JP4068768B2 - Friction pushing member for accelerator operating resistance generator - Google Patents

Friction pushing member for accelerator operating resistance generator Download PDF

Info

Publication number
JP4068768B2
JP4068768B2 JP25252599A JP25252599A JP4068768B2 JP 4068768 B2 JP4068768 B2 JP 4068768B2 JP 25252599 A JP25252599 A JP 25252599A JP 25252599 A JP25252599 A JP 25252599A JP 4068768 B2 JP4068768 B2 JP 4068768B2
Authority
JP
Japan
Prior art keywords
resin
pressing member
accelerator
friction
resistance generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25252599A
Other languages
Japanese (ja)
Other versions
JP2001071785A (en
Inventor
誠二 佐藤
晃彦 松岡
覚 福澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP25252599A priority Critical patent/JP4068768B2/en
Priority to US09/648,783 priority patent/US6675770B1/en
Priority to FR0011340A priority patent/FR2798161B1/en
Priority to FR0103588A priority patent/FR2807789B1/en
Publication of JP2001071785A publication Critical patent/JP2001071785A/en
Application granted granted Critical
Publication of JP4068768B2 publication Critical patent/JP4068768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は運転者のアクセル操作量に応じてエンジンの出力制御用機器、例えば吸気絞り弁を直接または間接に駆動するシステムにおけるアクセル操作抵抗発生装置用摩擦押当て部材に関する。
【0002】
【従来の技術】
自動車エンジンの出力制御は、ガソリンエンジン車では吸気絞り弁を開閉することで行ない、ディーゼルエンジン車では噴射ポンプのプランジャを回転させることで行なっている。
この出力制御は、アクセルペダルと吸気絞り弁あるいは噴射ポンプのプランジャ等の出力制御機器をワイヤーケーブルで連結しており、運転者のアクセル操作に応じて出力制御機器を駆動する。
近年、ガソリンエンジン車の出力制御は、アクセル操作量を電気信号に変換してアクチュエータを動作させ、このアクチュエータにより吸気絞り弁を開閉させるアクチュエータ方式が実用化されている(実開昭59-41708号公報)。
アクチュエータ方式では従来と比較してワイヤーケーブルが極端に短くなるため、ワイヤーケーブルによる抵抗が小さくなり、運転者はアクセル操作がしづらくなる。このアクセル操作のし難さは、運転者を必要以上に疲れさせ、また事故を引き起こす要因ともなり得る場合がある。
このことは、ディーゼルエンジン車においてワイヤーケーブルを短縮した場合でも発生する。
このため、アクセル操作に抵抗力を加えるアクセル操作抵抗発生装置が知られている(特開平 9-280076 号公報、特開平 9-236030 号公報)。
【0003】
例えば、特開平9-236030号公報には、エンジンの出力制御用機器を間接または直接に駆動させる回転軸とアクセルペダルとがワイヤーケーブルで連結され、アクセル操作量に応じて回転する出力制御用機器駆動機構の回転軸に抵抗力を加えるアクセル操作抵抗発生装置が開示されている。この装置における摩擦押当て部材は、たわみ等の変形を防止するために金属板からなる板状部材にシート状のフッ素系樹脂からなる摩擦板が接着されている。この摩擦押当て部材がばね部材によって回転軸に固定された円板に常時弾性的に押し当られることによって運転者が違和感なくアクセル操作できる。
ここで、シート状のフッ素系樹脂を接着させた板状部材で構成される摩擦押当て部材を用いるのは、アクセルペダル踏み込み力と戻り力に差を発生させるためである。この差が小さいと、運転者がアクセルペダルを任意踏み込んで速度を一定に保つ場合、意識しないほどのわずかな踏み込み力の変化によってもペダルが動作するため、ペダル操作が困難になる。また、差が大きいと、運転者がアクセルペダルを任意踏み込んで速度を一定に保つ場合ではペダル操作が容易になるが、速度を加減速する場合にペダル操作に不快感を生じる。これは、踏み込み時にペダルが重く感じられたり、戻し時にペダルが戻り難いと感じるようになるためである。
【0004】
【発明が解決しようとする課題】
しかしながら、フッ素系樹脂と板状部材とを接着させた摩擦押当て部材は、摩擦材として、シート状のフッ素系樹脂を用いているため、アクセル操作抵抗発生装置の摩擦押当て部材に必要とされる耐クリープ性や自己摩耗性に劣るという問題がある。すなわち、フッ素系樹脂はクリープ変形が大きく、また自己摩耗量が大きい。
その結果、クリープ変形や自己摩耗によって、摩擦押当て部材の押付け荷重の変動によりアクセルフィーリングが変化する。さらに摩擦押当て部材の回転びびりやアクセル戻りが悪化するという問題がある。
【0005】
また、シート状のフッ素系樹脂と板状部材とを接着させているため、相互に剥がれるおそれがある。さらに、摩擦押当て部材の製造工程において、接着工程が必須となり、生産性に劣るという問題がある。
【0006】
本発明は、このような問題に対処するためになされたもので、接着工程が必要なく生産性に優れ、適度な摩擦力と摺動性とを兼ね備え、さらに耐摩耗性が向上したアクセル操作抵抗発生装置用摩擦押当て部材を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明のアクセル操作抵抗発生装置用摩擦押当て部材は、エンジンの出力制御用機器を直接または間接に駆動する回転軸とアクセルペダルとがワイヤーケーブルで連結され、アクセル操作量に応じて回転する出力制御用機器駆動機構の回転軸に抵抗力を加えるアクセル操作抵抗発生装置の摩擦押当て部材において、この摩擦押当て部材は、曲げ強度が 50MPa以上で、かつ曲げ弾性率が 3,300MPa以上の樹脂組成物の射出成形体であり、上記樹脂組成物は、ポリフェニレンサルファイド樹脂(以下、PPSと略称する)、ポリイミド樹脂(以下、PIと略称する)、ポリアミドイミド樹脂(以下、PAIと略称する)、ポリアセタール樹脂および芳香族熱硬化性樹脂から選ばれた少なくとも一つの樹脂材料100重量部に固体潤滑剤および/または補強材が3〜40重量部配合されてなることを特徴とする。曲げ強度が 50MPa以上で、かつ曲げ弾性率が 3,300MPa以上の樹脂材料の成形体とすることにより、摩擦押当て部材が一体成形品として得られる。
【0009】
さらに、上記樹脂材料が固体潤滑剤を配合した樹脂組成物であることを特徴とする。また、固体潤滑剤が四フッ化エチレン樹脂粉末であることを特徴とする。
固体潤滑剤を配合することにより、一体成形品からなる摩擦押当て部材の耐摩耗性を向上させることができる。
【0010】
本発明のアクセル操作抵抗発生装置用摩擦押当て部材を構成する他の樹脂材料は、曲げ強度が 50MPa以上で、かつ曲げ弾性率が 3,300MPa以上で、かつ熱硬化性樹脂の成形体であることを特徴とする。この熱硬化性樹脂が芳香族熱硬化性樹脂あるいはフェノ一ル樹脂であることを特徴とする。
【0011】
【発明の実施の形態】
本発明の一実施態様として、アクセルセンサユニットから延びる回転軸の軸端部に設置されたアクセル操作抵抗発生装置の一例を図1に示す。
アクセル操作抵抗発生装置1は、アクセルセンサユニット12から延び転がり軸受7で支持される回転軸4の軸端部に設置され、ハウジング内に収容される。
ハウジング内には、ハウジング底部から順に転がり軸受7、スペーサ8、スプリングワッシャ9、摩擦押当て部材2が回転軸4の軸方向に設けられている。
摩擦押当て部材2は合成樹脂の成形体であり、外径部には突起11が形成され、ハウジング内の凹部6に嵌合することによって摩擦押当て部材2は回転不可能となっている。
回転軸4の端部には摩擦押当て部材2の相手部材となる金属製円板5が、ボルトによって強固に固定され、回転軸4の回転にともない回転する。
回転軸4はアクセルを踏み込んだ時にワイヤーケーブル14と結束されたアクセルレバー13の動作によって回転し、アクセルを戻した時にリターンスプリング10の戻り力で逆回転する。
摩擦押当て部材2に形成された凸状接触部3が金属製円板5にスプリングワッシャ9によって圧接し、回転軸4はリターンスプリング10の戻り力で逆回転する時にこの圧接で生じる摩擦抵抗によって摩擦力が発生する。この回転軸4に生じる摩擦力がアクセル操作の抵抗となる。なお、15は出力用端子である。
【0012】
このような摩擦押当て部材2は、適度な摩擦力と摺動性を兼ね備え、たわみ等の変形が発生しないよう曲げ強度と曲げ弾性率が高い樹脂材料であればよい。ここで曲げ強度および曲げ弾性率とは、ASTM D790に規定される試験方法で測定した値であり、曲げ強度は 50MPa以上であればよい。曲げ強度が 50MPaより小さいと割れ等の破損のおそれが生じる。また、曲げ弾性率は 3,300MPa以上であればよく、3,300MPaに満たないと耐クリープ性が満足できない。また、これらの樹脂材料は射出成形が可能な樹脂材であることが好ましい。
曲げ強度は 50MPa以上で、曲げ弾性率が 3,300MPa以上の射出成形が可能な樹脂材を射出成形することによって、保持部材の機能と摩擦部材の機能とを一体的に有するアクセル操作抵抗発生装置用摩擦押当て部材2が得られる。
【0013】
曲げ強度は 50MPa以上で、曲げ弾性率が 3,300MPa以上の射出成形が可能な樹脂材は、熱可塑性樹脂あるいは熱硬化性樹脂のいずれであってもよく、具体的には、熱可塑性樹脂として、PI、ポリエーテルイミド樹脂、PAI、PPS、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリエーテルニトリル樹脂、ポリアミド樹脂、全芳香族ポリエステル樹脂、ポリアセタール樹脂(以下、POMと略称する)等が挙げられる。また、熱硬化性樹脂としては、熱硬化性ポリイミド樹脂、芳香族熱硬化性樹脂、フェノ一ル樹脂、エポキシ樹脂などを挙げることができる。これらの合成樹脂は樹脂単独でも、あるいは樹脂混合物であっても使用することができる。これらの中で、PI、PAI、PPS、芳香族熱硬化性樹脂が耐摩耗性および摩擦特性に優れるため好ましい。なお、曲げ強度の上限は、400 MPa であり、曲げ弾性率の上限は、35,000 MPaである。
【0014】
固体潤滑剤としては四フッ化エチレン樹脂(以下、PTFEと略称する)、黒鉛、二硫化モリブデン等を挙げることができ、これを単独でまたは混合して用いることができる。特にPTFEは最も潤滑性に優れており好適に使用できる。PTFEは懸濁重合法によるモールディングパウダ、乳化重合法によるファインパウダのいずれでもよいが、このようなモールディングパウダやファインパウダのバージンPTFEを加圧・加熱した後、粉砕したPTFE粉末や、さらにγ線照射したPTFE粉末は潤滑特性が特に優れており好適である。なお、このようなPTFE粉末は再生PTFEとも呼ばれる。
【0015】
また、上記樹脂材料には、固体潤滑剤以外に補強材を配合することができる。補強材を配合することにより、樹脂材料の機械的特性を改善し、曲げ強度および曲げ弾性率を所定範囲内にすることができ、そのような樹脂組成物であっても本願の摩擦押当て部材として用いることができる。
この摩擦押当て部材に好適に配合できる補強材としては、各種ウィスカや炭素繊維をそれぞれ単独で、あるいは混合物として配合できる。
【0016】
ウィスカとは、アスペクト比が 10 以上の単結晶であり、具体的には、チタン酸カリウムウィスカ、硫酸カルシウムウィスカ、硫酸マグネシウムウィスカ、ウォラストナイト、酸化亜鉛ウィスカ、炭酸カルシウムウィスカ等が例示できる。
上記ウィスカはいずれもモース硬度 5以下であり、また短繊維であるため摩擦面での存在割合が大きくほとんどの摩擦せん断を受け持つために、相手材を損傷しないので好ましい。これらウィスカは単独でも、あるいは数種類の混合物でもよい。
【0017】
炭素繊維はピッチ系あるいはパン系炭素繊維のいずれでもよく、その繊維長は 0.05mm〜0.1mm の範囲のミルド繊維であることが好ましい。繊維種は特に限定しないが、2,000 ℃焼成あるいはそれ以上の温度での処理品(黒鉛化品)より 1,000℃焼成品(炭化品)が好ましい。また、低弾性を狙った低温焼成品あるいは高弾性を狙った高温焼成品いずれも使用することができる。繊維径はφ 20μm 以下、好ましくは、φ 5μm 〜φ15μm であり、アスペクト比は 5〜80、好ましくは 20〜50 である。
上市されている炭素繊維を具体的には例示すると、ピッチ系炭素繊維としてクレカミルドM101S(呉羽化学工業社製)、ドナカーボンS241(大阪ガスケミカル社製)、パン系炭素繊維としてべスファイトHTA−CMFO160−0H(東邦レーヨン社製)等を挙げることができる。
【0018】
固体潤滑剤および/または補強材の配合量は樹脂材料 100重量部に対して 3〜40重量部であることが好ましい。配合剤の配合量が 40 重量部を越えると成形が困難となる。また、 3重量部未満であれば、耐摩耗性および摺動性に対する顕著な効果が得られない。
【0019】
【実施例】
実施例、比較例に用いた材料を以下に示す。
樹脂材料
PPS;#B160(東ソー社製)
PAI;TORLON(アモコ社製)
PI; AURUM450(三井化学社製)
芳香族熱硬化性樹脂;SKレジン(住金ケミカル社製)
POM;ジュラコン(ポリプラスチックス社製)
固体潤滑剤
再生PTFE;KT400H(喜多村社製)
補強材
炭酸カルシウムウィスカ(モース硬度4);ウィスカAS3(丸尾カルシウム社製)
炭素繊維;M107T(呉羽化学工業社製)
【0020】
実施例1〜実施例5、比較例1〜比較例2
上記材料を用い、表1に示す樹脂組成を混合した後、二軸溶融押出し機を用いて造粒し、得られたペレットを射出成形機にて射出成形し、φ50mm×φ40mm× 6mmのリング状評価試験片を得た。なお表1に示す樹脂組成の配合割合は、重量部である。
この評価試験片を用いて、アクセル操作抵抗発生装置用摩擦押当て部材として必要とされる以下の評価試験を行なった。
【0021】
1)摩擦試験:回転数 2.0m/min.、荷重 8kgf、雰囲気温度 80℃の条件で相手材をステンレス鋼とし空気中で、初期(耐久試験前)および以下に述べる耐久試験後に摩擦係数を測定した。
2)耐久試験:揺動角±75度、速度 1Hz、荷重 8kgf、雰囲気温度 80℃、空気中の条件で 300万サイクルの耐久試験を行なつた。評価は、耐久試験前と後との摩耗量の変化を耐摩耗性として、目視で観察した相手材の摺動面の変化を相手材攻撃性として、ほとんど変化がなかったのを○で、わずかに変化が認められたのを△で、大きな変化があったものを×でそれぞれ評価した。測定結果を表1に示す。
【0022】
【表1】

Figure 0004068768
【0023】
表1の結果から明らかなように、本発明のアクセル操作抵抗発生装置用摩擦押当て部材は、摩擦係数が耐久試験後も初期値とほとんど変化なかった。また、耐摩耗性に優れ、また相手材に対しても攻撃性がないことが認められた。
このことから本発明は、アクセル操作抵抗発生装置の摩擦押当て部材として好適であるといえる。
実施例に対して、比較例の組成からなる摩擦押当て部材は、耐久性が劣り相手攻撃性が大きかった。比較例1は 100万サイクルまでに摩擦押当て部材が摩耗したため試験を中止した。
【0024】
【発明の効果】
本発明のアクセル操作抵抗発生装置用摩擦押当て部材は、曲げ強度が 50MPa以上で、かつ曲げ弾性率が 3,300MPa以上の樹脂材料の成形体であるので、適度な摩擦力と摺動性を兼ね備え、さらに耐摩耗性と相手材攻撃性の少ない摩擦押当て部材が一体成形品として得られる。その結果、アクセル操作のフィーリングが良好になるとともに、金属製補強材が不要になり、軽量および長寿命になった。
さらに、射出成形できるので生産性に優れる。
【0025】
また、樹脂材料が所定の樹脂材であるので、さらに固体潤滑剤を配合した樹脂組成物であるので、耐摩耗性がより向上し、また相手材攻撃性がより少ない摩擦押当て部材が得られる。
【0026】
また、熱硬化性樹脂の樹脂材料の成形体であることにより、単体でも上記特性を満足する。
【図面の簡単な説明】
【図1】アクセル操作抵抗発生装置の一例を示す図である。
【符号の説明】
1 アクセル操作抵抗発生装置
2 摩擦押当て部材
3 凸状接触部
4 回転軸
5 円板
6 凹部
7 転がり軸受
8 スペーサ
9 スプリングワッシャ
10 リターンスプリング
11 突起
12 アクセルセンサユニット
13 アクセルレバー
14 ワイヤーケーブル
15 出力用端子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a friction pressing member for an accelerator operation resistance generator in a system for directly or indirectly driving an engine output control device, for example, an intake throttle valve, in accordance with a driver's accelerator operation amount.
[0002]
[Prior art]
The output control of an automobile engine is performed by opening and closing an intake throttle valve in a gasoline engine vehicle, and by rotating a plunger of an injection pump in a diesel engine vehicle.
In this output control, an output control device such as an accelerator pedal and an intake throttle valve or a plunger of an injection pump is connected by a wire cable, and the output control device is driven according to the driver's accelerator operation.
In recent years, the output control of gasoline engine vehicles has been put into practical use by converting an accelerator operation amount into an electrical signal to operate an actuator and opening and closing an intake throttle valve using this actuator (Japanese Utility Model Publication No. 59-41708). Publication).
In the actuator system, the wire cable is extremely short as compared with the conventional one, so that the resistance by the wire cable is reduced, and the driver does not easily operate the accelerator. This difficulty in operating the accelerator may cause the driver to become tired more than necessary and may cause an accident.
This occurs even when the wire cable is shortened in a diesel engine vehicle.
For this reason, accelerator operating resistance generators that apply resistance to accelerator operation are known (Japanese Patent Laid-Open Nos. 9-280076 and 9-236030).
[0003]
For example, Japanese Patent Laid-Open No. 9-236030 discloses an output control device in which a rotating shaft for driving an output control device for an engine indirectly or directly and an accelerator pedal are connected by a wire cable and rotated according to an accelerator operation amount. An accelerator operation resistance generator that applies a resistance force to a rotating shaft of a drive mechanism is disclosed. In the friction pressing member in this apparatus, a friction plate made of a sheet-like fluororesin is bonded to a plate-like member made of a metal plate in order to prevent deformation such as bending. The friction pressing member is elastically pressed against a disk fixed to the rotating shaft by a spring member, so that the driver can perform an accelerator operation without feeling uncomfortable.
Here, the reason why the friction pressing member formed of a plate-like member to which a sheet-like fluororesin is bonded is to generate a difference between the accelerator pedal depression force and the return force. If this difference is small, when the driver depresses the accelerator pedal arbitrarily and keeps the speed constant, the pedal operates even with a slight change in the depressing force that is not conscious, so that the pedal operation becomes difficult. Also, if the difference is large, pedal operation becomes easier when the driver depresses the accelerator pedal arbitrarily to keep the speed constant, but uncomfortable pedal operation occurs when the speed is increased or decreased. This is because the pedal feels heavier when depressing or it is difficult to return when returning.
[0004]
[Problems to be solved by the invention]
However, the friction pressing member in which the fluorine-based resin and the plate-like member are bonded uses a sheet-like fluorine-based resin as the friction material, and thus is required for the friction pressing member of the accelerator operation resistance generator. There is a problem that it is inferior in creep resistance and self-abrasion resistance. That is, the fluororesin has a large creep deformation and a large amount of self-wear.
As a result, the accelerator feeling changes due to the variation of the pressing load of the friction pressing member due to creep deformation or self-wear. Further, there is a problem that the rotation chatter and the accelerator return of the friction pressing member are deteriorated.
[0005]
Further, since the sheet-like fluororesin and the plate-like member are bonded, there is a possibility that they are peeled off from each other. Furthermore, in the manufacturing process of the frictional pressing member, there is a problem that the bonding process is essential and the productivity is inferior.
[0006]
The present invention has been made in order to cope with such a problem. The accelerator operation resistance is excellent in productivity because it does not require a bonding process, has an appropriate frictional force and sliding property, and has improved wear resistance. It aims at providing the friction pressing member for generators.
[0007]
[Means for Solving the Problems]
The friction pressing member for an accelerator operation resistance generator according to the present invention is an output in which a rotating shaft that directly or indirectly drives an engine output control device and an accelerator pedal are connected by a wire cable, and rotates according to an accelerator operation amount. In the frictional pressing member of the accelerator operating resistance generator that applies resistance to the rotating shaft of the control device drive mechanism , this frictional pressing member has a resin composition with a bending strength of 50 MPa or more and a bending elastic modulus of 3,300 MPa or more. The resin composition comprises a polyphenylene sulfide resin (hereinafter abbreviated as PPS), a polyimide resin (hereinafter abbreviated as PI), a polyamideimide resin (hereinafter abbreviated as PAI), a polyacetal. 100 parts by weight of at least one resin material selected from a resin and an aromatic thermosetting resin is added with a solid lubricant and / or a supplement. Wood is characterized by comprising a 3 to 40 parts by weight. By forming a molded body of a resin material having a bending strength of 50 MPa or more and a flexural modulus of 3,300 MPa or more, the friction pressing member can be obtained as an integrally molded product.
[0009]
Furthermore, the resin material is a resin composition containing a solid lubricant. Moreover, the solid lubricant is a tetrafluoroethylene resin powder.
By blending the solid lubricant, it is possible to improve the wear resistance of the frictional pressing member made of an integrally molded product.
[0010]
The other resin material constituting the friction pressing member for the accelerator operating resistance generator of the present invention is a molded body of thermosetting resin having a bending strength of 50 MPa or more and a bending elastic modulus of 3,300 MPa or more. It is characterized by. This thermosetting resin is an aromatic thermosetting resin or a phenol resin.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As an embodiment of the present invention, FIG. 1 shows an example of an accelerator operating resistance generator installed at the shaft end of a rotating shaft extending from an accelerator sensor unit.
The accelerator operation resistance generator 1 is installed at the shaft end portion of the rotating shaft 4 that extends from the accelerator sensor unit 12 and is supported by the rolling bearing 7 and is accommodated in the housing.
In the housing, a rolling bearing 7, a spacer 8, a spring washer 9, and a friction pressing member 2 are provided in the axial direction of the rotating shaft 4 in order from the bottom of the housing.
The friction pressing member 2 is a synthetic resin molded body, and a projection 11 is formed on the outer diameter portion thereof. The friction pressing member 2 cannot be rotated by fitting into the recess 6 in the housing.
A metal disk 5 which is a counterpart member of the friction pressing member 2 is firmly fixed to the end of the rotating shaft 4 by a bolt, and rotates as the rotating shaft 4 rotates.
The rotating shaft 4 is rotated by the operation of the accelerator lever 13 bundled with the wire cable 14 when the accelerator is depressed, and is reversely rotated by the return force of the return spring 10 when the accelerator is returned.
The convex contact portion 3 formed on the frictional pressing member 2 is pressed against the metal disk 5 by a spring washer 9, and the rotating shaft 4 is rotated by the return force of the return spring 10 to cause frictional resistance generated by this pressure contact. A frictional force is generated. The frictional force generated on the rotating shaft 4 becomes the resistance of the accelerator operation. Reference numeral 15 denotes an output terminal.
[0012]
Such a friction pressing member 2 may be a resin material that has an appropriate frictional force and slidability and has a high bending strength and a high bending elastic modulus so that deformation such as bending does not occur. Here, the bending strength and the flexural modulus are values measured by a test method specified in ASTM D790, and the bending strength may be 50 MPa or more. If the bending strength is less than 50 MPa, there is a risk of damage such as cracking. Further, the flexural modulus should be 3,300 MPa or more, and creep resistance cannot be satisfied unless it is less than 3,300 MPa. These resin materials are preferably resin materials that can be injection-molded.
For accelerator operating resistance generators that have both the function of a holding member and the function of a friction member by injection molding a resin material that can be injection-molded with a bending strength of 50 MPa or more and a flexural modulus of 3,300 MPa or more. The friction pressing member 2 is obtained.
[0013]
The resin material that can be injection-molded with a bending strength of 50 MPa or more and a flexural modulus of 3,300 MPa or more may be either a thermoplastic resin or a thermosetting resin. Specifically, as a thermoplastic resin, PI, polyetherimide resin, PAI, PPS, polyetheretherketone resin, polyetherketone resin, polyethernitrile resin, polyamide resin, wholly aromatic polyester resin, polyacetal resin (hereinafter abbreviated as POM), etc. . Examples of the thermosetting resin include a thermosetting polyimide resin, an aromatic thermosetting resin, a phenol resin, and an epoxy resin. These synthetic resins can be used either alone or as a resin mixture. Among these, PI, PAI, PPS, and aromatic thermosetting resins are preferable because of their excellent wear resistance and friction characteristics. The upper limit of bending strength is 400 MPa, and the upper limit of flexural modulus is 35,000 MPa.
[0014]
Examples of the solid lubricant include tetrafluoroethylene resin (hereinafter abbreviated as PTFE), graphite, molybdenum disulfide, and the like, which can be used alone or in combination. In particular, PTFE is most excellent in lubricity and can be suitably used. PTFE may be either a molding powder by suspension polymerization method or a fine powder by emulsion polymerization method. After pressing and heating such molding powder and virgin PTFE of fine powder, pulverized PTFE powder and further γ-ray Irradiated PTFE powder is particularly suitable for its excellent lubrication characteristics. Such PTFE powder is also called regenerated PTFE.
[0015]
In addition to the solid lubricant, a reinforcing material can be added to the resin material. By blending the reinforcing material, the mechanical properties of the resin material can be improved, and the bending strength and the bending elastic modulus can be within a predetermined range. Even with such a resin composition, the friction pressing member of the present application can be used. Can be used as
As a reinforcing material that can be suitably blended in the friction pressing member, various whiskers and carbon fibers can be blended singly or as a mixture.
[0016]
The whisker is a single crystal having an aspect ratio of 10 or more, and specific examples include potassium titanate whisker, calcium sulfate whisker, magnesium sulfate whisker, wollastonite, zinc oxide whisker, and calcium carbonate whisker.
Each of the above whiskers has a Mohs hardness of 5 or less, and since it is a short fiber, it has a large presence ratio on the friction surface and is responsible for most of the frictional shear. These whiskers may be used alone or as a mixture of several kinds.
[0017]
The carbon fiber may be either pitch-based or bread-based carbon fiber, and the fiber length is preferably a milled fiber having a range of 0.05 mm to 0.1 mm. The fiber type is not particularly limited, but a 1,000 ° C. fired product (carbonized product) is preferable to a product (graphitized product) fired at 2,000 ° C. or higher. Moreover, either a low-temperature fired product aiming at low elasticity or a high-temperature fired product aiming at high elasticity can be used. The fiber diameter is φ20 μm or less, preferably φ5 μm to φ15 μm, and the aspect ratio is 5 to 80, preferably 20 to 50.
Specific examples of commercially available carbon fibers include Crecamilde M101S (manufactured by Kureha Chemical Co., Ltd.) and Donacarbon S241 (manufactured by Osaka Gas Chemical Co., Ltd.) as pitch-based carbon fibers, and Besfight HTA-CMFO160 as bread-based carbon fibers. -0H (manufactured by Toho Rayon Co., Ltd.).
[0018]
The blending amount of the solid lubricant and / or the reinforcing material is preferably 3 to 40 parts by weight with respect to 100 parts by weight of the resin material. Molding becomes difficult when the compounding amount exceeds 40 parts by weight. On the other hand, if it is less than 3 parts by weight, no significant effect on wear resistance and sliding properties can be obtained.
[0019]
【Example】
The materials used in Examples and Comparative Examples are shown below.
Resin material PPS; # B160 (manufactured by Tosoh Corporation)
PAI; TORLON (Amoco)
PI; AURUM450 (Mitsui Chemicals)
Aromatic thermosetting resin; SK resin (manufactured by Sumikin Chemical Co., Ltd.)
POM: Duracon (manufactured by Polyplastics)
Solid lubricant recycled PTFE; KT400H (Kitamura Co., Ltd.)
Reinforcement calcium carbonate whisker (Mohs hardness 4); whisker AS3 (manufactured by Maruo Calcium)
Carbon fiber: M107T (Kureha Chemical Industries)
[0020]
Example 1 to Example 5, Comparative Example 1 to Comparative Example 2
After mixing the resin composition shown in Table 1 using the above materials, granulate using a twin-screw melt extruder, and the resulting pellets are injection molded using an injection molding machine to form a ring of φ50mm × φ40mm × 6mm An evaluation test piece was obtained. In addition, the mixture ratio of the resin composition shown in Table 1 is a weight part.
Using this evaluation test piece, the following evaluation test required as a friction pressing member for an accelerator operating resistance generator was performed.
[0021]
1) Friction test: Friction coefficient measured at initial (before endurance test) and after endurance test described below in stainless steel as the mating material under conditions of rotation speed 2.0m / min., Load 8kgf, ambient temperature 80 ℃ did.
2) Durability test: A durability test of 3 million cycles was performed under conditions of rocking angle ± 75 degrees, speed 1 Hz, load 8 kgf, ambient temperature 80 ° C, and air. In the evaluation, the change in the amount of wear before and after the endurance test was defined as wear resistance, and the change in the sliding surface of the other material visually observed was considered as the other material aggression. The change was recognized as Δ, and the change was evaluated as ×. The measurement results are shown in Table 1.
[0022]
[Table 1]
Figure 0004068768
[0023]
As is clear from the results in Table 1, the frictional pressing member for an accelerator operating resistance generator according to the present invention had almost the same coefficient of friction as the initial value even after the durability test. Moreover, it was recognized that it was excellent in wear resistance and was not aggressive against the mating material.
Therefore, it can be said that the present invention is suitable as a friction pressing member of the accelerator operation resistance generator.
In contrast to the examples, the frictional pressing member having the composition of the comparative example was inferior in durability and great in attacking the opponent. In Comparative Example 1, the test was stopped because the frictional pressing member was worn by 1 million cycles.
[0024]
【The invention's effect】
The frictional pressing member for an accelerator operating resistance generator according to the present invention is a molded body of a resin material having a bending strength of 50 MPa or more and a bending elastic modulus of 3,300 MPa or more, and therefore has an appropriate friction force and sliding property. In addition, a frictional pressing member with less wear resistance and less aggressiveness to the counterpart material can be obtained as an integrally molded product. As a result, the feeling of accelerator operation became good and the metal reinforcing material became unnecessary, resulting in light weight and long life.
Furthermore, since it can be injection-molded, it is excellent in productivity.
[0025]
Further, since the resin material is a predetermined resin material, it is a resin composition further blended with a solid lubricant, so that it is possible to obtain a friction pressing member with improved wear resistance and less aggressiveness to the counterpart material. .
[0026]
In addition, since it is a molded body of a thermosetting resin material, the above characteristics are satisfied even by itself.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an accelerator operating resistance generator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Accelerator operation resistance generator 2 Friction pushing member 3 Convex contact part 4 Rotating shaft 5 Disc 6 Concave 7 Rolling bearing 8 Spacer 9 Spring washer 10 Return spring 11 Protrusion 12 Acceleration sensor unit 13 Acceleration lever 14 Wire cable 15 For output Terminal

Claims (3)

エンジンの出力制御用機器を直接または間接に駆動する回転軸とアクセルペダルとがワイヤーケーブルで連結され、アクセル操作量に応じて回転する出力制御用機器駆動機構の回転軸に抵抗力を加えるアクセル操作抵抗発生装置の摩擦押当て部材において、この摩擦押当て部材は、曲げ強度が 50MPa以上で、かつ曲げ弾性率が 3,300MPa以上の樹脂組成物の射出成形体であり、前記樹脂組成物は、ポリフェニレンサルファイド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアセタール樹脂および芳香族熱硬化性樹脂から選ばれた少なくとも一つの樹脂材料100重量部に固体潤滑剤および/または補強材が3〜40重量部配合されてなることを特徴とするアクセル操作抵抗発生装置用摩擦押当て部材。 Accelerator operation that applies resistance force to the rotation shaft of the output control device drive mechanism that connects the rotation shaft that directly or indirectly drives the engine output control device and the accelerator pedal with a wire cable and rotates according to the amount of accelerator operation In the friction pressing member of the resistance generator, the friction pressing member is an injection-molded body of a resin composition having a bending strength of 50 MPa or more and a bending elastic modulus of 3,300 MPa or more, and the resin composition is polyphenylene. 3 to 40 parts by weight of a solid lubricant and / or a reinforcing material are blended with 100 parts by weight of at least one resin material selected from sulfide resin, polyimide resin, polyamideimide resin, polyacetal resin and aromatic thermosetting resin. A friction pressing member for an accelerator operating resistance generator. 前記固体潤滑剤は、四フッ化エチレン樹脂粉末であることを特徴とする請求項1記載のアクセル操作抵抗発生装置用摩擦押当て部材。  2. The friction pressing member for an accelerator operating resistance generator according to claim 1, wherein the solid lubricant is a tetrafluoroethylene resin powder. 前記補強材は、モース硬度5以下のウィスカまたは炭素繊維であることを特徴とする請求項1または2記載のアクセル操作抵抗発生装置用摩擦押当て部材。  The friction pressing member for an accelerator operating resistance generator according to claim 1 or 2, wherein the reinforcing material is a whisker or carbon fiber having a Mohs hardness of 5 or less.
JP25252599A 1999-09-07 1999-09-07 Friction pushing member for accelerator operating resistance generator Expired - Fee Related JP4068768B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25252599A JP4068768B2 (en) 1999-09-07 1999-09-07 Friction pushing member for accelerator operating resistance generator
US09/648,783 US6675770B1 (en) 1999-09-07 2000-08-28 Pressing device and friction plate for improving response sensitivity of accelerator operation
FR0011340A FR2798161B1 (en) 1999-09-07 2000-09-06 PRESSURE DEVICE FOR APPLYING A FRICTION RESISTANCE TO A MOTOR POWER ADJUSTMENT SHAFT
FR0103588A FR2807789B1 (en) 1999-09-07 2001-03-16 FRICTION PLATE FOR PRESSURE DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25252599A JP4068768B2 (en) 1999-09-07 1999-09-07 Friction pushing member for accelerator operating resistance generator

Publications (2)

Publication Number Publication Date
JP2001071785A JP2001071785A (en) 2001-03-21
JP4068768B2 true JP4068768B2 (en) 2008-03-26

Family

ID=17238593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25252599A Expired - Fee Related JP4068768B2 (en) 1999-09-07 1999-09-07 Friction pushing member for accelerator operating resistance generator

Country Status (1)

Country Link
JP (1) JP4068768B2 (en)

Also Published As

Publication number Publication date
JP2001071785A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
US6591712B2 (en) Pedal device for automobile and damper for use in the same
JP3229020B2 (en) Slide bearing material
JP3192082B2 (en) Resin pulley
US20100077886A1 (en) Accelerator Pedal for a Vehicle
KR20130141684A (en) Resin composition and sliding member using same
FR2893374A1 (en) FRICTION MEMBER WITHOUT ASBESTOS.
JP4068768B2 (en) Friction pushing member for accelerator operating resistance generator
US20150087785A1 (en) Resin composition and seal member
US5352950A (en) Vibration wave driven motor
JP4589154B2 (en) Seal ring
JP4767229B2 (en) Pushing member for accelerator operating resistance generator
JP4147945B2 (en) Valve lifter for internal combustion engine
US6675770B1 (en) Pressing device and friction plate for improving response sensitivity of accelerator operation
JP4300456B2 (en) Ball seat
CN113897024B (en) Wear-resistant polyether-ether-ketone material for protecting easily-worn unit and application thereof
JP2006266102A (en) Swash plate compressor and swash plate for same
JPH09183867A (en) Wiper blade rubber
JP2008248247A (en) Resin nut and sliding screw device
JP2001073815A (en) Frictional member for resistance generating device for accelerator operation
JP2007032739A (en) Resin pulley
JPH1036679A (en) Resin composition for sliding member and molding made therefrom
JP2010043698A (en) Resin nut and sliding screw device
JPH1078112A (en) Power transmitting member
KR20210101655A (en) Plastic composite
JP2017141352A (en) Friction material composition, friction material and friction member using the friction material composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees