JP4066240B2 - Shellfish freshness maintenance method and transportation method - Google Patents

Shellfish freshness maintenance method and transportation method Download PDF

Info

Publication number
JP4066240B2
JP4066240B2 JP2002192179A JP2002192179A JP4066240B2 JP 4066240 B2 JP4066240 B2 JP 4066240B2 JP 2002192179 A JP2002192179 A JP 2002192179A JP 2002192179 A JP2002192179 A JP 2002192179A JP 4066240 B2 JP4066240 B2 JP 4066240B2
Authority
JP
Japan
Prior art keywords
shellfish
concentration
glycine
oyster
freshness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002192179A
Other languages
Japanese (ja)
Other versions
JP2004033052A (en
Inventor
義功 越川
光植 朴
信夫 柵瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2002192179A priority Critical patent/JP4066240B2/en
Publication of JP2004033052A publication Critical patent/JP2004033052A/en
Application granted granted Critical
Publication of JP4066240B2 publication Critical patent/JP4066240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は貝類の鮮度維持方法及び輸送方法に関し、とくに貝肉内の栄養素の体内濃度を高めて貝類の鮮度を維持する方法に関する。
本発明は、とくに食品としての貝類(鮮貝)の生産地から消費地への輸送、干潟等の自然環境の創生・再生時に用いる貝類の輸送、開発造成地の生息貝の一時保護場所・代償移転地への輸送等に有効に活用できる。
【0002】
【従来の技術】
カキやホタテガイ、シジミ、アサリ等の貝類の養殖が、例えば波の影響が比較的少ない内湾や湖沼・河川等において、天然の植物プランクトンや懸濁物を栄養源して行われている。養殖された貝類は、水揚げしたのち体内に蓄積された汚物や菌類等を浄化し、通常は無水状態で消費地まで輸送される。水揚げ時に貝類の貝肉内に貯えられていた栄養素は浄化及び輸送の間に徐々に代謝され減少するため、消費地で貝類の鮮度が失われないように、従来から貝類の鮮度の低下を防止する種々の対策が施されている。
【0003】
貝類の鮮度低下を防止する対策の一例は、貝類を湿らせた布や紙類で包み低温状態で輸送する低温輸送方法である。また、例えば前述した水揚げ後の浄化の際に植物プランクトン等の生物飼料を貝類に与えながら処理することにより、貝肉内の栄養素や呈味成分(以下、両者を併せて栄養素ということがある。)を増強して鮮度を維持する栄養強化方法も従来から実施されている。浄化処理の際に貝類の栄養を強化する方法の一例として、特開平8-322420号公報は、所定の人工微粒子飼料を給与することにより二枚貝類可食部の栄養素の含有量を調整する二枚貝類の蓄養方法を提案している。
【0004】
【発明が解決しようとする課題】
しかし、従来の低温輸送方法は温度の管理が難しい問題点がある。低温管理が厳密に行われなかったため、輸送中に貝類の鮮度が著しく低下し、更に貝類が衰弱又は斃死状態となることもしばしば経験されている。また、低温輸送を行う場合であっても、何らかの理由で輸送時間が延びた場合等に備えて、水揚げから梱包・出荷(輸送開始)までを迅速に行うことが求められる。
【0005】
他方、輸送等に備えて貝類に栄養素を蓄えさせる従来の栄養強化方法は、栄養強化に時間がかかる問題点がある。植物プランクトン等の生物飼料が貝類の消化器官を経由して代謝され貝肉中の状態が改善されるには数週間程度が必要である。また、前記公報による人工微粒子飼料を使用した場合でも、貝肉内の栄養素含有量の調整には5日程度が必要である。水揚げ後の迅速な出荷を可能とするため、短時間で貝肉内の栄養を強化できる方法が求められている。
【0006】
そこで本発明の目的は、貝肉内の栄養素を短時間で簡単に増強できる貝類の鮮度維持方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は、従来の固形飼料に代えて、水中に溶解した溶存態の栄養素による貝類の栄養強化に注目した。従来から貝類は水中に溶解したミネラルを吸収し貝殻を形成することが知られており、貝類による溶存態ミネラルの利用可能性は示唆されていた。また、前記公報の人工微粒子飼料についても、その一部は水中で溶存態になっていると推定される。しかし、貝類による溶存態の栄養素の吸収生態に関しては、未だ具体的な報告はされていない。
【0008】
本発明者は、溶存態の栄養素の貝類による吸収生態を調査するため、アコヤガイ、ホタテガイ、マガキの3種類の二枚貝を用い、栄養素として貝類の呈味成分として知られるグルタミン酸(glutamic acid)、タウリン(taurine)及びグリシン(glycine)の3種類のアミノ酸を選定し、これらの溶存態アミノ酸の吸収生態を確認する実験を行った。3つの30リットル水槽をそれぞれ4試験区に区分けして海水を入れ、各水槽の第1〜3試験区の海水にそれぞれグルタミン酸・タウリン・グリシンを2.7μmol/gの濃度で溶解してグルタミン酸区・タウリン区・グリシン区とし、比較のため各水槽の第4試験区をアミノ酸無添加の対照区とした。
【0009】
各試験区のアミノ酸濃度を2.7μmol/gとした理由は、海水中のアミノ酸濃度を試験体である二枚貝の貝肉内のアミノ酸体内濃度の適正値よりやや低くし、溶存態アミノ酸の能動的な取り込みを確認するためである。また本実験では、貝類に吸収されるアミノ酸と排泄される物質とを考慮して、各試験区のアミノ酸が溶解した海水を24時間毎に入れ替え、実験期間中の海水中アミノ酸濃度を一定に維持した。
【0010】
第1水槽は水温23.3℃として各試験区にアコヤガイを20個体ずつ収容し、第2水槽は水温16.4℃として各試験区にホタテガイを20個体ずつ収容し、第3水槽は水温22.5℃として各試験区にマガキを20個体ずつ収容した。各水槽にそれぞれエアストーン1個を使用して通気しながら実験を開始し、実験開始後24、48、72及び96時間経過時にそれぞれ各水槽の各試験区から5個体ずつ取り上げて、二枚貝の貝肉内のアミノ酸体内濃度を測定した。アコヤガイ、ホタテガイ及びマガキの各々の実験結果を図3、4及び5のグラフに示す。
【0011】
図3(A)のグラフは第1水槽のグルタミン酸区及び対照区のアコヤガイ貝肉内におけるグルタミン酸濃度変化、同図(B)のグラフはタウリン区及び対照区のアコヤガイ貝肉内におけるタウリン濃度変化、同図(C)のグラフはグリシン区及び対照区のアコヤガイ貝肉内におけるグリシン濃度変化を示す。また、各グラフに試験区毎の海水中のアミノ酸濃度(一定値)を併せて示す。同図(A)から分かるように、アコヤガイは溶存態グルタミン酸をほとんど体内に取り込まない。また同図(B)から分かるように、アコヤガイは統計的に有意な溶存態タウリンの取り込みを示さない。これに対し同図(C)に示すように、アコヤガイは溶存態グリシンを積極的に体内に取り込み、溶存態グリシンの溶解した海水中においてアコヤガイの貝肉内のグリシン体内濃度は短時間で急激に増加し、実験開始48時間でグリシン体内濃度はほぼ最大値35〜40μmol/g(対照区の体内濃度の6〜8倍程度)となった。すなわち、アコヤガイは溶存態グリシンの選択的な取り込み能力を有する。
【0012】
また図4(A)、(B)及び(C)は、第2水槽のホタテガイ貝肉内におけるグルタミン酸、タウリン及びグリシンの濃度変化を示す。同図(A)及び(C)に示すようにホタテガイは、溶存態グルタミン酸をほとんど体内に取り込まず、溶存態グリシンの有意な取り込みを示さない。しかし同図(B)に示すように、溶存態タウリンが溶解した海水中においてホタテガイ貝肉内のタウリン体内濃度は短時間で増加し、対照区に比し実験開始24時間で約1.5倍(約60μmol/g)、実験開始96時間で約2倍(約75μmol/g)となった。すなわち、ホタテガイは溶存態タウリンの選択的な取り込み能力を有する。
【0013】
更に図5(A)、(B)及び(C)は、第3水槽のマガキ貝肉内におけるグルタミン酸、タウリン及びグリシンの濃度変化を示す。同図(A)及び(B)に示すように、マガキは溶存態グルタミン酸及びタウリンの有意な取り込みを示さない。しかし同図(C)に示すように、溶存態グリシンが溶解した海水中においてマガキ貝肉内のグリシン体内濃度は短時間で急激に増加する(対照区に比し実験開始後48時間で約4倍、72時間で約6倍)。すなわち、マガキは溶存態グリシンの選択的な取り込み能力を有する。
【0014】
実験結果で示された短時間での急激な体内濃度の増加は、従来の消化器官経由の飼料の摂餌では観察されないので、消化器官以外の器官(以下、非消化器官ということがある。)からの溶存態アミノ酸の吸収によるものと考えられる。非消化器官からの吸収機構の詳細は不明であるが、例えば貝類の外套膜や鰓等の呼吸器官が吸収に関係していると考えられる。すなわち図3〜5の実験結果から、二枚貝類は種類に応じて非消化器官から溶存態アミノ酸を選択的に吸収することが確認できた。
【0015】
本発明者は、更なる実験により、アミノ酸以外の栄養素についても前述した選択的な栄養素の速やかな体内濃度増加が見られること、二枚貝以外の巻貝等や淡水産の貝類についても同様な体内濃度増加が見られることを見出した。このような非消化器官からの栄養素取り込みによる貝肉内の速やかな体内濃度増加を利用すれば、貝肉内の栄養素を短時間で増強することができる。本発明は、この知見に基づく更なる実験研究の結果、完成に至ったものである。
【0016】
図1の実施例を参照するに、本発明による貝類の鮮度維持方法は、グリシン3を水2中に溶解して鮮度維持液5とし、その鮮度維持液5に貝類1であるアコヤガイ又はマガキを24〜96時間浸漬して貝肉内のグリシン3の体内濃度を高めてなるものである。
【0017】
また、本発明による貝類の輸送方法は、輸送前にグリシン3を水2中に溶解した鮮度維持液5に貝類1であるアコヤガイ又はマガキを24〜96時間浸漬して貝肉内のグリシン3の体内濃度を高めてなるものである。
【0018】
アコヤガイやマガキのように溶存態グリシン3の選択的な取り込み能力を有する貝類は、消化器官以外の器官からグリシン3を吸収する。浸漬する所要時間を24〜96時間とするのは、24時間以下の浸漬では貝肉内の栄養素3の体内濃度を十分に高めることが難しい場合があり、96時間程度浸漬すれば貝肉内の栄養素3の体内濃度がほぼ最大値に達すると考えられるからである。なお、前記貝肉には貝類のうち貝殻以外の部分が全て含まれる。
【0019】
【発明の実施の形態】
図1は、栄養素3としてグリシンを、この場合は海水2に溶解して本発明の鮮度維持液5とした実施例を示す。貝類1を非消化器官による溶存態グリシンの取り込み能力を有する例えばアコヤガイ又はマガキとし、その貝類1を図1の鮮度維持液5に例えば24〜96時間(好ましくは、アコヤガイでは48時間以上、マガキでは72時間以上)浸漬すれば、貝肉内のグリシン体内濃度を速やかに且つ消化器官経由の飼料の摂餌による場合よりも高濃度にまで高めることができる(図3及び5の実験結果参照)。
【0020】
なお、図1では栄養素3を海水2に溶解しているが、淡水産の貝類1の場合は栄養素3を淡水2に溶解して本発明の鮮度維持液5を調製すればよい。また、水2は天然のものに限らず、人工飼育水として例えば海水2を人工海水、淡水2を滅菌水等とすることができる。
【0021】
鮮度維持液5中の栄養素3の濃度は、貝類1が非消化器官から吸収可能な範囲内であればとくに制限はなく、例えば2.7μmol/g程度の比較的低濃度とすることができる。鮮度維持液5中の栄養素3の溶解濃度が低くても、その鮮度維持液5に浸漬する時間の調整により、例えば貝類1の貝肉内のグリシン体内濃度を鮮度維持液5中のグリシン濃度に比し4〜8倍程度に高めることができる。従って本発明では、栄養素3の溶解濃度が比較的低い鮮度維持液5を用い、貝肉内の栄養素3の体内濃度を効率的且つ経済的に高めることが期待できる。
【0022】
また、貝類1を鮮度維持液5に浸漬する時間は、貝類1及び栄養素3の種類に応じて調節できる。この場合、貝類1及び栄養素3の種類に応じて図3〜5のような浸漬時間と貝肉内の体内濃度との関係を示すグラフを作成し、貝肉内の栄養素3を所望体内濃度とする浸漬時間を実験的に定めることができる。
【0023】
[実験例]
図1に示す栄養素(グリシン)3を溶解した鮮度維持液5を用い、貝類1としてマガキを用いて本発明による鮮度維持効果を確認する実験を行った。本実験では、2.7μmol/gのグリシン濃度の鮮度維持液5に24時間浸漬したマガキと、対照用のグリシン無添加の海水中に24時間浸漬したマガキとを用い、両者をそれぞれ淡水中に浸漬して経時的な死亡率を対比した。
【0024】
実験結果を示す図2のグラフを参照するに、5日目までは両者何れも死亡個体が発生しなかったが、6日目に至ると対象用のマガキは約80%が死亡した。これに対し本発明の鮮度維持液5に浸漬したマガキは、6日目においても死亡率は約20%に止まり、淡水中での飼育という厳しい環境下において生存率が優れていることが確認できた。また、本発明の鮮度維持液5に浸漬したマガキの死亡率が80%に達するには更に3日間の時間を要した。このことから本発明の鮮度維持液5は、24時間という極めて短時間の浸漬により貝類の鮮度を長期間維持できることが確認できた。
【0025】
貝肉内のグリシン体内濃度の増加が鮮度維持に至る機構の詳細は不明であるが、糖類やタンパク質の不足時における一般的な代謝経路としてエネルギー生産のためにアミノ酸が分解される糖新生(gluconeogenesis)と呼ばれる代謝経路が知られており(例えば、篠原力雄他編「わかりやすい生化学−疾病と栄養の理解のために−」廣川書店(平成9年9月20日初版)pp88-91参照)、本実験においてもグリシン体内濃度を高めることによりグリシンがエネルギー源として利用され、鮮度が長期間維持できたものと考えられる。
【0026】
本発明は、非消化器官からの溶存態栄養素の取り込み能力のある貝類に広く適用可能であり、栄養素が溶解した鮮度維持液中に貝類を浸漬するだけの極めて簡単な方法で貝類の鮮度の低下を防止することができる。また、鮮度維持液中に24〜96時間程度の短時間浸漬するだけで貝肉内の栄養素の体内濃度を高めることができるので、即効性のある鮮度維持方法ということができる。更に本発明は、後述するように貝類の輸送や人工養殖等を含む幅広い分野での利用が期待でき、貝類の商品価値を高める実用的な手段といえる。
【0027】
こうして本発明の目的である「貝肉内の栄養素を短時間で簡単に増強できる貝類の鮮度維持方法」の提供が達成できる。
【0028】
【実施例】
本発明は、貝類1を水揚げして輸送する場合に有効に利用できる。例えば、水揚げ後輸送前に、貝類1を鮮度維持液5に所要時間浸漬して貝肉内の栄養素3の体内濃度を高める。前述したように、例えばグリシンが溶解した鮮度維持液5にマガキやアコヤガイを24〜48時間程度浸漬しておけば、エネルギー源として利用可能なグリシンの体内濃度を容易に高めることができ、無水輸送する場合はもとより、何らかの原因で輸送時間が延びた場合や厳密な温度管理ができなかった場合でも貝類の鮮度低下を抑制することができる。
【0029】
また本発明を、貝類の人工養殖に利用することも期待できる。従来の養殖場では、自然の餌料環境に依存していたため、貝類の栄養状態は不安定であった。環境の急激な変化に対する効果的な改善対策はなく、自然環境の良し悪しにより貝類の活力が変動することもあった。人工微粒子飼料等の利用が試みられているが、その場合でも特定の栄養素の体内濃度を高めることは容易ではない。本発明によれば、極めて簡単な処理で貝肉内の特定の栄養素濃度を高めることができ、実用的に大きな意味を持つといえる。例えば、産卵活動期のように貝類1が消耗し易い時期に、グリシンを溶解した本発明の鮮度維持液5に貝類1を浸漬してグリシン体内濃度を高めることにより、貝類1の斃死率の低減が期待できる。
【0030】
なお、ホタテガイでは非消化器官からの溶存態グリシンの吸収は見られないが、タウリンを溶解した鮮度維持液5に浸漬することにより、呈味成分として知られるタウリンの体内濃度を高めることができる。従来の貝類養殖では、貝肉内のアミノ酸組成及び含量は季節等によって変動し、出荷時期により風味が変動する等の問題が指摘されている。ホタテガイの養殖において、本発明の鮮度維持液5によりホタテガイのタウリン体内濃度を高めてやれば、貝類の風味の季節変動を最小限に抑え、貝類の食品価値を高める効果が期待できる。またアコヤガイの場合は、例えば真珠の核入れ手術の際に本発明の鮮度維持液5に所要時間浸漬してグリシン体内濃度を高めることにより、手術後のアコヤガイの体力回復を早期に図ることも期待できる。
【0031】
【発明の効果】
以上説明したように、本発明による貝類の鮮度維持方法及び輸送方法は、グリシンを水中に溶解して鮮度維持液とし、その鮮度維持液にアコヤガイ又はマガキを24〜96時間浸漬して貝肉内のグリシン体内濃度を高めるので、次の顕著な効果を奏する。
【0032】
(イ)栄養素を溶解した鮮度維持液中に貝類を所要時間浸漬するだけの極めて簡単な処理により、貝類の鮮度の低下を効果的に防止できる。
(ロ)短時間の浸漬で栄養素の体内濃度を大幅に高めることができ、即効性のある鮮度維持方法ということができる。
(ハ)貝類を水揚げ後輸送する前に鮮度維持液に浸漬することにより、輸送時の貝類の鮮度低下防止・斃死率の低減を図ることができる。
(ニ)アコヤガイの場合は、真珠の核入れ手術時に鮮度維持液によりグリシン体内濃度を高めてやれば、手術後の迅速な体力回復が期待できる。
(ホ)貝肉内の特定栄養素の体内濃度を高めることができ、季節に拘わらず貝類の風味等を一定に保ち、貝類の食品価値を高めることが期待できる。
【図面の簡単な説明】
【図1】は、本発明の一実施例の説明図である。
【図2】は、本発明による鮮度維持効果を示すグラフである。
【図3】は、アコヤガイによる溶存態グリシンの選択的吸収能を示すグラフである。
【図4】は、ホタテガイによる溶存態タウリンの選択的吸収能を示すグラフである。
【図5】は、マガキによる溶存態グリシンの選択的吸収能を示すグラフである。
【符号の説明】
1…貝類(アコヤガイ又はマガキ) 2…水(淡水、海水)
3…栄養素(グリシン) 5…鮮度維持液
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for maintaining the freshness of shellfish and a transport method , and more particularly to a method for maintaining the freshness of shellfish by increasing the concentration of nutrients in shellfish.
The present invention particularly relates to transportation of shellfish (fresh shellfish) as a food from the production area to the consumption area, transportation of shellfish used for the creation and regeneration of natural environments such as tidal flats, and a temporary protection place for inhabiting shellfish on the development site. It can be used effectively for transportation to a relocation site.
[0002]
[Prior art]
Shellfish such as oysters, scallops, swordfish, and clams are cultivated using, for example, natural phytoplankton and suspensions as nutrient sources in inner bays, lakes, and rivers where the effects of waves are relatively small. After being landed, the cultured shellfish purify the filth and fungi accumulated in the body and are usually transported to the consumption area in an anhydrous state. Nutrients stored in the shellfish shellfish during landing are gradually metabolized and reduced during purification and transportation, so that the freshness of the shellfish has been prevented from decreasing so that the freshness of the shellfish is not lost in the consumption area. Various measures are taken.
[0003]
An example of a measure for preventing a decrease in freshness of shellfish is a low-temperature transport method in which shellfish are wrapped in a damp cloth or paper and transported in a low temperature state. In addition, for example, by treating the shellfish with a biological feed such as phytoplankton at the time of purification after landing as described above, nutrients and taste components in the shellfish (hereinafter, both may be collectively referred to as nutrients). ) Has been practiced in the past to enhance the nutrition and maintain the freshness. As an example of a method for enhancing the nutrition of shellfishes during purification treatment, Japanese Patent Laid-Open No. 8-322420 discloses a bivalve shell that adjusts the nutrient content of the bivalve edible portion by feeding a predetermined artificial fine particle feed. A farming method is proposed.
[0004]
[Problems to be solved by the invention]
However, the conventional low-temperature transport method has a problem that it is difficult to control the temperature. It has also been frequently experienced that the freshness of shellfish is significantly reduced during transport due to the lack of strict temperature control, and that shellfish are also weakened or moribund. In addition, even in the case of low-temperature transportation, it is required to perform from landing to packing / shipping (start of transportation) promptly in case the transportation time is extended for some reason.
[0005]
On the other hand, the conventional nutrient enhancement method for storing nutrients in shellfish in preparation for transportation or the like has a problem that it takes time for nutrition enhancement. It takes several weeks for biological feeds such as phytoplankton to be metabolized via the digestive organs of shellfish to improve the state of shellfish. Even when the artificial fine particle feed according to the above publication is used, it takes about 5 days to adjust the nutrient content in the shellfish. In order to enable quick shipment after landing, there is a need for a method that can enhance nutrition in shellfish in a short time.
[0006]
Therefore, an object of the present invention is to provide a method for maintaining the freshness of shellfish, which can easily enhance nutrients in shellfish in a short time.
[0007]
[Means for Solving the Problems]
The present inventor paid attention to the fortification of shellfish with dissolved nutrients dissolved in water instead of the conventional solid feed. Conventionally, shellfish are known to absorb minerals dissolved in water to form shells, and the availability of dissolved minerals by shellfish has been suggested. Moreover, it is estimated that a part of the artificial fine particle feed of the above publication is dissolved in water. However, no specific report has been made yet regarding the absorption of dissolved nutrients by shellfish.
[0008]
The present inventor uses three kinds of bivalves, pearl oyster, scallop, and oyster, to investigate the absorption ecology of dissolved nutrients by shellfish, glutamic acid (glutamic acid), taurine (known as a taste component of shellfish) as nutrients We selected three types of amino acids, taurine) and glycine, and conducted experiments to confirm the absorption ecology of these dissolved amino acids. Divide the three 30 liter tanks into 4 test zones and put seawater. Glutamic acid, taurine and glycine are dissolved in the seawater of the 1st to 3rd test zones of each tank at a concentration of 2.7 μmol / g. The taurine group and glycine group were used, and for comparison, the fourth test group of each water tank was used as a control group with no amino acid added.
[0009]
The reason for setting the amino acid concentration in each test section to 2.7 μmol / g is that the amino acid concentration in seawater is slightly lower than the appropriate value of the amino acid concentration in the shellfish of the bivalve test specimen, This is to confirm uptake. In this experiment, taking into account the amino acids absorbed by shellfish and the excreted substances, the seawater in which the amino acids in each test zone were dissolved was replaced every 24 hours, and the amino acid concentration in the seawater during the experiment was kept constant. did.
[0010]
The first tank contains 20 pearl oysters in each test zone at a water temperature of 23.3 ° C, the second water tank contains 20 scallops in each test zone at a water temperature of 16.4 ° C, and the third water tank conducts tests at a water temperature of 22.5 ° C. 20 oysters were housed in the ward. The experiment was started by ventilating each tank with one air stone, and 5 individuals from each test section of each tank were picked up 24, 48, 72 and 96 hours after the start of the experiment. The amino acid concentration in the meat was measured. The experimental results of the pearl oyster, scallop and oyster are shown in the graphs of FIGS.
[0011]
The graph of FIG. 3 (A) shows the change in glutamic acid concentration in the pearl oyster shell of the first tank, and the graph of FIG. 3 (B) shows the change of taurine concentration in the pearl oyster shell of the taurine and control. The graph of FIG. 5C shows changes in glycine concentration in the pearl oyster shell of the glycine group and the control group. Each graph also shows the amino acid concentration (constant value) in the seawater for each test zone. As can be seen from FIG. 5A, the pearl oyster hardly takes in dissolved glutamic acid into the body. As can be seen from FIG. 5B, pearl oysters do not show statistically significant uptake of dissolved taurine. On the other hand, as shown in FIG. 5C, the pearl oysters actively take dissolved glycine into the body, and the concentration of glycine in the pearl oyster shellfish rapidly increases in a short time in the seawater where dissolved glycine is dissolved. 48 hours after the start of the experiment, the glycine concentration reached a maximum value of 35 to 40 μmol / g (about 6 to 8 times the concentration in the control group). That is, the pearl oyster has a selective uptake ability of dissolved glycine.
[0012]
4A, 4B, and 4C show changes in the concentrations of glutamic acid, taurine, and glycine in the scallop shell of the second tank. As shown in FIGS. 2A and 2C, scallops hardly take up dissolved glutamic acid into the body and do not show significant uptake of dissolved glycine. However, as shown in Fig. 5 (B), the concentration of taurine in scallop shellfish increased in a short time in seawater in which dissolved taurine was dissolved, and about 1.5 times (about approx. 60 μmol / g), which was approximately doubled (about 75 μmol / g) 96 hours after the start of the experiment. That is, scallops have the ability to selectively take up dissolved taurine.
[0013]
5A, 5B, and 5C show changes in the concentrations of glutamic acid, taurine, and glycine in the oyster shell of the third tank. As shown in FIGS. 4A and 4B, oysters do not show significant uptake of dissolved glutamic acid and taurine. However, as shown in FIG. 3C, the concentration of glycine in the oyster shellfish rapidly increased in a short time in seawater in which dissolved glycine was dissolved (approximately 4 in 48 hours after the start of the experiment compared to the control group). Twice, about 6 times in 72 hours). That is, oysters have the ability to selectively take up dissolved glycine.
[0014]
The rapid increase in the concentration in the body shown in the experimental results is not observed in the conventional feeding of food through the digestive tract, and therefore organs other than the digestive tract (hereinafter, sometimes referred to as non-digestive tract). It is thought to be due to absorption of dissolved amino acids from The details of the mechanism of absorption from non-digestive organs are unknown, but it is thought that respiratory organs such as shells of shellfish and sharks are involved in absorption. That is, from the experimental results of FIGS. 3 to 5, it was confirmed that bivalves selectively absorb dissolved amino acids from non-digestive organs depending on the type.
[0015]
Through further experiments, the present inventor confirmed that the above-mentioned selective increase in the body concentration of nutrients other than amino acids was observed, and the same increase in the body concentration of snails other than bivalves and freshwater shellfish. It was found that can be seen. By utilizing such a rapid increase in the body concentration in the shell meat due to the uptake of nutrients from the non-digestive organs, the nutrients in the shell meat can be enhanced in a short time. The present invention has been completed as a result of further experimental studies based on this finding.
[0016]
Referring to the embodiment of FIG. 1, the freshness maintaining method for shellfish according to the present invention is obtained by dissolving glycine 3 in water 2 to obtain a freshness maintaining solution 5, and the freshness maintaining solution 5 contains pearl oysters or oysters that are shellfish 1. It is soaked for 24 to 96 hours to increase the concentration of glycine 3 in the shellfish.
[0017]
In addition, the method for transporting shellfish according to the present invention involves immersing oyster oysters or oysters that are shellfish 1 in a freshness maintenance solution 5 in which glycine 3 is dissolved in water 2 before transport for 24 to 96 hours. Increased body concentration.
[0018]
Shellfish 1 having a selective uptake ability of dissolved glycine 3 , such as pearl oysters and oysters , absorbs glycine 3 from organs other than the digestive tract. The time required for soaking is 24 to 96 hours. In soaking for 24 hours or less, it may be difficult to sufficiently increase the concentration of nutrient 3 in the shellfish. This is because the concentration of nutrient 3 in the body is considered to reach a maximum value. The shell meat includes all parts of the shellfish other than the shell.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment in which glycine is dissolved as nutrient 3, in this case dissolved in seawater 2 to obtain a freshness-maintaining liquid 5 of the present invention. The shellfish 1 is, for example, pearl oyster or oyster having the ability to take up dissolved glycine by non-digestive organs, and the shellfish 1 is placed in the freshness maintenance solution 5 of FIG. 1 for 24 to 96 hours (preferably 48 hours or more for pearl oysters, If soaked for 72 hours or more, the concentration of glycine in the shellfish can be rapidly increased to a higher concentration than that obtained by feeding the feed through the digestive tract (see the experimental results in FIGS. 3 and 5).
[0020]
In FIG. 1, the nutrient 3 is dissolved in the seawater 2, but in the case of freshwater shellfish 1, the nutrient 3 is dissolved in the freshwater 2 to prepare the freshness maintenance liquid 5 of the present invention. Further, the water 2 is not limited to natural water, and as artificial breeding water, for example, seawater 2 can be artificial seawater, and freshwater 2 can be sterilized water.
[0021]
The concentration of the nutrient 3 in the freshness maintenance liquid 5 is not particularly limited as long as the shellfish 1 can be absorbed from the non-digestive organs, and can be a relatively low concentration of, for example, about 2.7 μmol / g. Even if the dissolved concentration of the nutrient 3 in the freshness maintenance solution 5 is low, the concentration of glycine in the shellfish of the shellfish 1, for example, is adjusted to the glycine concentration in the freshness maintenance solution 5 by adjusting the time of immersion in the freshness maintenance solution 5. In comparison, it can be increased to about 4 to 8 times. Therefore, in the present invention, it is expected that the concentration in the body of the nutrient 3 in the shellfish can be efficiently and economically increased by using the freshness maintaining solution 5 in which the dissolved concentration of the nutrient 3 is relatively low.
[0022]
The time for immersing the shellfish 1 in the freshness maintaining solution 5 can be adjusted according to the types of the shellfish 1 and the nutrient 3. In this case, a graph showing the relationship between the soaking time and the concentration in the shellfish as shown in FIGS. 3 to 5 according to the types of the shellfish 1 and the nutrient 3 is prepared, and the nutrient 3 in the shellfish is determined as the desired body concentration. The soaking time can be determined experimentally.
[0023]
[Experimental example]
Using a freshness maintaining solution 5 in which the nutrient (glycine) 3 shown in FIG. 1 was dissolved and using a oyster as the shellfish 1, an experiment for confirming the freshness maintaining effect according to the present invention was conducted. In this experiment, a oyster immersed for 24 hours in freshness-maintaining liquid 5 having a glycine concentration of 2.7 μmol / g and a oyster immersed for 24 hours in seawater without glycine for control were immersed in fresh water. And compared mortality over time.
[0024]
Referring to the graph of FIG. 2 showing the experimental results, neither individual died until 5th day, but about 80% of the target oysters died after 6th day. On the other hand, the oysters immersed in the freshness maintenance solution 5 of the present invention have a mortality rate of only about 20% even on the sixth day, and it can be confirmed that the survival rate is excellent in a severe environment of breeding in fresh water. It was. In addition, it took another 3 days for the mortality of the oysters immersed in the freshness maintenance solution 5 of the present invention to reach 80%. From this, it was confirmed that the freshness-maintaining liquid 5 of the present invention can maintain the freshness of shellfish for a long period of time by immersion for an extremely short time of 24 hours.
[0025]
Although the details of the mechanism by which an increase in the concentration of glycine in shellfish leads to the maintenance of freshness are unknown, gluconeogenesis, in which amino acids are decomposed for energy production as a general metabolic pathway when sugars and proteins are deficient ) Is known (see, for example, Rikio Shinohara et al. “Easy to understand biochemistry-for understanding of diseases and nutrition-” Yodogawa Shoten (first edition on September 20, 1997) pp88-91), In this experiment, it is considered that glycine was used as an energy source by increasing the concentration of glycine in the body, and the freshness could be maintained for a long time.
[0026]
The present invention can be widely applied to shellfish capable of taking up dissolved nutrients from non-digestive organs, and the freshness of shellfish can be reduced by a very simple method of immersing shellfish in a freshness maintenance solution in which nutrients are dissolved. Can be prevented. In addition, since the concentration of nutrients in the shellfish can be increased only by immersing in the freshness-maintaining liquid for a short time of about 24 to 96 hours, it can be said to be a freshness-maintaining method with immediate effect. Furthermore, as described later, the present invention can be expected to be used in a wide range of fields including transportation of shellfish and artificial culture, and can be said to be a practical means for increasing the commercial value of shellfish.
[0027]
Thus, the provision of “a method for maintaining the freshness of shellfish that can easily enhance nutrients in shellfish in a short time”, which is an object of the present invention, can be achieved.
[0028]
【Example】
The present invention can be effectively used when the shellfish 1 is landed and transported. For example, the shellfish 1 is immersed in the freshness maintenance liquid 5 for a required time before being transported after landing and the concentration of the nutrient 3 in the shellfish is increased. As described above, for example, if oysters or pearl oysters are immersed in the freshness maintenance solution 5 in which glycine is dissolved for about 24 to 48 hours, the in-vivo concentration of glycine that can be used as an energy source can be easily increased. In addition to the case, the freshness of the shellfish can be suppressed even when the transportation time is extended for some reason or when strict temperature control is not possible.
[0029]
The present invention can also be expected to be used for artificial culture of shellfish. In conventional farms, the nutritional status of shellfish has been unstable due to the dependence on the natural feed environment. There were no effective improvement measures against sudden changes in the environment, and the vitality of shellfish sometimes fluctuated due to the quality of the natural environment. Although attempts have been made to use artificial fine particle feeds or the like, it is not easy to increase the concentration of specific nutrients in the body. According to the present invention, the concentration of a specific nutrient in shellfish can be increased by an extremely simple process, which can be said to have a great practical meaning. For example, the mortality rate of shellfish 1 is reduced by immersing shellfish 1 in the freshness maintenance solution 5 of the present invention in which glycine is dissolved and increasing the concentration of glycine in the season when shellfish 1 is easily consumed, such as during the spawning activity period. Can be expected.
[0030]
Although scallops do not absorb dissolved glycine from non-digestive organs, the body concentration of taurine, known as a taste component, can be increased by immersing it in the freshness maintaining solution 5 in which taurine is dissolved. In conventional shellfish farming, it has been pointed out that the amino acid composition and content in shellfish vary depending on the season and the like, and the flavor varies depending on the shipping time. In the cultivation of scallops, if the taurine concentration in the scallop is increased with the freshness maintaining solution 5 of the present invention, the seasonal variation of the flavor of shellfish can be minimized and the effect of increasing the food value of shellfish can be expected. In the case of pearl oysters, for example, during the operation of pearl nucleation, the glycine body concentration is increased by immersing in the freshness-maintaining liquid 5 of the present invention for the required time, so that the oyster oysters are expected to recover their physical strength early after surgery. it can.
[0031]
【The invention's effect】
As described above, the freshness maintaining method and transporting method of the shellfish according to the present invention includes dissolving glycine in water to obtain a freshness maintaining solution, and immersing the pearl oyster or oyster in the freshness maintaining solution for 24 to 96 hours. Since the concentration of glycine in the body is increased, the following remarkable effects are exhibited.
[0032]
(I) The fall of the freshness of shellfish can be prevented effectively by the very simple process which only immerses shellfish in the freshness maintenance liquid which melt | dissolved the nutrient for the required time.
(B) a body concentration of nutrients in immersion for a short time can be increased significantly, Ru can be said that the Freshness method with immediate effect.
(C) By immersing the shellfish in a freshness-maintaining liquid before landing and transporting the shellfish, it is possible to prevent a decrease in freshness of the shellfish during transportation and to reduce the mortality rate.
(D) In the case of pearl oysters, rapid recovery of physical strength after surgery can be expected if the glycine concentration in the glycine is increased with a freshness maintenance solution during pearl nucleus surgery.
(E) It can be expected that the concentration of specific nutrients in shellfish can be increased, the flavor of shellfish can be kept constant regardless of the season, and the food value of shellfish can be increased.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of the present invention.
FIG. 2 is a graph showing a freshness maintaining effect according to the present invention.
FIG. 3 is a graph showing the selective absorption ability of dissolved glycine by pearl oysters.
FIG. 4 is a graph showing the selective absorption ability of dissolved taurine by scallops.
FIG. 5 is a graph showing the selective absorption ability of dissolved glycine by oysters.
[Explanation of symbols]
1 ... Shellfish (Ako-gai or oyster) 2 ... Water (freshwater, seawater)
3 ... Nutrient (glycine) 5 ... Freshness maintenance solution

Claims (6)

グリシンを水中に溶解して鮮度維持液とし、その鮮度維持液にアコヤガイ又はマガキを24〜96時間浸漬して貝肉内のグリシン体内濃度を高めてなる貝類の鮮度維持方法。A method for maintaining the freshness of shellfish in which glycine is dissolved in water to make a freshness maintenance solution, and oyster oysters or oysters are immersed in the freshness maintenance solution for 24 to 96 hours to increase the concentration of glycine in shellfish. 請求項1の鮮度維持方法において、48時間の前記浸漬によりアコヤガイ又はマガキの貝肉内のグリシン体内濃度を浸漬しない場合に比して4倍以上に高めてなる貝類の鮮度維持方法。The freshness maintenance method of Claim 1 WHEREIN: The freshness maintenance method of shellfish which raises the density | concentration in a glycine in the shellfish of a pearl oyster or a oyster by 48 times or more compared with the case where it does not immerse. 請求項1又は2の鮮度維持方法において、前記鮮度維持液中のグリシン濃度をアコヤガイ又はマガキの貝肉内体内濃度の適正値以下としてなる貝類の鮮度維持方法。The freshness maintenance method of Claim 1 or 2 WHEREIN: The freshness maintenance method of the shellfish which makes the glycine density | concentration in the said freshness maintenance liquid below the appropriate value of the shell internal body concentration of a pearl oyster or a oyster. 貝類であるアコヤガイ又はマガキを輸送する方法において、輸送前にグリシンを水中に溶解した鮮度維持液にアコヤガイ又はマガキを24〜96時間浸漬して貝肉内のグリシン体内濃度を高めてなる貝類の輸送方法。A method of transporting oyster or oyster is shellfish, transport of glycine before transport the oyster or oyster in freshness liquid dissolved in water and immersed 24-96 hours made by increasing glycine body concentration in shellfish meat and shellfish Method. 請求項4の輸送方法において、48時間の前記浸漬によりアコヤガイ又はマガキの貝肉内のグリシン体内濃度を浸漬しない場合に比して4倍以上に高めてなる貝類の輸送方法。5. The method for transporting shellfish according to claim 4, wherein the glycine concentration in the oyster or oyster shell is not soaked by the soaking for 48 hours as compared to a case where it is not soaked. 請求項4又は5の輸送方法において、前記鮮度維持液中のグリシン濃度をアコヤガイ又はマガキの貝肉内体内濃度の適正値以下としてなる貝類の輸送方法。6. The method for transporting shellfish according to claim 4 or 5, wherein the glycine concentration in the freshness maintenance liquid is not more than the appropriate value of the concentration in the shell of pearl oyster or oyster .
JP2002192179A 2002-07-01 2002-07-01 Shellfish freshness maintenance method and transportation method Expired - Fee Related JP4066240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002192179A JP4066240B2 (en) 2002-07-01 2002-07-01 Shellfish freshness maintenance method and transportation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002192179A JP4066240B2 (en) 2002-07-01 2002-07-01 Shellfish freshness maintenance method and transportation method

Publications (2)

Publication Number Publication Date
JP2004033052A JP2004033052A (en) 2004-02-05
JP4066240B2 true JP4066240B2 (en) 2008-03-26

Family

ID=31701534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002192179A Expired - Fee Related JP4066240B2 (en) 2002-07-01 2002-07-01 Shellfish freshness maintenance method and transportation method

Country Status (1)

Country Link
JP (1) JP4066240B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ566319A (en) * 2005-09-20 2011-09-30 Univ Northwest Use of free L-proline in the preparation of supplements for supplementing the concentration of cellular free L-proline in abalone
JP4875913B2 (en) * 2006-03-29 2012-02-15 公益財団法人函館地域産業振興財団 How to store or transport live seafood
CN106666239A (en) * 2016-12-29 2017-05-17 广西还珠海洋生物科技有限公司 Preservative for transporting young oysters of ostrea rivularis gould

Also Published As

Publication number Publication date
JP2004033052A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
Vahl Seasonal variatins in seston and in the growth rate of the iceland scallop, Chlamys islandica (OF Müller) from balsfjord, 70° N
US8733289B2 (en) Method for preparing edible aquatic animals for storage
Zheng et al. Effects of temperature and salinity on oxygen consumption and ammonia excretion of juvenile miiuy croaker, Miichthys miiuy (Basilewsky)
KR20140115445A (en) METHOD FOR CULTUERING CATADROMOUS FISH(Anguilla marmorata) BY USING RECIRCULATING AQUACULTUER SYSTEM AND SEAWATER ACCLIMATION
Hussain et al. Growth performance of the green tiger shrimp Penaeus semisulcatus raised in biofloc systems
Concha-Frías et al. Dietary protein requirement in common snook (Centropomus undecimalis) juveniles reared in marine and brackish water
Castillo-Vargasmachuca et al. Effects of temperature and salinity on growth and survival of the Pacific red snapper Lutjanus peru (Pisces: Lutjanidae) juvenile
JP4066240B2 (en) Shellfish freshness maintenance method and transportation method
Lobanov et al. Sturgeon and paddlefish: Review of research on broodstock and early life stage management
Nancollas et al. The role of tidal acclimation on the physiological responses of the green shore crab, Carcinus maenas, to thermal stress
Nurcahyono et al. The effect of a recirculation aquaculture system on the reproductive performance of female mud crabs (Scylla serrata)
McGuigan et al. Effect of replacing darkness with dim light in the larviculture of red snapper, Lutjanus campechanus
Nurussalam et al. The frequency of calcium and magnesium differences in recirculation systems for increasing production of mudcrab Scylla serrata seed
JP6468812B2 (en) How to save oysters
JP2006271321A (en) Method for rearing amphiprion ocellaris at initial living stage, and organism feed for amphiprion ocellaris
Siikavuopio Green sea urchin (Strongylocentrotus droebachiensis, Müller) in aquaculture: the effects of environmental factors on gonad growth.
Santi et al. Proximate and mineral composition of cuttlefish (Sepia sp)
Lin et al. Metabolic trade-offs associated with homeostatic adjustments in pelagic and benthic cephalopods: Comparative evaluations of NH4+/H+ transport machinery in gills
JP6808378B2 (en) Shijimi clam processed health food and its manufacturing method
KR101287148B1 (en) Method of preserving decapsulated cyst and storage medium for preserving decapsulated cyst
Langroudi et al. Effect of diets containing artemia enriched with unsaturated fatty acids and vitamin C on angel fish Pterophyllum scalare propagation
Frías Dietary protein requirement in common snook (Centropomus undecimalis) juveniles reared in marine and brackish water
Falahatkar et al. Evaluation of Artemia and formulated diets on performance of Persian sturgeon Acipenser persicus larvae.
Wang et al. Laboratory observations on the feeding behavior and feeding rate of the nemertean Procephalothrix simulus
Owings Effects of the biomedical bleeding process on the behavior and physiology of the American horseshoe crab, Limulus polyphemus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees