養容器配置用トレイ10の上方に配置され、培養容器配置用トレイ10、培養容器配置用トレイ10内の培養容器20および、培養容器20内のカルス110の画像を取得し、この取得された画像情報は演算部40により読み出される。また、CCDカメラ30は、励起光がプロジェクタ50によりカルス110に投射されることによりカルス110から発生したクロロフィル蛍光及び遅延蛍光を取得する。
【0036】
演算部40は、CCDカメラ30により取得された培養容器配置用トレイ10、培養容器配置用トレイ10内の培養容器20および培養容器20内のカルス110の画像に基づいて光を投射する投射領域120を求める。また、演算部40は、カルス110それぞれに対して投射する光の強度、波長及び投射時間それぞれの投射条件を設定する。このように、演算部40は、請求項の記載中にある画像処理手段及び投射条件設定手段の双方として作用するものであり、コンピュータ等が好適に用いられる。
【0037】
また、演算部40は、メモリ部60に記憶されているCCDカメラ30により取得されたカルス110の画像と光投射後のカルス110の画像とにおけるカルス110の形状、大きさ及び色等の変化に基づいてカルス110の生長状態及び分化状態を判定し、カルス110の生長状態、分化状態及びメモリ部60に記憶されている光の投射領域120並びに光の強度、波長及び投射時間それぞれに基づいてカルス110の生長もしくは分化に適した光の強度、波長及び投射時間それぞれを判定する。
【0038】
さらに、演算部40は、励起光がプロジェクタ50によりカルス110に投射されることによりカルス110から発生し、CCDカメラ30により取得されたクロロフィル蛍光及び遅延蛍光それぞれに基づいてカルス110の生長もしくは分化の状態を判定する。これは、細胞の分化に伴い葉緑素が形成されるため、クロロフィル蛍光及び遅延蛍光を計測することにより分化が起こったか否かを判定することができるためである。
【0039】
プロジェクタ50は、CCDカメラ30に並んで設置されており、演算部40により求められた光の投射領域120並びに光の強度、波長及び投射時間それぞれに応じて三原色光源によるR(赤)、G(緑)、B(青)それぞれの光をカルス110に対して選択的に投射するものである。
【0040】
さらに、プロジェクタ50によりカルス110に投射される光は可視光だけではなく紫外光(波長200nm〜400nm)から近赤外光〜赤外光(波長700nm〜2000nm)までをも含む。よって、赤外光の照射によりカルス110に対して温度刺激を同時に与えることも可能である。さらに、プロジェクタ50は、カルス110に励起光(波長400nm〜700nm)を投射することも可能である。
【0041】
メモリ部60は、CCDカメラ30により取得されたカルス110の画像情報及びプロジェクタ50により投射された光の投射領域120並びに光の強度、波長及び投射時間それぞれの光投射情報を記憶するものであり、ハードディスク、磁気光ディスク等が好適に用いられる。
【0042】
図3は、本実施形態に係る細胞培養方法の全体処理を示す流れ図である。次に、図3に従って本実施形態に係る細胞培養方法の全体処理について説明する。
【0043】
ステップS100では、培養容器配置用トレイ10上にマトリックス状に並んだ16の区画内に設置された培養容器20それぞれに容れられたカルス110の画像を、上方に設置したCCDカメラ30で取得する。また、このCCDカメラ30により取得した画像情報をハードディスク等のメモリ部60に記憶する。
【0044】
ステップS110では、ステップS100でCCDカメラ30により取得された画像における各培養容器20内の培地領域とカルス110との色の違いに基づいてカルス領域とそれ以外の培地領域とを区別し、カルス領域を演算部40により抽出する。そして、抽出されたカルス領域に基づいて光を投射する投射領域120を演算部40により求める。また、この光を投射する投射領域120をメモリ部60に記憶する。
【0045】
ステップS120では、ステップS110で求められた投射領域120に対して投射する光の強度、波長及び投射時間それぞれの投射条件を演算部40により設定する。また、この投射条件をメモリ部60に記憶する。
【0046】
ステップS130では、ステップS110で求められた光の投射領域120並びにステップS120で演算部40により設定された光の強度、波長及び投射時間それぞれに基づいて一以上のカルス110それぞれに対してプロジェクタ50により強度、波長及び投射時間それぞれの投射条件が異なった光を投射する。また、投射した光の強度、波長及び投射時間それぞれの投射条件をメモリ部60に記憶する。
【0047】
ここで、図4〜図6に、本実施形態に係る細胞培養装置1における光投射状態を示す。なお、図4〜図6における培養容器配置用トレイ10は、図2における培養容器配置用トレイ10の一列のみを記載したものである。
【0048】
図4に示す通り、本実施形態に係る細胞培養装置1では、培養容器配置用トレイ10上の複数の培養容器20内の複数のカルス110の1つ1つに対して光の強度、波長及び投射時間それぞれが異なる複数の光を投射することが可能である。
【0049】
また、図5に示す通り、本実施形態に係る細胞培養装置1では、培養容器配置用トレイ10上の複数の培養容器20内のカルス110それぞれに対して光の強度、波長及び投射時間それぞれが異なる光を投射することが可能である。
【0050】
さらに、図6に示す通り、培養容器配置用トレイ10が複数配置されている場合、培養容器20それぞれの内にあるカルス110に対して光の強度、波長及び投射時間それぞれが異なる光を投射することも可能である。
【0051】
ステップS140では、一以上のカルス110に対して一定時間(1時間〜数週間)光をプロジェクタ50により投射した後に培養容器配置用トレイ10上の培養容器20及び光投射後のカルス110をCCDカメラ30により取得する。また、その画像情報をメモリ部60に記憶する。
【0052】
ステップS150では、全てのカルス110に対して励起光をプロジェクタ50により同時に投射する。
【0053】
ステップS160では、ステップS150で励起光をプロジェクタ50により投射されたカルス110から発生するクロロフィル蛍光をCCDカメラ30により取得し、その結果得られたスペクトルデータをメモリ部60に記憶する。さらに、クロロフィル蛍光を測定後、励起光を遮断して遅延蛍光をCCDカメラ30により取得する。そして、その結果得られたスペクトルデータをクロロフィル蛍光の場合と同様にメモリ部60に記録する。
【0054】
ステップS170では、ステップS100で取得されメモリ部60に記憶されたカルス110の画像と、ステップS140で取得されメモリ部60に記憶された光投射後のカルス110の画像とにおけるカルス110の形状、大きさ及び色等の変化、並びに、ステップS160で取得されたクロロフィル蛍光及び遅延蛍光のスペクトルデータに基づいて、カルス110の生長状態及び分化状況を演算部40により判定する。そして、生長状態及び分化状況の判定結果に基づいてカルス110が分化していないと判定した場合にはステップS100〜S160の処理を繰り返し行い、カルス110が分化したと判断した場合には、ステップS180に処理が移行する。
【0055】
ステップS180では、メモリ部60により記憶されている光の投射領域120並びに投射した光の強度、波長及び投射時間それぞれに基づいてカルス110の生長もしくは分化に最適な光条件を決定する。
【0056】
以上のように、脱分化したカルス110それぞれに、強度、波長及び投射時間それぞれが異なる光を同時に並行して投射することにより、短期間にカルス110の生長もしくは分化に適した光の投射条件を探索する事ができる。
【0057】
上記実施形態では、カルス110からの生長もしくは分化に適した光の投射条件を探索する場合について説明した。しかし、本発明は、上記実施形態に限定されるものではなく種々の変形が可能である。例えば、組織切片から脱分化させる場合に適した光の投射条件を探索する場合にも使用することができる。また、培養細胞は、カルス110に限定されるものではなく、動物細胞等を用いることも可能である。
【0058】
【発明の効果】
以上、詳細に説明したとおり、本発明によれば、複数の培養細胞それぞれに対して照射領域並びに強度、波長及び投射時間それぞれが異なった光を投射することができ、培養細胞の生長もしくは分化に適した光の投射条件を複数の培養細胞において同時に並行して探索することができる細胞培養装置及び細胞培養方法を提供することができる。
【図面の簡単な説明】
【図1】本実施形態に係る細胞培養装置の全体構成を示す図である。
【図2】本実施形態に係る細胞培養装置に含まれる培養容器及びカルスを示す図である。
【図3】本実施形態に係る細胞培養方法の全体処理を示す流れ図である。
【図4】本実施形態に係る細胞培養装置における光投射状態の一例を示す図である。
【図5】本実施形態に係る細胞培養装置における光投射状態の一例を示す図である。
【図6】本実施形態に係る細胞培養装置における光投射状態の一例を示す図である。
【符号の説明】
1…細胞培養装置、10…培養容器配置用トレイ、20…培養容器、30…CCDカメラ、40…演算部、50…プロジェクタ、60…メモリ部、110…カルス、120…投射領域。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cell culture apparatus and a cell culture method.
[0002]
[Prior art]
In recent years, in research for developing plant varieties useful for industrial and environmental measures such as substance production by plants, a technique for regenerating plant bodies from cultured cells of the target plant has become an important factor.
[0003]
The growth conditions of cell culture in the process of regenerating plant bodies from cultured cells dedifferentiated from a part of plant tissue are influenced by physical, chemical and biological conditions. Therefore, cell culture is performed in a sterile environment in which growth conditions such as temperature, humidity, light, carbon dioxide concentration, and fertilizer are controlled, and differentiation is controlled by appropriately adjusting each growth condition. However, these growth conditions vary depending on the plant varieties, and since it is difficult to set conditions, few plants have established differentiation techniques. In particular, regarding light irradiation conditions, it is considered that each of the three factors of intensity, wavelength, and irradiation time influences differentiation, and it is difficult to find light irradiation conditions optimal for differentiation.
[0004]
[Problems to be solved by the invention]
The present invention has been made to solve the above problems, and can project light having different projection areas and intensity, wavelength, and projection time to each of a plurality of cultured cells. An object of the present invention is to provide a cell culture apparatus and a cell culture method capable of simultaneously searching in parallel a plurality of cultured cells for light projection conditions suitable for growth or differentiation.
[0005]
[Means for Solving the Problems]
The cell culture device according to the present invention includes (1) a plurality of culture containers, (2) an image acquisition means for acquiring images of the culture cells contained in each of the plurality of culture containers and the plurality of culture containers, and (3) Image processing means for obtaining a projection area for projecting light based on images of a plurality of culture vessels and cultured cells obtained by the image obtaining means, and (4) the cultured cells according to the projection area obtained by the image processing means. Projection means for selectively projecting light from the three primary color light sources, (5) the image of the cultured cell acquired by the image acquisition means, the projection area where the light is projected by the projection means, and the intensity, wavelength and projection time of the light, respectively. And storing culture condition storage means for storing, and the image acquisition means acquires a plurality of culture vessels and images of the cultured cells after light projection after projecting the light for an appropriate time onto the cultured cells. The image processing means is a growth state of the cultured cells based on the morphological difference of the cultured cells in the image of the cultured cells stored in the culture condition storage means and the image of the cultured cells after the light projection obtained by the image obtaining means. Suitable for growth or differentiation of cultured cells based on the growth state of the cultured cells, the differentiation state and the projection area of the light stored in the culture condition storage means, and the light intensity, wavelength and projection time, respectively. The light intensity, the wavelength, and the projection time are determined.
[0006]
According to the cell culture device of the present invention, images of cultured cells contained in a plurality of culture containers and a plurality of culture containers are acquired by the image acquisition means, and the plurality of culture containers and cultures acquired by the image acquisition means A projection area for projecting light based on the cell image is obtained by the image processing means. And according to the projection area | region calculated | required by the image processing means, the light by a three primary color light source is selectively projected on a cultured cell by a projection means.
[0007]
Further, the culture cell image acquired by the image acquisition unit, the projection area of the light projected by the projection unit, and the intensity, wavelength, and projection time of the light are stored in the culture condition storage unit.
[0008]
Next, after projecting light for an appropriate time onto the cultured cells by the projecting means, images of the cultured cells and the cultured cells after the light projection are obtained by the image obtaining means and stored in the culture condition storage means. The growth state and differentiation state of the cultured cell are determined by the image processing means based on the morphological difference of the cultured cell between the image of the cultured cell and the image of the cultured cell after light projection obtained by the image obtaining means.
[0009]
And, the growth state of the cultured cells, the differentiation state and the light projection area stored in the culture condition storage means and the intensity of light, the wavelength and the projection time, respectively, the intensity of light suitable for the growth or differentiation of the cultured cells, Each of the wavelength and the projection time is determined by the image processing means.
[0010]
The cell culture device according to the present invention includes (1) a culture container having a plurality of compartments, (2) an image acquisition means for obtaining images of cultured cells contained in each of the culture container and the plurality of compartments, and (3) An image processing means for obtaining a projection region for projecting light based on the culture vessel and the cultured cell image obtained by the image obtaining means; and (4) a light source for the three primary colors on the cultured cell according to the projection area obtained by the image processing means. And (5) the image of the cultured cell acquired by the image acquisition means, the projection area where the light is projected by the projection means, and the intensity, wavelength and projection time of the light are stored. Culture condition storage means, and the image acquisition means obtains an image of the culture vessel and the cultured cells after the light projection after projecting the light for an appropriate time onto the cultured cells. The means is the growth state and differentiation state of the cultured cell based on the morphology difference of the cultured cell between the image of the cultured cell stored in the culture condition storage means and the image of the cultured cell after the light projection obtained by the image obtaining means. And the light projection region stored in the culture cell storage means and the light intensity, wavelength and projection time stored in the culture condition storage means, respectively. Each of the intensity, the wavelength, and the projection time is determined.
[0011]
According to the cell culture device of the present invention, the culture container having a plurality of compartments and the images of the cultured cells contained in each of the plurality of compartments are obtained by the image obtaining means, and the culture container and the culture obtained by the image obtaining means A projection area for projecting light based on the cell image is obtained by the image processing means. And according to the projection area | region calculated | required by the image processing means, the light by a three primary color light source is selectively projected on a cultured cell by a projection means.
[0012]
Further, the culture cell image acquired by the image acquisition unit, the projection area of the light projected by the projection unit, and the intensity, wavelength, and projection time of the light are stored in the culture condition storage unit.
[0013]
Next, after projecting light for an appropriate period of time on the cultured cells by the projecting means, an image of the cultured container and the cultured cells after the light projection is obtained by the image obtaining means and stored in the culture condition storage means The growth state and the differentiated state of the cultured cells are determined by the image processing means based on the morphological differences of the cultured cells between the image and the image of the cultured cells after light projection obtained by the image obtaining means.
[0014]
And, the growth state of the cultured cells, the differentiation state and the light projection area stored in the culture condition storage means and the intensity of light, the wavelength and the projection time, respectively, the intensity of light suitable for the growth or differentiation of the cultured cells, Each of the wavelength and the projection time is determined by the image processing means.
[0015]
The cell culture device according to the present invention further includes projection condition setting means for setting the projection conditions for the intensity, wavelength, and projection time of light projected onto the cultured cells, and the projection means is obtained by the image processing means. Preferably, the light is selectively projected onto the cultured cells according to the light projection area and the light intensity, wavelength, and projection time set by the projection condition setting means. In this case, the projection conditions for the intensity, wavelength, and projection time of the light projected onto the cultured cells are set by the projection condition setting means, and the light projection area and the projection condition setting means obtained by the image processing means are used. Light is selectively projected by the projection means on the cultured cells based on the set intensity, wavelength and projection time of the light.
[0016]
In the cell culture device according to the present invention, it is preferable that the projection means is installed side by side with the image acquisition means. In this way, the light projection area can be obtained without performing information processing such as angle correction on the image information of the culture vessel and the cultured cells acquired by the image acquisition means.
[0017]
In the cell culture device according to the present invention, the projecting means projects excitation light onto the cultured cells, the image acquiring means acquires fluorescence generated from the cultured cells, and the image processing means determines the growth or differentiation of the cultured cells based on the fluorescence. It is preferable to determine the state. In this case, excitation light is projected onto the cultured cells by the projection means, and the fluorescence generated from the cultured cells by the excitation light being projected is acquired by the image acquisition means, and the growth or differentiation of the cultured cells based on the fluorescence Is determined by the image processing means.
[0018]
The cell culture method according to the present invention includes a plurality of culture containers, and projects light on the cultured cells contained in each of the plurality of culture containers to determine light projection conditions suitable for the growth or differentiation of the cultured cells. A culture method comprising: (1) acquiring a plurality of culture containers and images of cultured cells contained in each of the plurality of culture containers by an image acquisition means; (2) a plurality of culture containers acquired by the image acquisition means; Based on the image of the cultured cell, a projection area for projecting light is obtained by the image processing means, and (3) light by the three primary color light sources is selectively projected by the projection means on the cultured cell according to the projection area obtained by the image processing means. (4) the culture cell image acquired by the image acquisition means, the projection area of the light projected by the projection means, the light intensity, the wavelength, and the projection time are respectively determined by the culture condition storage means. (5) After projecting light for an appropriate time onto the cultured cells by the projecting means, images of the cultured cells and the cultured cells after the light projection are obtained by the image obtaining means, and (6) storing the culture conditions Determining the growth state and differentiation state of the cultured cell based on the morphological difference of the cultured cell between the image of the cultured cell stored in the means and the image of the cultured cell after light projection obtained by the image obtaining means, (7 ) Light intensity and wavelength suitable for the growth or differentiation of cultured cells based on the growth area, differentiation state and light projection area stored in the culture condition storage means and the light intensity, wavelength and projection time respectively. Each of the projection time and the projection time is determined by an image processing means.
[0019]
According to the cell culturing method of the present invention, images of cultured cells contained in a plurality of culture containers and a plurality of culture containers are acquired by the image acquisition means, and the plurality of culture containers and cultures acquired by the image acquisition means A projection area for projecting light based on the cell image is obtained by the image processing means. Then, light from the three primary color light sources is selectively projected onto the cultured cells according to the projection area obtained by the image processing means.
[0020]
Further, the culture cell image acquired by the image acquisition unit, the projection area of the light projected by the projection unit, and the intensity, wavelength, and projection time of the light are stored in the culture condition storage unit.
[0021]
Next, after projecting light for an appropriate time onto the cultured cells by the projecting means, images of the cultured cells and the cultured cells after the light projection are obtained by the image obtaining means and stored in the culture condition storage means. The growth state and differentiation state of the cultured cell are determined based on the morphological difference of the cultured cell between the image of the cultured cell and the image of the cultured cell after light projection obtained by the image obtaining means.
[0022]
And, the growth state of the cultured cells, the differentiation state and the light projection area stored in the culture condition storage means and the intensity of light, the wavelength and the projection time, respectively, the intensity of light suitable for the growth or differentiation of the cultured cells, Each of the wavelength and the projection time is determined by the image processing means.
[0023]
The cell culture method according to the present invention includes a culture container having a plurality of compartments, and projects light onto the cultured cells contained in each of the plurality of compartments of the culture container to project light suitable for growth or differentiation of the cultured cells. A cell culture method for determining conditions, wherein (1) an image of a cultured cell contained in each of a culture container and a plurality of compartments is acquired by an image acquisition means, and (2) the culture container acquired by the image acquisition means and Based on the image of the cultured cell, a projection area for projecting light is obtained by the image processing means, and (3) light by the three primary color light sources is selectively projected by the projection means on the cultured cell according to the projection area obtained by the image processing means. And (4) the culture cell image acquired by the image acquisition means, the projection area of the light projected by the projection means, and the intensity, wavelength, and projection time of the light in the culture condition storage means. (5) After projecting light for an appropriate time onto the cultured cells by the projecting means, an image of the culture vessel and the cultured cells after the light projection is obtained by the image obtaining means, and (6) culture condition storing means Determining the growth state and differentiation state of the cultured cell based on the morphology difference of the cultured cell between the image of the cultured cell stored in the image and the image of the cultured cell after light projection obtained by the image obtaining means, (7) Based on the growth state, differentiation state, and projection condition of the light stored in the culture condition storage means and the intensity, wavelength, and projection time of the light stored in the culture condition storage means, the intensity, wavelength, and light intensity suitable for the growth or differentiation of the cultured cell, respectively. Each of the projection times is determined by image processing means.
[0024]
According to the cell culture method of the present invention, images of cultured cells contained in the culture vessel and each of the plurality of compartments are acquired by the image acquisition unit, and based on the culture vessel and the images of the cultured cells acquired by the image acquisition unit. Thus, a projection area for projecting light is obtained by the image processing means. Then, light from the three primary color light sources is selectively projected onto the cultured cells according to the projection area obtained by the image processing means.
[0025]
Further, the culture cell image acquired by the image acquisition unit, the projection area of the light projected by the projection unit, and the intensity, wavelength, and projection time of the light are stored in the culture condition storage unit.
[0026]
Next, after projecting light for an appropriate period of time on the cultured cells by the projecting means, an image of the cultured container and the cultured cells after the light projection is obtained by the image obtaining means and stored in the culture condition storage means The growth state and differentiation state of the cultured cells are determined on the basis of the morphological differences of the cultured cells between the image and the image of the cultured cells after the light projection obtained by the image obtaining means.
[0027]
And, the growth state of the cultured cells, the differentiation state and the light projection area stored in the culture condition storage means and the intensity of light, the wavelength and the projection time, respectively, the intensity of light suitable for the growth or differentiation of the cultured cells, Each of the wavelength and the projection time is determined by the image processing means.
[0028]
In the cell culturing method according to the present invention, the projection conditions of the light intensity, wavelength, and projection time projected onto the cultured cells are further set by the projection condition setting means, and the light projection area and the projection conditions determined by the image processing means It is preferable to selectively project light onto the cultured cells by the projection unit according to the light intensity, wavelength, and projection time set by the setting unit. In this case, the projection conditions for the intensity, wavelength and projection time of the light projected onto the cultured cells are further set by the projection condition setting means, and set by the light projection area and the projection condition setting means obtained by the image processing means. Light is selectively projected by the projection means on the cultured cells based on the intensity, wavelength and projection time of the emitted light.
[0029]
In the cell culture method according to the present invention, excitation light is projected onto a cultured cell by the projecting means, and fluorescence generated from the cultured cell by the excitation light being projected is obtained by the image obtaining means, and the cultured cell is obtained based on the fluorescence. It is preferable to determine the state of growth or differentiation by image processing means. In this case, excitation light is projected onto the cultured cells by the projection means, and the fluorescence generated from the cultured cells by the excitation light being projected is acquired by the image acquisition means, and the growth or differentiation of the cultured cells based on the fluorescence Is determined by the image processing means.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
[0031]
First, the configuration of the cell culture device 1 according to the present embodiment will be described. FIG. 1 is a diagram showing an overall configuration of a cell culture device 1 according to the present embodiment. The cell culture device 1 includes a culture container placement tray 10, a culture container 20, a CCD camera 30 (image acquisition unit), a calculation unit 40 (image processing unit and projection condition setting unit), a projector 50 (projection unit), and a memory unit 60. (Culture condition storage means).
[0032]
The culture container arranging tray 10 is a tray having a plurality of sections divided by black partitions in order to minimize the influence of reflected light, and the culture container 20 is contained in each of the plurality of sections. The culture container placement tray 10 can independently manage the light conditions of each culture container 20, and the black partition is higher than the height of the culture container 20.
[0033]
FIG. 2 is a view of the culture container disposition tray 10, the culture container 20, and the callus 110 (cultured cells) included in the cell culture device 1 according to the present embodiment as viewed from above. The culture container arranging tray 10 is divided into 16 sections in a matrix, and the culture container 20 is installed in each of the sections, and the callus 110 is stored in each of the culture containers 20.
[0034]
The number of sections of the culture container disposing tray 10 used is not limited to 16. Moreover, although the division on the matrix of the tray 10 in which the culture container 20 is arranged is a lattice-like division, this is not limited. The culture container arrangement tray 10 and the culture container 20 may be commercially available microtiter plates.
[0035]
The CCD camera 30 is arranged above the culture container arrangement tray 10 and acquires images of the culture container arrangement tray 10, the culture container 20 in the culture container arrangement tray 10, and the callus 110 in the culture container 20. The acquired image information is read by the calculation unit 40. Further, the CCD camera 30 acquires chlorophyll fluorescence and delayed fluorescence generated from the callus 110 when the excitation light is projected onto the callus 110 by the projector 50.
[0036]
The calculation unit 40 projects light based on the images of the culture container placement tray 10, the culture container 20 in the culture container placement tray 10, and the callus 110 in the culture container 20 acquired by the CCD camera 30. Ask for. Moreover, the calculating part 40 sets the projection condition of each intensity | strength of the light projected with respect to each callus 110, a wavelength, and a projection time. Thus, the calculation unit 40 functions as both the image processing unit and the projection condition setting unit described in the claims, and a computer or the like is preferably used.
[0037]
In addition, the calculation unit 40 changes the shape, size, color, and the like of the callus 110 between the image of the callus 110 acquired by the CCD camera 30 stored in the memory unit 60 and the image of the callus 110 after light projection. Based on the growth state and differentiation state of the callus 110 based on the growth state and differentiation state of the callus 110, the light projection area 120 stored in the memory unit 60 and the intensity, wavelength and projection time of the light. 110 determines the light intensity, wavelength, and projection time suitable for growth or differentiation.
[0038]
Further, the calculation unit 40 generates the callus 110 based on the chlorophyll fluorescence and the delayed fluorescence, respectively, which are generated from the callus 110 when the excitation light is projected onto the callus 110 by the projector 50. Determine the state. This is because chlorophyll is formed with the differentiation of the cells, and therefore it is possible to determine whether differentiation has occurred by measuring chlorophyll fluorescence and delayed fluorescence.
[0039]
The projector 50 is installed side by side with the CCD camera 30, and R (red), G (by the three primary color light sources according to the light projection area 120 and the light intensity, wavelength, and projection time obtained by the calculation unit 40. Green and B (blue) light is selectively projected onto the callus 110.
[0040]
Furthermore, the light projected on the callus 110 by the projector 50 includes not only visible light but also ultraviolet light (wavelength 200 nm to 400 nm) to near infrared light to infrared light (wavelength 700 nm to 2000 nm). Therefore, it is also possible to simultaneously apply a temperature stimulus to the callus 110 by irradiation with infrared light. Further, the projector 50 can project excitation light (wavelength 400 nm to 700 nm) on the callus 110.
[0041]
The memory unit 60 stores the image information of the callus 110 acquired by the CCD camera 30, the light projection area 120 of the light projected by the projector 50, and the light projection information of each of the light intensity, wavelength, and projection time. A hard disk, a magnetic optical disk or the like is preferably used.
[0042]
FIG. 3 is a flowchart showing the overall processing of the cell culture method according to the present embodiment. Next, the entire process of the cell culture method according to the present embodiment will be described with reference to FIG.
[0043]
In step S100, an image of the callus 110 contained in each of the culture containers 20 installed in 16 compartments arranged in a matrix on the culture container placement tray 10 is acquired by the CCD camera 30 installed above. The image information acquired by the CCD camera 30 is stored in a memory unit 60 such as a hard disk.
[0044]
In step S110, the callus area is distinguished from the other culture areas based on the color difference between the culture medium area in each culture vessel 20 and the callus 110 in the image acquired by the CCD camera 30 in step S100. Is extracted by the calculation unit 40. Then, the calculation unit 40 obtains a projection area 120 that projects light based on the extracted callus area. Further, the projection area 120 for projecting this light is stored in the memory unit 60.
[0045]
In step S120, the calculation unit 40 sets the projection conditions for the intensity, wavelength, and projection time of the light projected onto the projection area 120 obtained in step S110. Further, this projection condition is stored in the memory unit 60.
[0046]
In step S130, the projector 50 applies each of the one or more callus 110 based on the light projection area 120 obtained in step S110 and the light intensity, wavelength, and projection time set by the calculation unit 40 in step S120. Light with different projection conditions for intensity, wavelength, and projection time is projected. In addition, the projection conditions of the intensity, wavelength, and projection time of the projected light are stored in the memory unit 60.
[0047]
Here, FIGS. 4 to 6 show light projection states in the cell culture device 1 according to the present embodiment. In addition, the culture container arrangement | positioning tray 10 in FIGS. 4-6 describes only one row of the culture container arrangement | positioning tray 10 in FIG.
[0048]
As shown in FIG. 4, in the cell culture device 1 according to the present embodiment, the intensity, wavelength, and wavelength of light for each of the plurality of calluses 110 in the plurality of culture containers 20 on the culture container arrangement tray 10. It is possible to project a plurality of lights having different projection times.
[0049]
Further, as shown in FIG. 5, in the cell culture device 1 according to the present embodiment, the light intensity, the wavelength, and the projection time for each of the calluses 110 in the plurality of culture containers 20 on the culture container placement tray 10 are each. It is possible to project different light.
[0050]
Furthermore, as shown in FIG. 6, when a plurality of culture container arrangement trays 10 are arranged, light having different light intensity, wavelength, and projection time is projected onto the callus 110 in each of the culture containers 20. It is also possible.
[0051]
In step S140, light is projected onto the one or more callus 110 for a certain period of time (1 hour to several weeks) by the projector 50, and then the culture container 20 on the culture container placement tray 10 and the callus 110 after the light projection are displayed on the CCD camera. 30. The image information is stored in the memory unit 60.
[0052]
In step S <b> 150, excitation light is simultaneously projected onto all callus 110 by the projector 50.
[0053]
In step S160, the chlorophyll fluorescence generated from the callus 110 projected with the excitation light by the projector 50 in step S150 is acquired by the CCD camera 30, and the resulting spectrum data is stored in the memory unit 60. Further, after measuring chlorophyll fluorescence, the excitation light is blocked and delayed fluorescence is acquired by the CCD camera 30. Then, the spectrum data obtained as a result is recorded in the memory unit 60 as in the case of chlorophyll fluorescence.
[0054]
In step S170, the shape and size of the callus 110 in the image of the callus 110 acquired in step S100 and stored in the memory unit 60 and the image of the callus 110 after light projection acquired in step S140 and stored in the memory unit 60. The calculation unit 40 determines the growth state and differentiation state of the callus 110 based on the change in thickness and color and the spectrum data of the chlorophyll fluorescence and delayed fluorescence acquired in step S160. Then, when it is determined that the callus 110 is not differentiated based on the determination result of the growth state and the differentiation state, the processes of steps S100 to S160 are repeated, and when it is determined that the callus 110 is differentiated, step S180 is performed. The process moves on.
[0055]
In step S180, the optimal light conditions for the growth or differentiation of the callus 110 are determined based on the projection area 120 of light stored in the memory unit 60 and the intensity, wavelength, and projection time of the projected light.
[0056]
As described above, by projecting light having different intensities, wavelengths, and projection times simultaneously on each dedifferentiated callus 110, light projection conditions suitable for the growth or differentiation of the callus 110 can be set in a short time. You can explore.
[0057]
In the above embodiment, the case where the light projection condition suitable for the growth or differentiation from the callus 110 is searched for has been described. However, the present invention is not limited to the above embodiment, and various modifications can be made. For example, it can also be used when searching for light projection conditions suitable for dedifferentiation from tissue sections. The cultured cells are not limited to the callus 110, and animal cells and the like can also be used.
[0058]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to project light with different irradiation areas and intensities, wavelengths, and projection times to each of a plurality of cultured cells, and thus to the growth or differentiation of the cultured cells. A cell culturing apparatus and a cell culturing method capable of searching for suitable light projection conditions simultaneously in parallel in a plurality of cultured cells can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of a cell culture device according to the present embodiment.
FIG. 2 is a view showing a culture container and a callus included in the cell culture device according to the present embodiment.
FIG. 3 is a flowchart showing the overall processing of the cell culture method according to the present embodiment.
FIG. 4 is a diagram showing an example of a light projection state in the cell culture device according to the present embodiment.
FIG. 5 is a diagram showing an example of a light projection state in the cell culture device according to the present embodiment.
FIG. 6 is a diagram showing an example of a light projection state in the cell culture device according to the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Cell culture apparatus, 10 ... Tray for culture container arrangement | positioning, 20 ... Culture container, 30 ... CCD camera, 40 ... Calculation part, 50 ... Projector, 60 ... Memory part, 110 ... Callus, 120 ... Projection area | region.

Claims (9)

複数の培養容器と、
前記複数の培養容器及び前記複数の培養容器それぞれに容れられた植物の培養細胞の画像を取得する画像取得手段と、
前記画像取得手段により取得された前記複数の培養容器及び前記培養細胞の画像に基づいて光を投射する複数の投射領域を求める画像処理手段と、
前記画像処理手段により求められた前記複数の投射領域のうち少なくとも2つの投射領域に投射される光の強度、波長及び投射時間のうち少なくとも一つの条件が異なるように、前記複数の投射領域に応じて前記培養細胞に三原色光源による光を同時に投射する投射手段と、
前記画像取得手段により取得された前記培養細胞の画像及び前記投射手段により光の投射された前記複数の投射領域並びに光の強度、波長及び投射時間それぞれを記憶する培養条件記憶手段と、
を備え、
前記画像取得手段は、前記培養細胞に対して適宜の時間光を前記投射手段により投射した後に、前記複数の培養容器及び光投射後の前記培養細胞の画像を取得し、
前記画像処理手段は、前記培養条件記憶手段に記憶されている前記培養細胞の画像と前記画像取得手段により取得された光投射後の前記培養細胞の画像とにおける前記培養細胞の形態差に基づいて前記培養細胞の生長状態及び分化状態を判断し、前記培養細胞の生長状態、分化状態及び前記培養条件記憶手段に記憶されている光の前記複数の投射領域並びに前記光の強度、波長及び投射時間それぞれに基づいて前記培養細胞の生長もしくは分化に適した光の強度、波長及び投射時間それぞれを判定する、
ことを特徴とする細胞培養装置。
A plurality of culture vessels;
Image acquisition means for acquiring images of cultured cells of the plants contained in each of the plurality of culture containers and the plurality of culture containers;
Image processing means for obtaining a plurality of projection areas for projecting light based on the images of the plurality of culture vessels and the cultured cells acquired by the image acquisition means;
Depending on the plurality of projection areas , so that at least one of the intensity, wavelength, and projection time of light projected to at least two projection areas among the plurality of projection areas obtained by the image processing means is different. a projection means for projecting the light from the three primary colors light source simultaneously with the cultured cells Te,
Culture condition storage means for storing the image of the cultured cells acquired by the image acquisition means, the plurality of projection areas onto which light is projected by the projection means, and the intensity, wavelength, and projection time of light, respectively.
With
The image acquisition means, after projecting light for an appropriate time to the cultured cells by the projection means, to obtain an image of the cultured cells after the plurality of culture containers and light,
The image processing means is based on the morphological difference of the cultured cells between the image of the cultured cells stored in the culture condition storage means and the image of the cultured cells after the light projection obtained by the image obtaining means. Judging the growth state and differentiation state of the cultured cell, the growth state of the cultured cell, the differentiation state and the plurality of projection areas of light stored in the culture condition storage means and the intensity, wavelength and projection time of the light Based on each, determine the intensity, wavelength and projection time of light suitable for growth or differentiation of the cultured cells,
A cell culture device.
複数の区画を有する培養容器と、
前記培養容器及び前記複数の区画それぞれに容れられた植物の培養細胞の画像を取得する画像取得手段と、
前記画像取得手段により取得された前記培養容器及び前記培養細胞の画像に基づいて光を投射する複数の投射領域を求める画像処理手段と、
前記画像処理手段により求められた前記複数の投射領域のうち少なくとも2つの投射領域に投射される光の強度、波長及び投射時間のうち少なくとも一つの条件が異なるように、前記複数の投射領域に応じて前記培養細胞に三原色光源による光を同時に投射する投射手段と、
前記画像取得手段により取得された前記培養細胞の画像及び前記投射手段により光の投射された前記複数の投射領域並びに光の強度、波長及び投射時間それぞれを記憶する培養条件記憶手段と、
を備え、
前記画像取得手段は、前記培養細胞に対して適宜の時間光を前記投射手段により投射した後に、前記培養容器及び光投射後の前記培養細胞の画像を取得し、
前記画像処理手段は、前記培養条件記憶手段に記憶されている前記培養細胞の画像と前記画像取得手段により取得された光投射後の前記培養細胞の画像とにおける前記培養細胞の形態差に基づいて前記培養細胞の生長状態及び分化状態を判断し、前記培養細胞の生長状態、分化状態及び前記培養条件記憶手段に記憶されている光の前記複数の投射領域並びに前記光の強度、波長及び投射時間それぞれに基づいて前記培養細胞の生長もしくは分化に適した光の強度、波長及び投射時間それぞれを判定する、
ことを特徴とする細胞培養装置。
A culture vessel having a plurality of compartments;
An image acquisition means for acquiring an image of cultured cells of the plant contained in each of the culture container and the plurality of compartments;
Image processing means for obtaining a plurality of projection areas for projecting light based on the images of the culture vessel and the cultured cells acquired by the image acquisition means;
Depending on the plurality of projection areas , so that at least one of the intensity, wavelength, and projection time of light projected to at least two projection areas among the plurality of projection areas obtained by the image processing means is different. a projection means for projecting the light from the three primary colors light source simultaneously with the cultured cells Te,
Culture condition storage means for storing the image of the cultured cells acquired by the image acquisition means, the plurality of projection areas onto which light is projected by the projection means, and the intensity, wavelength, and projection time of light, respectively.
With
The image acquisition means, after projecting light for an appropriate time on the cultured cells by the projection means, to obtain an image of the culture vessel and the cultured cells after light projection,
The image processing means is based on the morphological difference of the cultured cells between the image of the cultured cells stored in the culture condition storage means and the image of the cultured cells after the light projection obtained by the image obtaining means. Judging the growth state and differentiation state of the cultured cell, the growth state of the cultured cell, the differentiation state and the plurality of projection areas of light stored in the culture condition storage means and the intensity, wavelength and projection time of the light Based on each, determine the intensity, wavelength and projection time of light suitable for growth or differentiation of the cultured cells,
A cell culture device.
前記培養細胞に投射する光の強度、波長及び投射時間それぞれの投射条件を設定する投射条件設定手段をさらに有し、
前記投射手段は、前記画像処理手段により求められた光の前記複数の投射領域並びに前記投射条件設定手段により設定された前記光の強度、波長及び投射時間それぞれに応じて前記培養細胞に三原色光源による光を同時に投射する、
ことを特徴とする請求項1又は2に記載の細胞培養装置。
Further having projection condition setting means for setting the projection conditions for the intensity, wavelength and projection time of the light projected onto the cultured cells,
The projection means uses the three primary color light sources on the cultured cells according to the plurality of projection areas of light obtained by the image processing means and the intensity, wavelength, and projection time of the light set by the projection condition setting means. for projecting the light at the same time,
The cell culture apparatus according to claim 1 or 2, wherein
前記投射手段は、前記画像取得手段に並んで設置されている、
ことを特徴とする請求項1又は2に記載の細胞培養装置。
The projection means is installed side by side with the image acquisition means,
The cell culture apparatus according to claim 1 or 2, wherein
前記投射手段は、前記培養細胞に励起光を投射し、
前記画像取得手段は、前記励起光が投射されることにより前記培養細胞から発生した蛍光を取得し、
前記画像処理手段は、前記蛍光に基づいて前記培養細胞の生長もしくは分化の状態を判定する、
ことを特徴とする請求項1又は2に記載の細胞培養装置。
The projection means projects excitation light onto the cultured cell,
The image acquisition means acquires fluorescence generated from the cultured cells by projecting the excitation light,
The image processing means determines the growth or differentiation state of the cultured cells based on the fluorescence;
The cell culture apparatus according to claim 1 or 2, wherein
複数の培養容器を備え、前記複数の培養容器それぞれに容れられた植物の培養細胞に光を投射して前記培養細胞の生長もしくは分化に適した光の投射条件を判定する細胞培養方法において、
前記複数の培養容器及び前記複数の培養容器それぞれに容れられた前記培養細胞の画像を画像取得手段により取得し、
前記画像取得手段により取得された前記複数の培養容器及び前記培養細胞の画像に基づいて光を投射する複数の投射領域を画像処理手段により求め、
前記画像処理手段により求められた前記複数の投射領域のうち少なくとも2つの投射領域に投射される光の強度、波長及び投射時間のうち少なくとも一つの条件が異なるように、前記複数の投射領域に応じて前記培養細胞に三原色光源による光を同時に投射手段により投射し、
前記画像取得手段により取得された前記培養細胞の画像及び前記投射手段により光の投射された前記複数の投射領域並びに光の強度、波長及び投射時間それぞれを培養条件記憶手段により記憶し、
前記培養細胞に対して適宜の時間光を前記投射手段により投射した後に、前記複数の培養容器及び光投射後の前記培養細胞の画像を前記画像取得手段により取得し、
前記培養条件記憶手段に記憶されている前記培養細胞の画像と前記画像取得手段により取得された前記光投射後の前記培養細胞の画像とにおける前記培養細胞の形態差に基づいて前記培養細胞の生長状態及び分化状態を判断し、前記培養細胞の生長状態、分化状態及び前記培養条件記憶手段に記憶されている光の前記複数の投射領域並びに前記光の強度、波長及び投射時間それぞれに基づいて前記培養細胞の生長もしくは分化に適した光の強度、波長及び投射時間それぞれを前記画像処理手段により判定する、
ことを特徴とする細胞培養方法。
In a cell culture method comprising a plurality of culture vessels, and projecting light onto plant cultured cells contained in each of the plurality of culture vessels to determine light projection conditions suitable for growth or differentiation of the cultured cells,
Obtaining images of the cultured cells contained in each of the plurality of culture containers and the plurality of culture containers by an image acquisition means,
A plurality of projection regions for projecting light based on the images of the plurality of culture vessels and the cultured cells acquired by the image acquisition unit are obtained by an image processing unit,
Depending on the plurality of projection areas , so that at least one of the intensity, wavelength, and projection time of light projected to at least two projection areas among the plurality of projection areas obtained by the image processing means is different. light projected by the same time projecting means by three primary light source to the cultured cells Te,
The culture condition storage means stores the image of the cultured cells acquired by the image acquisition means, the plurality of projection areas on which light is projected by the projection means, and the light intensity, wavelength, and projection time, respectively.
After projecting light for an appropriate time on the cultured cells by the projecting means, the images of the cultured cells after the plurality of culture containers and light projection are obtained by the image obtaining means,
The growth of the cultured cells based on the morphological difference of the cultured cells in the image of the cultured cells stored in the culture condition storage means and the image of the cultured cells after the light projection obtained by the image obtaining means Judging the state and differentiation state, based on the growth state of the cultured cells, the differentiation state and the plurality of projection areas of light stored in the culture condition storage means and the intensity, wavelength and projection time of the light, respectively Each of the light intensity, wavelength and projection time suitable for growth or differentiation of cultured cells is determined by the image processing means,
A cell culture method characterized by the above.
複数の区画を有する培養容器を備え、前記培養容器の複数の区画それぞれに容れられた植物の培養細胞に光を投射して前記培養細胞の生長もしくは分化に適した光の投射条件を判定する細胞培養方法において、
前記培養容器及び前記複数の区画それぞれに容れられた前記培養細胞の画像を画像取得手段により取得し、
前記画像取得手段により取得された前記培養容器及び前記培養細胞の画像に基づいて光を投射する複数の投射領域を画像処理手段により求め、
前記画像処理手段により求められた前記複数の投射領域のうち少なくとも2つの投射領域に投射される光の強度、波長及び投射時間のうち少なくとも一つの条件が異なるように、前記複数の投射領域に応じて前記培養細胞に三原色光源による光を同時に投射手段により投射し、
前記画像取得手段により取得された前記培養細胞の画像及び前記投射手段により光の投射された前記複数の投射領域並びに光の強度、波長及び投射時間それぞれを培養条件記憶手段により記憶し、
前記培養細胞に対して適宜の時間光を前記投射手段により投射した後に、前記培養容器及び光投射後の前記培養細胞の画像を前記画像取得手段により取得し、
前記培養条件記憶手段に記憶されている前記培養細胞の画像と前記画像取得手段により取得された前記光投射後の前記培養細胞の画像とにおける前記培養細胞の形態差に基づいて前記培養細胞の生長状態及び分化状態を判断し、前記培養細胞の生長状態、分化状態及び前記培養条件記憶手段に記憶されている光の前記複数の投射領域並びに前記光の強度、波長及び投射時間それぞれに基づいて前記培養細胞の生長もしくは分化に適した光の強度、波長及び投射時間それぞれを前記画像処理手段により判定する、
ことを特徴とする細胞培養方法。
A cell comprising a culture vessel having a plurality of compartments, and projecting light onto cultured plant cells contained in each of the plurality of compartments of the culture vessel to determine light projection conditions suitable for the growth or differentiation of the culture cells In the culture method,
Obtaining an image of the cultured cells contained in each of the culture vessel and the plurality of compartments by image acquisition means,
Obtaining a plurality of projection areas for projecting light based on the image of the culture vessel and the cultured cells acquired by the image acquisition means by the image processing means,
Depending on the plurality of projection areas , so that at least one of the intensity, wavelength, and projection time of light projected to at least two projection areas among the plurality of projection areas obtained by the image processing means is different. light projected by the same time projecting means by three primary light source to the cultured cells Te,
The culture condition storage means stores the image of the cultured cells acquired by the image acquisition means, the plurality of projection areas on which light is projected by the projection means, and the light intensity, wavelength, and projection time, respectively.
After projecting light for an appropriate time on the cultured cells by the projection means, the image acquisition means obtains an image of the culture vessel and the cultured cells after the light projection,
The growth of the cultured cells based on the morphological difference of the cultured cells in the image of the cultured cells stored in the culture condition storage means and the image of the cultured cells after the light projection obtained by the image obtaining means Judging the state and differentiation state, based on the growth state of the cultured cells, the differentiation state and the plurality of projection areas of light stored in the culture condition storage means and the intensity, wavelength and projection time of the light, respectively Each of the light intensity, wavelength and projection time suitable for growth or differentiation of cultured cells is determined by the image processing means,
A cell culture method characterized by the above.
前記培養細胞に投射する光の強度、波長及び投射時間それぞれの投射条件を投射条件設定手段によりさらに設定し、
前記画像処理手段により求められた光の前記複数の投射領域並びに前記投射条件設定手段により設定された前記光の強度、波長及び投射時間それぞれに応じて前記培養細胞に三原色光源による光を前記投射手段により同時に投射する、
ことを特徴とする請求項6又は7に記載の細胞培養方法。
Further setting the projection conditions of the light intensity, wavelength and projection time of the light projected onto the cultured cells by the projection condition setting means,
The projection means emits light from three primary color light sources to the cultured cells according to the plurality of projection areas of light obtained by the image processing means and the intensity, wavelength, and projection time of the light set by the projection condition setting means. projects at the same time by,
The cell culture method according to claim 6 or 7.
前記培養細胞に励起光を前記投射手段により投射し、
前記励起光が投射されることにより前記培養細胞から発生した蛍光を前記画像取得手段により取得し、
前記蛍光に基づいて前記培養細胞それぞれの生長もしくは分化の状態を前記画像処理手段により判定する、
ことを特徴とする請求項6又は7に記載の細胞培養方法。
Projecting excitation light onto the cultured cells by the projection means,
Fluorescence generated from the cultured cells by projecting the excitation light is acquired by the image acquisition means,
Determining the growth or differentiation state of each of the cultured cells based on the fluorescence by the image processing means;
The cell culture method according to claim 6 or 7.
JP2002226436A 2002-08-02 2002-08-02 Cell culture apparatus and method Expired - Fee Related JP4068919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226436A JP4068919B2 (en) 2002-08-02 2002-08-02 Cell culture apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226436A JP4068919B2 (en) 2002-08-02 2002-08-02 Cell culture apparatus and method

Publications (2)

Publication Number Publication Date
JP2004065051A JP2004065051A (en) 2004-03-04
JP4068919B2 true JP4068919B2 (en) 2008-03-26

Family

ID=32013781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226436A Expired - Fee Related JP4068919B2 (en) 2002-08-02 2002-08-02 Cell culture apparatus and method

Country Status (1)

Country Link
JP (1) JP4068919B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101270133B1 (en) * 2010-12-07 2013-05-31 주식회사 루트로닉 Apparatus for culturing stem cells
WO2023112659A1 (en) * 2021-12-16 2023-06-22 ソニーグループ株式会社 Photosynthetic pigment-containing cell sorting method, cell sorting device, and cell sorting system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62289174A (en) * 1986-06-09 1987-12-16 Oji Paper Co Ltd Culture apparatus having optical system
JP4402249B2 (en) * 2000-03-31 2010-01-20 正仁 田谷 Cell culture method, cell culture apparatus and recording medium

Also Published As

Publication number Publication date
JP2004065051A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
AU2018226468B2 (en) Apparatus, method and system for cultured sample development monitoring
CN103748452B (en) Bio-imaging method and system
US20200318058A1 (en) Observation system and observation method using the same
CN107003245B (en) Array class Fourier overlapping associations are imaged
JP6062059B2 (en) Bioimaging method
US11467092B2 (en) Optical systems and methods for biological analysis
US11124764B2 (en) Incubator apparatus and methods
ES2549205T3 (en) Determination of a change in a population of cells
WO2013030940A1 (en) Culturing sheet, culturing equipment material, and manufacturing method
CN108753595A (en) Picture catching and lighting apparatus
US9404908B2 (en) Non-invasive imaging to the blastocyst stage for the detection of human embryonic aneuploidy
JP2011526782A5 (en)
JP2009195110A (en) Device and method for cell-treatment
JP2021182919A5 (en)
JP4068919B2 (en) Cell culture apparatus and method
US20070003120A1 (en) Automatic analysis of cellular samples
CN109661473A (en) For determining the presence of microorganism and identifying the method, system and computer program product of the microorganism
JP2012039930A (en) Method, program and apparatus of image processing for culture observation, and method for producing culture
WO2004036285A1 (en) One-cell long-term observing device
JP2021158982A (en) Data acquisition device, data acquisition method, and biological sample observation system
JP6956302B1 (en) How to display treated eggs held in embryo culture equipment and culture environment
JP2022509823A (en) Small optical imaging system for cell culture monitoring
JP2011127972A (en) Observation apparatus and culture observation apparatus
US20230123017A1 (en) Systems and methods for label-free tracking of human somatic cell reprogramming
CN116893500A (en) High-throughput cell culture and drug screening imaging device and image reconstruction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees