JP4067749B2 - Superconducting bulk magnetizer - Google Patents

Superconducting bulk magnetizer Download PDF

Info

Publication number
JP4067749B2
JP4067749B2 JP2000258900A JP2000258900A JP4067749B2 JP 4067749 B2 JP4067749 B2 JP 4067749B2 JP 2000258900 A JP2000258900 A JP 2000258900A JP 2000258900 A JP2000258900 A JP 2000258900A JP 4067749 B2 JP4067749 B2 JP 4067749B2
Authority
JP
Japan
Prior art keywords
superconducting bulk
superconducting
bulk body
heater
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000258900A
Other languages
Japanese (ja)
Other versions
JP2002075734A (en
Inventor
弘貴 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2000258900A priority Critical patent/JP4067749B2/en
Publication of JP2002075734A publication Critical patent/JP2002075734A/en
Application granted granted Critical
Publication of JP4067749B2 publication Critical patent/JP4067749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超電導バルク体の着磁装置に関するものである。
【0002】
【従来の技術】
従来の超電導バルク体の着磁方法としては、フィールドクール、ゼロフィールドクール、パルス着磁などの方法があり、ゼロフィールドクールやパルス着磁では、着磁磁界を大きくするために磁界を繰り返し印加する方法が行われていたが、超電導バルク体の温度は一定であり、全体が超電導状態において着磁が行われるようになっていた。
【0003】
【発明が解決しようとする課題】
上記したような従来の方法では、大きな磁界を印加して高温超電導バルク体を着磁しなければならないため、印加磁界用のコイルや電源が大きくなったり、周辺や外部への影響が大きくなったり、着磁に大きな電磁力が発生するなどの問題がある。
【0004】
本発明では、上記問題点を除去し、超電導バルク体の超電導領域を徐々に広げながら、比較的小さな磁界を繰り返し印加することにより、印加磁界用のコイルや電源を小さくし、着磁過程でも大きな電磁力を要することなく、十分な着磁を行うことができる超電導バルク体の着磁装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕超電導バルク体の着磁装置において、超電導バルク体と、この超電導バルク体の上下表面に同心状に巻回された複数の個別に制御可能なヒーター線と、前記超電導バルク体の中心から段階的に磁界を繰り返し印加して順次超電導状態を拡大する手段とを具備することを特徴とする。
【0006】
〕超電導バルク体の着磁装置において、超電導バルク体と、この超電導バルク体の表面の局部に配置された面ヒーターと、前記面ヒーターの箇所から段階的に磁界を繰り返し印加して順次超電導状態を拡大する手段とを具備することを特徴とする。
【0007】
〕上記〔〕記載の超電導バルク体の着磁装置において、前記面ヒーターは、前記超電導バルク体の表面に配置された複数の個別に制御可能な面ヒーターであることを特徴とする。
【0008】
〕上記〔1〕から〔〕の何れか一項記載の超電導バルク体の着磁装置において、前記印加する磁界がパルス状または定常的な磁界であることを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0010】
まず、本発明の実施例を示す超電導バルク体の着磁装置について説明する。
【0011】
図1は本発明の第1参考例を示す外周部にヒーター線を備えた超電導バルク体の着磁装置の模式図である。
【0012】
この参考例では、冷凍機ヘッドに取り付けて冷却する(液体窒素などの冷媒に直接浸けて冷却してもよい)などの冷却装置4上に、外周部2にヒーター線3を巻回した超電導バルク体1を配置する。
【0013】
そこで、冷却装置4により超電導バルク体1の全体を冷却しておき、スイッチ6を介して予め電流値が設定された電源装置5からヒーター線3に電流を通じると、そのヒーター線3の周りの超電導バルク体1は加熱されて超電導状態にはならず、超電導バルク体1の内部の小さい領域のみが超電導状態であれば比較的小さな磁界の印加でも超電導状態の部分全体を着磁することができる。そして、次第にヒーター線3の電流値を減少していくことにより、その超電導バルク体1の超電導状態の領域を、図7(後述)のように、徐々に拡大しながら繰り返し、磁界を印加して着磁を行い、最後にヒーター線への通電を止めて磁界を印加すれば超電導バルク体1の全体にわたり着磁することができる。
【0014】
図2は本発明の第2参考例を示す同心状に複数のヒーター線を備えた超電導バルク体の模式図である。
【0015】
この図に示すように、超電導バルク体11に同心状に複数のヒーター線12,13,14を巻回する。
【0016】
そこで、図示しないが、第1参考例と同様の冷却装置と電源装置を用いて、その複数のヒーター線12,13,14に流していた電流をヒーター線12,13,14の順に段階的に止めていくことにより、超電導バルク体11の超電導状態の領域を図7(後述)のように中心から段階的に拡大しながら繰り返し着磁を行うことができる。
【0017】
図3は本発明の第実施例を示す上下表面に同心状に複数のヒーター線を備えた超電導バルク体の模式図である。
【0018】
この図に示すように、超電導バルク体21の上面22に同心状に複数のヒーター線23,24,25と、その下面26に同心状に複数のヒーター線27,28,29を巻回する。
【0019】
そこで、図示しないが、第1参考例と同様の冷却装置と電源装置を用いて、その複数のヒーター線23,24,25と27,28,29に流していた電流を段階的に止めていくことにより、超電導バルク体21の超電導状態の領域を図7(後述)のように中心から段階的に拡大しながら繰り返し着磁を行うことができる。
【0020】
図4は本発明の第実施例を示す面ヒーターを備えた超電導バルク体の模式図(その1)であり、図4(a)はその表面の局部に面ヒーターを備えた超電導バルク体の模式図、図4(b)はその表面に複数の面ヒーターを備えた超電導バルク体の模式図である。
【0021】
まず、図4(a)に示すように、超電導バルク体61の表面の局部に、面ヒーター62,63を配置する。
【0022】
そこで、図示しないが、第1参考例と同様の冷却装置と電源装置を用いて、その面ヒーター62,63に流していた電流を段階的に減少させることにより、超電導バルク体61の超電導状態の領域を図9(後述)のように段階的に拡大しながら繰り返し着磁を行うことができる。
【0023】
また、図4(b)は、超電導バルク体71の表面に複数の面ヒーター72,73,74,75を配置することを特徴とする。
【0024】
そこで、図示しないが、第1参考例と同様の冷却装置と電源装置を用いて、その複数の面ヒーター72,73,74,75に流していた電流を段階的に止めることにより、超電導バルク体71の超電導状態の領域を図10(後述)のように段階的に拡大しながら着磁を行うことができる。
【0025】
図5は本発明の第実施例を示す面ヒーターを備えた超電導バルク体の模式図(その2)であり、図5(a)はその側面の局部に面ヒーターを備えた超電導バルク体の模式図、図5(b)はその側面に複数の面ヒーターを備えた超電導バルク体の模式図である。
【0026】
まず、図5(a)に示すように、超電導バルク体81の側面の局部に面ヒーター82を配置する。
【0027】
そこで、図示しないが、第1参考例と同様の冷却装置と電源装置を用いて、その面ヒーター82に流していた電流を段階的に減少させることにより、超電導バルク体81の超電導状態の領域を段階的に拡大しながら繰り返し着磁を行うことができる。
【0028】
また、図5(b)は、超電導バルク体91の側面に複数の面ヒーター92,93,94,95,96,97を配置することを特徴とする。
【0029】
そこで、図示しないが、第1参考例と同様の冷却装置と電源装置を用いて、その複数の面ヒーター92,93,94,95,96,97に流していた電流を段階的に止めることにより、超電導バルク体91の超電導状態の領域を段階的に拡大しながら着磁を行うことができる。
【0030】
以下、本発明の超電導バルク体の具体的な繰り返し着磁方法について説明する。
【0031】
図6は本発明の超電導バルク体の具体的な繰り返し着磁装置の構成図である。
【0032】
この図において、100はパルス管冷凍機であり、このパルス管冷凍機は圧縮機102と真空排気装置103が接続されおり、そのパルス管冷凍機のヘッド101には供試高温超電導バルク体104が固定される。
【0033】
その供試高温超電導バルク体104にはヒーター105が装着されており、ヒーター電源106に接続されている。また、そのパルス管冷凍機のヘッド101には温度素子109がセットされて、温度を計測できるようになっている。さらに、供試高温超電導バルク体104の周りには電磁コイル107が配置され、その電磁コイル107は励磁電源108に接続される。その磁界の強さはホール素子110によって計測される。
【0034】
冷凍機ヘッド101に、供試高温超電導バルク体104をセットし、ヒーター105の取り付け方法として、図1に示すように、外周部にヒーター線を巻いた場合において、パルス管冷凍機100により供試高温超電導バルク体104を冷却する目標温度を80K一定として、ヒーター線の電流値を段階的に減少させることにより超電導領域を中心部から次第に広げながら繰り返しパルス着磁する。
【0035】
図7は本発明の超電導バルク体の超電導領域を広げる方法(その1)を示す図である。
【0036】
まず、図7(a)に示すように、高温超電導バルク体51の中央部分を超電導領域52とし、次に、図7(b)に示すように、拡大された超電導領域53、図7(c)に示すように、更なる拡大された超電導領域54、最後に、高温超電導バルク体51の全体に及ぶ超電導領域55となし、着磁を完了する。
【0037】
上記のような段階的な着磁を行った場合の測定結果を示す。
【0038】
図8はかかる超電導バルク体の超電導領域を広げる方法(その1)による測定結果を示す図である。
【0039】
この図において、横軸は位置(mm)、縦軸は磁界(mT)であり、ここでは、電流値を0.080A、0.078A、0.076A、0.074A、0.072A、0.070A、0.068Aと7段階にわたって着磁した。
【0040】
図9は本発明の超電導バルク体の超電導領域を広げる方法(その2)を示す図である。
【0041】
この実施例では、高温超電導バルク体61の端部に面ヒーター62,63を設けて、その電流を段階的に減少することにより、高温超電導バルク体61の端部から超電導領域を広げる方法をとっている。図9(a)〜(d)に示すように、端部から次第に超電導領域を拡大する。つまり、超電導領域64→65→66→67へ段階的に広げることができる。
【0042】
なお、図10に示すように、高温超電導バルク体71の表面に多くの面ヒーター72,73,74,75を配置して、その高温超電導バルク体71の超電導領域を拡大する。つまり、図10(a)〜(d)に示すように、超電導領域76→77→78→79へ段階的に広げることができる。
【0043】
上記のような超電導バルク体の端部から段階的な着磁を行った場合の測定結果を示す。
【0044】
図11はかかる超電導バルク体の超電導領域を広げる方法(その2)による測定結果を示す図である。
【0045】
冷凍機ヘッドに、高温超電導バルク体を取り付け、ヒーターの取り付け方法として、図9に示した超電導バルク体61表面にヒーターを1枚配置した場合において、冷凍機により高温超電導バルク体を冷却する目標温度を80K一定として、ヒーターの電流値を段階的に減少させることにより超電導領域を端部から広げながら繰り返しパルス着磁した場合の測定結果を示す。
【0046】
この図において、横軸は位置(mm)、縦軸は磁界(mT)であり、ここでは、電流値を0.055A、0.053A、0.051A、0.049A、0.047A、0.045A、0Aと7段階にわたって着磁した。
【0047】
比較のために高温超電導バルク全体の温度を80K一定として、超電導領域を制御しないで繰り返しパルス着磁した。
【0048】
図12に超電導領域を制御せずに一定とした場合の測定結果を示した。なお、図12では、パルス磁界を印加した回数(1〜5回)をパラメータとして示している。
【0049】
以上のように、超電導領域を制御せずに一定とした場合には、繰り返しパルス着磁を試みても磁界の増加は見られず、磁界の最大値も5mT以下である。
【0050】
一方、超電導領域を制御して広げながら繰り返しパルス着磁を行った場合には、図8及び図11に示すように繰り返しにより磁界の増加が見られ、磁界の最大値は30mT程度に達する。
【0051】
なお、超電導バルク体の形状は、円柱に限らず矩形平板等の様々な形状に適応できる。また、超電導領域の広げ方は、超電導体の特性、印加磁界の大きさにより最適な制御を行うことができ、その制御の方法は示した例に限るものではない。
【0052】
また、上記超電導バルク体としては厚みのあるものを示したが、薄い形状のものであっても本発明の超電導バルク体に含まれる。
【0053】
更に、加熱手段としては、図示しないが、熱風装置を超電導バルク体の近傍に配置して超電導バルク体の局部を加熱させるようにしてもよい。
【0054】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0055】
【発明の効果】
以上、詳細に説明したように、本発明によれば、超電導バルク体を着磁する際に印加する磁界が小さくできるので、印加磁界用のコイルや電源を小型、軽量化、周囲や外部への影響を小さくすることができる。
【0056】
また、着磁する際に超電導バルク体や印加磁界用コイルに発生する電磁力を小さくすることができる。
【図面の簡単な説明】
【図1】 本発明の第1参考例を示す外周部にヒーター線を備えた超電導バルク体の着磁装置の模式図である。
【図2】 本発明の第2参考例を示す同心状に複数のヒーター線を備えた超電導バルク体の模式図である。
【図3】 本発明の第実施例を示す上下表面に同心状に複数のヒーター線を備えた超電導バルク体の模式図である。
【図4】 本発明の第実施例を示す面ヒーターを備えた超電導バルク体の模式図(その1)である。
【図5】 本発明の第実施例を示す面ヒーターを備えた超電導バルク体の模式図(その2)である。
【図6】 本発明の超電導バルク体の具体的な繰り返し着磁装置の構成図である。
【図7】 本発明の超電導バルク体の超電導領域を広げる方法(その1)を示す図である。
【図8】 本発明の超電導バルク体の超電導領域を広げる方法(その1)による測定結果を示す図である。
【図9】 本発明の超電導バルク体の超電導領域を広げる方法(その2)を示す図である。
【図10】 本発明の超電導バルク体へ複数のヒーターを配置して、その高温超電導バルク体の超電導領域を拡大する方法を示す図である。
【図11】 本発明の超電導バルク体の超電導領域を広げる方法(その2)による測定結果を示す図である。
【図12】 超電導領域を制御せずに一定とした場合の測定結果を示す図である。
【符号の説明】
1,11,21,51,61,71,81,91 超電導バルク体
2 外周部
3,12,13,14,23,24,25,27,28,29 ヒーター線
4 冷却装置(冷凍機ヘッド)
5 電源装置
6 スイッチ
22 上面
26 下面
62,63,72,73,74,75,82,92,93,94,95,96,97 面ヒーター
52,53,54,55,64,65,66,67,76,77,78,79 超電導領域
100 パルス管冷凍機
101 冷凍機ヘッド
102 圧縮機
103 真空排気装置
104 供試高温超電導バルク体
105 ヒーター
106 ヒーター用電源
107 電磁コイル
108 励磁電源
109 温度素子
110 ホール素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a superconducting bulk magnetizer.
[0002]
[Prior art]
Conventional superconducting bulk material magnetization methods include field cool, zero field cool, and pulse magnetization. In zero field cool and pulse magnetization, a magnetic field is repeatedly applied to increase the magnetization magnetic field. Although the method has been performed, the temperature of the superconducting bulk body is constant, and the whole is magnetized in the superconducting state.
[0003]
[Problems to be solved by the invention]
In the conventional method as described above, the high-temperature superconducting bulk material must be magnetized by applying a large magnetic field, so that the coil and power supply for the applied magnetic field are increased, and the influence on the surroundings and the outside is increased. There is a problem that a large electromagnetic force is generated in the magnetization.
[0004]
In the present invention, the above-mentioned problems are eliminated, and a relatively small magnetic field is repeatedly applied while gradually expanding the superconducting region of the superconducting bulk body, thereby reducing the applied magnetic field coil and power source and increasing the magnetization process. It is an object of the present invention to provide a superconducting bulk material magnetizing device capable of sufficiently magnetizing without requiring electromagnetic force.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides
[1] In the magnetizing apparatus of the bulk superconductor, and the superconducting bulk body, a plurality of individually controllable heater wire wound concentrically upper and lower surfaces of the bulk superconductors, a center of the superconducting bulk And a means for sequentially applying a magnetic field step by step to sequentially expand the superconducting state.
[0006]
[2] The magnetizing apparatus of the bulk superconductor, and the superconducting bulk body, the superconducting bulk body locally in placed face heater surface, sequentially stepwise repeated field application from the point of the surface heater And means for expanding the superconducting state.
[0007]
[ 3 ] The superconducting bulk body magnetizing apparatus according to [ 2 ], wherein the surface heater is a plurality of individually controllable surface heaters disposed on a surface of the superconducting bulk body.
[0008]
[ 4 ] The superconducting bulk magnetic device according to any one of [1] to [ 3 ], wherein the magnetic field to be applied is a pulsed or stationary magnetic field.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0010]
First, a superconducting bulk magnetizing apparatus according to an embodiment of the present invention will be described.
[0011]
FIG. 1 is a schematic view of a superconducting bulk magnetizing apparatus having a heater wire on the outer periphery of a first reference example of the present invention.
[0012]
In this reference example, a superconducting bulk in which a heater wire 3 is wound around an outer peripheral portion 2 on a cooling device 4 that is attached to a refrigerator head and cooled (may be directly immersed in a refrigerant such as liquid nitrogen for cooling). Place the body 1.
[0013]
Therefore, when the entire superconducting bulk body 1 is cooled by the cooling device 4 and a current is passed from the power supply device 5 whose current value is set in advance through the switch 6 to the heater wire 3, The superconducting bulk body 1 is not heated to be in the superconducting state, and if only a small region inside the superconducting bulk body 1 is in the superconducting state, the entire superconducting state portion can be magnetized even by applying a relatively small magnetic field. . Then, by gradually decreasing the current value of the heater wire 3, the superconducting bulk body 1 is repeatedly superposed on the superconducting region 1 while gradually expanding as shown in FIG. 7 (described later). If magnetization is performed, and finally the current supply to the heater wire is stopped and a magnetic field is applied, the entire superconducting bulk body 1 can be magnetized.
[0014]
FIG. 2 is a schematic diagram of a superconducting bulk body provided with a plurality of concentric heater wires, showing a second reference example of the present invention.
[0015]
As shown in this figure, a plurality of heater wires 12, 13, 14 are wound around a superconducting bulk body 11 concentrically.
[0016]
Therefore, although not shown, using the same cooling device and power supply device as in the first reference example, the current flowing through the plurality of heater wires 12, 13, and 14 is stepwise in the order of the heater wires 12, 13, and 14. By stopping, the superconducting bulk region 11 in the superconducting state region can be repeatedly magnetized while gradually expanding from the center as shown in FIG. 7 (described later).
[0017]
FIG. 3 is a schematic view of a superconducting bulk body provided with a plurality of concentric heater wires on the upper and lower surfaces thereof according to the first embodiment of the present invention.
[0018]
As shown in this figure, a plurality of heater wires 23, 24, 25 are concentrically wound around the upper surface 22 of the superconducting bulk body 21, and a plurality of heater wires 27, 28, 29 are wound concentrically around the lower surface 26.
[0019]
Therefore, although not shown, the current flowing through the plurality of heater wires 23, 24, 25 and 27, 28, 29 is stopped stepwise using the same cooling device and power supply device as in the first reference example. As a result, the superconducting bulk body 21 can be repeatedly magnetized while the superconducting region is expanded stepwise from the center as shown in FIG. 7 (described later).
[0020]
FIG. 4 is a schematic diagram (part 1) of a superconducting bulk body provided with a surface heater according to a second embodiment of the present invention, and FIG. 4 (a) is a schematic diagram of the superconducting bulk body provided with a surface heater on the surface thereof. FIG. 4B is a schematic diagram of a superconducting bulk body having a plurality of surface heaters on its surface.
[0021]
First, as shown in FIG. 4A, the surface heaters 62 and 63 are arranged in the local part of the surface of the superconducting bulk body 61.
[0022]
Therefore, although not shown in the figure, by using the same cooling device and power supply device as those in the first reference example, the current flowing in the surface heaters 62 and 63 is reduced stepwise, thereby the superconducting bulk body 61 is in a superconducting state. Magnetization can be repeatedly performed while expanding the region stepwise as shown in FIG. 9 (described later).
[0023]
FIG. 4B is characterized in that a plurality of surface heaters 72, 73, 74, 75 are arranged on the surface of the superconducting bulk body 71.
[0024]
Therefore, although not shown in the figure, the superconducting bulk material is obtained by stepping off the current flowing through the plurality of surface heaters 72, 73, 74, 75 using the same cooling device and power supply device as in the first reference example. Magnetization can be performed while the region of 71 in the superconducting state is expanded stepwise as shown in FIG. 10 (described later).
[0025]
FIG. 5 is a schematic diagram (part 2) of a superconducting bulk body provided with a surface heater according to a second embodiment of the present invention, and FIG. FIG. 5B is a schematic diagram of a superconducting bulk body provided with a plurality of surface heaters on its side surface.
[0026]
First, as shown in FIG. 5A, a surface heater 82 is disposed at a local portion on the side surface of the superconducting bulk body 81.
[0027]
Therefore, although not shown, by using the same cooling device and power supply device as those in the first reference example, the current flowing through the surface heater 82 is decreased stepwise, so that the superconducting state region of the superconducting bulk body 81 is reduced. Magnetization can be repeatedly performed while expanding stepwise.
[0028]
FIG. 5B is characterized in that a plurality of surface heaters 92, 93, 94, 95, 96, 97 are arranged on the side surface of the superconducting bulk body 91.
[0029]
Therefore, although not shown, by using the same cooling device and power supply device as in the first reference example, the current flowing through the plurality of surface heaters 92, 93, 94, 95, 96, and 97 is stopped stepwise. Then, magnetization can be performed while expanding the superconducting region of the superconducting bulk body 91 stepwise.
[0030]
Hereinafter, a specific repeated magnetization method of the superconducting bulk material of the present invention will be described.
[0031]
FIG. 6 is a configuration diagram of a specific repetitive magnetization apparatus for a superconducting bulk material according to the present invention.
[0032]
In this figure, reference numeral 100 denotes a pulse tube refrigerator, and this pulse tube refrigerator is connected to a compressor 102 and an evacuation device 103, and a test high temperature superconducting bulk body 104 is connected to the head 101 of the pulse tube refrigerator. Fixed.
[0033]
The test high-temperature superconducting bulk body 104 is equipped with a heater 105 and connected to a heater power source 106. A temperature element 109 is set on the head 101 of the pulse tube refrigerator so that the temperature can be measured. Further, an electromagnetic coil 107 is disposed around the test high-temperature superconducting bulk body 104, and the electromagnetic coil 107 is connected to an excitation power source 108. The strength of the magnetic field is measured by the Hall element 110.
[0034]
The test high-temperature superconducting bulk body 104 is set in the refrigerator head 101, and the heater 105 is attached by the pulse tube refrigerator 100 when the heater wire is wound around the outer periphery as shown in FIG. The target temperature for cooling the high-temperature superconducting bulk body 104 is kept constant at 80 K, and the current value of the heater wire is decreased stepwise so that the superconducting region is gradually expanded from the central portion and repeatedly pulsed.
[0035]
FIG. 7 is a diagram showing a method (part 1) for expanding the superconducting region of the superconducting bulk material of the present invention.
[0036]
First, as shown in FIG. 7 (a), the central portion of the high-temperature superconducting bulk body 51 is a superconducting region 52, and then, as shown in FIG. 7 (b), the enlarged superconducting region 53, FIG. As shown in FIG. 5B, the superconducting region 54 further expanded and finally the superconducting region 55 covering the entire high-temperature superconducting bulk body 51 is formed, and the magnetization is completed.
[0037]
The measurement result when performing the above stepwise magnetization is shown.
[0038]
FIG. 8 is a diagram showing a measurement result by a method (part 1) of expanding the superconducting region of the superconducting bulk body.
[0039]
In this figure, the horizontal axis is the position (mm), and the vertical axis is the magnetic field (mT). Here, the current values are 0.080A, 0.078A, 0.076A, 0.074A, 0.072A, 0.0. Magnetization was performed over 070A and 0.068A in seven stages.
[0040]
FIG. 9 is a diagram showing a method (part 2) for expanding the superconducting region of the superconducting bulk material of the present invention.
[0041]
In this embodiment, the surface heaters 62 and 63 are provided at the end of the high-temperature superconducting bulk body 61, and the current is decreased stepwise to expand the superconducting region from the end of the high-temperature superconducting bulk body 61. ing. As shown in FIGS. 9A to 9D, the superconducting region is gradually enlarged from the end. That is, the superconducting region 64 → 65 → 66 → 67 can be expanded stepwise.
[0042]
As shown in FIG. 10, many surface heaters 72, 73, 74, and 75 are arranged on the surface of the high-temperature superconducting bulk body 71 to expand the superconducting region of the high-temperature superconducting bulk body 71. That is, as shown in FIGS. 10A to 10D, the superconducting region 76 → 77 → 78 → 79 can be expanded stepwise.
[0043]
The measurement result at the time of performing stepwise magnetization from the edge part of the above superconducting bulk bodies is shown.
[0044]
FIG. 11 is a diagram showing a measurement result by a method (part 2) of expanding the superconducting region of such a superconducting bulk body.
[0045]
When a high-temperature superconducting bulk body is attached to the refrigerator head and one heater is arranged on the surface of the superconducting bulk body 61 shown in FIG. 9 as a heater attachment method, the target temperature for cooling the high-temperature superconducting bulk body by the refrigerator Is a constant value of 80K, and the measurement result when the pulse current is repeatedly magnetized while expanding the superconducting region from the end by decreasing the current value of the heater stepwise is shown.
[0046]
In this figure, the horizontal axis is the position (mm), and the vertical axis is the magnetic field (mT). Here, the current values are 0.055A, 0.053A, 0.051A, 0.049A, 0.047A, 0.0. Magnetization was performed over 045A and 0A stages.
[0047]
For comparison, the temperature of the entire high-temperature superconducting bulk was kept constant at 80K, and pulse magnetization was repeatedly performed without controlling the superconducting region.
[0048]
FIG. 12 shows the measurement results when the superconducting region is kept constant without being controlled. In addition, in FIG. 12, the frequency | count (1-5 times) which applied the pulse magnetic field is shown as a parameter.
[0049]
As described above, when the superconducting region is kept constant without being controlled, an increase in the magnetic field is not observed even when repeated pulse magnetization is attempted, and the maximum value of the magnetic field is 5 mT or less.
[0050]
On the other hand, when pulsed magnetization is repeated while controlling and expanding the superconducting region, an increase in the magnetic field is observed by repetition as shown in FIGS. 8 and 11, and the maximum value of the magnetic field reaches about 30 mT.
[0051]
Note that the shape of the superconducting bulk body is not limited to a cylinder, and can be applied to various shapes such as a rectangular flat plate. Further, the method of expanding the superconducting region can be controlled optimally depending on the characteristics of the superconductor and the magnitude of the applied magnetic field, and the control method is not limited to the example shown.
[0052]
Moreover, although the thing with thickness was shown as said superconducting bulk body, even if it is a thin shape, it is contained in the superconducting bulk body of this invention.
[0053]
Further, as a heating means, although not shown, a hot air device may be disposed in the vicinity of the superconducting bulk body to heat the local portion of the superconducting bulk body.
[0054]
In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.
[0055]
【The invention's effect】
As described above in detail, according to the present invention, since the magnetic field applied when magnetizing the superconducting bulk body can be reduced, the coil and power source for the applied magnetic field can be reduced in size and weight, and the surrounding and external The influence can be reduced.
[0056]
Further, the electromagnetic force generated in the superconducting bulk body and the applied magnetic field coil when magnetized can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a superconducting bulk magnetizing device provided with a heater wire on the outer peripheral portion according to a first reference example of the present invention.
FIG. 2 is a schematic diagram of a superconducting bulk body provided with a plurality of concentric heater wires according to a second reference example of the present invention.
FIG. 3 is a schematic view of a superconducting bulk body provided with a plurality of concentric heater wires on the upper and lower surfaces according to the first embodiment of the present invention.
FIG. 4 is a schematic diagram (No. 1) of a superconducting bulk body including a surface heater according to a second embodiment of the present invention.
FIG. 5 is a schematic diagram (No. 2) of a superconducting bulk body including a surface heater according to a second embodiment of the present invention.
FIG. 6 is a configuration diagram of a specific repetitive magnetization apparatus for a superconducting bulk material according to the present invention.
FIG. 7 is a diagram showing a method (part 1) of expanding the superconducting region of the superconducting bulk material according to the present invention.
FIG. 8 is a diagram showing a measurement result by a method (part 1) of expanding a superconducting region of a superconducting bulk body according to the present invention.
FIG. 9 is a diagram showing a method (part 2) of expanding the superconducting region of the superconducting bulk material of the present invention.
FIG. 10 is a diagram showing a method of arranging a plurality of heaters on the superconducting bulk body of the present invention and expanding the superconducting region of the high-temperature superconducting bulk body.
FIG. 11 is a diagram showing a measurement result by a method (part 2) of expanding a superconducting region of a superconducting bulk body according to the present invention.
FIG. 12 is a diagram showing a measurement result when the superconducting region is kept constant without being controlled.
[Explanation of symbols]
1, 11, 21, 51, 61, 71, 81, 91 Superconducting bulk body 2 Outer peripheral part 3, 12, 13, 14, 23, 24, 25, 27, 28, 29 Heater wire 4 Cooling device (refrigerator head)
5 Power supply device 6 Switch 22 Upper surface 26 Lower surface 62, 63, 72, 73, 74, 75, 82, 92, 93, 94, 95, 96, 97 Surface heater 52, 53, 54, 55, 64, 65, 66, 67, 76, 77, 78, 79 Superconducting region 100 Pulse tube refrigerator 101 Refrigerator head 102 Compressor 103 Evacuating device 104 High temperature superconducting bulk body 105 Heater 106 Heater power supply 107 Electromagnetic coil 108 Excitation power supply 109 Temperature element 110 Hall element

Claims (4)

(a)超電導バルク体と、
(b)該超電導バルク体の上下表面に同心状に巻回された複数の個別に制御可能なヒーター線と、
(c)前記超電導バルク体の中心から段階的に磁界を繰り返し印加して順次超電導状態を拡大する手段とを具備することを特徴とする超電導バルク体の着磁装置。
(A) the superconducting bulk body,
(B) a plurality of individually controllable heater wires concentrically wound around the upper and lower surfaces of the superconducting bulk body;
(C) A superconducting bulk magnetizing device comprising means for repeatedly applying a magnetic field stepwise from the center of the superconducting bulk body to sequentially expand the superconducting state.
(a)超電導バルク体と、
(b)該超電導バルク体の表面の局部に配置された面ヒーターと、
)前記面ヒーターの箇所から段階的に磁界を繰り返し印加して順次超電導状態を拡大する手段とを具備することを特徴とする超電導バルク体の着磁装置。
(A) the superconducting bulk body,
(B) a surface heater disposed locally on the surface of the superconducting bulk body;
( C ) A superconducting bulk body magnetizing apparatus comprising: ( c ) means for repeatedly applying a magnetic field in a stepwise manner from the surface heater and sequentially expanding the superconducting state.
請求項記載の超電導バルク体の着磁装置において、前記面ヒーターは、前記超電導バルク体の表面に配置された複数の個別に制御可能な面ヒーターであることを特徴とする超電導バルク体の着磁装置。 3. The superconducting bulk body magnetizing apparatus according to claim 2 , wherein the surface heater is a plurality of individually controllable surface heaters disposed on a surface of the superconducting bulk body. Magnetic device. 請求項1からの何れか一項記載の超電導バルク体の着磁装置において、前記印加する磁界がパルス状または定常的な磁界であることを特徴とする超電導バルク体の着磁装置。In magnetizer superconducting bulk body of any one of claims 1 to 3, magnetizing apparatus of bulk superconductor, wherein the magnetic field to be the application is a pulsed or steady magnetic field.
JP2000258900A 2000-08-29 2000-08-29 Superconducting bulk magnetizer Expired - Fee Related JP4067749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000258900A JP4067749B2 (en) 2000-08-29 2000-08-29 Superconducting bulk magnetizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000258900A JP4067749B2 (en) 2000-08-29 2000-08-29 Superconducting bulk magnetizer

Publications (2)

Publication Number Publication Date
JP2002075734A JP2002075734A (en) 2002-03-15
JP4067749B2 true JP4067749B2 (en) 2008-03-26

Family

ID=18747139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000258900A Expired - Fee Related JP4067749B2 (en) 2000-08-29 2000-08-29 Superconducting bulk magnetizer

Country Status (1)

Country Link
JP (1) JP4067749B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10971291B2 (en) * 2017-06-30 2021-04-06 The Boeing Company System and method for operating a bulk superconductor device
US11070123B2 (en) 2017-07-07 2021-07-20 The Boeing Compan Energy storage and energy storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10971291B2 (en) * 2017-06-30 2021-04-06 The Boeing Company System and method for operating a bulk superconductor device
US11070123B2 (en) 2017-07-07 2021-07-20 The Boeing Compan Energy storage and energy storage device

Also Published As

Publication number Publication date
JP2002075734A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
AU2015411860B2 (en) Magnetic resonance imaging system capable of rapid field ramping
EP2728965B1 (en) Bearing heater
EP2932288B1 (en) Low-loss persistent current switch with heat transfer arrangement
JP6590573B2 (en) Operation method of superconducting magnet device
US10209142B2 (en) Temperature calibrator
JP4067749B2 (en) Superconducting bulk magnetizer
Tai et al. Nanoscale nonlinear radio frequency properties of bulk Nb: Origins of extrinsic nonlinear effects
JP3930153B2 (en) Conduction cooled superconducting magnet system
JPH07220924A (en) Method of magnetizing large magnet
JP2004119822A (en) Heat treatment furnace in magnetic field, and method of heat treatment
Malla et al. Effect of composition on the magnetic and elastic properties of shape-memory Ni-Mn-Ga
JP3247715B2 (en) Element cooling test equipment
JPH09102413A (en) Superconductive magnetic device
JP2004233274A (en) High temperature compression tester
JPH04258103A (en) Cooling device of superconducting coil
JP2020202316A (en) Wind and react type superconducting coil, wind and react type superconducting coil manufacturing method, and superconducting electromagnet device
JP2001257115A (en) Repetitively magnetizing method of superconductive bulk body
JP7279590B2 (en) Superconductor magnetization method
JP2018086037A (en) Superconductive magnet apparatus and magnetic resonance imaging apparatus
JP2006332499A (en) Method for pulse magnetizing bulk superconductor and super conducting magnet device
JPH04173917A (en) Normalizing method by induction heating
JPH017709Y2 (en)
JP2002196056A (en) High temperature nmr probe
Strzeszewski et al. Effect of heat-treatment on magnetic hysteresis in Nd-Fe-B based magnets
RU2006101767A (en) THE SECOND METHOD OF BOGDANOV CHANGE THE NUMBER OF ENERGY IN A MAGNETIC SYSTEM AND A DEVICE FOR ITS IMPLEMENTATION

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees