JP4068232B2 - Plasma arc cutting torch - Google Patents

Plasma arc cutting torch Download PDF

Info

Publication number
JP4068232B2
JP4068232B2 JP24392998A JP24392998A JP4068232B2 JP 4068232 B2 JP4068232 B2 JP 4068232B2 JP 24392998 A JP24392998 A JP 24392998A JP 24392998 A JP24392998 A JP 24392998A JP 4068232 B2 JP4068232 B2 JP 4068232B2
Authority
JP
Japan
Prior art keywords
gas
gas flow
cylindrical insulator
core tube
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24392998A
Other languages
Japanese (ja)
Other versions
JP2000071076A (en
Inventor
博 藤原
俊彦 足達
健太 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP24392998A priority Critical patent/JP4068232B2/en
Publication of JP2000071076A publication Critical patent/JP2000071076A/en
Application granted granted Critical
Publication of JP4068232B2 publication Critical patent/JP4068232B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマアークにより金属を切断するためのプラズマアーク切断トーチに関する。
【0002】
【従来の技術】
一般に、プラズマアーク切断トーチは、トーチ本体内に設けた芯管の先端に電極を取付け、該芯管に筒形絶縁物を介して支持筒を外嵌させ、該支持筒にチッ及びシールドカップを取付け、芯管内に供給される空気、酸素、窒素等のガスを二手に分け、その一方のガスをチップと電極との問に流入してプラズマ作勤ガスとし、他方のガスを支持筒用の冷却ガスとして用いている。
【0003】
従来、例えば、図5乃至図7に示されるプラズマアーク切断トーチが提言されている。
すなわち図5乃至図7において、51はプラズマアーク切断装置に用いられるトーチ本体で、このトーチ本体51には芯管52が一体的に連結されている。この芯管52には、軸芯部に貫通孔521が形成され、かつ先端部には雄ネジ522が形成されている。
53は芯管52に連結されたガス供給管で、このガス供給管53の内部と貫通孔521とが連通されている。54は貫通孔521の長軸方向の中間部に螺着された隔壁管、55は芯管52の先端部に螺着されたキャップ状の電極で、この電極55は、銅又は銅合金よりなる電極基材56と、この電極基材56の先端凹部に装着されたハフニウムやジルコニウム等の高融点の挿入体57とにより構成されている。
【0004】
この電極55が芯管52の先端部に螺着された状態において、電極55および芯管52と隔壁管54との間に第2のガス流路59が形成され、この第2のガス流路59とガス供給管53の内部に連通する第1のガス流路58とが隔壁管54の先端部の間隙を介して連通されている。
60は芯管52の外部に配設された筒形絶縁物で、この絶縁物60の外部には支持筒61が配設されるが、この場合、支持筒61は分割された内筒61Aと外筒61Bとがロー付により一体に形成される。なお、この一体に形成された支持筒61には、内筒61Aと外筒61Bとの間に筒状空間62が形成されている.
【0005】
この支持筒61には、内筒61Aの先端部にプラズマ噴出用孔を有するチップ63が螺着され、かつ外筒61Bの外部にはシールドカップ64が螺着されている。
さて、芯管52には上記第2のガス流路59に半径方向に連通するオリフィス65が形成されていて、このオリフィス65相当部から上方に、絶縁物60の内面と芯管52の外面との環状通路66が形成され、この環状通路66は、絶縁物60の中間段部の空間,ガス流通孔67,環状通路68およびガス流通孔69を経て、上記支持筒61内の筒状空間62に連通されている。
筒状空間62の下部には半径方向のガス流通孔70が形成されると共に、このガス流通孔70に対向する絶縁物60相当部には、環状溝71と環状溝71を貫通するガス流通孔72とが形成されて、電極55とチップ63との間のプラズマ作動ガス流通路73に、結果として筒状空間62が連通されている。
さらに、筒状空間62の下端部にはガス流通孔74が形成されて、このガス流通孔74より流出されるガスはシールドカップ64とチップ63との間隙を経て外部へと流出される。
上記により、ガス供給管53からガスが供給されると、ガスは、第1のガス流路58→第2のガス流路59→環状通路66→ガス流通路67,68,69→筒状空間62へと流通される。
筒状空間62内に流通されるガスの一部は、分岐孔70からプラズマ作動ガス流通路73へと流入され、残りのガスはガス流通孔74より流出され、シールドカップ64とチップ63との間隙を経て外部へと流出される。
【0006】
上記の構成において、ガス供給管53からガスが供給されると共に、電極55とチップ63との間に電力を供給して、いわゆるパイロットアークを発生させ、この後、電極55と被切断物との間に電力を供給して、電極55と被切断物との間にメインアークを発生させて切断作業が行われる。
この場合、上記したごとく筒状空間62内に流通されるガスの一部が、分岐孔70からプラズマ作動ガス流通路73へと流入され、このプラズマ作動ガス流通路73へと流入されたガスにより拘束されたプラズマ噴流がチップ63の貫通孔より噴出されつつ切断作業が行われる。
勿論、切断作業時には、筒状空間62内からガス流通孔74を経てシールドカップ64とチップ63との間隙を経て外部へと流出されるガスにより、各部が適宜に冷却される。
所望の切断作業が終了すると電力の供給を停止させると共に、同時にあるいはしかる後にガスの供給を停止させる。
勿論、被切断物の切断長さによって一義的には断言できないが、一般にプラズマアーク切断作業時毎に電力の供給・停止、すなわちパイロットアークおよびメインアークの発生とメインアークの消弧とを繰返している。
【0007】
【発明が解決しようとする課題】
ところで、上記構造のプラズマアーク切断トーチでは、支持筒61の内部に筒状空間62を形成するために、支持筒61として、分割された内筒61Aと外筒61Bとをロー付により一体に形成する必要があるため、内筒61Aと外筒61Bとよりなる支持筒61の製作費が割高となっていた。
【0008】
さらに、切断トーチが新しいときには問題とはならないが、一般にプラズマアーク切断作業時には、アークの発生と消弧とが繰返されるが、このアークの発生と消弧との繰返回数が1日において極めて頻繁であるため、下記の問題が発生した。
すなわち、上記従来の構造のプラズマアーク切断トーチにより反復してプラズマアーク切断作業を行ったところ、ある程度切断作業を繰返すと、途中から所望の切断状態が得られにくくなることが判明した。
【0009】
この状態を検証したところ、絶縁物60に穿設された複数のガス流通孔72相当部のうちの一部が焼損され、かつガス流通孔72に対向する電極55の外周部から電極55の先端方向に向かうアーク痕が生じていた。
このように絶縁物60に穿設された複数のガス流通孔72相当部のうちの一部が焼損されるのは、頻繁にアークの発生と消弧とを繰返した場合に、特に、電極55とチップ63との間にパイロットアークを発生させるために、芯管52と支持筒61との間に電力を供給するが、このパイロットアーク発生時には、ガスが、筒状空間62の下部に穿設されたガス流通孔70から絶縁物60のガス流通路71,72を経てプラズマ作動ガス流通路73へと流通することにより、支持筒61に穿設されたガス流通孔70と電極55の外周面との絶縁間隔の短縮化が図られて、ガス流通孔70のエッジ部と電極55の外周面との間に、所望としないパイロットアークが間欠的に発生したものと考えられる。
このように、ガス流通孔70のエッジ部と電極55の外周面との間にパイロットアークが発生すると、絶縁物60のうちアークが通過するガス流通孔72がアーク熱により焼損される。
一旦絶縁物60のガス流通孔72が焼損されると、以降において同じ箇所でパイロットアークが間欠的に繰返して発生するため、早期に絶縁物60の焼損箇所を修復する必要がある。
【0010】
ところで、この種のプラズマアーク切断トーチにおいては、電極55、チップ63およびシールドカップ64はトーチ本体51に対して着脱自在な、いわゆる交換部品であるが、その他の部品、例えば、芯管52、絶縁物60および支持筒61はトーチ本体51と一体的に、たとえば適宜の樹脂により一体的にモールド成形されているため、上記における絶縁物60のみを新規なものと取替えることができない。
このため、上記のように絶縁物60が焼損した場合には、プラズマアーク切断トーチ全体を新規なものと取替えなければならないため、不経済となつていた。
【0011】
なお、プラズマ作動ガスとして空気、酸素、窒素等のガスが適宜に選択して用いられるが、入手が容易で安価なために圧縮空気がプラズマ作動ガスとして多用されている。
ところで、特定の利用者において、圧縮空気を用いたプラズマアーク切断トーチの取替周期が短いため、交換前の古いプラズマアーク切断トーチを調べてみたところ、上記と同様に、絶縁物60に穿設された複数のガス流通孔72相当部のうちの一部が焼損され、かつガス流通孔72に対向する電極55の外周部から電極55の先端方向に向かうアーク痕が生じていた。
このため特定利用者の切断作業状況調査により、圧縮空気の使用方法に問題があることが判明した。すなわち、一般的に油分やゴミ等のいわゆるオイルミストを除去した圧縮空気を使用することが大前提とされているが、この特定利用者はオイルミストを除去していない圧縮空気を使用していたため、上記パイロツトアーク形成時に、圧縮空気のオイルミストにより支持筒61に穿設されたガス流通孔70と電極55の外周面との絶縁間隔の短縮化、換言すれば短絡化が図られて、ガス流通孔70のエッジ部と電極55の外周面との間に、所望としないパイロットアークが間欠的に発生したと考えられる。
上記のケースは特定利用者の不注意ではあるが、この場合でもできるだけ故障を回避できるプラズマアーク切断トーチとするようにと要望されている。
【0012】
本発明は上記の問題に鑑みてなされたもので、その目的は、製作費が低廉で経済的なプラズマアーク切断トーチを提供することである。
【0013】
【課題を解決するための手段】
本発明は、トーチ本体内に設けた芯管の先端に電極を取付け、該芯管に筒形絶縁物を介して支持筒を外嵌させ、該支持筒にチップ及びシールドカップを取付けたプラズマアーク切断トーチにおいて、前記筒形絶縁物を同芯に配置した内筒と外筒とから構成して、前記筒形絶縁物の内筒と外筒との間に形成されて上方から下方に向かう長軸方向の冷却通路を形成すると共に、該長軸方向の冷却通路の中間部に前記支持筒の内側に至るガス流通孔を形成し、前記芯管内に供給されたガスを芯管の先端側に形成されたガス流通孔を介して前記筒形絶縁物の内側に導き、該ガスを前記筒形絶縁物と前記芯管との間隙を介して前記長軸方向の冷却通路に導き、前記長軸方向の冷却通路を長軸方向に向かう前記ガスを前記筒形絶縁物の内筒の先端側に形成されたガス流通孔を介してチップと電極との間のプラズマ作動ガス流通路に導き、前記ガスが、前記長軸方向の冷却通路から該長軸方向の冷却通路の中間部に形成されて前記支持筒の内側に至るガス流通孔を経て前記支持筒の内側に向かい、前記ガスを前記支持筒と前記筒形絶縁物との間隙を介してチップとシールドカップとの間に導くことを特徴とするプラズマアーク切断トーチである。
【0014】
【発明の実施の形態】
以下、本発明を図示の実施例により詳細に説明する。
図1乃至図4において、1はトーチ本体で、このトーチ本体1には芯管2が一体的に連結されている。この芯管2には、軸芯部に貫通孔201が形成され、先端部には、電極5を取り付けるためのネジ部、例えば雌ネジ202が形成されるとともに、芯管2の先端側には貫通孔201の半径方向の外部に貫通するガス流通孔4が形成されている.
3は芯管2に連結されたガス供給管で、このガス供給管3の内部と貫通孔201とが連通されている。5は芯管2の先端部に螺着された電極、例えば棒状の電極で、この電極5は、銅又は銅合金よりなる電極基材6と、この電極基材5の先端凹部に装着されたハフニウムやジルコニウム等の高融点の挿入体7により構成されている。
【0015】
8は芯管2の外部に配設された筒形絶縁物で、この筒形絶縁物8は同芯に配置される内筒8Aと外筒8Bから構成されている。この内筒8Aと外筒8Bからなる筒形絶縁物8が芯管2の外部に配設された状態において、内筒8Aと芯管2との間にガス流通孔4を覆う上方への間隙9が形成されている。例えば、図1および図2に示されるごとく、芯管2の上方部には内筒8Aに遊入する断面が三角形状のフランジが形成されているため、この芯管2の断面三角形状部と内筒8Aの内周面との間隙により、ガス流通孔4に連通する間隙9が上方へと連通している。
10は、筒形絶縁物8の内筒8Aと外筒8Bとの間に形成された、上方から下方に向かう長軸方向の冷却通路で、例えば、外筒8Bの上半部には内筒8Aと遊嵌し、長軸方向に延設された三ケ月状の溝101が円周方向に複数個形成され、この三ケ月状の長軸方向の溝101の下部は、内筒8Aと外筒8Bとの間の環状通路102が連通されている。上記三ケ月状の長軸方向の溝101と環状通路102とにより、筒形絶縁物8の内外筒8A,8B間の上方から下方に向かう長軸方向の冷却通路10が構成されている。
11は、筒形絶縁物8の長軸方向の冷却通路10の中間部に穿設された、半径方向の外部に開口するガス流通孔で、このガス流通孔11は筒形絶縁物8の外筒8Bに形成されている。
【0016】
12は、筒形絶縁物8の長軸方向の冷却通路10の下部に連通されて半径方向の内部に開口するガス流通孔で、このガス流通孔12は筒形絶縁物8の内筒8Aに形成されている。なお、図4に示されるごとく、このガス流通孔12は内筒8Aの円周部に螺旋状に配設されている。
13は、芯管2に筒形絶縁物8を介して外嵌された筒状の支持筒、14は、ガス流通孔11を覆い、支持筒13と筒形絶縁物8との間に形成された環状空間で、この環状空間14に連通する長軸方向の冷却孔15が支持筒13の先端円周部に複数個形成されている。
16は、支持筒13の先端に螺着されたチップで、このチップ16は従来と同様に軸芯部にプラズマ噴出用孔が穿設されている。17は支持筒13の外部に取付けられるシールドカップ、18は電極5とチップ16との間に形成されたプラズマ作動ガス流通路である。
なお、従来と同様に、電極5,チップ16およびシールドカップ16以外のトーチ各部はトーチ本体51と一体的に、たとえば適宜の樹脂により一体的にモールド成形される。
【0017】
上記により、ガス供給管3からガスが供給されると、ガスは、芯管2の貫通孔201→ガス流通孔4→筒形絶縁物8の内筒8Aと芯管2との間隙9→筒形絶縁物8の長軸方向の冷却通路10へと流通される。
筒形絶縁物8の長軸方向の冷却通路10へと流通されるガスの一部は、ガス流通孔12からプラズマ作動ガス流通路18へと流入され、残りのガスはガス流通孔11より支持筒13と筒形絶縁物8との間に形成された環状空間14に流入された後、支持筒13の冷却孔15から流出され、シールドカップ17とチップ16との間隙を経て外部へと流出される。
【0018】
上記の構成において、ガス供給管3からガスが供給されると共に、電極5とチップ16との間に電力を供給して、いわゆるパイロットアークを発生させ、この後、電極5と被切断物との間に電力を供給して、電極5と被切断物との間にメインアークを発生させて切断作業が行われる。
この場合、上記したごとく筒形絶縁物8の長軸方向の冷却通路10内に流通されるガスの一部が、分岐孔12からプラズマ作動ガス流通路18へと流入され、このプラズマ作動ガス流通路18へと流入されたガスにより拘束されたプラズマ噴流がチップ16の貫通孔より噴出されつつ切断作業が行われる。
【0019】
勿論、切断作業時には、筒形絶縁物8の長軸方向の冷却通路10内からガス流通孔11、環状空間14および支持筒13の冷却孔15を経てガスが流出され、このようにして、シールドカップ17とチップ16との間隙を経て外部へと流出されるガスにより、各部が適宜に冷却される。
所望の切断作業が終了すると電力の供給を停止させると共に、同時にあるいはしかる後にガスの供給を停止させる。
【0020】
ところで、電極5とチップ16との間にパイロットアークを発生させるために、芯管2と支持筒13との間に電力を供給するが、芯管2および電極5と支持筒13とは、以下に説明するように、内筒8Aおよび外筒8Bから構成される筒形絶縁物8によって確実に電気的に絶縁された状態に維持される。
すなわち、トーチ各部の配置において、ガス流通孔11と、筒形絶縁物8の内外筒8A,8B間に形成される長軸方向の冷却通路10と、ガス流通孔12とにより、支持筒13と電極5とは一応空間的に連通状態に配置されている。
しかし、
▲1▼ この連通距離が電気的に十分に長い距離であること。
▲2▼ 筒形絶縁物8の冷却通路10を上方から下方に向かうガスは、ガス流通孔11から支持筒13と筒形絶縁物8との間に形成された環状空間14に流入される。このように、ガス流通孔11から支持筒13側へのガス流が支持筒13から電極5方向への電界を僅かであるが弱めるように作用する。
このため、芯管2および電極5と支持筒13とは、内筒8Aおよび外筒8Bから構成される筒形絶縁物8によって確実に電気的に絶縁された状態に維持され、従来のような筒形絶縁物の焼損状態が生起することはない。
【0021】
さらに、作業者が間違ってオイルミストを混入した圧縮空気を使用したとしても、上記▲1▼に記載のごとく、支持筒13と電極5とは電気的に十分に長い距離離間されているため、従来のような筒形絶縁物の焼損状態が生起することはない。さらにまた、切断時に高温化するチップ16および支持筒13を冷却するガスは、環状空間14を経た後、冷却孔15からトーチの外部へと流出される。
言い換えれば、冷却により高温化したガスはトーチの外部へと流出されるため、高温の支持筒13に接することなくプラズマ作動ガス流通路18へと流入されるガスの温度は、従来のごとく、高温の支持筒61を冷却したガスの一部が分岐されてプラズマ作動ガス流通路73へと流入される場合のガスの温度に比べて低温である。
ところで、プラズマ作動ガス流通路18へと流入されたガスにより拘束されたプラズマ噴流をチップ16の貫通孔より噴出させる場合、プラズマ作動ガスが低温である程、熱的ピンチ効果により高温のプラズマ噴流が形成される。
すなわち、上記のごとく、プラズマ作動ガス流通路18へと流入されるガスの温度は、従来の場合に比べて低温であるため、従来の場合のプラズマ噴流よりも高温のプラズマ噴流が形成される。このため、従来の場合に比べて切断品質の高い切断作業を行うことができるプラズマアーク切断トーチを得ることができる。さらに、支持筒13は簡単な筒状であるため加工が簡単で、製作費が低廉である。
【0022】
【発明の効果】
以上の説明で明らかなように、発明に係るプラズマアーク切断トーチは、
トーチ本体内に設けた芯管の先端に電極を取付け、該芯管に筒形絶縁物を介して支持筒を外嵌させ、該支持筒にチップ及びシールドカップを取付けたプラズマアーク切断トーチにおいて、前記筒形絶縁物を同芯に配置した内筒と外筒とから構成して、該内外筒間に上方から下方に向かう長軸方向の冷却通路を形成すると共に、該内外筒間の冷却通路の中間部に前記支持筒の内側に至るガス流通孔を形成し、前記芯管内に供給されたガスを芯管の先端側に形成されたガス流通孔を介して前記筒形絶縁物の内側に導き、該ガスを前記筒形絶縁物と前記芯管との間隙を介して前記筒形絶縁物の長軸方向の冷却通路に導き、前記長軸方向の冷却通路を長軸方向に向かうガスを前記筒形絶縁物の内筒の先端側に形成されたガス流通孔を介してチツプと電極との間のプラズマ作動ガス流通路に導き、前記長軸方向の冷却通路から前記ガス流通孔を経て前記支持筒の内側に向かうガスを前記支持筒と前記筒形絶縁物との間隙を介してチップとシールドカップとの間に導くため、芯管および電極と支持筒とは、内筒および外筒から構成される筒形絶縁物によって確実に電気的に絶縁された状態に維持され、従来のような筒形絶縁物の焼損状態が生起することはない。
【0023】
さらに、作業者が間違ってオイルミストを混入した圧縮空気を使用したとしても、上記▲1▼に記載のごとく、支持筒と電極とは電気的に十分に長い距離離間されているため、従来のような筒形絶縁物の焼損状態が生起することはない。
【0024】
さらに、プラズマ作動ガス流通路へと流入されるガスの温度は、従来の場合に比べて低温であるため、従来よりも高温のプラズマ噴流が形成され、切断品質の高い切断作業を行なえるプラズマアーク切断トーチを得ることができる。
さらに、支持筒は簡単な筒状であるため加工が簡単で、製作費が低廉である。
【0025】
以上、要するに本発明によれば、製作費が低廉で経済的なプラズマアーク切断トーチを得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例を示す縦断面正面図
【図2】図1のII−II線断面矢視図
【図3】図1のIII −III 線断面矢視図
【図4】図1のVI−VI線断面矢視図
【図5】従来例を示す一部切欠き正面図
【図6】図5のVI−VI線断面矢視図
【図7】図5のVII −VII 線断面矢視図
【符号の説明】
1 トーチ本体
2 芯管
3 ガス供給管
4 芯管2の先端側に形成されたガス流通孔
5 電極
8 内筒8Aおよび外筒8Bから構成される筒形絶縁物
9 ガス流通孔4を覆う、内筒8Aと芯管2との間に形成された間隙
10 筒形絶縁物8の内筒8Aと外筒8Bとの間に形成された、上方から下方に向かう長軸方向の冷却通路
11 筒形絶縁物8の長軸方向の冷却通路10の中間部に穿設された、半径方向の外部に開口するガス流通孔
12 筒形絶縁物8の長軸方向の冷却通路10の下部に連通されて半径方向の内部に開口するガス流通孔
13 筒状の支持筒
14 ガス流通孔11を覆い、支持筒13と筒形絶縁物8との間に形成された環状空間
15 環状空間14に連通する長軸方向の冷却孔15
16 チップ
17 シールドカップ
18 プラズマ作動ガス流通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasma arc cutting torch for cutting metal with a plasma arc.
[0002]
[Prior art]
In general, a plasma arc cutting torch, mounted an electrode at the tip of the core tube provided in the torch body, fitted to the support tube via a cylindrical insulating material core tube, chip and the shield cup on the support tube The gas, such as air, oxygen, nitrogen, etc. supplied into the core tube is divided into two, and one of the gases flows into the tip and electrode to make the plasma working gas, and the other gas is for the support cylinder It is used as a cooling gas.
[0003]
Conventionally, for example, a plasma arc cutting torch shown in FIGS. 5 to 7 has been proposed.
That is, in FIGS. 5 to 7, reference numeral 51 denotes a torch body used in the plasma arc cutting apparatus, and a core tube 52 is integrally connected to the torch body 51. In the core tube 52, a through hole 521 is formed in an axial core portion, and a male screw 522 is formed in a distal end portion.
53 is a gas supply pipe connected to the core pipe 52, and the inside of the gas supply pipe 53 and the through hole 521 communicate with each other. 54 is a partition tube screwed to the middle portion of the through-hole 521 in the long axis direction, 55 is a cap-like electrode screwed to the tip of the core tube 52, and this electrode 55 is made of copper or a copper alloy. The electrode base material 56 and an insert 57 having a high melting point such as hafnium or zirconium mounted in the concave portion at the tip of the electrode base material 56 are configured.
[0004]
In a state where the electrode 55 is screwed to the distal end portion of the core tube 52, a second gas channel 59 is formed between the electrode 55, the core tube 52, and the partition wall tube 54, and the second gas channel 59 and the first gas flow path 58 communicating with the inside of the gas supply pipe 53 are communicated with each other through a gap at the tip of the partition wall pipe 54.
Reference numeral 60 denotes a cylindrical insulator disposed outside the core tube 52. A support cylinder 61 is disposed outside the insulator 60. In this case, the support cylinder 61 is separated from the divided inner cylinder 61A. The outer cylinder 61B is integrally formed by brazing. In the integrally formed support cylinder 61, a cylindrical space 62 is formed between the inner cylinder 61A and the outer cylinder 61B.
[0005]
A tip 63 having a plasma ejection hole is screwed to the support cylinder 61 at the tip of the inner cylinder 61A, and a shield cup 64 is screwed to the outside of the outer cylinder 61B.
An orifice 65 communicating with the second gas flow path 59 in the radial direction is formed in the core tube 52, and the inner surface of the insulator 60 and the outer surface of the core tube 52 are formed upward from the portion corresponding to the orifice 65. An annular passage 66 is formed. The annular passage 66 passes through the space of the intermediate step portion of the insulator 60, the gas flow hole 67, the annular passage 68 and the gas flow hole 69, and the cylindrical space 62 in the support cylinder 61. It is communicated to.
A gas flow hole 70 in the radial direction is formed in the lower part of the cylindrical space 62, and an annular groove 71 and a gas flow hole penetrating the annular groove 71 are formed in a portion corresponding to the insulator 60 facing the gas flow hole 70. 72 is formed, and as a result, the cylindrical space 62 communicates with the plasma working gas flow passage 73 between the electrode 55 and the tip 63.
Furthermore, a gas flow hole 74 is formed at the lower end of the cylindrical space 62, and the gas flowing out from the gas flow hole 74 flows out through the gap between the shield cup 64 and the chip 63.
As described above, when gas is supplied from the gas supply pipe 53, the gas is supplied from the first gas flow path 58 → the second gas flow path 59 → the annular passage 66 → the gas flow passages 67, 68, 69 → the cylindrical space. 62 is distributed.
A part of the gas circulated in the cylindrical space 62 flows into the plasma working gas flow passage 73 from the branch hole 70, and the remaining gas flows out of the gas flow hole 74. It flows out to the outside through the gap.
[0006]
In the above configuration, gas is supplied from the gas supply pipe 53 and power is supplied between the electrode 55 and the tip 63 to generate a so-called pilot arc. Thereafter, the electrode 55 and the object to be cut are Electric power is supplied between them to generate a main arc between the electrode 55 and the object to be cut, and the cutting operation is performed.
In this case, as described above, a part of the gas flowing in the cylindrical space 62 flows into the plasma working gas flow passage 73 from the branch hole 70, and the gas that has flowed into the plasma working gas flow passage 73 The cutting operation is performed while the constrained plasma jet is ejected from the through hole of the chip 63.
Of course, at the time of the cutting operation, each part is appropriately cooled by the gas flowing out from the cylindrical space 62 through the gas flow hole 74 to the outside through the gap between the shield cup 64 and the chip 63.
When the desired cutting operation is completed, the supply of power is stopped and the supply of gas is stopped simultaneously or afterwards.
Of course, it cannot be stated uniquely depending on the cutting length of the workpiece, but in general, power supply / stop is performed at each plasma arc cutting operation, that is, generation of pilot arc and main arc and extinction of main arc are repeated. Yes.
[0007]
[Problems to be solved by the invention]
By the way, in the plasma arc cutting torch having the above structure, in order to form the cylindrical space 62 inside the support cylinder 61, the divided inner cylinder 61A and outer cylinder 61B are integrally formed by brazing as the support cylinder 61. Therefore, the manufacturing cost of the support cylinder 61 including the inner cylinder 61A and the outer cylinder 61B is expensive.
[0008]
Furthermore, this is not a problem when the cutting torch is new, but generally, during plasma arc cutting, arc generation and extinguishing are repeated, but the number of repetitions of arc generation and extinguishing is very frequent in one day. Therefore, the following problems occurred.
That is, when the plasma arc cutting work was repeatedly performed with the plasma arc cutting torch having the above-described conventional structure, it was found that if the cutting work was repeated to some extent, it was difficult to obtain a desired cutting state halfway.
[0009]
When this state was verified, a part of the portions corresponding to the plurality of gas flow holes 72 formed in the insulator 60 was burned out, and the tip of the electrode 55 from the outer peripheral portion of the electrode 55 facing the gas flow hole 72. There were arc marks in the direction.
In this way, some of the portions corresponding to the plurality of gas flow holes 72 formed in the insulator 60 are burned out, particularly when the generation and extinguishing of the arc are repeated frequently, especially the electrode 55. In order to generate a pilot arc between the core 63 and the tip 63, electric power is supplied between the core tube 52 and the support cylinder 61. When this pilot arc is generated, gas is drilled in the lower part of the cylindrical space 62. The gas circulation hole 70 formed in the support cylinder 61 and the outer peripheral surface of the electrode 55 are circulated from the gas circulation hole 70 through the gas flow paths 71 and 72 of the insulator 60 to the plasma working gas flow path 73. It is considered that an undesired pilot arc is intermittently generated between the edge portion of the gas flow hole 70 and the outer peripheral surface of the electrode 55.
As described above, when a pilot arc is generated between the edge portion of the gas flow hole 70 and the outer peripheral surface of the electrode 55, the gas flow hole 72 through which the arc passes in the insulator 60 is burned out by the arc heat.
Once the gas flow holes 72 of the insulator 60 are burned out, pilot arcs are generated intermittently and repeatedly at the same location thereafter, so it is necessary to repair the burnout location of the insulator 60 at an early stage.
[0010]
By the way, in this type of plasma arc cutting torch, the electrode 55, the tip 63 and the shield cup 64 are so-called replacement parts that are detachable from the torch body 51, but other parts such as the core tube 52, insulation, etc. Since the object 60 and the support cylinder 61 are molded integrally with the torch body 51, for example, with an appropriate resin, only the insulator 60 in the above cannot be replaced with a new one.
For this reason, when the insulator 60 is burned out as described above, the entire plasma arc cutting torch must be replaced with a new one, which has become uneconomical.
[0011]
As the plasma working gas, a gas such as air, oxygen, and nitrogen is appropriately selected and used. However, compressed air is frequently used as the plasma working gas because it is easily available and inexpensive.
By the way, since the replacement period of the plasma arc cutting torch using compressed air is short for a specific user, when the old plasma arc cutting torch before the replacement was examined, it was drilled in the insulator 60 as described above. A part of the plurality of gas flow hole 72 corresponding parts was burned out, and an arc mark was generated from the outer peripheral part of the electrode 55 facing the gas flow hole 72 toward the tip of the electrode 55.
For this reason, it turned out that there was a problem in the usage method of compressed air by the cutting work situation investigation of a specific user. In other words, it is generally assumed that compressed air from which so-called oil mist such as oil and dust is removed is used, but this specific user used compressed air from which oil mist has not been removed. When the pilot arc is formed, the insulation interval between the gas flow hole 70 formed in the support cylinder 61 by the oil mist of compressed air and the outer peripheral surface of the electrode 55 is shortened, in other words, a short circuit is achieved. It is considered that an undesired pilot arc is intermittently generated between the edge portion of the flow hole 70 and the outer peripheral surface of the electrode 55.
Although the above case is careless by a specific user, even in this case, there is a demand for a plasma arc cutting torch that can avoid a failure as much as possible.
[0012]
The present invention has been made in view of the above problems, and an object of the present invention is to provide an economical plasma arc cutting torch with low manufacturing costs.
[0013]
[Means for Solving the Problems]
The present invention relates to a plasma arc in which an electrode is attached to the tip of a core tube provided in a torch body, a support cylinder is externally fitted to the core pipe via a cylindrical insulator, and a tip and a shield cup are attached to the support cylinder. Oite the cutting torch, the cylindrical insulating material constituted from an inner cylinder and an outer cylinder disposed coaxially, downward is formed from above between the inner cylinder and the outer cylinder of the cylindrical insulator A long-axis direction cooling passage is formed, and a gas flow hole reaching the inside of the support tube is formed in an intermediate portion of the long-axis direction cooling passage, and the gas supplied into the core tube is supplied to the tip of the core tube. Led to the inside of the cylindrical insulator through a gas flow hole formed on the side, the gas is guided to the cooling passage in the longitudinal direction through a gap between the cylindrical insulator and the core tube, Forming the gas in the long axis direction in the long axis direction on the front end side of the inner cylinder of the cylindrical insulator The gas is introduced into the plasma working gas flow path between the tip and the electrode through the gas flow hole, and the gas is formed in the middle of the long-axis cooling path from the long-axis cooling path. The gas is directed to the inside of the support cylinder through a gas flow hole extending to the inside of the support cylinder, and the gas is guided between the chip and the shield cup through a gap between the support cylinder and the cylindrical insulator. A plasma arc cutting torch .
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
1 to 4, reference numeral 1 denotes a torch body, and a core tube 2 is integrally connected to the torch body 1. In the core tube 2, a through hole 201 is formed in the shaft core portion, and a screw portion for attaching the electrode 5, for example, a female screw 202, is formed at the tip portion, and at the tip side of the core tube 2. A gas flow hole 4 penetrating the outside of the through hole 201 in the radial direction is formed.
Reference numeral 3 denotes a gas supply pipe connected to the core pipe 2, and the inside of the gas supply pipe 3 communicates with the through hole 201. Reference numeral 5 denotes an electrode screwed to the distal end portion of the core tube 2, for example, a rod-shaped electrode. The electrode 5 is attached to an electrode base material 6 made of copper or a copper alloy, and a tip concave portion of the electrode base material 5. It is constituted by an insert 7 having a high melting point such as hafnium or zirconium.
[0015]
Reference numeral 8 denotes a cylindrical insulator disposed outside the core tube 2. The cylindrical insulator 8 includes an inner cylinder 8A and an outer cylinder 8B which are arranged concentrically. In the state where the cylindrical insulator 8 composed of the inner cylinder 8A and the outer cylinder 8B is disposed outside the core tube 2, an upward gap that covers the gas flow hole 4 between the inner cylinder 8A and the core tube 2 is provided. 9 is formed. For example, as shown in FIG. 1 and FIG. 2, a flange having a triangular cross section that enters the inner cylinder 8 </ b> A is formed in the upper portion of the core tube 2. A gap 9 communicating with the gas flow hole 4 communicates upward due to a gap with the inner peripheral surface of the inner cylinder 8A.
A cooling passage 10 is formed between the inner cylinder 8A and the outer cylinder 8B of the cylindrical insulator 8 in the long axis direction from the upper side to the lower side. For example, an inner cylinder is provided in the upper half of the outer cylinder 8B. A plurality of crescent-shaped grooves 101 that are loosely fitted to 8A and extend in the major axis direction are formed in the circumferential direction, and the lower portions of the crescent-shaped grooves 101 in the major axis direction are the inner cylinder 8A and the outer cylinder 8B. An annular passage 102 is communicated with each other. The crescent-shaped groove 101 and the annular passage 102 constitute a cooling passage 10 in the long axis direction from the upper side to the lower side between the inner and outer tubes 8A and 8B of the cylindrical insulator 8.
Reference numeral 11 denotes a gas flow hole which is formed in the middle portion of the cooling passage 10 in the long axis direction of the cylindrical insulator 8 and opens to the outside in the radial direction. The gas flow hole 11 is formed outside the cylindrical insulator 8. It is formed in the cylinder 8B.
[0016]
Reference numeral 12 denotes a gas flow hole communicating with the lower part of the cooling passage 10 in the major axis direction of the cylindrical insulator 8 and opening in the radial direction. The gas flow hole 12 is formed in the inner cylinder 8A of the cylindrical insulator 8. Is formed. As shown in FIG. 4, the gas flow holes 12 are spirally disposed on the circumferential portion of the inner cylinder 8A.
Reference numeral 13 denotes a cylindrical support cylinder that is externally fitted to the core tube 2 via the cylindrical insulator 8, and 14 covers the gas flow hole 11 and is formed between the support cylinder 13 and the cylindrical insulator 8. In the annular space, a plurality of cooling holes 15 in the long axis direction communicating with the annular space 14 are formed in the tip circumferential portion of the support cylinder 13.
Reference numeral 16 denotes a tip screwed to the tip of the support cylinder 13, and the tip 16 is provided with a plasma ejection hole in the shaft core portion as in the prior art. Reference numeral 17 denotes a shield cup attached to the outside of the support tube 13, and 18 denotes a plasma working gas flow passage formed between the electrode 5 and the tip 16.
As in the prior art, each part of the torch other than the electrode 5, the chip 16 and the shield cup 16 is molded integrally with the torch body 51, for example, with an appropriate resin.
[0017]
As described above, when gas is supplied from the gas supply pipe 3, the gas passes through the through hole 201 of the core pipe 2 → the gas flow hole 4 → the gap 9 between the inner cylinder 8 </ b> A of the cylindrical insulator 8 and the core pipe 2 → cylinder. It flows into the cooling passage 10 in the long axis direction of the shaped insulator 8.
A part of the gas flowing into the cooling passage 10 in the major axis direction of the cylindrical insulator 8 flows into the plasma working gas passage 18 from the gas circulation hole 12, and the remaining gas is supported from the gas circulation hole 11. After flowing into the annular space 14 formed between the cylinder 13 and the cylindrical insulator 8, it flows out of the cooling hole 15 of the support cylinder 13, and flows out to the outside through the gap between the shield cup 17 and the chip 16. Is done.
[0018]
In the above configuration, gas is supplied from the gas supply pipe 3 and electric power is supplied between the electrode 5 and the tip 16 to generate a so-called pilot arc. Thereafter, the electrode 5 and the object to be cut are Electric power is supplied between them to generate a main arc between the electrode 5 and the object to be cut, and the cutting operation is performed.
In this case, as described above, a part of the gas circulated in the cooling passage 10 in the longitudinal direction of the cylindrical insulator 8 flows into the plasma working gas flow passage 18 from the branch hole 12, and this plasma working gas flow. The cutting operation is performed while the plasma jet restrained by the gas flowing into the path 18 is ejected from the through hole of the chip 16.
[0019]
Of course, during the cutting operation, gas flows out of the cooling passage 10 in the longitudinal direction of the cylindrical insulator 8 through the gas flow hole 11, the annular space 14, and the cooling hole 15 of the support cylinder 13, and thus the shield. Each part is appropriately cooled by the gas flowing out through the gap between the cup 17 and the chip 16.
When the desired cutting operation is completed, the supply of power is stopped and the supply of gas is stopped simultaneously or afterwards.
[0020]
By the way, in order to generate a pilot arc between the electrode 5 and the tip 16, electric power is supplied between the core tube 2 and the support tube 13, and the core tube 2, the electrode 5 and the support tube 13 are as follows. As will be described below, the cylindrical insulator 8 constituted by the inner cylinder 8A and the outer cylinder 8B is reliably maintained in an electrically insulated state.
That is, in the arrangement of each part of the torch, the support cylinder 13 is formed by the gas circulation hole 11, the long-axis cooling passage 10 formed between the inner and outer cylinders 8 A and 8 B of the cylindrical insulator 8, and the gas circulation hole 12. The electrode 5 is disposed in a spatially connected state.
But,
(1) This communication distance is sufficiently long electrically.
{Circle around (2)} The gas flowing from the upper side to the lower side of the cooling passage 10 of the cylindrical insulator 8 flows into the annular space 14 formed between the support cylinder 13 and the cylindrical insulator 8 from the gas flow hole 11. In this way, the gas flow from the gas flow hole 11 toward the support cylinder 13 acts to slightly weaken the electric field from the support cylinder 13 toward the electrode 5.
For this reason, the core tube 2 and the electrode 5 and the support cylinder 13 are maintained in a state where they are reliably electrically insulated by the cylindrical insulator 8 composed of the inner cylinder 8A and the outer cylinder 8B. A burned-out state of the cylindrical insulator does not occur.
[0021]
Furthermore, even if the operator mistakenly uses compressed air mixed with oil mist, as described in (1) above, the support cylinder 13 and the electrode 5 are electrically separated by a sufficiently long distance. The conventional cylindrical insulator does not burn out. Furthermore, the gas that cools the tip 16 and the support cylinder 13 that are heated at the time of cutting passes through the annular space 14 and then flows out from the cooling hole 15 to the outside of the torch.
In other words, since the gas heated to the high temperature by cooling flows out to the outside of the torch, the temperature of the gas flowing into the plasma working gas flow passage 18 without contacting the high temperature support cylinder 13 is high as in the conventional case. Compared to the temperature of the gas when a part of the gas that has cooled the support cylinder 61 is branched and flows into the plasma working gas flow path 73, the temperature is lower.
By the way, when the plasma jet restrained by the gas flowing into the plasma working gas flow passage 18 is ejected from the through hole of the chip 16, the lower the plasma working gas, the higher the temperature of the plasma jet due to the thermal pinch effect. It is formed.
That is, as described above, since the temperature of the gas flowing into the plasma working gas flow passage 18 is lower than that in the conventional case, a plasma jet having a temperature higher than that in the conventional case is formed. Therefore, it is possible to obtain a plasma arc cutting torch capable of performing a cutting operation with a higher cutting quality than in the conventional case. Further, since the support cylinder 13 is a simple cylinder, it is easy to process and the manufacturing cost is low.
[0022]
【The invention's effect】
As is clear from the above description, the plasma arc cutting torch according to the invention is
In a plasma arc cutting torch in which an electrode is attached to the tip of a core tube provided in the torch body, a support tube is externally fitted to the core tube via a cylindrical insulator, and a tip and a shield cup are attached to the support tube. The cylindrical insulator is composed of an inner cylinder and an outer cylinder, and a long-axis cooling passage is formed between the inner and outer cylinders from the upper side to the lower side, and the cooling path between the inner and outer cylinders. A gas flow hole extending to the inside of the support tube is formed in the middle portion of the tube, and the gas supplied into the core tube is formed inside the cylindrical insulator via a gas flow hole formed on the distal end side of the core tube. Guiding the gas through the gap between the cylindrical insulator and the core tube to the cooling passage in the long axis direction of the cylindrical insulator, and the gas flowing in the long axis direction through the cooling passage in the long axis direction The chip and the electricity are connected through a gas flow hole formed on the tip side of the inner cylinder of the cylindrical insulator. To the plasma working gas flow path between the support cylinder and the cylindrical insulator through the gap between the support cylinder and the cylindrical insulator. In order to guide between the chip and the shield cup, the core tube, the electrode, and the support cylinder are maintained in an electrically insulated state by a cylindrical insulator composed of an inner cylinder and an outer cylinder. Such a burned-out state of the cylindrical insulator does not occur.
[0023]
Furthermore, even if the operator mistakenly uses compressed air mixed with oil mist, as described in (1) above, the support cylinder and the electrode are electrically separated from each other by a sufficiently long distance. Such a burned-out state of the cylindrical insulator does not occur.
[0024]
Furthermore, since the temperature of the gas flowing into the plasma working gas flow passage is lower than that of the conventional case, a plasma arc that forms a higher temperature plasma jet than the conventional case and can perform cutting work with high cutting quality. A cutting torch can be obtained.
Further, since the support cylinder is a simple cylinder, processing is easy and the manufacturing cost is low.
[0025]
As described above, according to the present invention, it is possible to obtain an economical plasma arc cutting torch with low manufacturing costs.
[Brief description of the drawings]
1 is a longitudinal sectional front view showing an embodiment of the present invention. FIG. 2 is a sectional view taken along line II-II in FIG. 1. FIG. 3 is a sectional view taken along line III-III in FIG. Fig. 5 is a partially cutaway front view showing a conventional example. Fig. 6 is a sectional view taken along line VI-VI in Fig. 5. Fig. 7 is a line VII-VII in Fig. 5. Cross-sectional arrow view [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Torch main body 2 Core pipe 3 Gas supply pipe 4 Gas flow hole 5 formed in the front end side of the core pipe 2 Electrode 8 The cylindrical insulator 9 comprised of the inner cylinder 8A and the outer cylinder 8B covers the gas flow hole 4. A gap 10 formed between the inner cylinder 8A and the core tube 2. A long-axis cooling passage 11 formed between the inner cylinder 8A and the outer cylinder 8B of the cylindrical insulator 8 from the upper side to the lower side. A gas flow hole 12 formed in the middle portion of the cooling passage 10 in the major axis direction of the insulator 8 and opened to the outside in the radial direction is communicated with a lower portion of the cooling passage 10 in the major axis direction of the cylindrical insulator 8. A gas flow hole 13 that opens in the radial direction and a cylindrical support cylinder 14 that covers the gas flow hole 11 and communicates with the annular space 15 that is formed between the support cylinder 13 and the cylindrical insulator 8. Cooling hole 15 in the longitudinal direction
16 Tip 17 Shield cup 18 Plasma working gas flow path

Claims (1)

トーチ本体内に設けた芯管の先端に電極を取付け、該芯管に筒形絶縁物を介して支持筒を外嵌させ、該支持筒にチップ及びシールドカップを取付けたプラズマアーク切断トーチにおいて、前記筒形絶縁物を同芯に配置した内筒と外筒とから構成して、前記筒形絶縁物の内筒と外筒との間に形成されて上方から下方に向かう長軸方向の冷却通路を形成すると共に、該長軸方向の冷却通路の中間部に前記支持筒の内側に至るガス流通孔を形成し、前記芯管内に供給されたガスを芯管の先端側に形成されたガス流通孔を介して前記筒形絶縁物の内側に導き、該ガスを前記筒形絶縁物と前記芯管との間隙を介して前記長軸方向の冷却通路に導き、前記長軸方向の冷却通路を長軸方向に向かう前記ガスを前記筒形絶縁物の内筒の先端側に形成されたガス流通孔を介してチップと電極との間のプラズマ作動ガス流通路に導き、前記ガスが、前記長軸方向の冷却通路から該長軸方向の冷却通路の中間部に形成されて前記支持筒の内側に至るガス流通孔を経て前記支持筒の内側に向かい、前記ガスを前記支持筒と前記筒形絶縁物との間隙を介してチップとシールドカップとの間に導くことを特徴とするプラズマアーク切断トーチ。In a plasma arc cutting torch in which an electrode is attached to the tip of a core tube provided in the torch body, a support tube is externally fitted to the core tube via a cylindrical insulator, and a tip and a shield cup are attached to the support tube. Cooling in the long axis direction formed from an inner cylinder and an outer cylinder in which the cylindrical insulator is concentrically arranged and formed between the inner cylinder and the outer cylinder of the cylindrical insulator and going downward from above to form a passage, to form a gas flow hole leading to the inside of the longitudinal direction the support tube in the middle portion of the cooling passage of the gas supplied to the core tube is formed on the distal end side of the core tube gas through the circulation hole leading to the inside of the cylindrical insulator, the gas introduced into a cooling passage of the front Sulfur butterfly axis direction via the gap between the core tube and said cylindrical insulator, the cooling of the axial direction gas the gas toward the passage in the longitudinal direction are formed on the distal end side of the inner cylinder of the cylindrical insulator Led to the plasma working gas flow path between the tip and the electrode via holes, wherein the gas is, the support tube is formed from the cooling passages of the longitudinal direction in the middle portion of the cooling passage of the long axis direction it suited to the inside of the support tube through the gas flow holes extending inwardly, characterized in that for guiding the gas between the chip and the shield cup through the gap between the cylindrical insulator and the support cylinder Plasma arc cutting torch.
JP24392998A 1998-08-28 1998-08-28 Plasma arc cutting torch Expired - Lifetime JP4068232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24392998A JP4068232B2 (en) 1998-08-28 1998-08-28 Plasma arc cutting torch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24392998A JP4068232B2 (en) 1998-08-28 1998-08-28 Plasma arc cutting torch

Publications (2)

Publication Number Publication Date
JP2000071076A JP2000071076A (en) 2000-03-07
JP4068232B2 true JP4068232B2 (en) 2008-03-26

Family

ID=17111133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24392998A Expired - Lifetime JP4068232B2 (en) 1998-08-28 1998-08-28 Plasma arc cutting torch

Country Status (1)

Country Link
JP (1) JP4068232B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102298254B (en) * 2011-08-16 2013-04-03 刘坎坎 Concealed projector hanger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9987703B2 (en) 2012-12-17 2018-06-05 Fuji Engineering Co., Ltd. Plasma spraying apparatus
JP5960229B2 (en) * 2014-11-07 2016-08-02 株式会社フジエンジニアリング Plasma spraying equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102298254B (en) * 2011-08-16 2013-04-03 刘坎坎 Concealed projector hanger

Also Published As

Publication number Publication date
JP2000071076A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
US6268583B1 (en) Plasma torch of high cooling performance and components therefor
CN100542728C (en) The electrode of plasma welding torch, plasma welding torch and method of operating thereof
CA2826791C (en) Plasma cutting tip with advanced cooling passageways
RU2279341C2 (en) Plasma torch (variants), its starting method and members of plasma torch
US6346685B2 (en) Plasma arc torch
EP2647265B1 (en) Electrode assembly for plasma torch with novel assembly method and enhanced heat transfer
US5756959A (en) Coolant tube for use in a liquid-cooled electrode disposed in a plasma arc torch
US8575510B2 (en) Nozzle for a liquid-cooled plasma burner, arrangement thereof with a nozzle cap, and liquid-cooled plasma burner comprising such an arrangement
EP1287937B1 (en) A welding torch for use in gas metal arc welding
CA2674290C (en) Plasma arc torch cutting component with optimized water cooling
KR100480391B1 (en) Plasma arc torch
US11865651B2 (en) Electrodes for gas- and liquid-cooled plasma torches
EP2147583A2 (en) Plasma arc torch cutting component with optimized water cooling
MX2011002912A (en) Nozzle for a liquid-cooled plasma torch, nozzle cap for a liquid-cooled plasma torch and plasma torch head comprising the same.
KR102635796B1 (en) Vented plasma cutting electrode and torch using the same
JPS6228084A (en) Plasma jet torch
JP4068232B2 (en) Plasma arc cutting torch
KR19980702146A (en) Plasma cutting method
JP2000334570A (en) Plasma torch and its nozzle
CN112118663A (en) Novel direct current plasma torch
JPH0329022Y2 (en)
JPH0329023Y2 (en)
JPH0770357B2 (en) Plasma torch
JP2000326072A (en) Plasma torch, electrode for plasma torch and manufacture of the plasma torch
JP2568439Y2 (en) Plasma torch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term