JP4066370B2 - Method and apparatus for estimating generation of large amount of heat - Google Patents

Method and apparatus for estimating generation of large amount of heat Download PDF

Info

Publication number
JP4066370B2
JP4066370B2 JP2003407326A JP2003407326A JP4066370B2 JP 4066370 B2 JP4066370 B2 JP 4066370B2 JP 2003407326 A JP2003407326 A JP 2003407326A JP 2003407326 A JP2003407326 A JP 2003407326A JP 4066370 B2 JP4066370 B2 JP 4066370B2
Authority
JP
Japan
Prior art keywords
room
room temperature
time
value
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003407326A
Other languages
Japanese (ja)
Other versions
JP2005165938A (en
Inventor
亘 占部
俊之 宮永
勝義 禰里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2003407326A priority Critical patent/JP4066370B2/en
Publication of JP2005165938A publication Critical patent/JP2005165938A/en
Application granted granted Critical
Publication of JP4066370B2 publication Critical patent/JP4066370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Temperature (AREA)

Description

本発明は、多量発熱の発生推定方法および装置に関する。更に詳述すると、本発明は、炊事などの大きな発熱の発生時刻を推定する方法および装置に関する。   The present invention relates to a method and apparatus for estimating the generation of a large amount of heat. More specifically, the present invention relates to a method and apparatus for estimating the occurrence time of large heat generation such as cooking.

温度センサおよび照度センサを室内に設置し、これらのセンサからの測定値の時間変化に基いて、居住者の在室状況を推定する従来技術がある(非特許文献1)。   There is a conventional technique in which a temperature sensor and an illuminance sensor are installed in a room, and a occupant's occupancy status is estimated based on temporal changes in measured values from these sensors (Non-Patent Document 1).

若杉智子,本間博文,三輪道子,山本理,吉村直子,毛利浩美:環境センサーを用いた住生活の型分けに関する研究,日本建築学会大会学術講演梗概集 E2,pp 305-308(5620),1995年8月Tomoko Wakasugi, Hirofumi Honma, Michiko Miwa, Osamu Yamamoto, Naoko Yoshimura, Hiromi Mohri: Research on type of living using environmental sensors, Abstracts of Annual Conference of Architectural Institute of Japan E2, pp 305-308 (5620), 1995 August

近年、高気密高断熱住宅が増加しつつあり、計画換気と室内空調が両立できるダクト式全館空調システムを採用する住宅も現れている。全館空調システムの省エネルギ運転を実現するためには、例えば熱負荷が急増する炊事前から予冷運転を始めたりするなど、居住者行動を予測した空調を行なうことが望ましい。   In recent years, the number of highly airtight and highly insulated houses is increasing, and some houses adopt a duct-type whole building air conditioning system that can achieve both planned ventilation and indoor air conditioning. In order to realize energy saving operation of the entire building air conditioning system, it is desirable to perform air conditioning that predicts resident behavior, such as starting pre-cooling operation before cooking before the heat load increases rapidly.

しかしながら、非特許文献1の技術は、居住者の在室状況を推定するだけで、炊事などの多量発熱の発生時刻の推定までは行なえない。また、非特許文献1の技術では、温度センサに加えて照度センサを設置する必要があるため、照度センサの増設費用がかかるなどの問題がある。居住者の在室を判定するような技術は、温度センサは微妙な温度変化をとらえなければならないため、温度センサのみでは信頼性に足る判定は困難であり、その結果、温度以外の情報を得るためのセンサを必要としている。   However, the technology of Non-Patent Document 1 cannot estimate the occurrence time of a large amount of heat generation such as cooking only by estimating the occupant's occupancy status. Further, in the technique of Non-Patent Document 1, since it is necessary to install an illuminance sensor in addition to the temperature sensor, there is a problem that an additional cost of the illuminance sensor is required. Technology that determines the occupant's occupancy requires a temperature sensor to detect subtle changes in temperature, so it is difficult to make a reliable determination only with the temperature sensor, and as a result, information other than temperature is obtained. Need a sensor for.

そこで、本発明は、温度センサ以外のセンサを用いなくとも、炊事などの多量発熱要因の発生時刻を推定できる方法及び装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a method and apparatus that can estimate the occurrence time of a large amount of heat generation factors such as cooking without using a sensor other than a temperature sensor.

かかる目的を達成するため、請求項1,3記載の多量発熱の発生推定方法は、対象室に設置された温度センサからの室温情報と該室温情報に対応する時刻情報とを記録し、当該記録された情報に基づいて、予め定めた時間間隔における最高室温と最低室温の温度差と、前記時間間隔における室温の時間変化から導かれる回帰係数とを求め、前記温度差と前記回帰係数の一方又は双方が各々について予め定められた基準値以上となる事を条件として、この条件が満たされた前記時間間隔に対応する時間帯において、前記対象室内で該対象室外または該対象室以外の室よりも大きな発熱が生じたと推定するようにしている。 In order to achieve such an object, the method for estimating generation of a large amount of heat according to claims 1 and 3 records room temperature information from a temperature sensor installed in a target room and time information corresponding to the room temperature information, and records the recorded information. Based on the obtained information, a temperature difference between the highest room temperature and the lowest room temperature in a predetermined time interval and a regression coefficient derived from a time change of the room temperature in the time interval are obtained, and one of the temperature difference and the regression coefficient or On condition that both are equal to or greater than a predetermined reference value for each, in a time zone corresponding to the time interval in which this condition is satisfied, in the target room than in the target room or a room other than the target room. It is estimated that a large fever has occurred.

したがって、予め定めた時間間隔の範囲における最高室温と最低室温の温度差と、当該時間間隔における室温の時間変化から導かれる回帰係数を利用すれば、急激な室温上昇を捉えることができる。これにより、温度センサ以外のセンサを用いなくとも、炊事などの多量発熱要因の発生した時間帯を推定できる。   Therefore, by using a temperature difference between the highest room temperature and the lowest room temperature in a predetermined time interval range and a regression coefficient derived from the time change of the room temperature in the time interval, a rapid increase in room temperature can be captured. Thereby, it is possible to estimate the time zone in which a large amount of heat generation factors such as cooking occur, without using a sensor other than the temperature sensor.

また、請求項1記載の発明は、前記温度差の累積度数線を求め、前記累積度数線の傾きが予め定めた値以下となる点にあたる値又は当該傾きが予め定めた値を超える変化量で小さくなる点にあたる値を、前記温度差の基準値として定めるようにしている。  According to the first aspect of the present invention, a cumulative frequency line of the temperature difference is obtained, and a value corresponding to a point at which the slope of the cumulative power line is equal to or less than a predetermined value or a change amount in which the slope exceeds a predetermined value. A value corresponding to the smaller point is determined as a reference value for the temperature difference.

炊事時におけるような急激な室温上昇は、他の時間帯の室温変動と大きく異なり、且つ発生頻度も少ない。このため、累積度数分布は、右肩上がりに急傾斜部を描いた後になだらかな緩傾斜部を描く。炊事時におけるような急激な室温上昇は緩傾斜部にあたる。したがって、急傾斜部から緩傾斜部に遷移する点にあたる値を基準値として定めることで、適切な基準値を設定できる。  The rapid rise in room temperature during cooking is very different from room temperature fluctuations in other time zones, and the occurrence frequency is low. For this reason, the cumulative frequency distribution draws a gentle gentle slope part after drawing a steep slope part to the right. A sudden rise in room temperature, such as during cooking, corresponds to a gentle slope. Therefore, an appropriate reference value can be set by setting a value corresponding to a point at which the steeply inclined portion transitions to the gently inclined portion as the reference value.

また、請求項2,3記載の発明は、前記回帰係数の累積度数線を求め、前記累積度数線の傾きが予め定めた値以下となる点にあたる値又は当該傾きが予め定めた値を超える変化量で小さくなる点にあたる値を、前記回帰係数の基準値として定めるようにしている。  The invention according to claims 2 and 3 obtains a cumulative frequency line of the regression coefficient, and a value corresponding to a point at which the slope of the cumulative frequency line is not more than a predetermined value or a change in which the slope exceeds a predetermined value. A value corresponding to a point that becomes smaller in quantity is determined as a reference value for the regression coefficient.

炊事時におけるような急激な室温上昇は、他の時間帯の室温変動と大きく異なり、且つ発生頻度も少ない。このため、累積度数分布は、右肩上がりに急傾斜部を描いた後になだらかな緩傾斜部を描く。炊事時におけるような急激な室温上昇は緩傾斜部にあたる。したがって、急傾斜部から緩傾斜部に遷移する点にあたる値を基準値として定めることで、適切な基準値を設定できる。  The rapid rise in room temperature during cooking is very different from room temperature fluctuations in other time zones, and the occurrence frequency is low. For this reason, the cumulative frequency distribution draws a gentle gentle slope part after drawing a steep slope part to the right. A sudden rise in room temperature, such as during cooking, corresponds to a gentle slope. Therefore, an appropriate reference value can be set by setting a value corresponding to a point at which the steeply inclined portion transitions to the gently inclined portion as the reference value.

また、請求項4記載の発明は、請求項1から3のいずれかに記載の多量発熱の発生推定方法において、前記対象室は台所であり、前記大きな発熱が生じたと推定される時刻を炊事開始時刻と推定するようにしている。
炊事中に台所で生じる発熱量は、例えば家屋全体の暖房に要する発熱量と同等もしくはそれ以上、換言すれば台所以外の室において通常生じ得る暖房等による発熱量の数倍ないし10倍以上と、非常に大きい。従って、当該突出して大きい発熱が生じた時刻は、炊事開始時刻と推定できる。そして、炊事中には短い時間で多量の熱負荷が発生するため、台所室温が急激に上昇する。予め定めた時間間隔の範囲における最高室温と最低室温の温度差と、当該時間間隔における台所室温の時間変化から導かれる回帰係数を利用することにより、当該急激な室温上昇をとらえることができる。
According to a fourth aspect of the present invention, in the method for estimating the generation of a large amount of heat according to any one of the first to third aspects, the target room is a kitchen, and cooking is started at a time when the large heat generation is estimated to occur. The time is estimated.
The calorific value generated in the kitchen during cooking is, for example, equal to or more than the calorific value required for heating the entire house, in other words, several times to 10 times the calorific value due to heating or the like normally generated in a room other than the kitchen, Very big. Therefore, it can be estimated that the time when the large heat generation that protrudes is the cooking start time. And during cooking, since a large amount of heat load is generated in a short time, the kitchen room temperature rises rapidly. By using a temperature difference between the maximum room temperature and the minimum room temperature in the range of a predetermined time interval and a regression coefficient derived from a time change of the kitchen room temperature in the time interval, it is possible to capture the rapid increase in the room temperature.

また、請求項5記載の発明は、請求項1から4のいずれかに記載の多量発熱の発生推定方法において、前記対象室は全館空調システムを備える建物の一室であり、前記時間間隔における前記対象室の室温と他室の室温との相関係数が予め定められた基準値以上となる事を、前記条件に加えている。 The invention according to claim 5 is the method for estimating generation of a large amount of heat according to any one of claims 1 to 4, wherein the target room is a room of a building including a whole building air conditioning system, and the time interval In addition to the above condition, the correlation coefficient between the room temperature of the target room and the room temperature of the other room is equal to or greater than a predetermined reference value.

対象室の室温上昇が大きい場合、対象室で暖められた空気が空気調和機に戻り、他の室へダクトを通じて送られるため、台所以外の室の室温も同様に上昇する。従って、対象室の室温と他室の室温との相関係数も利用することで、より高精度な推定が可能となる。  When the room temperature rise of the target room is large, the air warmed in the target room returns to the air conditioner and is sent to the other room through the duct, so that the room temperature of the room other than the kitchen rises in the same manner. Therefore, more accurate estimation is possible by using the correlation coefficient between the room temperature of the target room and the room temperature of the other room.

また、請求項6記載の多量発熱の発生推定装置は、全館空調システムを備える建物の各室に設置された温度センサからの室温情報と該室温情報に対応する時刻情報とを記録する情報記録手段と、前記情報記録手段に記録された情報に基いて、予め定めた時間間隔における対象室の最高室温と最低室温の温度差と、前記時間間隔における前記対象室の室温の時間変化から導かれる回帰係数と、前記時間間隔における前記対象室の室温と他室の室温との相関係数とのうち、一部または全部の値を求める演算手段と、前記温度差と前記回帰係数と前記相関係数のいずれか又はすべてが各々について予め定められた基準値以上となる事を条件とし、この条件を満たすか否か判断する比較手段とを備え、前記温度差の基準値は、前記温度差の累積度数線を求め、前記累積度数線の傾きが予め定めた値以下となる点にあたる値又は当該傾きが予め定めた値を超える変化量で小さくなる点にあたる値であり、前記回帰係数の基準値は、前記回帰係数の累積度数線を求め、前記累積度数線の傾きが予め定めた値以下となる点にあたる値又は当該傾きが予め定めた値を超える変化量で小さくなる点にあたる値であり、前記条件が満たされた前記時間間隔に対応する時間帯において、前記対象室で炊事が行なわれた若しくは炊事に類似する大きな発熱が生じたと推定するようにしている。 The apparatus for estimating generation of a large amount of heat according to claim 6 is an information recording means for recording room temperature information from a temperature sensor installed in each room of a building equipped with a whole building air conditioning system and time information corresponding to the room temperature information. And a regression derived from a temperature difference between the highest room temperature and the lowest room temperature of the target room at a predetermined time interval and a time change of the room temperature of the target room at the time interval based on the information recorded in the information recording means. A calculating means for obtaining a part or all of a coefficient and a correlation coefficient between the room temperature of the target room and the room temperature of the other room in the time interval, the temperature difference, the regression coefficient, and the correlation coefficient Comparing means for determining whether or not this condition is satisfied on the condition that any or all of these are equal to or greater than a predetermined reference value for each, the reference value of the temperature difference is the cumulative of the temperature difference Frequency line A value corresponding to a point where the slope of the cumulative frequency line is equal to or less than a predetermined value, or a value corresponding to a point where the slope decreases with a change amount exceeding a predetermined value, and the reference value of the regression coefficient is the regression A cumulative frequency line of coefficients is obtained, and is a value corresponding to a point at which the slope of the cumulative frequency line is equal to or less than a predetermined value or a value corresponding to a point at which the slope decreases with a change amount exceeding a predetermined value, and the condition is satisfied It is estimated that cooking is performed in the target room or large heat generation similar to cooking occurs in the time zone corresponding to the time interval.

本発明の多量発熱の発生推定方法および多量発熱の発生推定装置によれば、温度センサ以外のセンサを用いない簡易な構成で、炊事などの多量発熱要因の発生した時間帯を推定できる。炊事開始時刻を推定することにより、居住者の炊事開始パターンを空調に反映させることができる。例えば熱負荷が急増する炊事前から予冷運転を始めたりするなど、居住者行動を予測した空調を行なうことができ、全館空調システム等の省エネルギ運転を実現できる。また、炊事開始時刻の推定結果、換言すれば炊事が比較的規則的な時間帯に行なわれたか否かの情報は、居住者が健常に生活しているか否かを判断する一情報として有効と考えられ、安否確認システム等にも利用できる。さらに、炊事以外にも多量の発熱、例えば火災による発熱なども検出でき、更にその発生時刻も推定できる。 According to the method for estimating the generation of a large amount of heat and the apparatus for estimating the generation of a large amount of heat according to the present invention , it is possible to estimate a time zone in which a large amount of heat generation factors such as cooking are generated with a simple configuration that does not use sensors other than temperature sensors. By estimating the cooking start time, the occupant's cooking start pattern can be reflected in the air conditioning. For example, it is possible to perform air-conditioning that predicts resident behavior, such as starting pre-cooling operation before cooking where the heat load increases rapidly, and energy-saving operation such as the entire building air-conditioning system can be realized. In addition, the estimation result of the cooking start time, in other words, information on whether cooking was performed in a relatively regular time zone is effective as one information for determining whether the resident is living normally. It can be used as a safety confirmation system. Furthermore, in addition to cooking, a large amount of heat generation, such as heat generation due to a fire, can be detected, and the time of occurrence can also be estimated.

さらに、請求項記載の多量発熱の発生推定方法によれば、対象室の室温と他室の室温との相関係数も利用することで、より高精度な推定が可能となる。また、温度センサを改めて設置する必要は無く、全館空調システムが元々備える各室の室温検知機能をそのまま利用することもできる。 Furthermore, according to the method for estimating the occurrence of a large amount of heat according to claim 5 , it is possible to estimate with higher accuracy by using the correlation coefficient between the room temperature of the target room and the room temperature of the other room. Moreover, it is not necessary to install a temperature sensor anew, and the room temperature detection function of each room originally provided in the entire building air conditioning system can be used as it is.

さらに、請求項1〜3記載の多量発熱の発生推定方法および請求項6記載の多量発熱の発生推定装置によれば、適切な温度差・回帰係数の基準値を設定でき、より高精度な推定が可能となる。 Furthermore, according to the method for estimating the generation of a large amount of heat according to claims 1 to 3 and the apparatus for estimating the generation of a large amount of heat according to claim 6 , it is possible to set a reference value for an appropriate temperature difference / regression coefficient, and to estimate with higher accuracy. Is possible.

以下、本発明の構成を図面に示す実施形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on embodiments shown in the drawings.

図1から図8に本発明の多量発熱の発生推定方法および装置の実施の一形態を示す。この多量発熱の発生推定方法は、対象室1aに設置された温度センサ3からの室温情報と該室温情報に対応する時刻情報とを記録し、当該記録された情報に基づいて、予め定めた時間間隔Δtにおける最高室温と最低室温の温度差ΔTと、時間間隔Δtにおける室温の時間変化から導かれる回帰係数αとを求め、温度差ΔTと回帰係数αの双方が各々について予め定められた基準値Tx,αx以上となる事を条件として、この条件が満たされた時間間隔Δtに対応する時間帯において、対象室1a内で該対象室1a外または該対象室1a以外の室1bよりも大きな発熱が生じたと推定するようにしている。   1 to 8 show an embodiment of the method and apparatus for estimating the generation of a large amount of heat according to the present invention. This method of estimating the generation of a large amount of heat records room temperature information from the temperature sensor 3 installed in the target room 1a and time information corresponding to the room temperature information, and sets a predetermined time based on the recorded information. A temperature difference ΔT between the maximum room temperature and the minimum room temperature in the interval Δt and a regression coefficient α derived from a time change of the room temperature in the time interval Δt are obtained, and both the temperature difference ΔT and the regression coefficient α are predetermined reference values. On the condition that it becomes Tx, αx or more, in the time zone corresponding to the time interval Δt in which this condition is satisfied, the heat generation is larger in the target room 1a than in the target room 1a or outside the target room 1a. Is estimated to have occurred.

特に本実施形態では、対象室1aは台所であり、上記の大きな発熱が生じたと推定される時刻を炊事開始時刻と推定するようにしている。炊事中に台所1aで生じる発熱量は、例えば家屋全体の暖房に要する発熱量と同等もしくはそれ以上、換言すれば台所1a以外の室1bにおいて通常生じ得る暖房等による発熱量の数倍ないし10倍以上と、非常に大きい。従って、当該突出して大きい発熱が生じた時刻は、炊事開始時刻と推定できる。   In particular, in the present embodiment, the target room 1a is a kitchen, and the time when the large heat generation is estimated is estimated as the cooking start time. The amount of heat generated in the kitchen 1a during cooking is, for example, equal to or more than the amount of heat required for heating the entire house, in other words, several times to 10 times the amount of heat generated by heating or the like that can normally occur in the room 1b other than the kitchen 1a. That's a big deal. Therefore, it can be estimated that the time at which the large heat generation is generated is the cooking start time.

炊事中には短い時間で多量の熱負荷が発生するため、台所室温が急激に上昇する。この急激な室温上昇をとらえるために、予め定めた時間間隔Δtの範囲における最高室温と最低室温の温度差ΔTを利用する。ここで、単純に最高室温から最低室温を減算した場合、温度が上昇しているのか下降しているのかの区別が困難となる。そこで、時間間隔Δt内における台所室温の回帰係数αも利用する。当該回帰係数αは、例えば時間間隔Δt内における台所室温分布を最小二乗法で線形近似して求める。   During cooking, a large amount of heat load is generated in a short time, so the kitchen room temperature rises rapidly. In order to catch this rapid rise in room temperature, a temperature difference ΔT between the highest room temperature and the lowest room temperature in a predetermined time interval Δt is used. Here, when the minimum room temperature is simply subtracted from the maximum room temperature, it becomes difficult to distinguish whether the temperature is rising or falling. Therefore, the regression coefficient α of the kitchen room temperature within the time interval Δt is also used. The regression coefficient α is obtained, for example, by linearly approximating the kitchen room temperature distribution within the time interval Δt by the least square method.

また本実施形態では、対象室即ち台所1aは、全館空調システムを備える建物の一室であるものとしている。例えば本実施形態における建物は、台所、居間、夫婦寝室、子供部屋、和室の計5つの室1を有する戸建て住宅とし、当該建物の各室1は空気調和機4とダクト6を介して接続されており、空気調和機4により24時間連続して空調が行なわれるようになっている。ここで、台所1aの室温上昇が大きいときには、台所1a以外の室1bの室温も同様に上昇する。これは、台所1aで暖められた空気が空気調和機4に戻り、他の室1bへダクト6を通じて送られるためである。そこで、本実施形態では、台所1aと他室1bとの室温の相関係数rも炊事開始時刻の推定に利用する。尚、台所1a以外の室1bが4つあり、1つの時間間隔Δtから4つの相関係数rが求められる本実施形態では、例えばこれらの相関係数rの平均値r_aveを用いるようにしている。   Further, in the present embodiment, the target room, that is, the kitchen 1a is assumed to be a room of a building equipped with the entire building air conditioning system. For example, the building in this embodiment is a detached house having a total of five rooms 1 including a kitchen, a living room, a couple's bedroom, a children's room, and a Japanese-style room. The air conditioner 4 performs air conditioning continuously for 24 hours. Here, when the room temperature rise of the kitchen 1a is large, the room temperature of the room 1b other than the kitchen 1a rises similarly. This is because the air heated in the kitchen 1a returns to the air conditioner 4 and is sent to the other chamber 1b through the duct 6. Therefore, in this embodiment, the correlation coefficient r of the room temperature between the kitchen 1a and the other room 1b is also used for estimating the cooking start time. In this embodiment in which there are four rooms 1b other than the kitchen 1a and four correlation coefficients r are obtained from one time interval Δt, for example, an average value r_ave of these correlation coefficients r is used. .

全館空調システムを備える建物の各室1には、ルームコントローラ2が備えられており、更にこれらのルームコントローラ2はそれぞれ温度センサ3を備えている。各ルームコントローラ2は、各室1の室温を例えば1分間隔および1/3℃刻みで測定し、当該測定した室温情報を空気調和機4の制御部5に転送している。例えば本実施形態では、空気調和機4の制御部5の外部出力機能を利用し、各ルームコントローラ2から送られてくる室温情報と当該室温の測定時刻とを関連付けて記録するようにしている。これにより、各室1に温度センサ3を改めて設置する必要は無く、全館空調システムが元々備える各室1の室温検知機能をそのまま利用できる。   Each room 1 of the building provided with the entire building air conditioning system is provided with a room controller 2, and each of these room controllers 2 is provided with a temperature sensor 3. Each room controller 2 measures the room temperature of each room 1 at intervals of 1 minute and 1/3 ° C., for example, and transfers the measured room temperature information to the control unit 5 of the air conditioner 4. For example, in this embodiment, the external output function of the control unit 5 of the air conditioner 4 is used to record the room temperature information sent from each room controller 2 and the measurement time of the room temperature in association with each other. Thereby, it is not necessary to newly install the temperature sensor 3 in each room 1, and the room temperature detection function of each room 1 originally provided in the entire building air conditioning system can be used as it is.

図3に、各ルームコントローラ2から送られてくる室温情報と時刻情報との関係すなわち各室温の時間変化の一例を示す。図3中の符号Aで示すグラフが居間の室温の時間変化を示し、符号Bで示すグラフが台所の室温の時間変化を示し、符号Cで示すグラフが夫婦寝室の室温の時間変化を示し、符号Dで示すグラフが子供部屋の室温の時間変化を示し、符号Eで示すグラフが和室の室温の時間変化を示す。ここで、本実施形態では、上述した温度差ΔT、回帰係数α、相関係数rを求める時間間隔Δtを、計算の基準となる時刻t(以下、計算基準時刻tとも呼ぶ。)の前後10分即ち20分に設定している。計算基準時刻tは、1分ごとに進めるようにしている。従って、例えば計算基準時刻tが7時3分である場合、6時53分から7時13分までに測定された室温情報に基づいて、温度差ΔT、回帰係数α、相関係数rが求められる。例えば図4は、6時53分から7時13分までの20分間に測定された台所室温を示す。また、同図中の直線21は6時53分から7時13分までにおける台所室温分布を最小二乗法で線形近似したものであり、この直線21の傾きが、計算基準時刻tが7時3分であるときの回帰係数αとなる。また、図5は、6時53分から7時13分までにおける台所室温と他室1bの室温との相関を示し、(A)は居間の室温との相関を示し、(B)は夫婦寝室の室温との相関を示し、(C)は子供部屋の室温との相関を示し、(D)は和室の室温との相関を示す。尚、計算基準時刻tを進める時間刻みを計算時間刻みΔt’と呼び、各室温が測定される時間刻みを測定時間刻みΔt”と呼ぶ。本実施形態では、測定時間刻みΔt”及び計算時間刻みΔt’を1分とし、時間間隔Δtを20分としているが、これらの値には必ずしも限定されない。   FIG. 3 shows an example of a relationship between room temperature information and time information sent from each room controller 2, that is, an example of a time change of each room temperature. The graph shown by the symbol A in FIG. 3 shows the time change of the room temperature in the living room, the graph shown by the symbol B shows the time change of the room temperature of the kitchen, the graph shown by the symbol C shows the time change of the room temperature of the couple bedroom, A graph indicated by a symbol D indicates a time change of the room temperature of the child room, and a graph indicated by a symbol E indicates a time change of the room temperature of the Japanese room. Here, in the present embodiment, the time interval Δt for obtaining the temperature difference ΔT, the regression coefficient α, and the correlation coefficient r described above is 10 before and after the time t (hereinafter also referred to as the calculation reference time t) serving as a calculation reference. Minutes, that is, 20 minutes are set. The calculation reference time t is advanced every minute. Therefore, for example, when the calculation reference time t is 7: 3, the temperature difference ΔT, the regression coefficient α, and the correlation coefficient r are obtained based on the room temperature information measured from 6:53 to 7:13. . For example, FIG. 4 shows the kitchen room temperature measured over 20 minutes from 6:53 to 7:13. The straight line 21 in the figure is a linear approximation of the kitchen room temperature distribution from 6:53 to 7:13 by the least square method, and the slope of this straight line 21 indicates that the calculation reference time t is 7: 3. Is the regression coefficient α. FIG. 5 shows the correlation between the room temperature of the kitchen from 6:53 to 7:13, and the room temperature of the other room 1b, (A) shows the correlation with the room temperature of the living room, and (B) shows the room of the couple's bedroom. The correlation with room temperature is shown, (C) shows the correlation with the room temperature of the child room, and (D) shows the correlation with the room temperature of the Japanese room. The time increment for advancing the calculation reference time t is called a calculation time step Δt ′, and the time step for measuring each room temperature is called a measurement time step Δt ″. In this embodiment, the measurement time step Δt ″ and the calculation time step Although Δt ′ is 1 minute and the time interval Δt is 20 minutes, these values are not necessarily limited.

例えば本実施形態では、温度差ΔTが基準値Tx以上となり、且つ回帰係数αが基準値αx以上となり、且つ相関係数rの平均値r_aveが基準値Rx以上となる計算基準時刻tを炊事開始時刻と推定するようにしている。このように、3つの条件の論理積をとることで炊事開始時刻の誤判定を防止できる。   For example, in this embodiment, cooking is started at a calculation reference time t at which the temperature difference ΔT is equal to or greater than the reference value Tx, the regression coefficient α is equal to or greater than the reference value αx, and the average value r_ave of the correlation coefficient r is equal to or greater than the reference value Rx. The time is estimated. Thus, the misjudgment of cooking start time can be prevented by taking the logical product of three conditions.

ここで本実施形態では、温度差ΔTの基準値Txおよび回帰係数αの基準値αxを、累積度数分布に基づいて定めるようにしている。具体的には、台所室温を一定期間記録し、当該記録に基づいて温度差ΔTおよび回帰係数αを求め、且つ温度差ΔTおよび回帰係数αのそれぞれの累積度数分布を求める。そして、各累積度数線において急傾斜部から緩傾斜部に遷移する点にあたる温度差ΔTおよび回帰係数αの値を、それぞれ基準値Tx,αxとして定めるようにしている。ここで、累積度数分布は累積相対度数分布であっても良い。また、累積度数線は累積度数線折線であっても良く、または累積度数線折線を滑らかな曲線に近似したものや累積度数分布曲線であっても良い。   Here, in the present embodiment, the reference value Tx of the temperature difference ΔT and the reference value αx of the regression coefficient α are determined based on the cumulative frequency distribution. Specifically, the kitchen room temperature is recorded for a certain period, the temperature difference ΔT and the regression coefficient α are obtained based on the record, and the cumulative frequency distributions of the temperature difference ΔT and the regression coefficient α are obtained. Then, the temperature difference ΔT and the regression coefficient α corresponding to the transition point from the steeply inclined portion to the gently inclined portion in each cumulative power line are determined as reference values Tx and αx, respectively. Here, the cumulative frequency distribution may be a cumulative relative frequency distribution. Further, the cumulative frequency line may be a cumulative frequency line broken line, or may be an approximated cumulative frequency line broken line or a cumulative frequency distribution curve.

炊事中の室温上昇は他の時間帯の室温変動と大きく異なり、且つ1日の中で数回程度と発生頻度も少ない。このため、温度差ΔTおよび回帰係数αの累積相対度数分布は、右肩上がりに急傾斜部を描いた後、100%近傍でなだらかな緩傾斜部を描く。炊事中における温度差ΔTや回帰係数αの値は、当該緩傾斜部にあたるものと考えられる。従って、急傾斜部と緩傾斜部との境界となる値を基準値Tx,αxとして定めることで、温度差ΔTや回帰係数αが炊事中におけるものか否か判断することができる。尚、急傾斜部と緩傾斜部との境界点を探す方法としては、例えば累積度数線の左側から右側に向かって接線の傾きを求めていき、当該傾きがある一定値以下となる点を当該境界点とする、或いは当該傾きがある一定値を超える変化量で小さくなった点を当該境界点とする、等の方法を利用しても良い。   The rise in room temperature during cooking is significantly different from room temperature fluctuations in other time zones, and the frequency of occurrence is low, about several times a day. For this reason, in the cumulative relative frequency distribution of the temperature difference ΔT and the regression coefficient α, a steeply sloped part is drawn upward and then a gentle slope part is drawn near 100%. It is considered that the value of the temperature difference ΔT and the regression coefficient α during cooking corresponds to the gentle slope portion. Therefore, it is possible to determine whether or not the temperature difference ΔT and the regression coefficient α are during cooking by determining the values that serve as the boundary between the steeply inclined portion and the gently inclined portion as the reference values Tx and αx. As a method for finding the boundary point between the steeply inclined portion and the gently inclined portion, for example, the slope of the tangent line is obtained from the left side to the right side of the cumulative frequency line, and the point where the slope is below a certain value is determined. For example, a method may be used in which a boundary point is used, or a point that has become smaller by an amount of change exceeding a certain value is used as the boundary point.

図6に台所1aの室温回帰係数αの累積相対度数分布の一例を示し、図7に台所1aの温度差ΔTの累積相対度数分布の一例を示す。図6の回帰係数αの累積相対度数分布では、「0.4℃/10分」近傍で傾きがなだらかになっている。従って、この例の場合では、回帰係数αの基準値αxを「0.4℃/10分」に設定することが好ましい。また、図7の温度差ΔTの累積相対度数分布では、例えば0.8℃〜1℃差の区間のように一部で階段状になっている。これは、本実施形態では室温が1/3℃刻みで記録されるためである。従って、当該温度の刻みが細かくなれば温度差ΔTの累積相対度数線も滑らかになる。 図7の温度差ΔTの累積相対度数分布が滑らかに分布していると想定すると、「1.3℃差」近傍で傾きがなだらかになる。従って、この例の場合では、温度差ΔTの基準値Txを「1.3℃差」に設定することが好ましい。   FIG. 6 shows an example of the cumulative relative frequency distribution of the room temperature regression coefficient α of the kitchen 1a, and FIG. 7 shows an example of the cumulative relative frequency distribution of the temperature difference ΔT of the kitchen 1a. In the cumulative relative frequency distribution of the regression coefficient α in FIG. 6, the slope is gentle in the vicinity of “0.4 ° C./10 minutes”. Therefore, in this example, it is preferable to set the reference value αx of the regression coefficient α to “0.4 ° C./10 minutes”. Further, in the cumulative relative frequency distribution of the temperature difference ΔT in FIG. 7, for example, a part is stepped like a section of 0.8 ° C. to 1 ° C. difference. This is because the room temperature is recorded in 1/3 ° C. increments in this embodiment. Therefore, if the temperature increment becomes fine, the cumulative relative frequency line of the temperature difference ΔT becomes smooth. Assuming that the cumulative relative frequency distribution of the temperature difference ΔT in FIG. 7 is smoothly distributed, the slope becomes gentle in the vicinity of the “1.3 ° C. difference”. Therefore, in this example, it is preferable to set the reference value Tx of the temperature difference ΔT to “1.3 ° C. difference”.

一方、台所1aと他室1bとの室温相関係数rの平均値r_aveの累積相対度数分布の一例を図8に示す。同図では、傾きがなだらかになる部分が殆んどなく、逆に平均値r_aveの値が0.95となる近傍で傾きが急になっている。これは、相関係数rの上限が1であるため、1近傍の値が非常に出現し難いことによる影響と考えられる。この累積度数分布だけに基づいて相関係数rの基準値Rxを定めることは難しい。そこで例えば本実施形態では、室温相関係数rの平均値r_aveの累積相対度数分布において、温度差ΔTの基準値Txの累積相対度数または回帰係数αの基準値αxの累積相対度数と、同程度の累積相対度数となる値を基準値Rxに設定するようにしている。   On the other hand, FIG. 8 shows an example of the cumulative relative frequency distribution of the average value r_ave of the room temperature correlation coefficient r between the kitchen 1a and the other room 1b. In the figure, there is almost no portion where the slope becomes gentle, and conversely, the slope is steep in the vicinity where the average value r_ave is 0.95. This is considered to be due to the fact that since the upper limit of the correlation coefficient r is 1, the value near 1 is very difficult to appear. It is difficult to determine the reference value Rx of the correlation coefficient r based only on this cumulative frequency distribution. Thus, for example, in the present embodiment, in the cumulative relative frequency distribution of the average value r_ave of the room temperature correlation coefficient r, the same degree as the cumulative relative frequency of the reference value Tx of the temperature difference ΔT or the cumulative relative frequency of the reference value αx of the regression coefficient α. Is set to the reference value Rx.

但し、基準値Tx,αx,Rxの設定方法は必ずしも上記例に限定されない。例えば、炊事開始前と炊事終了後の台所1aの温度差、炊事開始から炊事終了までにおける台所室温の時間変化の回帰係数、炊事中における台所室温と他室1bの室温との相関係数を実際に求め、これらの実測値に基づいて基準値Tx,αx,Rxを設定するようにしても良い。   However, the method of setting the reference values Tx, αx, Rx is not necessarily limited to the above example. For example, the temperature difference between the kitchen 1a before cooking and after cooking, the regression coefficient of the time change of the kitchen room temperature from the start of cooking to the end of cooking, and the correlation coefficient between the room temperature of the kitchen and the other room 1b during cooking And the reference values Tx, αx, Rx may be set based on these actually measured values.

以上に説明した多量発熱の発生推定方法は、例えば図1に示すように装置化することが可能である。この多量発熱の発生推定装置は、全館空調システムを備える建物の各室1に設置された温度センサ3からの室温情報と該室温情報に対応する時刻情報とを記録する情報記録手段10と、情報記録手段10に記録された情報に基いて、時間間隔Δtにおける台所1aの最高室温と最低室温の温度差ΔTを求める温度差演算部11aと、時間間隔Δtにおける台所1aの室温の時間変化から導かれる回帰係数αを求める回帰係数演算部11bと、時間間隔Δtにおける台所室温と他室1bの室温との相関係数rの平均値r_aveを求める相関係数演算部11cとを有する演算手段11と、温度差ΔT≧基準値Tx、且つ回帰係数α≧基準値αx、且つ相関係数rの平均値r_ave≧基準値Rxとの条件を満たすか否か判断する比較手段12と、当該条件を満たす計算基準時刻tを推定炊事開始時刻として出力する出力部13とを有している。尚、情報記録手段10として例えばハードディスクなどの周知の装置を利用して良く、また演算手段11や比較手段12として例えばCPUなどの周知の装置を利用して良い。   The method for estimating the generation of a large amount of heat described above can be implemented as an apparatus, for example, as shown in FIG. This apparatus for estimating the generation of a large amount of heat includes information recording means 10 for recording room temperature information from temperature sensors 3 installed in each room 1 of a building equipped with a whole building air conditioning system and time information corresponding to the room temperature information, Based on the information recorded in the recording means 10, a temperature difference calculation unit 11a that obtains a temperature difference ΔT between the maximum room temperature and the minimum room temperature of the kitchen 1a in the time interval Δt, and derived from the time change of the room temperature of the kitchen 1a in the time interval Δt. A calculation means 11 having a regression coefficient calculation unit 11b for calculating the regression coefficient α, and a correlation coefficient calculation unit 11c for calculating an average value r_ave of the correlation coefficient r between the room temperature of the kitchen and the room temperature of the other room 1b in the time interval Δt; Comparing means 12 for determining whether or not the condition of temperature difference ΔT ≧ reference value Tx, regression coefficient α ≧ reference value αx, and average value r_ave of correlation coefficient r ≧ reference value Rx is satisfied, and the condition And an output unit 13 for outputting the calculated reference time t as the estimated cooking time starts. For example, a known device such as a hard disk may be used as the information recording unit 10, and a known device such as a CPU may be used as the computing unit 11 and the comparison unit 12.

図2に、上記推定装置が実行する処理の一例を示す。この処理では先ず、空気調和機4の制御部5の外部出力機能を利用し、各ルームコントローラ2から送られてくる各室の室温情報と当該室温の測定時刻とを、一定期間、情報記録手段10に記録する(S1)。当該一定期間の開始時刻を測定開始時刻とし、終了時刻を測定終了時刻とする。尚、測定開始時刻および測定終了時刻には日付情報も含むものとする。尚、S1で得られた情報を用いて、基準値Tx,αx,Rxを設定するようにしても良い。次に、計算基準時刻tに初期時刻をセットする(S2)。例えば測定開始時刻から時間間隔Δtの2分の1だけ進めた時間を初期時刻とする。そして、計算基準時刻tが終了時刻を超えるまで、以下の処理を行なう(S3;Yes)。時間間隔Δtすなわち時刻t−Δt/2から時刻t+Δt/2までにおける室温情報に基いて、温度差ΔT、回帰係数α、相関係数rの平均値r_aveを求める(S4,S5,S6)。そして、温度差ΔT≧基準値Tx且つ回帰係数α≧基準値αx且つ相関係数rの平均値r_ave≧基準値Rxの条件を満たすか判断する(S7)。満たす場合には(S7;Yes)、 計算基準時刻tを推定炊事開始時刻として記録する(S8)。そして、計算基準時刻tを計算時間刻みΔt’だけ進める(S9)。計算基準時刻tが終了時刻を超えるまで、S3以下の処理を繰り返す。尚、例えば測定終了時刻から時間間隔Δtの2分の1だけ前の時間を終了時刻とする。   FIG. 2 shows an example of processing executed by the estimation apparatus. In this process, first, the external output function of the control unit 5 of the air conditioner 4 is used, and the room temperature information of each room sent from each room controller 2 and the measurement time of the room temperature are recorded for a certain period of time. 10 (S1). The start time of the certain period is set as the measurement start time, and the end time is set as the measurement end time. The measurement start time and the measurement end time include date information. The reference values Tx, αx, Rx may be set using the information obtained in S1. Next, the initial time is set as the calculation reference time t (S2). For example, a time advanced by a half of the time interval Δt from the measurement start time is set as the initial time. Then, the following processing is performed until the calculation reference time t exceeds the end time (S3; Yes). Based on room temperature information from time interval Δt, that is, from time t−Δt / 2 to time t + Δt / 2, an average value r_ave of temperature difference ΔT, regression coefficient α, and correlation coefficient r is obtained (S4, S5, S6). Then, it is determined whether or not the condition of temperature difference ΔT ≧ reference value Tx and regression coefficient α ≧ reference value αx and average value r_ave of correlation coefficient r ≧ reference value Rx is satisfied (S7). When satisfying (S7; Yes), the calculation reference time t is recorded as the estimated cooking start time (S8). Then, the calculation reference time t is advanced by the calculation time increment Δt ′ (S9). Until the calculation reference time t exceeds the end time, the processing from S3 is repeated. For example, a time that is one-half of the time interval Δt from the measurement end time is set as the end time.

以上の処理の終了後、出力部13では、記録された推定炊事開始時刻を出力する。この際、前の推定炊事開始時刻から一定時間以内、例えば1時間以内にある推定炊事開始時刻は、一連の炊事行為に属すると考えられるため、除外するようにしても良い。ここで、出力部13として例えばディスプレイ等の表示装置を利用して、作業者や解析者等に推定結果を表示するようにしても良いが、出力部13からの出力結果を以下に説明するように利用することも可能である。   After the above process is completed, the output unit 13 outputs the recorded estimated cooking start time. At this time, the estimated cooking start time within a certain time from the previous estimated cooking start time, for example, within one hour, is considered to belong to a series of cooking actions, and may be excluded. Here, for example, a display device such as a display may be used as the output unit 13 to display the estimation result to an operator, an analyst, or the like. The output result from the output unit 13 will be described below. It is also possible to use it.

例えば出力部13は、空気調和機4の制御部5に推定炊事開始時刻を出力するようにする。空気調和機4では、例えば通知された推定炊事開始時刻に基づいて、予測される炊事開始時刻前に予冷運転を始めるなど、居住者行動を予測した省エネルギ運転を行なうことができる。更にこの場合、出力部13は、推定炊事開始時刻の曜日や月日の情報も併せて、空気調和機4の制御部5に出力するようにしても良い。この場合、空気調和機4の制御部5では、曜日や月日に応じた炊事開始時刻のパターンを学習することで、曜日や月日に応じた高度な炊事開始時刻の予測を行なえる。   For example, the output unit 13 outputs the estimated cooking start time to the control unit 5 of the air conditioner 4. In the air conditioner 4, for example, based on the notified estimated cooking start time, it is possible to perform an energy saving operation that predicts resident behavior, such as starting a precooling operation before the predicted cooking start time. Further, in this case, the output unit 13 may output the day and month information of the estimated cooking start time to the control unit 5 of the air conditioner 4 together. In this case, the controller 5 of the air conditioner 4 can predict the cooking start time according to the day of the week or the month by learning the pattern of the cooking start time according to the day of the week or the month.

また、例えば出力部13は、他のシステム、例えば居住者が健常に生活しているか否かを遠隔から確認する安否確認システムに、推定炊事開始時刻を出力するようにしても良い。炊事が規則的に行なわれているか否かは、例えば一人暮らしの老人等が、健常に生活しているか否かを判断する一情報として有効と考えられる。   Further, for example, the output unit 13 may output the estimated cooking start time to another system, for example, a safety confirmation system that remotely confirms whether the resident is living normally. Whether cooking is performed regularly is considered to be effective as information for determining whether, for example, an elderly person living alone lives normally.

台所、居間、夫婦寝室、子供部屋、和室の計5室を有し、全館空調システムを備えた戸建て住宅を対象とし、9日間の期間で各室1の室温情報と時刻情報を記録した。尚、空気調和機4の運転状況を確認するため、空気調和機4のファンの風量も記録した。台所室温とファンの風量を図10から図18に示す。図10〜図18中の符号Fが台所温度の時間変化を示し、符号Gがファンの風量の時間変化を示す。尚、上記期間において、トラブル等により一時的に空気調和機4が停止した時間帯があったが(図13および図17中の符号Hで指し示す。)、全館空調システムはほぼ連続して冷房運転を行なっていた。   The room, room information and time information of each room 1 were recorded over a period of 9 days for a detached house with a total of 5 rooms: a kitchen, a living room, a couple's bedroom, a children's room, and a Japanese-style room. In addition, in order to confirm the operating condition of the air conditioner 4, the air volume of the fan of the air conditioner 4 was also recorded. The room temperature of the kitchen and the air volume of the fan are shown in FIGS. The code | symbol F in FIGS. 10-18 shows the time change of the kitchen temperature, and the code | symbol G shows the time change of the air volume of a fan. During the above period, there was a time zone in which the air conditioner 4 was temporarily stopped due to a trouble or the like (indicated by the symbol H in FIGS. 13 and 17), but the entire building air conditioning system was in a cooling operation almost continuously. I was doing.

上記9日間の期間における記録に基いて、上述した方法により温度差ΔT、回帰係数α、相関係数rを計算し、図6,図7,図8に示す累積相対度数分布を得た。これらの累積相対度数分布に基づいて、上述した方法により温度差ΔTの基準値Txを「1.3℃差」に設定するとともに、回帰係数αの基準値αxを「0.4℃/10分」に設定し、上記9日間の期間における炊事開始時刻の推定を行なった。但し、本実施例では相関係数rは炊事開始時刻の推定条件に用いなかった。炊事開始時刻の推定結果を表1に示す。尚、推定炊事開始時刻が前の推定炊事開始時刻から1時間以内にある場合には、一連の炊事行為と考え、除外した。また、推定炊事開始時刻が空気調和機4が停止した時刻と同じ時刻の場合にも除外した。

Figure 0004066370
Based on the recording for the period of 9 days, the temperature difference ΔT, the regression coefficient α, and the correlation coefficient r were calculated by the method described above, and the cumulative relative frequency distributions shown in FIGS. 6, 7, and 8 were obtained. Based on these cumulative relative frequency distributions, the reference value Tx of the temperature difference ΔT is set to “1.3 ° C. difference” by the method described above, and the reference value αx of the regression coefficient α is set to “0.4 ° C./10 minutes”. The cooking start time in the 9 day period was estimated. However, in this example, the correlation coefficient r was not used for the cooking start time estimation condition. Table 1 shows the estimated cooking start time. If the estimated cooking start time is within one hour from the previous estimated cooking start time, it was considered as a series of cooking actions and excluded. Moreover, it excluded also when the estimated cooking start time is the same time as the time when the air conditioner 4 stopped.
Figure 0004066370

平日の炊事開始時刻の推定結果では、朝の炊事が7時前後、昼の炊事が12時〜13時、最後の炊事が22時以降など、日による推定時刻のばらつきが大きくない。従って、推定した炊事パターンの安定性から、台所1aの室温回帰係数αと温度差ΔTだけでも、炊事開始時刻を概ね良好に推定できると考えられる。なお、夜に複数の炊事開始があるのは、家族帰宅後の再加熱と考えられる。   In the estimation result of the cooking start time on weekdays, the variation in estimated time by day is not large, such as morning cooking around 7 o'clock, lunch cooking at 12:00 to 13:00, and last cooking after 22:00. Therefore, from the stability of the estimated cooking pattern, it is considered that the cooking start time can be estimated generally well only by the room temperature regression coefficient α and the temperature difference ΔT of the kitchen 1a. In addition, it is thought that it is reheating after a family return home that there is a plurality of cooking start at night.

図9は1日目の6:45〜7:45における各部屋の室温を示す。図9中の符号Aで示すグラフが居間の室温の時間変化を示し、符号Bで示すグラフが台所の室温の時間変化を示し、符号Cで示すグラフが夫婦寝室の室温の時間変化を示し、符号Dで示すグラフが子供部屋の室温の時間変化を示し、符号Eで示すグラフが和室の室温の時間変化を示す。同図から、台所1aの室温上昇が大きいときには、台所1a以外の室1bの室温も同様に上昇していることが確認できる。なお、上記の1時間内における台所、居間、夫婦寝室、子供部屋、和室の各室温の最高温度と最低温度の差は、それぞれ2.3℃、2℃、3℃、2.3℃、2.7℃であり、台所1aの温度上昇が最大になっていない。これは、部屋ごとに風量要求設定が異なることや、室温を検知しているルームコントローラ2とダクト給気口の位置関係の差による影響と考えられる。   FIG. 9 shows the room temperature of each room at 6:45 to 7:45 on the first day. In FIG. 9, the graph indicated by the symbol A indicates the time change of the room temperature in the living room, the graph indicated by the symbol B indicates the time change of the room temperature of the kitchen, the graph indicated by the symbol C indicates the time change of the room temperature of the couple's bedroom, A graph indicated by a symbol D indicates a time change of the room temperature of the child room, and a graph indicated by a symbol E indicates a time change of the room temperature of the Japanese room. From this figure, it can be confirmed that when the room temperature rise of the kitchen 1a is large, the room temperature of the chamber 1b other than the kitchen 1a is also raised. The difference between the maximum temperature and the minimum temperature in the kitchen, living room, couple's bedroom, children's room, and Japanese room in the above hour is 2.3 ° C, 2 ° C, 3 ° C, 2.3 ° C, It is 7 ° C, and the temperature rise of the kitchen 1a is not maximized. This is considered to be due to the difference in the air flow requirement setting for each room and the difference in the positional relationship between the room controller 2 that detects the room temperature and the duct air inlet.

上記実施例1の条件において、台所1aの温度差ΔTの基準値Txを「1.3℃差」から「1℃差」に緩和して、炊事開始時刻の推定を再度行なった。この結果、表1に示した時刻のほかに、4日目の1:34、8日目の12:13、9日目の7:08との3つの時刻が炊事開始時刻として推定された。図13に示す4日目の台所室温、図17に示す8日目の台所室温、図18に示す9日目の台所室温を参照すると、炊事開始の可能性が高いのは9日目の7:08のみと考えられる。   Under the conditions of Example 1, the reference value Tx of the temperature difference ΔT of the kitchen 1a was relaxed from “1.3 ° C. difference” to “1 ° C. difference”, and the cooking start time was estimated again. As a result, in addition to the times shown in Table 1, three times of 1:34 on the fourth day, 12:13 on the eighth day, and 7:08 on the ninth day were estimated as cooking start times. Referring to the kitchen room temperature on the fourth day shown in FIG. 13, the kitchen room temperature on the eighth day shown in FIG. 17, and the kitchen room temperature on the ninth day shown in FIG. 18, the possibility of starting cooking is high on the seventh day. : Only 08 is considered.

ここで、台所1aと他室1bとの室温相関係数rの平均値r_aveの値は、4日目の1:34では0.85、8日目の12:13では0.73、9日目の7:08では0.95であった。基準値Txが「1℃差」である場合の累積相対度数は、図7から90%である。一方、累積相対度数90%にあたる相関係数rの平均値r_aveは、図8から約0.9である。従って、基準値Txの累積相対度数と同程度の累積相対度数にあたる相関係数rの平均値r_aveを基準値Rxとし、「平均値r_ave≧基準値Rx」も炊事開始時刻推定の条件に加えることで、温度差ΔTの基準値Txを緩めた場合に、炊事以外の温度上昇を誤判定することを少なくできると考えられる。即ち、相関係数rも併用することで、推定精度を高めることができると考えられる。   Here, the average value r_ave of the room temperature correlation coefficient r between the kitchen 1a and the other room 1b is 0.85 at 1:34 on the fourth day, 0.73 at 12:13 on the eighth day, and 9 days. It was 0.95 at 7:08. The cumulative relative frequency when the reference value Tx is “1 ° C. difference” is 90% from FIG. 7. On the other hand, the average value r_ave of the correlation coefficient r corresponding to the cumulative relative frequency of 90% is about 0.9 from FIG. Therefore, the average value r_ave of the correlation coefficient r corresponding to the cumulative relative frequency equivalent to the cumulative relative frequency of the reference value Tx is set as the reference value Rx, and “average value r_ave ≧ reference value Rx” is also added to the cooking start time estimation condition. Thus, when the reference value Tx of the temperature difference ΔT is loosened, it is considered that it is possible to reduce erroneous determination of temperature rise other than cooking. That is, it is considered that the estimation accuracy can be increased by using the correlation coefficient r together.

なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、上述の実施形態では、ΔT≧Tx、α≧αx、r_ave≧Rxとの3つの条件をすべて満たす場合に炊事開始時刻と推定するようにしたが、精度よりも処理速度が求められるような場合には、r_ave≧Rxの条件は外しても良い。また、炊事開始時刻である可能性が多少でもある時刻をすべて捉えたいような場合には、ΔT≧Txとα≧αxとの少なくとも一方の条件が満たされた場合に、炊事開始時刻と推定するようにしても良い。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, in the above-described embodiment, the cooking start time is estimated when all three conditions of ΔT ≧ Tx, α ≧ αx, and r_ave ≧ Rx are satisfied, but the processing speed is required rather than the accuracy. In this case, the condition r_ave ≧ Rx may be removed. In addition, when it is desired to capture all the times that are likely to be cooking start times, the cooking start time is estimated when at least one of the conditions of ΔT ≧ Tx and α ≧ αx is satisfied. Anyway.

また、上述の実施形態では、対象室1aを台所として炊事開始時刻を推定するようにしたが、炊事に類似するような大きな発熱、例えば火災などの発生検出または火災などの発生時刻の推定に、本発明を利用しても良い。また、上述の実施形態では対象室1aを1室としたが、建物の各室1を対象室1aとしても良い。また、相関係数rの替わりに相互相関を計算するようにしても良い。相互相関を計算することにより、どの室1が最初に熱くなったか、という情報も得られる。   Moreover, in the above-described embodiment, the cooking start time is estimated using the target room 1a as a kitchen, but large heat generation similar to cooking, for example, detection of occurrence of a fire or estimation of the occurrence time of a fire, The present invention may be used. In the above-described embodiment, the target room 1a is one room, but each room 1 of the building may be the target room 1a. Further, the cross-correlation may be calculated instead of the correlation coefficient r. By calculating the cross-correlation, information is also obtained as to which chamber 1 has become hot first.

本発明によれば、炊事開始時刻を推定することにより、居住者の炊事開始パターンを空調に反映させることができる。例えば熱負荷が急増する炊事前から予冷運転を始めたりするなど、居住者行動を予測した空調を行なうことができ、全館空調システム等の省エネルギ運転を実現できる。また、炊事開始時刻の推定結果、換言すれば炊事が比較的規則的な時間帯に行なわれたか否かの情報は、居住者が健常に生活しているか否かを判断する一情報として有効と考えられ、安否確認システム等にも利用できる。さらに本発明によれば、炊事以外にも多量の発熱、例えば火災による発熱なども検出でき、更にその発生時刻も推定できる。   According to the present invention, the cooking start pattern of the resident can be reflected in the air conditioning by estimating the cooking start time. For example, it is possible to perform air-conditioning that predicts resident behavior, such as starting pre-cooling operation before cooking where heat load increases rapidly, and energy-saving operation such as a whole-building air-conditioning system can be realized. In addition, the estimation result of the cooking start time, in other words, information on whether cooking was performed in a relatively regular time zone is effective as one information for determining whether the resident is living normally. It can be used as a safety confirmation system. Furthermore, according to the present invention, in addition to cooking, a large amount of heat generation, for example, heat generation due to a fire, can be detected, and the generation time can be estimated.

本発明の多量発熱の発生推定装置の実施の一形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the generation | occurrence | production estimation apparatus of the large heat generation of this invention. 本発明の多量発熱の発生推定方法を炊事開始時刻の推定に適用した場合の処理の一例を示すフローチャートである。It is a flowchart which shows an example of a process at the time of applying the generation | occurrence | production estimation method of the large amount of heat generation of this invention to estimation of cooking start time. 建物の各室の室温情報の一例を示すグラフである。It is a graph which shows an example of the room temperature information of each room of a building. 台所室温の回帰係数および温度差の一例を示すグラフである。It is a graph which shows an example of the regression coefficient and temperature difference of kitchen room temperature. 台所室温と他室の室温との相関の一例を示し、(A)は居間の室温との相関を示し、(B)は夫婦寝室の室温との相関を示し、(C)は子供部屋の室温との相関を示し、(D)は和室の室温との相関を示す。An example of the correlation between the room temperature in the kitchen and the room temperature in the other room is shown. (A) shows the correlation with the room temperature in the living room, (B) shows the correlation with the room temperature in the couple's bedroom, and (C) shows the room temperature in the child room. (D) shows the correlation with the room temperature of the Japanese-style room. 台所室温の回帰係数の累積相対度数分布を示す。The cumulative relative frequency distribution of the regression coefficient of kitchen room temperature is shown. 台所室温の温度差の累積相対度数分布を示す。The cumulative relative frequency distribution of the temperature difference of kitchen room temperature is shown. 台所と他室との室温相関係数の累積相対度数分布を示す。The cumulative relative frequency distribution of the room temperature correlation coefficient between the kitchen and other rooms is shown. 実施例における建物の各室の室温情報の一例を示すグラフである。It is a graph which shows an example of the room temperature information of each room of the building in an Example. 実施例にて測定した台所の室温情報とファン風量を示すグラフであり、1日目のデータを示す。It is a graph which shows the room temperature information and fan air volume of the kitchen which were measured in the Example, and shows the data of the 1st day. 実施例にて測定した台所の室温情報とファン風量を示すグラフであり、2日目のデータを示す。It is a graph which shows the room temperature information and fan air volume of the kitchen which were measured in the Example, and shows the data of the 2nd day. 実施例にて測定した台所の室温情報とファン風量を示すグラフであり、3日目のデータを示す。It is a graph which shows the room temperature information and fan air volume of the kitchen which were measured in the Example, and shows the data of the 3rd day. 実施例にて測定した台所の室温情報とファン風量を示すグラフであり、4日目のデータを示す。It is a graph which shows the room temperature information and fan air volume of the kitchen which were measured in the Example, and shows the data of the 4th day. 実施例にて測定した台所の室温情報とファン風量を示すグラフであり、5日目のデータを示す。It is a graph which shows the room temperature information and fan air volume of the kitchen which were measured in the Example, and shows the data of the 5th day. 実施例にて測定した台所の室温情報とファン風量を示すグラフであり、6日目のデータを示す。It is a graph which shows the room temperature information and fan air volume which were measured in the Example, and shows the data of the 6th day. 実施例にて測定した台所の室温情報とファン風量を示すグラフであり、7日目のデータを示す。It is a graph which shows the room temperature information and fan air volume which were measured in the Example, and shows the data of the 7th day. 実施例にて測定した台所の室温情報とファン風量を示すグラフであり、8日目のデータを示す。It is a graph which shows the room temperature information and fan air volume which were measured in the Example, and shows the data of the 8th day. 実施例にて測定した台所の室温情報とファン風量を示すグラフであり、9日目のデータを示す。It is a graph which shows the room temperature information and fan air volume which were measured in the Example, and shows the data of the 9th day.

符号の説明Explanation of symbols

1a 対象室
1b 対象室以外の室
3 温度センサ
10 情報記録手段
11 演算手段
12 比較手段
1a target room 1b room 3 other than target room 3 temperature sensor 10 information recording means 11 calculation means 12 comparison means

Claims (6)

対象室に設置された温度センサからの室温情報と該室温情報に対応する時刻情報とを記録し、当該記録された情報に基づいて、予め定めた時間間隔における最高室温と最低室温の温度差と、前記時間間隔における室温の時間変化から導かれる回帰係数とを求め、前記温度差と前記回帰係数の一方又は双方が各々について予め定められた基準値以上となる事を条件として、この条件が満たされた前記時間間隔に対応する時間帯において、前記対象室内で該対象室外または該対象室以外の室よりも大きな発熱が生じたと推定し、且つ、前記温度差の基準値は、前記温度差の累積度数線を求め、前記累積度数線の傾きが予め定めた値以下となる点にあたる値又は当該傾きが予め定めた値を超える変化量で小さくなる点にあたる値であることを特徴とする多量発熱の発生推定方法。 Record the room temperature information from the temperature sensor installed in the target room and the time information corresponding to the room temperature information, and based on the recorded information, the temperature difference between the maximum room temperature and the minimum room temperature in a predetermined time interval A regression coefficient derived from a time change of room temperature in the time interval is obtained, and this condition is satisfied on condition that one or both of the temperature difference and the regression coefficient are equal to or greater than a predetermined reference value. It is estimated that a larger amount of heat is generated in the target room than in the target room or in a room other than the target room in the time zone corresponding to the time interval , and the reference value of the temperature difference is the temperature difference calculated cumulative frequency line, and wherein the value der Rukoto falls small point variation, the slope of the value or the inclination corresponding to that equal to or less than a predetermined value exceeds a predetermined value of the cumulative frequency line Generation method of estimating the large amount of heat that. 前記回帰係数の累積度数線を求め、前記累積度数線の傾きが予め定めた値以下となる点にあたる値又は当該傾きが予め定めた値を超える変化量で小さくなる点にあたる値を、前記回帰係数の基準値として定めることを特徴とする請求項1記載の多量発熱の発生推定方法。  A cumulative frequency line of the regression coefficient is obtained, and a value corresponding to a point where the slope of the cumulative frequency line is equal to or less than a predetermined value or a value corresponding to a point where the slope is smaller than a predetermined value is reduced. The generation estimation method for a large amount of heat generation according to claim 1, wherein the generation value is determined as a reference value for the heat generation. 対象室に設置された温度センサからの室温情報と該室温情報に対応する時刻情報とを記録し、当該記録された情報に基づいて、予め定めた時間間隔における最高室温と最低室温の温度差と、前記時間間隔における室温の時間変化から導かれる回帰係数とを求め、前記温度差と前記回帰係数の一方又は双方が各々について予め定められた基準値以上となる事を条件として、この条件が満たされた前記時間間隔に対応する時間帯において、前記対象室内で該対象室外または該対象室以外の室よりも大きな発熱が生じたと推定し、且つ、前記回帰係数の基準値は、前記回帰係数の累積度数線を求め、前記累積度数線の傾きが予め定めた値以下となる点にあたる値又は当該傾きが予め定めた値を超える変化量で小さくなる点にあたる値であることを特徴とする多量発熱の発生推定方法。 Record the room temperature information from the temperature sensor installed in the target room and the time information corresponding to the room temperature information, and based on the recorded information, the temperature difference between the maximum room temperature and the minimum room temperature in a predetermined time interval A regression coefficient derived from a time change of room temperature in the time interval is obtained, and this condition is satisfied on condition that one or both of the temperature difference and the regression coefficient are equal to or greater than a predetermined reference value. It is estimated that heat generation is greater in the target room than in the target room or in a room other than the target room in the time zone corresponding to the time interval, and the reference value of the regression coefficient is the regression coefficient A cumulative frequency line is obtained, and is a value corresponding to a point at which the slope of the cumulative frequency line is equal to or less than a predetermined value or a value corresponding to a point at which the slope decreases with a change amount exceeding a predetermined value. Generating method of estimating the large amount heat generation and. 前記対象室は台所であり、前記大きな発熱が生じたと推定される時刻を炊事開始時刻と推定することを特徴とする請求項1から3のいずれか一つに記載の多量発熱の発生推定方法。  The said target room is a kitchen and estimates the generation | occurrence | production estimation method of the large amount of heat generation as described in any one of Claim 1 to 3 which estimates the time estimated that the said big heat_generation | fever occurred as the cooking start time. 前記対象室は全館空調システムを備える建物の一室であり、前記時間間隔における前記対象室の室温と他室の室温との相関係数が予め定められた基準値以上となる事を、前記条件に加えたことを特徴とする請求項1から4のいずれか一つに記載の多量発熱の発生推定方法。  The target room is a room of a building equipped with a whole-building air conditioning system, and the condition that the correlation coefficient between the room temperature of the target room and the room temperature of the other room in the time interval is equal to or greater than a predetermined reference value. The method for estimating the occurrence of a large amount of heat according to any one of claims 1 to 4, wherein 全館空調システムを備える建物の各室に設置された温度センサからの室温情報と該室温情報に対応する時刻情報とを記録する情報記録手段と、前記情報記録手段に記録された情報に基いて、予め定めた時間間隔における対象室の最高室温と最低室温の温度差と、前記時間間隔における前記対象室の室温の時間変化から導かれる回帰係数と、前記時間間隔における前記対象室の室温と他室の室温との相関係数とのうち、一部または全部の値を求める演算手段と、前記温度差と前記回帰係数と前記相関係数のいずれか又はすべてが各々について予め定められた基準値以上となる事を条件とし、この条件を満たすか否か判断する比較手段とを備え、前記温度差の基準値は、前記温度差の累積度数線を求め、前記累積度数線の傾きが予め定めた値以下となる点にあたる値又は当該傾きが予め定めた値を超える変化量で小さくなる点にあたる値であり、前記回帰係数の基準値は、前記回帰係数の累積度数線を求め、前記累積度数線の傾きが予め定めた値以下となる点にあたる値又は当該傾きが予め定めた値を超える変化量で小さくなる点にあたる値であり、前記条件が満たされた前記時間間隔に対応する時間帯において、前記対象室で炊事が行なわれた若しくは炊事に類似する大きな発熱が生じたと推定することを特徴とする多量発熱の発生推定装置。 Based on the information recorded in the information recording means, information recording means for recording the room temperature information from the temperature sensor installed in each room of the building equipped with the entire building air conditioning system and the time information corresponding to the room temperature information, A temperature difference between the highest room temperature and the lowest room temperature of the target room in a predetermined time interval, a regression coefficient derived from a time change of the room temperature of the target room in the time interval, and the room temperature and the other room of the target room in the time interval Calculating means for obtaining a part or all of the correlation coefficient with room temperature, and any or all of the temperature difference, the regression coefficient, and the correlation coefficient are equal to or greater than a predetermined reference value. And a comparison means for determining whether or not this condition is satisfied. The reference value of the temperature difference is a cumulative frequency line of the temperature difference, and a slope of the cumulative frequency line is predetermined. Below value A value corresponding to a point or a value corresponding to a point where the slope becomes smaller with an amount of change exceeding a predetermined value, the reference value of the regression coefficient is a cumulative frequency line of the regression coefficient, and the slope of the cumulative frequency line is A value corresponding to a point that is equal to or less than a predetermined value or a value corresponding to a point where the inclination becomes smaller by an amount of change exceeding a predetermined value, and in the time zone corresponding to the time interval in which the condition is satisfied, the target room A large amount of heat generation estimation apparatus, characterized in that it is estimated that cooking has been performed or a large heat generation similar to cooking has occurred.
JP2003407326A 2003-12-05 2003-12-05 Method and apparatus for estimating generation of large amount of heat Expired - Fee Related JP4066370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003407326A JP4066370B2 (en) 2003-12-05 2003-12-05 Method and apparatus for estimating generation of large amount of heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003407326A JP4066370B2 (en) 2003-12-05 2003-12-05 Method and apparatus for estimating generation of large amount of heat

Publications (2)

Publication Number Publication Date
JP2005165938A JP2005165938A (en) 2005-06-23
JP4066370B2 true JP4066370B2 (en) 2008-03-26

Family

ID=34729405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003407326A Expired - Fee Related JP4066370B2 (en) 2003-12-05 2003-12-05 Method and apparatus for estimating generation of large amount of heat

Country Status (1)

Country Link
JP (1) JP4066370B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193298A (en) * 1985-02-22 1986-08-27 株式会社日立製作所 Sensor signal decision system
JPH0261448A (en) * 1988-08-26 1990-03-01 Matsushita Electric Ind Co Ltd Automatic operation device of air conditioner
JPH02254246A (en) * 1989-03-27 1990-10-15 Matsushita Electric Ind Co Ltd Controller for air conditioner
JP3071954B2 (en) * 1991-08-09 2000-07-31 株式会社神戸製鋼所 Level control device in mold of continuous casting machine
JP3100741B2 (en) * 1992-03-17 2000-10-23 テルモ株式会社 Electronic thermometer
JPH064789A (en) * 1992-06-22 1994-01-14 Hitachi Ltd Method and device for monitoring abnormality of equipment
JP3216280B2 (en) * 1992-12-11 2001-10-09 松下電器産業株式会社 Control equipment for air conditioners and applied equipment for image processing equipment
JP3276028B2 (en) * 1993-12-28 2002-04-22 東芝キヤリア株式会社 Ventilation equipment
JP3994355B2 (en) * 1997-10-24 2007-10-17 富士通株式会社 Automatic fire detection method and automatic fire detection device
JP2002318162A (en) * 2001-02-01 2002-10-31 Canon Inc Detection method and protection device of malfunction, and estimation method and estimation device of temperature

Also Published As

Publication number Publication date
JP2005165938A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
US8352082B2 (en) Methods and apparatuses for displaying energy savings from an HVAC system
US20120072030A1 (en) System and method of predictive occupancy room conditioning
CN109269019B (en) Defrosting control method and device and heating equipment
EP2924631A1 (en) Computer-implemented system and method for externally evaluating thermostat adjustment patterns of an indoor climate control system in a building
JP6160945B2 (en) Room temperature estimation device, program
JP6370049B2 (en) Air conditioner indoor unit
JP5907802B2 (en) Air conditioning control device, temperature sensor deterioration determination method, and program
JP6470497B2 (en) Action determination system, security system and resident monitoring system
JP2009145033A (en) Method for controlling comfort in location environment by air conditioning system
Ellis et al. Earlyoff: Using house cooling rates to save energy
JP6371640B2 (en) Air conditioning control apparatus and method
JP7215069B2 (en) Control program, control method and control device
CN117290797B (en) Building energy consumption prediction method, system, device and medium
JP4066370B2 (en) Method and apparatus for estimating generation of large amount of heat
US11514537B2 (en) Decoupled modeling methods and systems
CN110779184B (en) Operation control method and device, air conditioner and storage medium
JP6580264B2 (en) Air conditioning control device, air conditioning control method, air conditioning system, and air-conditioned house
JP5988217B2 (en) Room thermal characteristics estimation device, program
JP7215070B2 (en) Control program, control method and control device
KR101334299B1 (en) Ventilation system to prevent over-humidification
CN108224548B (en) Energy supply day number calculation method
JP2013182470A (en) Safety confirmation device and safety confirmation system
JP4917866B2 (en) Season judgment method
CN109812929B (en) Air conditioning system
JP6458181B2 (en) Air conditioning control apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees